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ABSTRACT Detecting a moving pedestrian is still a challenging task in a smart surveillance system due to
dynamic scenes. Locating and detecting the moving pedestrian simultaneously influences the development
of an integrated but low-resource smart surveillance system. This paper proposes a novel approach to locating
and detecting moving pedestrians in a video. Our proposed method first locates the region of interest (ROI)
using a background subtraction algorithm based on guided filtering. This novel background subtraction
algorithm allows our method to also filter unexpected noises at the same time, which could benefit the
performance of our proposed method. Subsequently, the pedestrians are detected using YOLOv2, YOLOv3,
and YOLOV4 within the provided ROI. Our proposed method resulted in more processing frames per second
compared with previous approaches. Our experiments showed that the proposed method has a competitive
performance in the CDNET2014 dataset with a fast-processing time. It costs around ~50 fps in CPU to
classify moving pedestrians and maintain a highly accurate rate. Due to its fast processing, the proposed
approach is suitable for IoT or smart surveillance device which has limited resource.

INDEX TERMS Moving object analysis, pedestrian localization and detection, convolutional neural network

(CNN), integrated surveillance system, YOLO.

I. INTRODUCTION

Intelligent video surveillance systems currently play a crucial
role in monitoring and evaluating human activity in public
areas. This is especially true for pedestrian detection sys-
tems, which have been one of the most common subjects
in various areas over the last decade. However, developing
a robust pedestrian detection system is challenging due to
many aspects such as illumination, cluttered background, and
variations in pedestrian sizes.
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Specifically, to address the background challenge, one of
the promising approaches is integrating a robust background
(BG) model into the pedestrian detection system. In devel-
oping the BG model, it is important to notice Stauffer and
Grimson’s work [1], which largely influenced the field. The
Stauffer-Grimson BG model is based on a Gaussian Mixture
Model (GMM) that was fitted to the pixel values distribution
over time. After the fitting process, the model is able to
decide if the incoming pixels belong to the BG, based on
the probability of the MoG identified at each pixel location.
The BG model in their work has inspired the development
of many variants of BG models, such as the texture-based
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approach [2], improved GMM [3], [4], and other novel
approaches [5], [6], [7], [8]. Despite its popularity, the GMM-
based model like the Stauffer-Grimson model still has a
problem in dealing with a noisy background. Fig. 1 depicts
the problem that is caused by shadow as the noise in the
background. The changes in illumination can also introduce
noises that lead to undesired results [9].
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FIGURE 1. Illustration of GMM drawbacks in CDNET 2014 - pedestrians’
dataset [10].

Ultimately, the ROI provided by the BG subtraction
algorithm is required for building a complete pedestrian
detection system. The recent trend suggests the use of a deep-
learning-based detection algorithm for pedestrian detec-
tion [11], [12], [13], [14], although other types of computer
vision techniques can also be employed [15], [16], [17].
Because of the sequential integration between the BG model
and the detection system, the problem caused by the BG
model can affect the overall performance of the pedestrian
detection system. Thus, the aforementioned problem of the
BG model needs to be addressed. At the same time, the whole
pedestrian detection system needs to be fast enough to meet
the requirement of real-time applications.

To answer the challenges that have been mentioned, this
paper proposes an integration of a BG subtraction algorithm
based on guided filtering [18] and a pedestrian detection
algorithm using YOLO [19]. The key idea is to develop a fast
pedestrian detection system that is robust to noisy frames. The
guided filtering part allows the proposed system to generate
an ROI while filtering the noises in the incoming frames.
Subsequently, the detection process can be executed at a
fast speed with YOLOV3. Unlike the previously prevalent
approaches that used variants of R-CNN [20], [21], which are
two-stage deep-learning-based object detectors, YOLOV3 is
a one-stage object detector. This allows YOLOvV3 to have a
faster inference time, with the speed at about 45 FPS (frame
per second). Interestingly, the accuracy of YOLOv3 is not sig-
nificantly compromised. It is also worth noting that YOLOv3
excels at detecting large objects in the PASCAL dataset [22],
which contains a large number of objects that are classified as
pedestrians. Thus, YOLOV3 is a natural choice for a real-time
pedestrian detection system.

In summary, the main contributions of this study are:

« To develop a novel and robust BG subtraction algorithm
using guided filtering and texture-based modeling. This
algorithm is expected to be robust against noise with the
use of guided filtering.

89182

o To apply YOLOV3 to detect pedestrians based on the
ROI that is provided by the BG subtraction algorithm.
This ultimately leads to a fast and accurate pedestrian
detection system for real-time applications.

The remainder of this paper is organized as follows.
The previous works related to this study are presented in
Section 2. The details of the proposed BG subtraction model
are provided in Section 3. The experiment result is presented
and discussed in Section 4. Finally, the study is concluded
in Section 5.

Il. RELATED WORKS

A. BG SUBTRACTION FOR FINDING ROI

BG subtraction is a standard way of detecting ROI from BG to
find objects in successive frames. The BG subtraction is used
in moving pedestrian detection fields to find the probable
pedestrian areas (ROI) prior to detecting the real pedestrian
object in a surveillance camera [23], [24]. The common
method is based on color and texture features [1], [3], [25],
which can utilize either pixel-based or block-based process-
ing. To successfully detect the ROI from BG, one of the
most prevalent approaches is to use an edge-aware filtering
technique. This technique has a unique trait that can also
filter the noise in the frames while detecting ROI. Recently,
edge-aware filtering has been applied in many applica-
tions, for example, in the study by Wang et al. [26] and
Munadi et al. [27]. Currently, the bilateral filter [28] and
anisotropic diffusion [29] are the most popular variant of
edge-aware filters. Despite their popularity, these two filters
require a relatively high computational cost. To alleviate
this issue, the guided filter [18] was developed, which is
increasingly being applied in many fields, such as image
fusion, image matting, up-sampling, etc. [30], [31]. Due to
its non-approximate implementation, the guided filter is more
preferred than other filters. Compared to other filters, the
guided filter is able to generate a filtered image with improved
quality at a faster runtime due to its invariant filter size [30].

B. MOVING PEDESTRIAN DETECTION VIA
HANDCRAFTED-FEATURE-BASED TECHNIQUES

Before the advent of deep learning, the solution for object
detection, including pedestrian detection, relies on the use of
handcrafted features that are subsequently fed into a detector
algorithm. Specifically for pedestrian detection, the most
frequently employed features are the Histogram of Oriented
Gradients (HOG) [32], [33], Haar-like features [34], [35],
Viola-Jones features [36], texture features [37], and Local
Binary Patterns (LBP) [38]. Since pedestrians are typically
moving, Spatio-temporal features are also commonly used
for pedestrian detection [39], [40]. It is also beneficial to
use the handcrafted features for an intermediary BG sub-
traction process within a detection pipeline, as demonstrated
by Kanagamalliga and Vasuki [41]. Recently, Kim et al. [60]
focused on integrating the teacher-student concept into the
standard random forest (RF) to create a novel fast pedestrian
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detection algorithm for surveillance cameras that can be run
on a low-level computer device.

C. MOVING PEDESTRIAN DETECTION VIA DEEP
LEARNING TECHNIQUES

Like in most computer vision tasks, deep learning has also
emerged as a preference for pedestrian detection. The deep
learning algorithm in a pedestrian detection system is usually
treated as a feature extractor, whose features are processed by
another algorithm for the detection task. For instance, in the
study proposed by Chahyati ef al. [42] and Zhang et al. [43],
the features were extracted from a deep learning algorithm
named Faster R-CNN. Similarly, Li et al. [44] used the fea-
tures from a fully convolutional network (FCN). Not only
improve pedestrian detection system performance, but the
utilization of deep learning can also alleviate challenging
problems such as detecting pedestrians from an occluded
image [13].

lll. METHODS

Unlike previous approaches, our proposed method integrates
a guided-filtering-based BG subtraction algorithm prior to a
deep learning algorithm for pedestrian detection. The motiva-
tion for incorporating guided filtering is to relieve unwanted
noises in the images that can degrade the accuracy of pedes-
trian detection. Fig. 2 depicts the outline of the proposed
system pipeline. Firstly, the image is inputted into the BG
subtraction algorithm to generate a bitmap that discriminates
foreground and background. The foreground can be thought
of as the promising part of the image containing pedestrians
that eventually are detected by the subsequent pedestrian
detector. Therefore, to eliminate unnecessary computation,
the input image is cropped to the smallest part of the image
that contains all foreground. Afterward, this cropped image
is fed into a deep learning algorithm for the final pedestrian
detection. Because of the elimination of unnecessary compu-
tation, our proposed approach is guaranteed to run faster than
the typical deep-learning-based pedestrian detection system.
In the next two subsections, the detail of this pipeline is
elaborated. Specifically, the first subsection covers the details
of the BG subtraction algorithm and the second subsection
covers the detail of the deep learning algorithm for the final
pedestrian detection.

Final
Pedestrian
Detection via
Deep Learning

ROI
Input localization via
BG subtraction

Detected
pedestrian(s)

FIGURE 2. The pipeline of our proposed method.
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FIGURE 3. The observed failure of several BG subtraction methods at
frame 952 in the CDNET 2014 - Pedestrians dataset.
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FIGURE 4. The qualitative comparison between bilateral and guided filter.

A. ROI LOCALIZATION VIA BG SUBTRACTION
In brief, our proposed BG subtraction algorithm combines
guided filtering and the improved version of the multi-level
texture BG subtraction algorithm proposed by Yeh et al. [25].
This proposal was motivated by our observation of the exist-
ing BG subtraction methods’ behavior, including the multi-
level texture method that naturally identifies occurring noises
as foreground. The observation is presented in Fig. 3. In the
figure, the correct foreground region is marked in green,
and the incorrectly identified foreground is in red. Because
BG subtraction is an integral part of our proposed pedes-
trian detection method, this flaw may introduce performance
degradation to the overall detection system. For this reason,
this paper proposes to infuse guided filtering into a BG
subtraction algorithm in a pedestrian detection system.

The first process of our proposed BG subtraction is to apply
a guided filter to an input frame /. This process generates
a grayscale image Iguided, Whose noises have been filtered.
Afterward, Iguiged is fed into the multi-level texture BG
model [25] to produce a bitmap that separates foreground and
background. In this study, the BG model is applied to Igyiged
for each 4 x 4-pixel block, as suggested by Yeh et al. [25].
Subsequently, the final binary bitmap BMgyiqeq is obtained
by calculating the average of each block and comparing each
pixel value with its corresponding mean block. A pixel in
BMgyigeq is set to 1 if the Ig,igeq pixel at the same loca-
tion is greater than the mean value, and vice versa. In the
first frame, the BMgyiqeq’s blocks are stacked to obtain the
initial BG model BM,,,,4. The initial model is subsequently
updated for each incoming frame to get a more accurate
representation of the true BG. The same post-processing steps
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the incomingframe

FIGURE 5. An illustration of texture bitmap generation.

(connected component and morphology), update rule and
learning rate that was suggested by Yeh et al. [25] are used.
Finally, to determine whether the blocks in a new incoming
frame are foreground or background, they are compared to the
BM,,,0q4. The details of this comparison process are elaborated
in subsection 3.1.2.

B. GUIDED FILTER AS PRE-PROCESSING

Since the guided filter [18] directly inspired our algorithm,
this subsection provides a brief review of the edge-preserving
property and its formula. The guided filter algorithm assumes
that an edge-preserving smoothing filter can be learned via
a linear model of the filtered image Igyiqeq from a guidance
image G within a window w,, that surrounds a pixel n. This
can be formally expressed as follows:

ey

where a, and b, are constants that have a unique value
for each window in the image. The value can be obtained
analytically by framing the case as an optimization problem
to minimize the squared error between Igyiqeq and I as well
as an L2 regularization on a,,, which is formally expressed as
follows:

Eanb) =Y ((anG,, by — 1) + ea,%)

PEWn

Lvidea = anGp + by,  Vp € wy

@

where ¢ is a parameter to adjust the effect of the regularization
term. To estimate a,, and b,,, a linear model as in equations (3)
and (4) are utilized.

(1/|W|) Zpew,, Gplp - Gnin

an = T 3
I “

by =1, —ay Gn
where G, and I, are respectively the local means in a window
w centered at pixel n of the G and I value, |w| is the window’s
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mean value. Here the mean is
156

=5tep 3: Generate &
texture bitmap BMu .
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the corresponding pixel
inthe bitmap to 0.

=Elsg, set the bitmap pixel
to 1

(©) block size

FIGURE 6. The generated bitmap from the proposed texture descriptor
with different block sizes.

(d) block size = 6

size, and 03 is the variance of G in wj,. The guided filtering
process was implemented using OpenCV. Fig. 4 shows the
comparison between bilateral and guided filters. As clearly
shown in the figure that the guided filter is able to preserve
the interesting area while smoothing the remaining regions.

C. TEXTURE-BASED BG MODELING WITH

GUIDED FILTERING

The texture-based BG modeling in this study was applied to
each non-overlapping 4 x 4 block in the incoming frame.
Firstly, each block is filtered by a guided filter. Afterward,
a texture bitmap is generated by thresholding each pixel value
with respect to the local mean of the block. If the pixel value
is less than the mean, then the corresponding pixel in the
texture bitmap is set to 0. Else, the bitmap pixel is set to 1.
This process is illustrated in Fig. 5.

To justify the choice of 4 x 4 block size, an example of
the generated bitmap with different block sizes using the
proposed texture descriptor is visualized in Fig. 6. The block
size of 2 x 2 failed to identify most of the important textures
(Fig. 6(b)). Meanwhile, the 6 x 6 block size captures excessive
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Incoming Frames

BG Model

FIGURE 7. The pipeline of the proposed BG modeling.
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FIGURE 8. The generated bitmap from the proposed texture descriptor
with different block sizes.

(d)

FIGURE 9. The illustration of improved results from the proposed method
(CDNET 2014 - backdoor, frame no. 1860). (a) The RGB image and
Guidance G, (b) the ground truth, (c) Yeh et al. [25], and (d) our final
improvement result.

texture (Fig. 6(d)). The 4 x 4 block size generates the bitmap
with the most perfectly balanced texture among the tested
block size (Fig. 6(c)).

Motivated by PBAS [50], the texture information is used in
this study to model the observed blocks by adding the neigh-
borhood information. The improved BG subtraction method
is divided into two parts, namely the initial improvement, and
final improvement.

1) INITIAL IMPROVEMENT

The first modification was made to Yeh et.al’s updating
mechanism. In contrast to this method, which only updates
the BG model of the observed block, the proposed idea incor-
porates the adjacent blocks by checking for similarity before

VOLUME 10, 2022

Morphology
Connected Component

Final ROI

(d)

FIGURE 10. The illustration of improved results from the proposed
method (CDNET 2014 - pedestrians, frame no. 582). (a) The RGB image
and Guidance G, (b) the ground truth, (c) Yeh et al. [25], and (d) our final
improvement result.

(2) (b)

FIGURE 11. The comparison of overlay results between block
textured-based by Yeh et al. [25], and our proposed work (backdoor -
frame no. 1890, and pedestrians - frame no. 965, respectively).

(a) Yeh et al. [25], and (b) our proposed result.

updating the adjacent BG models. More specifically, different
from [50] which selects and updates randomly neighboring
pixels, the proposed step is first check the similarity of the
observed BM0de1 With BMugjacent_moder Via hamming dis-
tance. If the similarity of models exceeds the THgjacen:
then all BMgjacent_model is 1€placed by its current binary
bitmap.
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CDNET 2014 - Backdoor
Frame No.: 1890
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FIGURE 12. The comparison between our proposed approach and the
top-10 SOTA methods from CDNET 2014-Backdoor (supervised methods
are not compared).

2) FINAL IMPROVEMENT

The bit transition is estimated by Yeh, et al. [25] to determine
the mode of a block. When a block is complex, the upper
level is used (2 or 3-bits mode, instead of 1-bit mode). The
result of the first phase in the proposed approach of this study

89186

CDNET 2014 - BusStation
Frame No.: 933
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FIGURE 13. The comparison between our proposed approach and the
top-10 SOTA methods from CDNET 2014-busStation (supervised methods
are not compared).

allows for further development by using bit transition to check
the complexity of the observed block and adjacent blocks.
Fig. 8 shows an example of accumulating bit transition of
a block. Note that, the higher the total transition, the more
complex block, and texture information will be.

If the observed block is regarded as BG, the complexity of
current adjacent blocks is considered to be identified if it is an
FG block. If both conditions are met (the adjacent blocks are
all complex and FG blocks), the label of the observed block
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CDNET 2014 - Cubicle
Frame No.: 3532
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FIGURE 14. The comparison between our proposed approach and the
top-10 SOTA methods from CDNET 2014-Cubicle (supervised methods are
not compared).

is changed from BG to FG, as shown in Eq. (5).

Replace (BM ,5)
BM,,; = FG,
if (BMcomplex AND BM oyt aqj_FG = true)
BM out = BG,
else

&)
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CDNET 2014 - Pedestrians
Frame No.: 965
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FIGURE 15. The comparison between our proposed approach and the
top-10 SOTA methods from CDNET 2014-Pedestrians (supervised methods
are not compared).

Once the binary mask is obtained, the guided feathering
is finally performed to further improve the results. To be
specific, a binary mask by, is filtered under the guidance
of G (see section IIl.b). The parameters are r = 5, and
€ = 0.22 for the guided filter. Where the r and ¢ are radius
and epsilon, respectively. As shown in Fig. 9-10, the fragment
issues highlighted in red (in the inner region of a detected
object) can be alleviated.

Furthermore, more detailed comparative evaluations are
shown in the subsequent results. It aims to overlay the
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CDNET 2014 - Sofa
Frame No.: 2482
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FIGURE 16. The comparison between our proposed approach and the
top-10 SOTA methods from CDNET 2014-Sofa (supervised methods are
not compared).

obtained final binary mask over an RGB color image. This
verifies that the proposed method is able to improve the
previous work, especially for optimizing the block textured-
based approach. It is noteworthy that the block textured-based
is selected to guarantee the initial moving object detection is
executed rapidly prior to inference through a deep learning
pipeline.
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TABLE 1. FPS comparison of the previous approaches and our proposed
approach in a Non-GPU environment.!

FRAME PER RESOLUTION AND

SECOND (FPS) CONFIGURATION
SEMANTICBGS ~7 FPS 320x240 (CPU)
[51]
IUTIS-3 [52] ~10 FPS 320x240 (CPU)
WISENETMD 12 FPS 320x240 (CPU)
[53]
PAWCS [54] ~27 FPS 320x240 (CPU)
WESAMBE [55] ~2 FPS 320x240 (CPU)
SUBSENSE ~30 FPS 320x240 (CPU)
[56]
RT-SBS [6] 25 FPS 320x240 (CPU)
GMM [1] ~21 FPS 320x240 (CPU)
IMPROVED ~49 FPS 320x240 (CPU)
GMM [3]
OUR PROPOSED ~55 FPS 320x240 (CPU)
APPROACH

D. FINAL PEDESTRIAN DETECTION VIA DEEP LEARNING
To detect pedestrians from the previously generated ROI by
our BG model, a deep-learning-based pedestrian detector is
utilized, especially with the model based on Convolutional
Neural Networks (CNN). It is currently the most popular
model to solve many computers vision tasks, including image
classification and object detection. In its simplest form, CNN
consists of convolutional, pooling, and fully-connected (FC)
layers. The core of CNN is the convolutional layer, which
applies a fixed-size kernel to the input matrix via a con-
volution process and sends the output matrix to the next
layer. To allow non-linear mapping, a non-linear activation
function is applied after each layer. CNN has been observed to
generate more optimized features than hand-crafted features,
which leads to better performance.

In particular, the model by YOLOV2 [46], YOLOV3 [19],
and YOLOV4 [58] are used in this work, which demonstrated
robust performance for object detection. YOLO is a type of
CNN specially engineered for fast object detection with com-
petitive accuracy. It is an improved model from the previous
versions of YOLOv1 [45]. At its core, YOLO is a single
regression model that fully connected and explains its fast
inference compared to other object detection methods that
are typically multi regression models. The single regression
model is achieved by framing detection as regression of
bounding boxes for each S x § grid in the input image. If a
target bounding box is centered at a certain grid, the represen-
tation of that grid is utilized for detecting the bounding box.
Each grid can detect a fixed number of bounding boxes B,
along with the corresponding confidence score, which is
calculated as P, (object) xIOU t’r"eZ’ The confidence score can

Isource from CDNET2014 website: http://jacarini.dinf.usherbrooke.ca/
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Frame No.: 1890

Bounding box

=
Q
]
o
=
T
=
=
<]
@

Bounding box

FIGURE 17. The final pedestrian detection through YOLOv2, YOLOvV3, and YOLOv4

(CDNET2014-backdoor).

CDNET 2014 - BusStation
Frame No.: 933
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FIGURE 18. The final pedestrian detection through YOLOv2, YOLOv3, and YOLOv4

(CDNET2014-busStation).

be interpreted as the probability that the detected bounding
box is correct, which is measured by the Intersection over
Union (IOU) of the predicted box compared to intersecting
target boxes. If no target boxes intersect the detected box, its
confidence score is set to 0.

To get a better detection in the second version, the size
of the anchor boxes was set with the size obtained from the
training dataset via k-means clustering. Because YOLOV2,
YOLOV3, and YOLOvV4 include “person” as one of the
object categories, it can be employed as a pedestrian detector.

VOLUME 10, 2022

Given its fast inference time, these methods are suitable to be
used as the detector of our proposed method that is designed
for real-time application.

IV. RESULTS AND DISCUSSION

This section aims to present and discuss our simulation result
as well as its evaluation. The simulation hardware is a PC
with an Intel i7-7700HQ processor, 16 GB of memory, and
NVIDIA GeForce GTX 1050 Ti 4 GB. It is noteworthy
that the comparison between the previous works against the
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CDNET 2014 — Cubicle
Frame No.: 3532

FIGURE 19. The final pedestrian detection through YOLOv2, YOLOv3, and YOLOv4

(CDNET2014-cubicle).
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Frame No.: 965
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FIGURE 20. The final pedestrian detection through YOLOv2, YOLOV3, and YOLOv4

(CDNET2014-pedestrians).

proposed work is evaluated in terms of speed since the main
objective of our proposed approach is to be deployed in
real-time or edge devices. In our simulation, the proposed
approach can achieve around 55 frames per second, the fastest
among the previous approaches that have been considered in
this study. The comparison of our proposed approach to the
previous approaches is presented in Table 1. All approaches
were performed without GPU acceleration, following the
typical protocol of BG modeling studies.
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A. QUALITATIVE COMPARISON FOR

PEDESTRIAN DETECTION

The comparison discussed in this section was evaluated on
the CDNET2014 dataset [10], which introduces several chal-
lenging pedestrian scenes. In this paper, five representative
scenarios, which are backdoor, busStation, cubicle, pedestri-
ans, and sofa, respectively are selected. Notably, these videos
contain difficult challenges such as shadow, and occlusion.
In Fig. 12-16, the comparison of the BG subtraction result

VOLUME 10, 2022
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CDNET 2014 — Sofa
Frame No.: 2482

FIGURE 21. The final pedestrian detection through YOLOv2, YOLOvV3, and YOLOv4
(CDNET2014-sofa).

TABLE 2. Pedestrian detection: comparison of quantitative measurements (CDNET2014 Dataset “Backdoor”, Frame No. 1890, 1899, and 1908).

Wisenet WeSamBE  SemanticBGS RT-SBS  PAWCS IUTIS-5 IUTIS-3 BSUV-Net Proposed

Specificty ~ 0.9975 0.9967 0.9994 0.9988 0.9974 0.9996 0.9994 0.9997 0.9884
FPR 0.0025 0.0033 0.0006 0.0012 0.0026 0.0004 0.0006 0.0002 0.0116
FNR 0.0210 0.0172 0.0215 0.0221 0.0210 0.0223 0.0222 0.0284 0.0116
PWC 2.0917 1.8210 1.9696 2.0792 2.1078 2.0298 2.0277 2.5442 2.0928

Precision  0.9785 0.9722 0.9944 0.9889 0.9775 0.9957 0.9944 0.9974 0.8959

F1 Score 0.8940 0.9099 0.8986 0.8928 0.8931 0.8953 0.8956 0.8679 0.8949

TABLE 3. Pedestrian detection: comparison of quantitative measurements (CDNET2014 Dataset “busStation”, Frame No. 933, 941, and 952).

Wisenet WeSamBE  SemanticBGS  RT-SBS PAWCS IUTIS-5 IUTIS-3 BSUV-Net Proposed

Specificity  0.9513 0.9429 0.9580 0.9667 0.9485 0.9572 0.9568 0.9827 0.9594
FPR 0.0487 0.0571 0.0420 0.0333 0.0515 0.0428 0.0432 0.0173 0.0406
FNR 0.0027 0.0015 0.0027 0.0021 0.0038 0.0042 0.0048 0.0045 0.0087
PWC 4.7855 5.4545 4.1624 3.2928 5.1447 4.3765 4.4753 2.0309 4.6363

Precision 0.5948 0.5640 0.6299 0.6852 0.5799 0.6204 0.6158 0.8020 0.5774
F1 Score 0.7355 0.7144 0.7617 0.8033 0.7193 0.7484 0.7424 0.8648 0.6920

TABLE 4. Pedestrian detection: comparison of quantitative measurements (CDNET2014 Dataset “Cubicle”, Frame No. 3532, 3542, and 3552).

Wisenet WeSamBE  SemanticBGS ~ RT-SBS PAWCS IUTIS-5 IUTIS-3 BSUV-Net Proposed

Specificity ~ 0.9886 0.9874 0.9991 0.9992 0.9896 0.9888 0.9868 0.9999 0.9953
FPR 0.0114 0.0126 0.0009 0.0008 0.0104 0.0112 0.0132 0.0001 0.0047
FNR 0.0078 0.0061 0.0122 0.0123 0.0113 0.0118 0.0126 0.0106 0.0109
PWC 1.7981 1.7519 1.2334 1.2267 2.0316 2.1591 2.4215 0.9998 1.4778

Precision 0.8348 0.8250 0.9843 0.9852 0.8403 0.8292 0.8043 0.9978 0.9096
F1 Score 0.8568 0.8635 0.8897 0.8907 0.8345 0.8231 0.8044 0.9124 0.8566

from our proposed approach and the top-10 SOTA methods our proposed method provides a tighter ROI, which leads
from CDNET 2014 are visually presented. The proposed to faster detection of the subsequent deep learning process.
approach removes the incorrectly detected regions caused by In Fig. 17-21, the detection result from YOLO given the ROI
the previously mentioned challenges. It also eliminates noises from the BG model are visualized. As specifically highlight
better than the multi-level texture approach. As the result, that YOLO can accurately detect persons in the given frames,
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TABLE 5. Pedestrian detection: comparison of quantitative measurements (CDNET2014 Dataset “Pedestrians”, Frame No. 965, 975, and 985).

Wisenet WeSamBE  SemanticBGS RT-SBS PAWCS IUTIS-5 IUTIS-3 BSUV-Net Proposed
Specificity ~ 0.9965 0.9970 0.9998 0.9997 0.9920 0.9960 0.9943 0.9999 0.9927
FPR 0.0035 0.0030 0.0002 0.0003 0.0080 0.0040 0.0058 0.0001 0.0073
FNR 0.0046 0.0041 0.0041 0.0045 0.0042 0.0041 0.0038 0.0087 0.0004
PWC 0.7921 0.6956 0.4216 0.4691 1.1922 0.7851 0.9344 0.8530 0.7586
Precision 0.8453 0.8683 0.9896 0.9849 0.7106 0.8328 0.7738 0.9958 0.7335
F1 Score 0.8217 0.8437 0.8986 0.8858 0.7588 0.8280 0.8029 0.7659 0.8366

TABLE 6. Pedestrian detection: comparison of quantitative measurements (CDNET2014 Dataset “Sofa”, Frame No. 2482, 2492, and 2502).

Wisenet WeSamBE  SemanticBGS RT-SBS PAWCS IUTIS-5 [IUTIS-3 BSUV-Net Proposed

Specificity ~ 0.9950 0.9939 0.9935 0.9830 0.9972 0.9927 0.9922 0.9982 0.9900

FPR 0.0050 0.0061 0.0065 0.0170 0.0028 0.0073 0.0078 0.0018 0.0100

FNR 0.0205 0.0182 0.0173 0.0073 0.0292 0.0198 0.0199 0.0325 0.0297

PWC 2.2882 2.1823 2.1454 2.1901 2.8789 2.4392 2.4918 3.0777 3.6275

Precision 0.9483 0.9401 0.9306 0.8535 0.9684 0.9285 0.9227 0.9792 0.8643

F1 Score 0.8764 0.8854 0.8847 0.8915 0.8336 0.8705 0.8678 0.8203 0.7596

TABLE 7. Pedestrian detection: comparison of average quantitative measurements and frame rates.
Wisenet WeSamBE  SemanticBGS  RT-SBS PAWCS IUTIS-5 IUTIS-3 BSUV-Net Proposed

Avg. Specificity ~ 0.9858 0.9836 0.9900 0.9895 0.9849 0.9869 0.9859 0.9961 0.9851
Avg. FPR 0.0142 0.0164 0.0100 0.0105 0.0151 0.0131 0.0141 0.0039 0.0149
Avg. FNR 0.0113 0.0094 0.0116 0.0097 0.0139 0.0125 0.0127 0.0169 0.0123
Avg. PWC 2.3511 2.3811 1.9865 1.8516 2.6710 2.3580 2.4701 1.9011 2.5186
Avg. Precision 0.8403 0.8339 0.9057 0.8996 0.8153 0.8413 0.8222 0.9544 0.7961
Avg. F1 Score 0.8369 0.8434 0.8666 0.8728 0.8079 0.8330 0.8226 0.8463 0.8080

Average comparisons of Sp, Pr and F-measure
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FIGURE 22. A group bar chart of average comparisons of Sp, Pr and F-measure (higher scores

are better).

so that demonstrates the suitability of YOLO as the pedestrian
detector in our proposed pipeline.

B. QUANTITATIVE COMPARISON FOR

PEDESTRIAN DETECTION

The performance of our proposed approach compared to the
previous approaches is qualitatively evaluated. The quanti-
tative evaluation in this study is based on pixel-wise binary
measurements with the following metrics: Specificity (Sp),
False Positive Rate (FPR), False Negative Rate (FNR),
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Percentage of Wrong Classifications (PWC), Precision (Pr),
and F1 score [59]. In the case of a BG model assessment,
specificity measures the number of background pixel which
was correctly classified; FPR measures the ratio of back-
ground pixels misclassified as foregrounds; FNR measures
the ratio of foreground pixels misclassified as backgrounds;
PWC measures the overall misclassification rate; precision
measures the number of foreground pixel which was correctly
classified; F1 measures the harmonic mean of precision and
recall (1 - FNR).
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FIGURE 23. A group bar chart of average comparisons of FPR and FNR (lower scores

are better).
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FIGURE 24. A group bar chart of average comparisons of PWC (lower scores are better).

The results of the quantitative evaluation are presented in
Tables 2 to Table 7. The best performance in these tables is
highlighted in red, while the second best is highlighted in
blue. As visualized in Fig. 22 through 24, in general, our
proposed method can be very competitive and applicable for
extracting moving regions. It is noteworthy that the proposed
approach aims to localize ROI prior to pedestrian classifi-
cation through YOLO. Therefore, as shown in Fig. 25, the
whole pipeline can execute the incoming frames faster than
full-frame processing. It allows the proposed pipeline to be
applied in a real-time environment.

From the tables, it can be seen that the specificity value
of the proposed approach yields a slightly similar value to
the best specifity value, namely BSUV-NET, in most cases.
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The FPR and FNR values obtained in the proposed approach
are not the best for almost all representative scenarios, but
in “Backdoor” and “‘Pedestrian” scenarios as the best FNR
among other approaches. The percentage of wrong classifi-
cation (PWC) shows that the approach generates the average
value that marginally not different to the other approaches.
For the obtained precision, our proposed approach yields the
second highest score for the “cubicle” scenario, while in the
other scenarios almost achieve the lowest score of precision
value. Moreover, the F1 values of proposed approach are
marginally similar to the highest score.

Table 7 represented the average value of quantitative
measurements of all pedestrian scenes. From the table can
it be seen that the best performance is provided by the
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Avg. Processing Time
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FIGURE 25. Average comparisons of processing time in CPU (frames per second)
between full-frame and proposed localized classification (lower scores are better).

BSUV-NET approach. However, our proposed pedestrian
detection pipeline obtained slightly identical values to the
BSUV-NET in terms of specificity and FNR.

V. CONCLUSION

The advantages of our proposed pedestrian detection pipeline
based on a robust ROI localization, have been comprehen-
sively evaluated. The results of this study suggest that the
robust ROI localization with a guided-filtering-based BG
model contributes to the rapid and accurate pedestrian detec-
tion in our pipeline. Moreover, the guided filter allows our
proposed method to be robust against various complex chal-
lenges caused by noises, which are not adequately handled by
the previous approaches. The future works is to evaluate more
pre-processing steps on the robust BG subtraction methods.
In addition, comprehensive experiments through edge envi-
ronments will enable this work to be applied in the product-
ready and real-time environment.
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