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ABSTRACT A subset T of the vertex set of a network G is called a resolving set for G if each pair of
vertices of G have distinct representations with respect to T . A resolving set B′ among all the resolving sets
of a networkG is called a fault-tolerant resolving set if B′\ {t} is as well a resolving set for each vertex t ∈ B′.
A fault-tolerant resolving set B′ of a networkGwhich contains minimum number of vertices is called a fault-
tolerant metric basis. The cardinality of a fault-tolerant metric basis is called fault-tolerant metric dimension.
This concept is widely used to find the integral solution of the problems existing in different disciplines of
computer science and chemistry such as linear optimization problems, robot navigation, operation research
problems, sensor networking, classification of chemical compounds, drug discoveries, source localization,
embedding biological sequence data, detecting network motifs, comparing the interconnected networks and
image processing. In this paper, we compute the fault-tolerant metric dimensions of three wheel related
networks called by r-level anti-web wheel AWW(n,r), r-level HelmH(n,r) and r-level anti-web gear AWJ(2n,r)
networks in the form of different algebraic expressions consisting of the integral numbers n and r . At the end
we discussed a simple method for finding the fault-tolerant metric dimensions and fault-tolerant resolving
sets of a r-level wheel related network. We also discussed the importance of these networks in navigation.

INDEX TERMS Fault-tolerant metric dimensions, fault-tolerant resolving set, r-level anti web wheel
network, r-level anti web gear network, r-level Helm network.

I. INTRODUCTION
The networks in this paper are connected and simple. A net-
work G consists of vertices V (G) and edges E(G), where
the vertices are connected by lines (edges). If s, t ∈ V (G),
then the distance between s and t denoted by d(s, t) is equal
to the number of edges in a shortest path connecting them.
The number of vertices are called order of network G while
edges are called size of of network G. A vertex v of net-
work G resolves two vertices s, t ∈ V (G), if d(v, s) 6=
d(v, t). For an ordered set T = {t1, t2, · · · , tr } ⊂ V (G)
and an arbitrary vertex a in a connected network G, the
representations of a with respect to T is the ordered r-tuple
r(a/T ) = {d(a, t1), d(a, t2), · · · , d(a, tr )}. The set T is a
resolving set or locating set for G if every two vertices
of G have distinct representations. For further details
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(see [1], [2]). The idea of resolving set for a connected
network G was found by Slater [3]. Harary and Melter [4]
also independently introduced resolving sets. A resolving
set B of a network G which contains a minimum number
of vertices is called the metric basis of network G. The
cardinality of a metric basis B is called the metric dimension
of network G which is denoted by β(G) as explained in [5].
Metric dimensions and resolving sets of networks are very
efficacious in a diversity of situations in different disciplines.
Due to similarity in metric dimension and trilateration in
the planar networks, metric dimensions are used in robot
navigation to detect their location and increase the level of
communication as demonstrated in [6].Moreover, the number
of inter connected computers can be reduced in a computer
networking and the chemical compounds can be predicted
and classified in the general chemical structures with the help
of resolving sets and their metric dimensions [7], [8]. Metric
dimensions has also been used for the detection of a source in
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the spread over of a network like a device for the detection of
network motifs in [9] and [10] and the base set for embedding
the DNA order in a real space in [11]. For further details,
we refer to [12].

Metric dimensions and resolving sets have been widely
used in our daily life problems. Due to this reality of the
metric dimension in our daily life, various authors researched
it extensively. Various authors applied metric dimension in
various fields like in application of graph theory and metric
dimensions pharmaceutical chemistry has been studied in [2],
sonar, facility location problem and coast guard Loran inter-
connected to this idea in [3], robot navigation [6], weighing
problems of coins [13], diverse studies guided about com-
binatorial optimization in [14] and computer networks [15]
are also influential to this idea. For more details about metric
dimension and resolving sets one can further study the appli-
cations of this framework in [16] and [17].

In [18], elements of metric basis are considered as censors.
If one of the censors does not work, then we do not know how
to overcome such problems. So in the direction of these prob-
lems, Hernando et al. [19] presented the idea of fault-tolerant
resolving sets and fault-tolerant metric dimensions. Fault
tolerance is the characteristic of a system that allows it to
continues working properly in the case of the failure of
one or more faults within some of its components. So by
the idea of fault tolerance the problems in [18] have been
solved. After that various authors computed fault-tolerant
metric dimensions of different networks. According to [19]
a resolving set B′ among all the resolving sets of a network G
is called a fault-tolerant resolving set if B′\ {t} is as well a
resolving set for each vertex t ∈ B′. A fault-tolerant resolving
set B′ of a network G which contains minimum number of
vertices is called a fault-tolerant metric basis denoted by B′.
The cardinality of B′ is called fault-tolerant metric dimension
and is symboled by β ′(G). Hernando et al. [19] also obtained
the fault-tolerant resolving sets of a tree network represented
by T.

Saha et al. [20] computed the Fault-tolerant metric dimen-
sion of the cube of paths. Javaid et al. [21] obtained the
fault-toerant metric dimension of a cycle Cn of order n.
In past, metric and fault-tolerant metric dimensions of wheel
related networks have been obtained by various authors.
Buczkowski et. al. [22] studied the metric dimensions of a
wheel network denoted byWn and obtained β(Wn) = b 2n+25 c

for n ≥ 7. Zheng et al. [23] computed the fault-tolerant metric
dimensions of generalized wheel and convex polytopes as
β ′(W(n,r)) = rd n2e for n ≥ 8. Afzal et al. [24] stud-
ied the metric dimensions and resolving sets of generalized
anti-web wheel and gear networks. Liu et al. [25] computed
the fault-tolerant metric dimension of anti-web gear, gear and
anti-web networks.

Slater [26] inaugurated the idea of fault-tolerant resolving
sets. Fault-tolerant resolving sets are successively used in
engineering, chemistry and computer sciences as explained
in [27]. Raza et al. [28] discussed the uses of fault-tolerant
resolving sets and fault-tolerant metric dimensions in

different interconnection networks. In chemistry, if we
remove silicon nodes from silicate network then the new
networkwill be an oxide interconnection network represented
by OX(ω). Somasundari et al. [29] obtained the fault-tolerant
resolvability and fault-tolerant metric dimension of oxide
interconnection network. In a crystal structure atoms
(vertices) are arranged in a design with repetition of atoms
in three dimensions. Krishnan et al. [30] investigated the
fault-tolerant metric dimensions problems for crystal net-
works like lead chloride, quartz and bismuth tri-iodide.
Raza et al. [31] investigated the uses of fault-tolerant metric
dimension in convex polytopes. For more information about
applications and properties of the fault-tolerance in resolving
sets see [32]. In 1987, the word coronoid was conceived
by [33]. The relation between coronoid and benzenoid is very
close. A benzenoid which has a hole in the center is named as
a coronoide. Later, in [34], multiple coronoids were found.
A multiple coronoid contains more than one hole in each
benzenoid. It was found that a coronid is a subset of prim-
itive coronoide. Further primitive coronoids were classified
as catacondensed. Ali et al. [35] studied the properties of
fault-tolerant resolving sets and fault-tolerant metric dimen-
sion of hollow coronoidHC(p, q, s). Javaid et al. [36] studied
the properties of local fractional metric dimension of Prism
related networks. Javaid et al. [37] studied the properties of
sharp bounds of local fractional metric dimension of wheel
related networks.

In diverse applications of the use of graph theory, the termi-
nologies interchanged according to the situation of different
problems. For example, when we transform an electrical
circuit into a network then the current sources are referred to
as vertices, while the voltage sources are renamed by edges.
The edges become line segments and vertices are studied
as principal nodes in [38]. In a wireless body area network
abbreviated as WBAN independent nodes (e.g. actuators and
sensors) that are located under the skin of a person, on the
body or in the clothes are connected by way of a wireless
communication channel. Mehmood et al. [39], [40] presented
an energy-efficient fault-tolerant scheme to upgrade the accu-
racy ofWBAN. Fritscher et al. [41] showed how a fault-aware
training act on the reaction of a network changeability.

In the present article, we studied the properties of
fault-tolerant resolving sets and fault-tolerant metric dimen-
sions of three r-level wheel related networks r-level anti-web
wheel, gear and Helm network.

II. PRELIMINARIES
In this section, we define some wheel related networks and
three r-level anti web wheel, gear and Helm networks. Here,
We also introduce some very fundamental ideas which are
helpful for understanding the groundwork that has been con-
cluded in this paper.
Definition 1: Let Cn be a cycle of order n, then a wheel

networkWn can be obtained by adding the vertex v0 to all the
vertices of Cn. SoWn ≡ Cn+v0, where V (Wn) = V (Cn∪v0)
and E(Wn) = E(Cn ∪ v0c : c ∈ V (Cn)). The order and size
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of wheel network are n+ 1 and 2n respectively as mentioned
in [17].
Definition 2: Let rCn be r cycles of order n each, then a

r-level wheel network W(n,r) can be obtained by adding the
vertex v0 to all the vertices of rCn. So W(n,r) ≡ rCn + v0,
where V (W(n,r)) = V (rCn ∪ v0) and E(W(n,r)) = E(rCn ∪
(v0c : c ∈ V (Cn)). The order and size ofW(n,r) are rn+1 and
2rn respectively (See Fig. 1).
Definition 3: Let Cn be an even cycle of order n, then

anti-web network AWn can be obtained by adding edges
{vivi+2: 1 ≤ i ≤ n, vi ∈ Cn} to Cn. In AWn, V (AWn) = V (Cn)
and E(AWn) = E(Cn ∪ (vivi+2: 1 ≤ i ≤ n, vi ∈ Cn)). The
order and size of AWn are n and 2n respectively as mentioned
in [20].
Definition 4: LetWn be a wheel network of order n, where

n is even, then anti-webwheel networkAWWn can be obtained
by adding edges {vivi+2: 1 ≤ i ≤ n, vi ∈ Cn} toWn. InAWWn,
V (AWWn) = V (Wn) and E(AWWn) = E(Wn ∪ (vivi+2: 1 ≤
i ≤ n, vi ∈ Cn)). The order and size of AWWn are n + 1 and
3n respectively as mentioned in [20].
Definition 5: The anti-web gear network AWJ2n can be

obtained from the anti-web wheel network by deleting
one after another spoke. The order and size of AWJ2n are
2n+ 1 and 5n respectively as mentioned in [20].

FIGURE 1. A network of W(8,2).

Definition 6: Let rAWn, r ≥ 2 be r anti-web networks of
order n each, then a r-level anti-web wheel network AWW(n,r)
can be obtained by adding the vertex v0 to all the vertices
of each anti-web AWn. So AWWn ≡ rAWn + v0, where
V (AWW(n,r)) = V (rAWn∪ v0) and E(AWW(n,r)) = E(rAWn∪

(v0c : c ∈ V (rCn)). The order and size of AWW(n,r) are rn+1
and 3rn respectively as explained in [19] (See Fig. 3).
Definition 7: A r-level anti-web gear network AWJ(2n,r)

can be obtained from the r-level anti web wheel network by
deleting one after another spokes of each cycle. The order and
size of AWJ(2n,r) are 5rn and 2rn+1 respectively as explained
in [19] (See Fig. 4).

Definition 8: A Helm network denoted by Hn, n ≥ 3 is
a network obtained from a wheel network Wn by adjoining a
pendant edge at each vertex on the cycle Cn. The order and
size of the Helm network is 2n+ 1 and 3n respectively.
Definition 9: Let rHn, r ≥ 2 be Helm networks of order n

each, then a r-level Helm network H(n,r) can be obtained by
taking the union of r Helm networks, where the central vertex
v0 is common only. The order and size of H(n,r) are 2rn + 1
and 3rn respectively (See Fig. 2).

FIGURE 2. A network of H(8,r ).

Now let a r-level wheel network which is obtained by the
union of r isomorphic wheel networks, let Si, 1 ≤ i ≤ r ,
where Si contains a fault-tolerant metric basis of Gi and S1 ∩
S2 ∩ S3 ∩ · · · ∩ Sr = ∅. A resolving set B′r = {Si, 1 ≤ i ≤ r}
of a network G is referred to as a fault-tolerant resolving set
with r vertices if B′r\

{
vi, 1 ≤ i ≤ r

}
is also a resolving set

for each vertex v ∈ B′r .
Let a network G, where V (G) = {v1, v2, . . . , vn} are the

vertices and B′ = {vi1 , vi2 , . . . , vir } be the fault-tolerant met-
ric basis ofG. Then the vertices vix , vix+1 for 1 ≤ x ≤ r , where
vi1 = vir+1 are referred to as adjacent vertices. The vertices in
between these adjacent vertices in G are referred to as gap of
fault-tolerant metric basis of B′. Now the number of vertices
which a gap contains will be the cardinality of that gap. Cardi-
nalities of these gaps are represented as b1, b2, . . . bn, where
’’b’’ is a whole number.For gaps bi, bi+1, bi+2, the gap bi+1
is called the central gap while bi and bi+1 are called adjacent
gaps. Further the cardinalities of the gaps of fault-tolerant
metric basis are referred to as maximum cardinalities. The
central vertex v0 is not included in gaps.

In Fig. 1, the vertices and fault-tolerant metric basis of
W(8,2) are V (G) = {vi0, v

i
1, v

i
2, . . . , v

i
8 : 1 ≤ i ≤ 2}

and B′2 = {v
1
1, v

1
3, v

1
5, v

1
7, v

2
1, v

2
3, v

2
5, v

2
7} respectively. Now the

pairs of adjacent vertices in B′2 are (v
1
1, v

1
3), (v

1
3, v

1
7), (v

1
7, v

1
1),

(v21, v
2
3), (v

2
3, v

2
7), (v

2
7, v

2
1) and the vertices in gaps in W(8,2)
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are (v12), (v
1
4), (v

1
6), (v

1
8), (v

2
2), (v

2
4), (v

2
6), (v

2
8). Maximum car-

dinalities of above gaps are 1, 1, 1, 1, 1, 1, 1, 1. The network
W(8,2) is formed by the union of two isomorphic networks in
which fault-tolerant metric dimension of W(8,1) is 4. Further,
β ′(W(8,2)) = 2 · 4 = 8.

In H(n,r) (Fig. 2), we represent the pendant vertices by u
j
i

and the vertices of cycles by vji, where ‘‘1 ≤ i ≤ n’’ and ‘‘1 ≤
j ≤ r’’. The central vertex is represented by v0. We observe
two types of gaps the gaps between vertices of cycles and
pendent vertices. We say that if uji is a pendent vertex then vji
will be its corresponding cycle vertex. Now we observe that
if we choose some pendent vertices then we can not choose
their corresponding cycle vertices for B′r . Further, if u

t
i and

vt+2i belongs to B′r then the gap between u
t
i and v

t
i+2 will be l.

FIGURE 3. A network of AWW(16,r ).

In AWW(n,r) (Fig. 3), let v0 be the central vertex.
We observed that the distance of the central vertex v0 from
all the vertices of the anti-web wheel network is 1. It follows
that v0 does not belong to the fault-tolerant metric basis of
the anti-web wheel network. The cardinalities of the gaps of
a cycle Cr are represented by ar1, a

r
2, a

r
3 . . . a

r
j respectively,

where a1, a2, a3, . . . aj are cardinalities of the gaps of cycle r
of AWW(n,r). The vertices of a cycle Cr are represented
by vr1, v

r
2, v

r
3 . . . v

r
n.

We refer the vertices of AWJ(2n,r) which have degree 4
and 5 with even numbering and odd numbering respectively
(Fig. 4). In AWJ(2n,r), we observed that the distance of
the central vertex v0 from all the vertices of the anti-web
gear network is either 1 or 2. It follows that v0 does not
belong to fault-tolerant metric basis of anti-web gear net-
work except AWJ(4,r). The cardinalities of the gaps of a
cycle Cr are represented by ar1, a

r
2, a

r
3 . . . a

r
j respectively,

where a1, a2, a3, . . . aj are cardinalities of the gaps of cycle r

FIGURE 4. A network of AWJ(16,r ).

of AWJ(2n,r). The vertices of a cycle Cr are represented by
vr1, v

r
2, v

r
3 . . . v

r
n.

III. MAIN RESULTS
In this section, we compute the fault-tolerant metric dimen-
sion of r-level anti-web wheel, gear and Helm networks,
where r ≥ 2.

A. FAULT-TOLERANT METRIC DIMENSION OF r-LEVEL
HELM NETWORK H(n,r )
In this subsection of main results, we investigated the fault-
tolerant resolving sets and fault-tolerant metric dimensions of
r-level Helm networkH(n,r). The fault-tolerant metric dimen-
sion of the r-level Helm network is represented by β ′(H(n,r)).
Now we observe the following lemmas and a theorem for
n ≥ 7 .
Lemma 1: For n ≥ 7, each gap of B′r ofH(n,r) contains one

vertex.
Proof:We observe the following cases.

Case 1Suppose that there exists a gap in H(n,r) which
contains 2 vertices and its adjacent gaps contain 1
and 1 vertex (maximum cardinalities are 1, 2, 1).
Then there exists vertices vji, v

j
i+1, v

j
i+2, v

j
i+3, v

j
i+4,

vji+5, v
j
i+6, v

j
i+7, v

j
i+8, where ‘‘1 ≤ j ≤ r’’, such

that vji, v
j
i+2, v

j
i+5 & vji+7 belongs to B′r . Then by

B′r\
{
vji+7

}
, we have r(vji+4/B

′
r ) = r(vji+6/B

′
r ) =

(3, 3, 2, 3, 3, 3, . . . , 3), which is a contradiction.
Case 2Suppose that there exists a gap in pendant ver-

tices which contains 2 vertices and its adjacent
gaps contain 1 and 1 vertex (maximum cardi-
nalities are 1, 2, 1). Then there exists vertices
uji, u

j
i+1, u

j
i+2, u

j
i+3, u

j
i+4, u

j
i+5, u

j
i+6, u

j
i+7, u

j
i+8,

where ‘‘1 ≤ j ≤ r’’, such that uji, u
j
i+2, u

j
i+5 &

uji+7 belongs to B′r . Then by B′r\
{
uji+7

}
, we have
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r(uji+4/B
′
r ) = r(vji+6/B

′
r ) = (2, 2, 1, 2, 2, 2, . . . , 2),

which is a contradiction.
Case 3Suppose that there exists a gap in between pendant

vertices and cycle vertices which contains 2 vertices
and its adjacent gaps contain 1 and 1 vertex (max-
imum cardinalities are 1, 2, 1). Then there exists
vertices vji, v

j
i+1, v

j
i+2, v

j
i+3, v

j
i+4, u

j
i+5, u

j
i+6, u

j
i+7,

uji+8, where ‘‘1 ≤ j ≤ r’’, such that vji, v
j
i+2, u

j
i+5

& uji+7 belongs to B
′
r . Then by B

′
r\

{
vji+7

}
, we have

r(vji+4/B
′
r ) = r(vji+6/B

′
r ) = (2, 2, 2, 2, 2, 2, . . . , 2),

which is a contradiction.

Lemma 2: If n ≥ 7 and n is even, then B′r = {v
i
1,

vi3, v
i
5, . . . , v

i
n−1 : 1 ≤ i ≤ r} or B′r = {u

i
1, u

i
3, u

i
5, . . . , u

i
n−1 :

1 ≤ i ≤ r} or B′r = {v
i
1, v

i
3, v

i
5, . . . , vl, ul+2, . . . , u

i
n−1 : 1 ≤

i ≤ r}.
Proof: By Lemma 1 the maximum cardinality of each

gap of B′r of H(n,r) is exactly 1. Therefore B′r = {v
i
1,

vi3, v
i
5, . . . , v

i
n−1 : 1 ≤ i ≤ r} or B′r = {u

i
1, u

i
3, u

i
5, . . . , u

i
n−1 :

1 ≤ i ≤ r} or B′r = {v
i
1, v

i
3, v

i
5, . . . , vl, ul+2, . . . , u

i
n−1 :

1 ≤ i ≤ r} is a fault-tolerant metric basis because it satisfies
Lemma 1.
Lemma 3: If n ≥ 7 and n is odd, then B′r =

{vi1, v
i
3, v

i
5, . . . , v

i
n : 1 ≤ i ≤ r} or B′r = {u

i
1, u

i
3, u

i
5, . . . , u

i
n :

1 ≤ i ≤ r} or B′r = {v
i
1, v

i
3, v

i
5, . . . , vl, ul+2, . . . , u

i
n : 1 ≤

i ≤ r}.
Proof: By Lemma 1 the maximum cardinality of

each gap of B′p of H(n,r) is exactly 1. Therefore B′r =
{vi1, v

i
3, v

i
5, . . . , v

i
n : 1 ≤ i ≤ r} or B′r = {u

i
1, u

i
3, u

i
5, . . . , u

i
n :

1 ≤ i ≤ r} or B′r = {v
i
1, v

i
3, v

i
5, . . . , vl, ul+2, . . . , u

i
n : 1 ≤

i ≤ r}; is a fault-tolerant metric basis because it satisfies
Lemma 1.
Theorem 1: If n ≥ 7, then β ′(H(n,r)) = r[ n4 ].
Proof: We observe that β ′(H(3,r)) = β ′(H(6,r)) = 4r ,

where B′r = {v
i
1, v

i
2, v

i
3, v

i
4 : 1 ≤ i ≤ r} and β ′(H(4,r)) =

β ′(H(5,r)) = 3r , where B′r = {u
i
1, u

i
2, u

i
3 : 1 ≤ i ≤ r}.

Now for n ≥ 7, we observe the following two cases.

Case 1 If n ≥ 7 and n is even, then by Lemma 2
B′r = {v

i
1, v

i
3, v

i
5, . . . , v

i
n−1 : 1 ≤ i ≤ r} or

B′r = {u
i
1, u

i
3, u

i
5, . . . , u

i
n−1 : 1 ≤ i ≤ r} or B′r =

{vi1, v
i
3, v

i
5, . . . , vl, ul+2, . . . , u

i
n−1 : 1 ≤ i ≤ r}.

Therefore β ′(H(n,r)) = r[ n4 ].
Case 2 If n ≥ 7 and n is odd, then by Lemma 3

B′r = {v
i
1, v

i
3, v

i
5, . . . , v

i
n : 1 ≤ i ≤ r} or

B′r = {u
i
1, u

i
3, u

i
5, . . . , u

i
n : 1 ≤ i ≤ r} or B′r =

{vi1, v
i
3, v

i
5, . . . , vl, ul+2, . . . , u

i
n : 1 ≤ i ≤ r}.

Therefore β ′(H(n,r)) = r[ n4 ].

So from above discussion, we conclude that
β ′(H(n,r)) ≤ r[ n4 ].

Now we shall prove that β ′(H(n,r)) ≥ r[ n4 ].
Suppose we are taking only the vertices of cycles in B′r

then the pendant vertices will be considered as maximum
cardinalities. Again we observe the following two cases.

Case a Suppose n ≥ 7 and n is even, let | B′r |= rm,
then there will be m vertices in fault-tolerant metric
basis in each isomorphic network Hn. Hence there
exists m gaps in each cycle of H(n,r) and all gaps
have maximum cardinalities 1. Let Si ( 1 ≤ i ≤ r)
represent the sum ofmaximum cardinalities of aHn.
If S denote the sum of maximum cardinalities of all
gaps of H(n,r), then

S =
n∑
i=1

Si

Or S = S1 + S2 + S3 + · · · + Sr
Where S1 = S2 = S3 = · · · = Sr .

So S = rS1

Or S = r[
n
4
+
n
2
]

Or S = r[
3n
4
]

So β ′(H(n,r)) ≥ r[
n
4
].

Case bSuppose n ≥ 7 and n is odd, let | B′r |= rm, then
there will bem vertices in fault-tolerant metric basis
in each isomorphic network Hn. Hence there exists
m gaps in each cycle of H(n,r) and all gaps have
maximum cardinalities 1 except one gap which is
empty. Let Si ( 1 ≤ i ≤ r) represent the sum of
maximum cardinalities of a Hn. If S denote the sum
of maximum cardinalities of all gaps of H(n,r), then

S =
r∑
i=1

Si

Or S = S1 + S2 + S3 + · · · + Sr
Where S1 = S2 = S3 = · · · = Sr .

So S = rS1

Or S = r[
n− 1
4
+
n
2
]

Or S = r[
3n− 1

4
]

Or β ′(H(n,r)) ≥ r[
n
4
]

Hence β ′(H(n,r)) = r[ n4 ].

B. FAULT-TOLERANT METRIC DIMENSION OF r-LEVEL
ANTI-WEB WHEEL NETWORK AWW(n,r )
In this subsection, we investigated the fault-tolerant resolving
sets and fault-tolerant metric dimensions of the r-level anti-
web wheel network. The fault-tolerant metric dimension of r-
level anti-web wheel network is represented by β ′(AWW(n,r)).
Now we observe the following lemmas and a theorem
for n ≥ 8 .
Lemma 4: For n ≥ 8, if a gap of cardinality 2 exists, then

both of its adjacent gaps of B′r of AWW(n,r) can not have
cardinality 1.
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Proof: Suppose that there exists a gap which contains
2 vertices and its adjacent gaps contain 1 and 1 vertex
(maximum cardinalities are 1, 2, 1). Then there exists ver-
tices vi, vi+1, vi+2, vi+3, vi+4, vi+5, vi+6, vi+7, vi+8, such that
vi, vi+2, vi+5 & vi+7 belongs to B′r . Then by B′r\ {vi+2},
we have r(vi+3/B′r ) = r(vi+4/B′r ) = (2, 1, 2, . . . , 2), which
is a contradiction.
Lemma 5: If n ≥ 8, then the maximum cardinalities of B′r

of AWW(n,r) are 1i, 1i, 1i, . . . , 1i : 1 ≤ i ≤ r .
Proof:We are looking for gaps with maximum cardinal-

ities, by lemma 4 if a gap of cardinality 2 exists, then both of
its adjacent gaps can not have cardinality 1. Therefore maxi-
mum cardinality of each gap of B′r of AWW(n,r) is exactly 1.
Hence the maximum cardinalities of B′r of AWW(n,r) are
1i, 1i, 1i, . . . , 1i : 1 ≤ i ≤ r .
Lemma 6: If n ≥ 8, then B′r = {v

i
1, v

i
3, v

i
5, . . . . . . v

i
n−1 :

1 ≤ i ≤ r}
Proof: By Lemma 5 the maximum cardinality of each

gap of B′r of AWW(n,r) is exactly 1. Therefore, we have B′r =
{vi1, v

i
3, v

i
5, . . . . . . v

i
n−1 : 1 ≤ i ≤ r} because it satisfies

Lemma 4 and 5.
Theorem 2: If n ≥ 8, then β ′(AWW(n,r)) = r[ n2 ].
Proof: We observe that β ′(AWW(4,r)) = 4r + 1, where

B′r = {v0, v
i
1, v

i
2, v

i
3, v

i
4 : 1 ≤ i ≤ r} and β ′(AWW(6,r)) = 6r ,

where B′r = {v
i
1, v

i
2, v

i
3, v

i
4, v

i
5, v

i
6 : 1 ≤ i ≤ r}.

Now for n ≥ 8, by Lemma 6, we have B′r =

{vi1, v
i
3, v

i
5, . . . . . . v

i
n−1 : 1 ≤ i ≤ r}. Therefore

β ′(AWW(n,r)) = r[ n2 ]. So from the above discussion, we con-
clude that β ′(AWW(n,r)) ≤ r[ n2 ].
Now we shall prove that β ′(AWW(n,r)) ≥ r[ n2 ].
For this purpose, n ≥ 8, let | B′r |= rm, then there will

be m vertices in fault-tolerant metric basis in each cycle Cr .
Hence there exists m gaps in each cycle Cr and all gaps have
maximum cardinalities 1. If S denote the sum of maximum
cardinalities of all gaps of AWW(n,r), then

S =
r∑
i=1

Si)

Or S = S1 + S2 + S3 + · · · + Sr
Where S1 = S2 = S3 = · · · = Sr .

So S = rS1

Or β ′(AWW(n,r)) = r[
n
2
] ≥ r[

n
2
]

Hence β ′(AWW(n,r)) = r[
n
2
].

C. FAULT-TOLERANT METRIC DIMENSION OF r-LEVEL
ANTI-WEB GEAR NETWORK AWJ(2n,r )
In this subsection, we investigated the fault-tolerant resolving
sets and fault-tolerant metric dimensions of the r-level anti-
web gear network. The fault-tolerant metric dimension of
AWJ(2n,r) is represented by β ′(AWJ(2n,r)). Now we observe
the following lemmas and a theorem for n ≥ 9, r ≥ 2 .
Lemma 7: If n ≥ 9, then the gaps with maximum cardi-

nalities 3, 4, 3 if exists, then that will be only 1 in AWJ(2n,r).

Proof:We observe the following cases.

Case 1suppose that there exists gaps with maximum
cardinalities 3, 4, 3 in AWJ(2n,r). Then there
exists vertices vi, vi+1, vi+2, vi+3, vi+4, vi+5, vi+6,
vi+7, vi+8, vi+9, vi+10, vi+11, vi+12, vi+13, where
vi has degree 4, such that vi, vi+4, vi+9, vi+13,
belongs to B′r . Then by B′r\ {vi+4}, we have
r(vi+3/B′r ) = r(vi+5/B

′
r ) = (1, 2, 2, 2 or 3, 2 or 3, 2

or 3, . . . , 2 or 3), which is a contradiction.
Case 2suppose that there exists gaps with maximum

cardinalities 3, 4, 3, 4, 3 in AWJ(2n,r). Then
there exists vertices vi, vi+1, vi+2, . . . , vi+17, vi+18,
where vi has degree 5, such that vi, vi+4, vi+9,
vi+13, vi+18, vi+22, belongs to B′r . Then by
B′r\ {vi+14}, we have r(vi+13/B′r ) = r(vi+15/B′r ) =
(2, 2, 1, 2 or 3, 2 or 3, 2 or 3, . . . , 2 or 3), which is
a contradiction.

Lemma 8: If n ≥ 9, 2n = 4h + 14, where h ≥ 1, then
B′r = {v

i
1, v

i
5, v

i
9, . . . . . . , v

i
n−1 : 1 ≤ i ≤ r}.

Proof: By Lemma 7 the maximum cardinality of each
gap of B′r of AWJ(2n,r) can not be greater than 3. Therefore
B′r = {v

i
1, v

i
5, v

i
9, . . . . . . v

i
n−1 : 1 ≤ i ≤ r} is a fault-tolerant

resolving set because it satisfies Lemma 7.
Lemma 9: If n ≥ 9, 2n = 4h + 16, where h ≥ 1, then

B′r = {v
i
1, v

i
5, v

i
9, . . . . . . , v

i
n−3 : 1 ≤ i ≤ r}.

Proof: By Lemma 7 the maximum cardinality of each
gap of B′r of AWJ(2n,r) can not be greater than 3. Therefore
B′r = {v

i
1, v

i
5, v

i
9, . . . . . . v

i
n−3 : 1 ≤ i ≤ r} is a fault-tolerant

resolving set because it satisfies Lemma 7.
Lemma 10: If n ≥ 9, 2n = 4h + 14, where h ≥ 1,

then the maximum cardinalities of B′r of AWJ(2n,r) are
3i, 3i, 3i, . . . , 3i, 1i, where ‘‘1 ≤ i ≤ r’’.

Proof: We are looking for gaps with maximum cardi-
nalities, by lemma 7 the maximum cardinality of a gap can
not be greater than 3. Therefore maximum cardinality of each
gap of B′r of AWJ(2n,r) is exactly 3 except one gap which has
1. Hence the maximum cardinalities of B′r of AWJ(2n,r) are
3i, 3i, 3i, . . . , 3i, 1i, where ‘‘1 ≤ i ≤ r’’.
Lemma 11: If n ≥ 9, 2n = 4h + 16, where h ≥ 1,

then the maximum cardinalities of B′r of AWJ(2n,r) are
3i, 3i, 3i, . . . , 3i, 3i, where ‘‘1 ≤ i ≤ r’’.

Proof: We are looking for gaps with maximum cardi-
nalities, by lemma 7 the maximum cardinality of a gap can
not be greater than 3. Therefore maximum cardinality of each
gap of B′r of AWJ(2n,r) is exactly 3. Hence the maximum
cardinalities of B′r of AWJ(2n,r) are 3

i, 3i, 3i, . . . , 3i, 3i, where
‘‘1 ≤ i ≤ r’’.
Theorem 3: If n ≥ 9, then β ′(AWJ(2n,r)) = rd n2e.
Proof:Weobserve thatβ ′(AWJ(4,r))=4r ,β ′(AWJ(6,r))=

5r , β ′(AWJ(8,r)) = 4r, β ′(AWJ(10,r)) = 5r , β ′(AWJ(12,r)) =
6r , β ′(AWJ(14,r)) = 7r and β ′(AWJ(16,r)) = 8r , where
B′r = {v

i
1, v

i
2, v

i
3, v

i
4 : 1 ≤ i ≤ r}, B′r = {v

i
1, v

i
2, v

i
3, v

i
4, v

i
5 :

1 ≤ i ≤ r}, B′r = {v
i
1, v

i
3, v

i
5, v

i
7 : 1 ≤ i ≤ r}, B′r =

{vi1, v
i
3, v

i
5, v

i
7, v

i
9 : 1 ≤ i ≤ r}, B′r = {v

i
1, v

i
3, v

i
5, v

i
7, v

i
9, v

i
11 :

1 ≤ i ≤ r}, B′r = {v
i
1, v

i
3, v

i
5, v

i
7, v

i
9, v

i
11, v

i
13 : 1 ≤ i ≤ r} and
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B′r = {v
i
1, v

i
3, v

i
5, v

i
7, v

i
9, v

i
11, v

i
13, v

i
15 : 1 ≤ i ≤ r} are their

fault-tolerant metric basis respectively.
Now for n ≥ 9, we observe the following two cases.
Case 1For n ≥ 9, 2n = 4h+14, where h ≥ 1, by Lemma 8,

we haveB′ = {vi1, v
i
5, v

i
9, . . . . . . , v

i
n−1 : 1 ≤ i ≤ r}.

Hence β ′(AWJ(2n,r)) = rd n2e.
Case 2For n ≥ 9, 2n = 4h+16, where h ≥ 1, by Lemma 9,

we haveB′ = {vi1, v
i
5, v

i
9, . . . . . . , v

i
n−3 : 1 ≤ i ≤ r}.

Hence β ′(AWJ(2n,r)) = rd n2e.
So from above two cases, we have β ′(AWJ(2n,r)) ≤ rd n2e.
Now we shall prove that β ′(AWJ(2n,r)) ≥ rd n2e.
For this purpose, again we observe the following two cases.
Case a For n ≥ 9, 2n = 4h + 14, where h ≥ 1, For

n ≥ 9, let | B′r |= rm, then there will be m ver-
tices in fault-tolerant metric basis in each cycle Cr .
Hence there exists m gaps in each cycle Cr and all
gaps have maximum cardinalities 3 except one gap
which has 1 (See Lemma 10). If S denote the sum
of maximum cardinalities of all gaps of AWJ(2n,r),
then

S =
n∑
i=1

Si

Or S = S1 + S2 + S3 + · · · + Sr
Where S1 = S2 = S3 = · · · = Sr .

So S = rS1
Or S = r[(m− 1)3+ 1]

Or β ′(AWJ(2n,r)) = r[3m− 2] ≥ r[
n
2
].

Case bFor n ≥ 9, 2n = 4h + 16, where h ≥ 1, For
n ≥ 9, let | B′r |= rm, then there will be
m vertices in fault-tolerant metric basis in each
cycle Cr . Hence there exists m gaps in each
cycle Cr and all gaps have maximum cardinalities 3
(See Lemma 11). If S denote the sum of maximum
cardinalities of all gaps of AWJ(2n,r), then

S =
r∑
i=1

Si

Or S = S1 + S2 + S3 + · · · + Sr
Where S1 = S2 = S3 = · · · = Sr .

So S = rS1
Or S = r[3m]

Or β ′(AWJ(2n,r)) = 3rm ≥ r[
n
2
]

So from above two cases, we obtain β ′(AWJ(2n,r)) ≥ rd n2e
Hence β ′(AWJ(2n,r)) = rd n2e.

IV. CONCLUSION AND DISCUSSION
Afzal et al. [24] computed the metric dimension of AWW(n,r)
and AWJ(2n,r) for n ≥ 9. They obtained the following two
results.

• β(AWW(n,r)) = r[ n+23 ]
• β(AWJ(2n,r)) = [ n+13 ]+ r[ n+43 ]
In this paper, the following three theorems and two inequal-

ities are obtained for n ≥ 9.
1) β ′(H(n,r)) = r[ n4 ]
2) β ′(AWW(n,r)) = r[ n2 ]
3) β ′(AWJ(2n,r)) = rd n2e
4) β ′(AWW(n,r)) ≥ β ′(H(n,r)).
5) β ′(AWJ(2n,r)) ≥ β ′(H(n,r)).

From above results, we observe that the difference between
metric and fault- tolerant metric dimension of AWW(n,r) and
AWJ(2n,r) increases by increasing the value of n. Further from
inequality 4 and 5, we see that if machines (robots) are navi-
gating on r-level anti-web wheel, gear or Helm networks and
the objective is to find a fault-tolerant system which require
minimum machines then r-level Helm network is suitable.
In this paper, we concluded that if we take union of r wheel

related isomorphic networks in which central vertex is com-
mon, then the fault-tolerant metric dimension of the whole
network will be equal to r times the any one isomorphic
network. In this study, we concluded that if we have to find
the fault-tolerant metric dimension of any one of the aforesaid
r-level wheel related networks then find the fault-tolerant
metric dimension for r = 1 and multiply it with the number
which is equal to total number of isomorphic networks you
will find the fault-tolerant metric dimension of r- level wheel
related network. Further, Afzal et al. [24] claimed that r- level
anti-web wheel and anti-web gear networks have unbounded
fault-tolerant metric dimension and in this paper we obtained
the fault-tolerant metric dimensions of these networks and
Helm network in the form of different algebraic expres-
sions consisting of the integral numbers n and r . We proved
that these networks have unbounded fault-tolerant metric
dimensions.
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