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ABSTRACT Predicting and understanding pedestrian intentions is crucial for autonomous vehicles and
mobile robots to navigate in a crowd. However, the movement of pedestrian is random. Pedestrian trajectory
modeling needs to consider not only the past movement of pedestrians, the interaction between different
pedestrians, the constraints of static obstacles in the scene, but also multi-modal of the human trajectory,
which brings challenges to pedestrian trajectory prediction. Most of the existing trajectory prediction
methods only consider the interaction between pedestrians in the scene, ignoring the static obstacles in the
scene can also have impacts on the trajectory of pedestrian. In this paper, a scalable relative interactive
spatial-temporal graph generation adversarial network architecture (RISTG-GAN) is proposed to generate a
reasonable multi-modal prediction trajectory by considering the interaction effects of all agents in the scene.
Our method extends recent work on trajectory prediction. First, LSTM nodes are flexibly used to model the
spatial-temporal graph of human-environment interactions, and the spatial-temporal graph is converted into
feed-forward differentiable feature coding, and the time attention module is proposed to capture the trajectory
information in time domain and learn the time dependence in long time range. Then, we capture the relative
importance of the interaction of all agents in the scene on the pedestrian trajectory through the improved
relative scaled dot product attention and use the generative adversarial network architecture for training to
generate reasonable pedestrian future trajectory distribution. Experiments on five commonly used real public
datasets show that RISTG-GAN is better than previous work in terms of reasoning speed, accuracy and the
rationality of trajectory prediction.

INDEX TERMS Pedestrian trajectory prediction, spatial-temporal graph, time attention, relative scaled dot
product attention, generative adversarial network.

I. INTRODUCTION

With the development of society, autonomous navigation
platforms like autonomous vehicles and social robots are
growing, it is critical that autonomous vehicles and social
robots must be able to predict the movements of pedestrians to
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prevent collisions with them [1], [2], [3], [4]. So, modeling the
behaviors of pedestrians is an essential step for autonomous
platforms application research, such as video autonomous
monitoring platform detection suspicious trajectory [5], [6],
[7], socially-aware robots for visual navigation [8], [9], and
self-driving platforms safety decisions [10], [11], [12]. Pedes-
trian trajectory prediction is defined as the prediction of
pedestrian movement trajectory for some time to come based
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FIGURE 1. An example of pedestrian multi-modal trajectory in a crowded
scene. In the scene, pedestrians will pay more attention to the person or
object in front of them and pay less attention to the situation behind
them. When making navigational decisions, pedestrians judge and
analyze the importance of dynamic participants and static obstacles in
the scene (such as trees, stationary vehicles, and streetlights) for future
trajectory interactions. It should be noted that the scene changes
dynamically, and so does the trajectory of pedestrians at each moment,
with randomness. so, we should not only consider the spatio-temporal
structure of human interaction with the current scene, visual attention,
but also the random multi-modal nature of human walking.

on the past trajectory of pedestrian, accurate trajectory predic-
tion can help autonomous driving and social robots navigate
better.

Predicting the trajectory of pedestrian in a crowded
scene is a challenging task. It is necessary to consider the
spatial-temporal structure of human interaction with the cur-
rent scene, visual attention [13] that human can quickly
analyze the environment, and the random multi-modal [14]
nature of human walking. In the process of walking, pedes-
trians can walk according to the intentions of surrounding
neighbors and the positions of static obstacles to adjust their
own trajectory to avoid collision, and with the passage of
time, the scene of the pedestrians constantly moving, obsta-
cles types and relative positions are constantly changing,
pedestrians must also constantly adjust their own trajectory,
so the interaction between human and dynamic environment
has spatial-temporal structure [15]. In addition, humans are
born with the ability to analyze and judge, people or objects
that are nearby are more likely to attract the target pedestrian’s
attention than distant people or objects, or the target pedes-
trian pays more attention to the people in front of him than to
the people behind him, in what’s known as the ‘“‘attentional
mechanism.” In view of this situation, Laurent Itti ef al. [13]
proposed a visual attention model that can explain this situa-
tion. In addition, according to the actual situation in real life,
the movement trajectory of pedestrians will be more random
and uncertain due to the influence of other pedestrians or
obstacles in the scene, as shown in Fig. 1. Compared with
the deterministic trajectory prediction proposed before, the
multi-modal trajectory prediction output is more reasonable.

However, most of the existing trajectory prediction meth-
ods do not consider the above three aspects simultaneously.
Early work on pedestrian trajectory prediction mainly
focused on model-driven methods. Helbing ef al. [16]
pioneered the social force model, which predictes pedestrian
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behavior according to attraction and repulsion. Morris et al.
[17] proposed the Hidden Markov Model to predict pedes-
trian trajectory with spatial-temporal probabilities. However,
these models have poor adaptability and are too sensitive to
parameters, so they can not solve the problem of pedestrian
trajectory prediction in crowded scenes. In recent years, data-
driven method has become a popular research method for
researchers. This method mainly regards pedestrian trajectory
prediction as a time series generation task. Some recent works
have used recursive neural networks (RNNS) to solve this
problem. Alahi et al. [18] proposed the Social-LSTM model
and innovatively used the social pooling layer module to
divide the space where pedestrians are with rectangular grid
units, so that capture the interactive information of adjacent
pedestrians. Bisagno et al. [19] proposed the Group-LSTM
model, which is an improved method of Social-LSTM. This
model uses motion consistency to gather trajectories with
similar movement trends and to group pedestrians. How-
ever, the above methods only consider the simple interaction
between pedestrians and fail to capture the spatial-temporal
interaction information between human and the current scene.

In view of the spatial-temporal interaction between human
and the environment, [20], [21], [22] proposed a model-
ing method based on spatial-temporal graph (STG), through
which the temporal and spatial connection between the tar-
get subjects can be clearly modeled. Mohamed er al. [23]
proposed social spatial-temporal graph convolutional neu-
ral network (social-STGCNN), which models the interaction
between pedestrians as spatial-temporal graph to replace the
aggregation method, but they did not consider scene mod-
eling. Sirin Haddad er al. [24] proposed a long and short
term-memory (LSTM) network based on spatial-temporal
graph, the interaction of all agents in the scenario was consid-
ered. Although the above methods model the spatial-temporal
interaction between human and environment through spatial-
temporal graph, it is the deterministic trajectory predic-
tion output. Considering the randomness and uncertainty of
pedestrian movement, the multi-modal trajectories prediction
output is realistic and reasonable.

Since generative adversarial networks (GANs) [25] have
achieved remarkable results in probability calculation and
behavioral reasoning, researchers begin to turn their attention
to GAN. Aglim Gupta et al. [26] proposed a pioneering
social-GAN model and introduced GAN into the pedestrian
trajectory prediction task. This model combines sequence
prediction with generative adversarial network to generate
diversified trajectories, and generated reasonable trajectory
prediction through repeated adversarial training. However,
the model do not consider global scenario information.
Stuart Eiffert et al. [27] proposed a probabilistic crowd GAN
(PCGAN) trajectory prediction method, which combines the
recursive neural network and the mixed density network. This
method not only consideres the interaction effects between
people and people, but also the interaction effects between
people and vehicles, but do not model the time information,
and the training process is very complicated.
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In order to solve the limitation of the above methods,
we extend our previous work Zou et al. [28], introducing a
scalable relative interactive spatial-temporal graph generation
adversarial network architecture (RISTG-GAN), which com-
prehensively considers the interaction effects of all agents
in the scene to generate reasonable multi-modal prediction
trajectory. First, LSTM nodes are flexibly used to model the
spatial-temporal graph of human-environment interactions,
and the spatial-temporal graph is converted into feed-forward
differentiable feature coding. Then, we introduce the time
attention module to assign different weights to the past trajec-
tory sequence of pedestrians, extract important information
at different moments and weaken the speed deviation of
different pedestrians. Finally, improved relative scaled dot
product attention is used to capture the relative importance
of various interactions in the scene on pedestrian trajectory
and use recurrent sequence modeling and generative adver-
sarial network for joint training to generate reasonable future
trajectory prediction output. The main contributions of this
paper are as follows:

1) This paper proposes a scalable RISTG-GAN archi-
tecture, and the number of nodes can change dynam-
ically according to different scenes. The framework
models all interactions in the scene and uses recurrent
sequence modeling and generation adversarial network
architecture to train together to generate multi-modal
pedestrian trajectory prediction, which conforms to the
characteristics of randomness and uncertainty of pedes-
trian walking in the real scene.

2) In the feature coding stage, a time attention module
is introduced to assign different weights to the past
trajectory sequence of pedestrians, extract important
information at different moments, align the pedestrians
in the space, and weaken the speed deviation of differ-
ent pedestrians.

3) Inthe interaction stage, an improved scaled dot product
attention is introduced to capture the relative impor-
tance of the impacts of all interactions on the pedestrian
trajectory in the scene, which is more in line with
the innate characteristics of human beings to screen
information.

The rest of this paper is arranged as follows. In Section II,
we analyze recent work on pedestrian trajectory pre-
diction. In Section III, we explain the principle of the
RISTG-GAN pedestrian trajectory prediction model in detail.
In Section IV, we do comparative experiments with other
models on the open data sets and analyze the experimental
results. In Section V, we summarize the work of this paper.

Il. RELATED WORK
The focus of our work is to predict the trajectory of pedestri-

ans. In the past decades, many researchers have carried out
research on pedestrian trajectory prediction and put forward
their own methods. Previous work has focused on modeling
with hand-made feature functions [16], [29], [30], [31]. How-
ever, with the rapid development of deep learning, data-driven
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methods based on deep learning have recently made great
progress in trajectory prediction. In this section, we focus on
RNN-related sequence prediction, attention mechanism and
GAN model related to our work.

A. RECURRENT NEURAL NETWORKS FOR
SEQUENCE PREDICTION
Pedestrian trajectory prediction is defined as predicting the
future movement trajectory of pedestrian according to the
past trajectory, which is a typical sequence generation prob-
lem. In recent years, recurrent neural network (RNN) has
achieved great success in the task of sequence prediction.
As a variant of RNN, long and short-term memory network
(LSTM) [32] can learn long-term dependencies. LSTM has
designed three “‘gate” structures to control the cell state,
namely forgetting gate, input gate and output gate. The func-
tion of the forgetting gate is to decide what information
to discard from the cell state, thus solving the problem of
large computational data and noise. Input gate is the selective
memory stage, its function is to selectively ‘‘remember”
the input, important information is recorded, otherwise less
memory. The function of the output gate is to decide what
information to output from the cell state. Thanks to the excel-
lent application of LSTM in machine translation [33] and
speech recognition [34], researchers begin to widely apply
LSTM to the prediction of pedestrian trajectory. Alahi et al.
[18] first proposed the Social-LSTM model, the space where
pedestrians are was divided by rectangular grid units and used
the social pooling layer to capture the interactions between
pedestrians, allowing neighboring pedestrians to share the
hidden state. Huynh Manh er al. [35] proposed scene-LSTM,
which combines the scene information and the historical
trajectory of pedestrian to predict the future trajectory of
pedestrian in static crowded scenes. Xue et al. [36] proposed
SS-LSTM, which uses three different LSTM networks to cap-
ture pedestrian, social and scene size information respectively
to improve the ability to predict pedestrian trajectory.
Although the above methods improve the pedestrian trajec-
tory prediction ability to different degrees, they do not con-
sider different pedestrians or objects have different degrees
of impact on the target pedestrian.

B. ATTENTION MECHANISMS ARE USED FOR
TRAJECTORY PREDICTION

Humans are born with the ability of analysis and judgment.
When walking in a crowded scene, pedestrians will pay more
attention to the nearby people and obstacles in front of them
compared with the pedestrians or obstacles behind them or
in the distance. This is because humans use limited visual
attention to quickly screen out useful information from the
scene, so the attention mechanism is proposed. Thanks to
the successful application of attention mechanism in natural
language processing [37], some researchers have introduced
attention mechanism into the field of pedestrian trajectory
prediction, capturing the relative importance of neighbors and
obstacles around pedestrians in the scene. Vemula et al. [38]
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proposed a social attention mechanism that can capture the
relative importance of the current pedestrian navigation of
other pedestrians in the scene. Fernando et al. [39] proposed
a combination method of soft attention and hard attention.
Soft attention was used to evaluate the significance of inter-
action in the scene area, and hard attention was used to
assign different weights to pedestrians at different distances.
Velickovic et al. [40] proposed a graph attention mechanism,
in which stacked nodes can pay attention to the layer of their
neighborhood characteristics and assign different weights to
different nodes in the neighborhood. Sirin Haddad et al. [24]
proposed the spatial-temporal attention mechanism, which
is a variant of the multi-head method. It retains the global
interaction information of all pedestrians in the scene and
the local interaction information of static objects in the way
of accumulation and average. Stuart Eiffert et al. [27] used
the Graph Vehicle-Pedestrian Attention Network (GVAT)
to focus on a much wider range of problems: pedestrians
and vehicles. The network models social interactions and
allows input of shared vehicle characteristics. These methods
indicate that the introduction of attention mechanism can
indeed improve the accuracy of pedestrian trajectory pre-
diction. In our work, we capture pedestrian trajectory infor-
mation in the time domain ang learn time dependence over
long time ranges by introducing temporal attention. Recently,
Transformer Networks have made great strides in Natural
Language Processing [41], [42], we borrowed this method,
introducing relative scaled dot product attention to capture the
relative importance of various interactions in a global scene
affecting pedestrian trajectories.

C. GENERATING ADVERSARIAL NETWORKS (GANS)

The above methods are the only deterministic trajectory
prediction output. However, in real life, the trajectory of
pedestrians shows more randomness and uncertainty due to
the influence of other pedestrians or obstacles in the scene,
and the multi-mode trajectory prediction output is more con-
sistent with the real situation. Initially generative adversarial
networks (GANSs) [25] were used in probability calculation
and behavioral reasoning. Agrim Gupta et al. [26] intro-
duced GAN into the pedestrian trajectory prediction task
for the first time and proposed a social-GAN model. The
generator is composed of an LSTM based encoder-decoder
with a social pool layer that simulates the relationship
between each pedestrian. The discriminator distinguishes
whether the generated trajectory is real (ground real) or false
(generated) and generates reasonable trajectory prediction
through repeated adversarial training. Amir Sadeghian et al.
[43] extended this idea and improved the model by adding
physical and social attention mechanism. The improved
model can extract the most important trajectory information
from the neighbors and assign different soft attention weights
to the static environment. Vineet Kosaraju et al. [44] pro-
posed the Social-BiGAT model and introduced a generative
adversarial network based on graph to better simulate the
social interaction of pedestrians in the scene through flexible
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graph structure to generate reasonable multi-modal trajectory
prediction.

IIl. PROBLEM REPRESENTATION AND MODEL

In this section, we first define the pedestrian trajectory
prediction problem. Next, introducing the RISTG-GAN
framework, and then describe the working principle of
the spatial-temporal graph feature coding based on relative
interaction. Finally, this paper illustrates the process of
using recurrent sequence modeling and generation adversar-
ial network to train together to output reasonable trajectory
prediction.

A. PROBLEM DEFINITION

In this paper, we aim at the prediction of pedestrian trajectory
(x and y coordinates on a 2D map) in a fixed scene, and
comprehensively consider the previous movement of pedes-
trians and the position of fixed obstacles in the scene (includ-
ing stationary vehicles, lamp posts etc). At every moment,
pedestrians regard the positions of other pedestrians and
obstacles around them as a static ““map”’. With the change
of time, these static maps become a dynamic map with
temporal sequence information. Therefore, the interaction
between people and the environment has a spatial-temporal
structure. The observable historical trajectory of pedestrian i
is defined as: X;={(x/,y}) [ 1 = 1,..., tops}, fixed obstacles
oi observable historical position is defined as: Z={(x],, ¥ )
|t = 1,...,tps}, the real future trajectory of pedestrian
i is defined as: Yi={(x],¥}) | t = fopst1. .-, lprea}. Simi-
larly, the predicted future pedestrian trajectory is defined as:
Yi:{()?,{v %) |t = tobs+1, - -» tprea’}~

B. OVERALL MODEL

This paper proposes a new pedestrian trajectory prediction
method, RISTG-GAN, which considers the historical trajec-
tory, state, interaction of surrounding pedestrians and fixed
obstacles of each pedestrian in the scene comprehensively
that can accurately predict the pedestrian trajectory. The over-
all architecture is shown in Fig. 2. The architecture can be
divided into three modules, which are the feature encoder
module, generator/decoder module and discriminator mod-
ule. The feature encoder module includes the time attention
module and the relative scaled dot product attention module.
First, the interaction model of dynamic participants and fixed
obstacles in the scene is established by using the spatial-
temporal graph, and LSTM is used to extract nodes feature
coding from the historical trajectory information of pedes-
trians. Next, the extracted feature coding is input into the
time attention module, and different weights are assigned to
it in each time step to get the time feature coding. Finally,
we improve the scaled dot product attention proposed in
reference [45] and propose the relative scaled dot product
attention. The historical trajectory information of pedestrian,
the location information of fixed obstacle and the time feature
coding are input into the relative scaled dot product attention
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FIGURE 2. Our proposed relative interactive spatial-temporal graph network architecture.The framework consists of three main
modules:feature encoder module, generator/decoder module and discriminator module.

module to capture the relative interactive feature encoding of
the impact of the global scene on the pedestrian trajectory.

In the generator/decoder module, we integrate random
noise, time feature coding and relative interactive feature
coding as the input of the generator/decoder module. Based
on these features, the generator generates a distribution of
diversity trajectories that conform to social rules. In the dis-
criminator module, the discriminator is repeatedly trained to
distinguish whether the generated trajectory distribution is
real (ground true) or false (generated), and when the dis-
criminator cannot clearly distinguish between the generated
trajectory true and false, the output is reasonable.

C. SPATIAL-TEMPORAL GRAPH ARCHITECTURE

In this paper, we describe the dynamic spatial-temporal struc-
ture of the interaction between pedestrians and the environ-
ment in the scene by using spatial-temporal graph. We express
the spatial-temporal graph as: G = (v, €5, €7), Where v is
the instance nodes set, e7 is a set of time edges, ¢g is a set of
spatial edges, and its abstract network architecture is shown
in Fig. 3. In the paper, instance nodes include pedestrian
node P and fixed obstacle node O, the nodes is variable. The
spatial edge connects all instance nodes, while the time edge
connects adjacent time steps to the same pedestrian node.
It is worth noting that the obstacle nodes do not need to be
connected at adjacent time steps, because the position of the
obstacle does not change with time.

In this paper, we introduce the time attention module to
capture the temporal edge information of pedestrian trajec-
tory and use the improved relative scaled dot product attention
to capture the spatial edge information. We will introduce the
two aspects respectively below.
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FIGURE 3. Structure of spatial-temporal interaction information for
pedestrians with adjacent time steps. The spatial relationship between
pedestrians and obstacles is represented by a black solid arrow, ¢
represents the spatial edge, the black dotted line represents the time
edges that connects the same pedestrian node on adjacent time steps, ¢g
represents the time edge.

1) TIME ATTENTION MOUDLE

In the pedestrian trajectory prediction task, the position of the
pedestrian changes dynamically with time, so it is necessary
to capture the trajectory information in the time domain.
By introducing the time attention module, we extract the
trajectory information in the time domain and assign different
weights to it. Taking pedestrian i as an example, we first use
multi-layer perceptron (MLP) to embed coordinate position
of pedestrian i to obtain fixed length vector e;”. and LSTM
unit takes this embedded vector as input to obtain pedestrian
node feature code .

el = p(xi, yi; Wp) (1

hf = LSTM (B, by Wi o) @

where ¢(-) is a nonlinear embedding function, W, is

the embedding weight, Wimpoml is the weight of the
temporal-edge LSTM cell.
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s o

FIGURE 4. Network architecture of time attention module.

We take the pedestrian node feature code hf obtained above
as the input of the time attention module. Fig. 4 shows the
network architecture of our time attention module. Where N
represents the number of people in the scene and node feature
hi(i=1,2,....N)isinput to the FC layer to obtain score S;.

S; = FC(h;) = tanh(w! h; + by) 3)

where FC is the fully connected network, S; is the calculation
of the score of h;, w, and b, are the network parameters, and
tanh() is the activation function. Next, S; is taken as the input
of § — BN layer, and the attention weight a; of 4; is obtained.

a; = softmax(BN (S;)) @)

where BN is the Batch Normalization function and S is the
softmax() function. Finally, the time feature coding vector hi
with time information is obtained by multiplying the respec-
tive node feature coding h; and its corresponding attention
weight a; and summation.

N
hi =) (aihy) ()
i=1

We capture the time edge information of pedestrian trajec-
tory through the time attention module, which improves the
accuracy and robustness of the model.

2) RELATIVE SCALED DOT PRODUCT ATTENTION MODULE
In the pedestrian trajectory prediction task, the trajectory of
the target pedestrian is not only affected by the surrounding
pedestrians, but also by the fixed obstacles in the scene, so we
introduce the relative scaled dot product attention module to
capture the spatial information of all instance nodes. It con-
siders not only the relative position of the target pedestrian
and its neighbors in current and historical moments, but also
the relative position with the fixed obstacles, and assigns
different weights. First, we calculate the relative distance ij
between the pedestrian and the fixed obstacle node.

o' — (xf —x!,,yi — L) Obstacles exist ©)
v (0,0) Obstacles do not exist
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Next, the fixed length vector ré‘ is obtained by embedding
the relative distance from pedestrian i to adjacent pedestrian
Jj and to the obstacle through multi-layer perceptron, and then
the vector r/; is used as the input of LSTM unit to obtain the
relative feature code h’r, When the obstacle nodes exist, the
relative feature code 4. contains the context information of
the scene. When obstacle nodes do not exist, the relative
feature coding is reduced to contain only social interaction
information.

ri = ¢ —xj.y; — i, O W) ™
B = LSTM(h'.7!, i Weaial) 8)

where, W, is the embedded weight, and Wé;aﬁa, is the weight
of the spatial edge-LSTM cell, which is shared among all
instance nodes. Then, we use the scaled dot product attention
mechanism proposed in literature [45] to assign influence
weight to all instance nodes in the scene. Finally, the influence
weight is multiplied by the time feature coding vector hi to
obtain the relative interaction feature coding I (the yellow
grid square in Fig. 2).

wh Dot(Wah!., Wih)) )

1
softmax(
V.
Il = Wk hl (10)

1

where W; and W are weights used for linear scaling and pro-
jection of hidden states onto the d, dimension vector, Dot(-)
is the dot product, softmax() is the activation function,ﬁ
scaling factor. So far, the process of encoding relative inter-
active features based on spatial-temporal graph has been

completed.

D. GENERATOR

As mentioned in the introduction, pedestrian trajectories in
crowded scene are stochastic and uncertain, so it is reasonable
to use multimodal trajectory prediction output. Generative
adversarial network is used for training. For the generator
module (G), as shown in Fig. 2, we use the decoder based
on LSTM unit for eigenvector decoding and trajectory gener-
ation. First, we introduce the standard normally distributed
noise z (the gray square in Fig. 2). Next, we connect the
time feature coding vector fzi, the relative interactive feature
coding I/ and the noise vector z as the input of the decoder
LSTM unit to obtain the mixed feature coding vector hfgi.
Then, h;i is converted to spatial coordinates through a multi-
layer perceptron.

Wy = LSTM(H ' (2, L 11 W) (1)

1271
G I = MLP(Hy; Wee) (12)
where z is the noise vector satisfying the standard normal
distribution, MLP(-) is the multi-layer perceptron, W, and
Wp, are the embedding weights.

E. DISCRIMINATOR
For the discriminator module (D), as shown in Fig. 2.
Based on the observation of all the historical trajectories of
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pedestrians, the discriminator will evaluate the real future tra-
jectories of pedestrians Y; and the predicted future trajectories
Y;. We use MLP in the last hidden state of the encoder to get
the classification score Lgjs;.

elisi = MLP([T]1; We1) (13)
hfﬁsi = LSTM (hiu_s} ) eilisi; We2) (14)
Lgisi = MLP(hgisi; We3) (15)

where T/ is each coordinate from [X], f/l.’] or [X],Y/] at
time ¢, hgjg is the integration hfﬁsi, Lgisi is the result of the
classification (true/false), When Lj = 0, it means that
the output trajectory is false; when Lg;;; = 1, it means that
the output trajectory is real, W,1, Weo, and W,3 are embedding
weights, respectively.

F. LOSS
We defined the training goals of RISTG-GAN as follows:

V =arg mén mgx Lan(G, D) 4+ AL1»(G) (16)

where A is the weighting coefficient, and the adversarial loss
Lgan (G, D) and L2 loss L;2(G) are defined as follows:

Lgan(G, D) = EjcpistcllogD(Y;)]
+ Eicristcllog(1 — DY)l (17)
Li7(G) = EieRISTG[H Y — ¥ 2] (18)

G. IMPLEMENTATION DETAILS

In our proposed model, the encoder and decoder are con-
structed based on LSTM units. The hidden state sizes of
the encoder and decoder are 16 and 32 respectively, and the
input coordinates are embedded into 16-dimensional vectors.
The ADAM optimizer [46] is used to train the generator and
discriminator models, the initial learning rate is set to 0.001,
and the number of training are set to 200 rounds.

IV. EXPERIMENTS

In this section, we introduce the two data sets used in the
experiment and the measurement criteria, showing the exper-
imental results of our method, comparing its performance
with the most advanced method, and showing the quantitative
analysis and qualitative results.

A. DATASETS AND METRICS

We evaluate the model performance on two common pedes-
trian trajectory datasets: ETH [47] and UCY [48]. The
ETH dataset contains two subsets named Eth-univ and
Eth-hotel, while the UCY dataset contains three subsets
named UCY-zaral, UCY-zara2 and UCY-univ. These five
real scenes contain the interactions between most people and
the environment in the real world, such as turning at the
intersection, following the crowd, avoiding the obstacles on
the road, and intersecting with each other. Same work as
in [26], [36], and [49], we use data within 8 seconds to eval-
uate the model and record a time step of 0.4 seconds. Among
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them, the first 3.2 seconds (8 time steps) are training data,
and the last 4.8 seconds (12 time steps) are test data. In the
evaluation of the model, we use two benchmark metrics: the
mean displacement error (ADE) and the final displacement
error (FDE). The mean displacement error (ADE) is defined
as the average L2 distance between the ground reality and our
prediction over all predicted time steps.

N Ipred
Zi:l Ztietobfkl ‘

N % (tpred —fops — 1)

Y! —Y!

ADE =

2 (19)

The final displacement error (FDE) is defined as the mean
distance between the predicted final destination and the true
final destination.

Ytpred

Ipred
pre.

|

FDE =

2
N (20
where, f/l-’ and Y/ are the predicted position and real position
of pedestrian i at time ¢ respectively, and N is the number of
pedestrians in the scene. The smaller ADE and FDE values
are, the more accurate trajectory prediction is.

In this paper, in order to test the validity of the model,
we choose five models for comparison, including LSTM [32],
S-LSTM [18], SS-LSTM [36], S-GAN [26], and Sophie [43].
In addition, we have also performed ablation research on
the proposed RISTG-GAN. In the RISTG-GAN framework,
we model the complex interaction between people and the
environment through the spatial-temporal graph, the instance
nodes in the scene are divided into pedestrian nodes and
obstacle nodes. The method that only considers pedestrian
nodes is called RISTG-GAN-1, and the method that considers
all agents is called RISTG-GAN-2. In Table 1, we describe
the modeling direction of the seven models respectively.

B. QUANTITATIVE EVALUATION
In Table 2, our proposed model is compared with other five
existing typical models on five publicly available datasets.
We use data within 8 seconds to evaluate the model, taking the
first 3.2 seconds of each trajectory as the training value and
predicting the next 4.8 seconds of trajectory. Through com-
parison, it can be found that the LSTM model has the worst
performance, because the model only considers the historical
trajectory of pedestrian. The performance of S-LSTM model
is better than that of the simple LSTM model, because the
model proposes to use the social-pooling layer to capture the
interaction information between local pedestrians. Compared
with S-LSTM model, SS-LSTM model not only considers the
interaction of all pedestrians in the scene, but also uses the
context information of the scene to predict the pedestrian tra-
jectory. The average values of ADE and FDE in the five data
sets decrease by 18%and 17%, respectively, which further
proves the importance of considering the context information
of the scene for prediction.

Compared with the above LSTM-based prediction model,
the prediction error of GAN-based prediction model is
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TABLE 1. Analysis of seven benchmark evaluation models.

Model Innovation Modeling Perspectives
LSTM Data driven nonlinear trajectory prediction method Individual
S-LSTM A social-pooling layer is proposed to capture local social interactions Individual + interaction
SS-LSTM Considering the impact of scene information on pedestrian trajectory Individual + interaction + scene information
S-GAN The multi-modality property Qf pedestrjap trajectory is considered, Individua_ll + interaction
and a new pooling layer is introduced; multi-modality
SoPhic Combining physical attentiog mechaqism. and sqcial attention mechanism, I'ndividugl + interac'tion .
the scene information is considered; Scene information + multi-modality
1.The interactive information is modeled through the spatial-temporal graphs, Individual + interaction
RISTG-GAN-1 . . . . . . . .
and the instance nodes can be flexibly changed according to the input; social attention + multi-modality
RISTG-GAN-2 2.Time attention m(‘)dul'e is used to capture the inf_orrr}ation of pedestria_n trajectory; Individugl + scene context
3.Dot product attention is used to capture the relative importance of various impacts. scene attention + multi-modality

TABLE 2. Quantitative results for all models on five open datasets, with ADE and FDE values separated by slashes.

Baselines RISTG-GAN(Ours)
Dataset LSTM S-LSTM | SS-LSTM S-GAN SoPhie RISTG-GAN-1 | RISTG-GAN-2
ETH-univ 1.05/2.39 | 1.09/2.35 | 0.92/1.92 | 0.81/1.52 | 0.70/1.43 0.65/1.35 0.58/1.29
ETH-hotel | 0.82/1.92 | 0.79/1.76 0.67/1.5 0.72/1.61 | 0.76/1.67 0.62/1.41 0.49/1.12
UCY-zaral | 0.43/0.91 | 0.47/1.00 | 0.38/0.75 | 0.34/0.69 | 0.54/1.24 0.34/0.69 0.36/0.72
UCY-zara2 | 0.54/1.15 | 0.56/1.17 0.41/0.8 0.42/0.84 | 0.30/0.63 0.28/0.58 0.26/0.57
UCY-univ | 0.83/1.75 | 0.67/1.40 | 0.57/1.38 | 0.60/1.26 | 0.38/0.78 0.36/0.79 0.35/0.82
AVG 0.75/1.62 | 0.72/1.54 | 0.59/1.27 | 0.58/1.18 | 0.54/1.15 0.45/0.96 0.41/0.90
TABLE 3. Comparison of reasoning speed of seven models.
LSTM | S-LSTM | SS-LSTM | S-GAN | RISTG-GAN-1 | RISTG-GAN-2
Inference time(s) 0.045 2.542 2.851 0.126 0.132 0.135
Speed-up 76.1x 1.2x 1x 27.2x 23.8x 21.4x

smaller. S-GAN model is the first to introduce the genera-
tive adversarial network into the pedestrian trajectory predic-
tion task, the model considers the multi-modality property
of pedestrian trajectory in crowded scene and proposes a
new pooling layer, so its performance is better than that
of SS-LSTM. Based on the S-GAN model, Sophie model
takes the scene information into account and improves the
prediction performance of the model by introducing the phys-
ical attention mechanism and the social attention mecha-
nism, especially on the UCY-zrar2 dataset. Compared with
Sophie, the RISTG-GAN-1 models complex scene by using
spatial-temporal graph and captures the relative importance
of crowd interaction to pedestrian trajectory by using rela-
tive scaled dot product attention. The results show that tra-
jectory prediction errors are further reduced. Based on the
RISTG-GAN-1 model, the RISTG-GAN-2 model considers
the positions of fixed obstacles in the scene, because the real
scene contains not only moving pedestrians, but also station-
ary obstacles (such as lamp posts and stationary vehicles),
so the prediction performance is further improved. By observ-
ing table 2, it is found that although the RISTG-GAN-2
model considers fixed obstacle nodes, there is no signifi-
cant difference between the RISTG-GAN-1 model and the
RISTG-GAN-1 model in the evaluation performance of the
three data sets UCY-zaral/zara2/univ, which may be because
the position of obstacles in the scene contained in these
data sets has little influence on the walking of pedestrians.
In the data sets ETH-univ and ETH-hotel, the RISTG-GAN-2
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model performs better, because there are many obstacles in
the scene in these two data sets, which pedestrians need to
avoid. Compared with the SoPhie model, the mean values of
ADE and FDE of the RISTG-GAN-2 model on five data sets
are reduced by 24% and 21.7%, respectively.

For autonomous vehicles and social robots, it is crucial
to accurately and quickly reason out the next trajectory of
pedestrian to avoid collisions in crowded scene. The faster the
reasoning speed is, the further guarantee of pedestrian safety
can be obtained. Therefore, we also compare the reasoning
speed of the models. In Table 3, we record the speed of
reasoning for each model. Because the LSTM model only
considers the historical trajectory of pedestrian, the amount
of reasoning tasks is small, so the reasoning speed is the
fastest, but the accuracy is too low. Both S-LSTM model and
SS-LSTM model are improved base on LSTM model. The
space where pedestrians are located is divided by grid cells
and the interaction is calculated. The calculation efficiency
is low and the reasoning speed is the slowest. S-GAN model
introduces the generative adversarial network (GAN), which
considers the multimodal property of pedestrian trajectory,
and not only has high accuracy, but also the reasoning speed
is fast, because adversarial training can significantly improve
the memory utilization rate. Based on this, our model also
combined with GAN to model the scene through flexible
spatial-temporal graph. Compared with the SS-LSTM model,
the reasoning speed of RISTG-GAN-1 and RISTG-GAN-2 is
increased by 18.83 times and 16.83 times respectively.
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(a) RISTG-GAN-2

(b) RISTG-GAN-2

—

(c) RISTG-GAN-2 (d) RISTG-GAN-2

(d) S-GAN

FIGURE 5. Showling the qualitative evaluation results of S-GAN, SoPhie and RISTG-GAN-2 models in typical scenes from left to right,
respectively. In the picture, the observable historical and real future trajectories of pedestrians are represented by solid blue and red lines
respectively, while the trajectories predicted by the model are represented by dotted green lines. a, b and c respectively represent the scenes
of crossing, avoiding obstacles and following, and d is the scene of predicting failure.
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FIGURE 6. Visualization of scene attention. The red trajectory represents the predicted trajectory, and the
rest are the movement trajectories of other pedestrians. The gray solid point represents the fixed obstacle
position in the scene, and the black solid point represents the current moment position of the pedestrian.
The red circle represents the predicted pedestrian’s attention to the context of the scene, and the radius of
the circle is proportional to the weight of the scene attention.

C. QUALITATIVE EVALUATION

On the basis of quantitative evaluation, we qualitatively
evaluate the output prediction of S-GAN, Sophie and

VOLUME 10, 2022

RISTG-GAN-2 models under four different real scenes on
the ETH and UCY datasets, and the visualization results are

shown in Fig. 5.
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Fig. 5(a) is a crossing scene, judging from the results of
qualitative evaluation, the predicted trajectories of the three
models can all successfully cross the oncoming pedestri-
ans, because the three models all model the interaction of
pedestrians in the scene. However, S-GAN and Sophie only
pay attention to short-term social information in the pool-
ing process, so the prediction results are greatly different
from the real trajectory. Our model, RISTG-GAN-2, uses
a spatial-temporal graph to capture long-term social infor-
mation, so the predicted results are closer to the real future
trajectory.

Fig. 5(b) is a pedestrian interaction and avoid obstacles
scene, from the evaluation results show that three kinds of
models to predict the trajectory can avoid pedestrians, but
S-GAN model predicts the trajectory of failed to avoid the
obstacle (seat)in the scene, because the S-GAN model only
consider the interaction information between the pedestrians,
does not consider the scene information. The predicted trajec-
tory of Sophie model can avoid obstacles, because the model
considers the scene information, but does not consider the
relative importance of the impact of obstacles on the pedes-
trian trajectory, so the predicted trajectory is quite different
from the real trajectory. The RISTG-GAN-2 model fully
considers the above-mentioned problems, so it successfully
avoids obstacles, and the predicted trajectory is closer to the
real future trajectory.

Fig. 5(c) is a following scene. Since the S-GAN
model adopts the maximum pool mechanism and only
pays attention to the most important information affect-
ing the pedestrian trajectory, the error between the pre-
dicted trajectory and the real trajectory is the largest. The
social concern component proposed by Sophie model can
aggregate the information of different participants, but it
is still insensitive to the unstructured characteristics of
pedestrian interaction, so it also has large errors. The
RISTG-GAN-2 model captures the spatial-temporal interac-
tion information between human and environment by using
spatial-temporal graph, and allocates different influence
weights according to the interaction information. Therefore,
the predicted trajectory of RISTG-GAN-2 is closer to the real
trajectory.

Fig. 5(d) is a scene in which the prediction fails. Two
pedestrians walking in a straight line change their walking
direction temporarily due to a sudden vehicle passing nearby.
For this situation, the predicted results of the three models are
not ideal.

In Fig. 6, we visualize how much attention pedestrians
pay to their surroundings. The experimental results show that
people pay more attention to pedestrians and fixed obstacles
in front of them than to pedestrians and fixed obstacles behind
them and in the distance, which is in accordance with social
common sense. Context changes behind the pedestrian or in
a distant scene may affect the pedestrian’s future navigation
decisions.
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V. CONCLUSION

In this paper, we propose an RISTG-GAN model for pedes-
trian trajectory prediction. The model uses spatial-temporal
graph to model various interactions between human and the
environment, at the same time, the time attention module
is used to capture the time information of pedestrian trajec-
tory and assign different weights. The relative importance of
various interactions to pedestrian trajectory in the scene is
captured by using the relative interaction scaled dot product
attention module. In addition, considering the randomness
of pedestrian movement in complex scene, we introduce
generative adversarial network to generate the distribution of
diverse trajectories in accordance with social rules. Exper-
imental results show that our model performs better than
the latest benchmark methods on multiple available datasets.
Our proposed method better captures the interactions of
all agents in complex scenes and improves the ability of
pedestrian trajectory prediction. However, the complexity
of our approach is slightly higher than that of the baseline
approaches because all agents interactions are considered,
but this does not affect the superiority of our approach.
In the future, we will continue to optimize the model, fur-
ther reduce the complexity of the model while improving
the accuracy, so as to improve the navigation accuracy and
real-time performance of autonomous vehicles and social
robots.
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