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ABSTRACT In this paper, a novel and effective method for designing the pulse shaping filter for multicarrier
faster-than-Nyquist with offset quadrature amplitude modulation (MFTN-OQAM) systems is proposed.
The connection between the signal-to-interference ratio (SIR) and the filter coefficients is first established.
Then, for a desired overall compression level taking into account compressions in both frequency and time
domains, a simple convergence search is suggested to jointly find the optimal values of time and frequency
compression factors as well as the filter coefficients to maximize the SIR under a spectrum localization
constraint. The obtained results show that higher SIRs, and consequently better bit error rates, can be
achieved by the proposed filters over the Martin filter that is commonly used in the filter-bank multicarrier
OQAM (FBMC-OQAM) systems (i.e., without time or frequency compression). Moreover, when applying
our method to FBMC-OQAM systems, the obtained results show that the original Martin filter is suboptimal
as shorter filters are found having the same SIR, which translates to lower implementation cost and latency.

INDEX TERMS Faster-than-Nyquist signaling, FBMC, multicarrier faster-than-Nyquist (MFTN), OFDM,
offset QAM (OQAM).

I. INTRODUCTION
The filter-bankmulticarrier (FBMC) technique has been stud-
ied for many years [1], [2], [3], [4] and is considered as
a strong candidate for the physical layer in future wireless
communication networks [5], [6]. Compared to the popular
orthogonal frequency-division multiplexing (OFDM) tech-
nique, a key advantage of FBMC is that it has a much
more preferable power spectral density [7], thanks to a
well-designed transmit filter [8]. However, FBMC does not
provide much data rate enhancement over OFDM. This
together with the added complexity are perhaps the reasons
that, despite having an excellent spectral property, FBMC has
not been widely used in practice.

The multicarrier faster-than-Nyquist (MFTN) technique,
first introduced in [9], is a non-orthogonal modulation
technique in which one can place data symbols in the
time-frequency grid in a flexible manner. Compared to
FBMC, MFTN has equally excellent spectrum, but with the
added flexibility in controlling the spectral efficiency. This
makes MFTN a strong contender against OFDM, FBMC
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and other orthogonality-based multicarrier transmission tech-
niques.

However, the increase in spectral efficiency comes with
a price. By reducing the time interval between consecutive
data symbols, severe inter-symbol interference (ISI) occurs,
which jeopardizes signal reconstruction at the receiver. Sim-
ilarly, in the frequency domain, by packing adjacent subcar-
riers closer together, severe inter-channel interference (ICI)
is present. Due to these two sources of interference, MFTN
could easily suffer from severe performance degradation even
when an ideal channel is considered. As such, a well-designed
interference cancellation mechanism is needed for MFTN
to obtain acceptable error performance. For example, in [9]
and [10], the authors have investigated an MFTN system
equipped with an iterative receiver that exploits channel cod-
ing for interference cancellation. The theoretical analysis sug-
gests that, with a careful choice of system parameters, MFTN
can potentially double the throughput over OFDM. A lower-
complexity iterative receiver design is examined in [11] for
certain parameters concerning packing data symbols on the
time-frequency grid.

It is pointed out that, regardless of the specific interfer-
ence cancellation technique employed at the receiver, it is
always beneficial to design the MFTN system, specifically
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the transmit filter, in such a way that there is the least amount
of interference in the decision variables (corresponding to
the transmitted symbols) at the receiver. In other words, it is
sensible to design the transmit filter in the MFTN system
to minimize the interference in the decision variables before
applying any interference cancellation algorithm. This is pre-
cisely the main objective of our work.

There are a few works that consider filter design for
single-carrier FTN systems, where themain objective is either
optimizing the spectrum shape of the FTN signal [12] or
maximizing the signal-to-interference ratio (SIR) [13] at the
output of the matched filter. Since MFTN systems enable
both faster-than-Nyquist signalling and reduced subcarrier
spacing, existing filter designs for single-carrier FTN sys-
tems do not necessary perform well when applied to MFTN
systems.

As for FBMC, various filter designs have been examined
and compared in [14]. The squared-root raised cosine (SRRC)
filter and the filter based on the extended Gaussian func-
tion (EGF) are examples of filters that perfectly satisfy the
Nyquist zero-ISI criterion, provided that the filters are of
infinite length. With truncation, their finite impulse response
(FIR) versions no longer satisfy the Nyquist zero-ISI crite-
rion [15]. In [16], a flexible design of an FIR filter that aims
to satisfy the Nyquist criterion as close as possible is pro-
vided. The resulting filter, referred to as squared-root Nyquist
(m) filter, is shown to outperform the truncated SRRC filter
under timing error (manifested by having a cleaner and wider
eye diagram). Perhaps the most widely-used filter is devel-
oped in [8], and later refined in [17]. It is generally known as a
Martin filter and adopted in the PHYDYASproject [18].More
recently, Martin’s design was revisited in [19], and further
improved to provide a better out-of-band power suppression
ability, and consequently a higher SIR. Nevertheless, all the
aforementioned filters are not necessarily good choices for
MFTN systems. The main reason is that these filters are
designed taking into account the Nyquist zero-ISI criterion,
which is no longer relevant in MFTN signalling since MFTN
deliberately violates the Nyquist zero-ISI criterion to increase
the transmission rate. Furthermore, the impact of compres-
sion in the frequency domain is also crucial in MFTN and
needs to be accounted for.

Motivated by the above discussion, we propose in this
paper a simple, yet effective method to optimize the pulse
shaping filter for MFTN systems. Adopting offset quadrature
amplitude modulation (OQAM) scheme and Martin’s filter
structure, we form a direct relationship between the SIR at the
output of receive filter and the filter coefficients. By obtaining
the gradient of the objective function with respect to the filter
coefficients, we are able to perform convergence search to
find better filters for various settings of system parameters.
In particular, our methods finds new filters that not only yield
higher SIRs but also have lower implementation cost and
latency for MFTN-OQAM systems when compared to the
commonly-used Martin filter. As for FBMC-OQAM, which
is a special variant of MFTN-OQAM, our optimization pro-

cedure obtains a shorter filter whose SIR performance is the
same as that of the original Martin filter.

The remainder of the paper is organized as follows. The
system model and SIR derivation for MFTN-OQAM are
given in Section II. The formulation of the filter design
problem is presented in Section III together with the proposed
optimization procedure. Section IV presents and discusses the
obtained results. Finally, conclusions are given in Section V.

II. SYSTEM MODEL
The baseband-equivalent transmitted signal of the MFTN-
OQAM system under consideration is expressed as follows:

x(t) =
K−1∑
k=0

N−1∑
n=0

sk,n ej
π
2 (k+n)g

(
t − nβ

T
2

)
e
j2πkαt
T︸ ︷︷ ︸

γk,n(t)

=

K−1∑
k=0

N−1∑
n=0

sk,nγk,n(t). (1)

As in conventional OQAM systems, each complex-valued
symbol of duration T is broken up into a pair of real-valued
symbols, each of duration T

2 . In the above expression, K is
the number of subcarriers, N is the number of real-valued
symbols in one block (frame) and g(t) is the transmit pulse
shaping filter. The real-valued symbol carried on the kth sub-
carrier and over the nth time slot is sk,n, whose average energy
is normalized to unity, i.e., E{s2k,n} = 1. The parameters
α and β are the frequency and time compression factors,
which control the subcarrier spacing and symbol spacing,
respectively.

By sampling with the critical sampling interval Tsam = T
K ,

the discrete-time version of (1) is

x[i] , x(iTsam) =
K−1∑
k=0

N−1∑
n=0

sk,nγk,n[i], (2)

where γk,n[i] = ej
π
2 (k+n)g

[
i− nβ K2

]
e
j2πkαi
K . The expression

in (2) suggests a block diagram for discrete-time implemen-
tation of the transmitter as shown in Fig. 1, in which real-
valued symbols enter the transmitter at intervals of βT2 . The
input symbols are upsampled by a factor of βK2 to reach the
previously mentioned critical sampling interval Tsam = T

K
prior to filtering andmodulation. Note that while we treat β as
a continuous variable in the design of the system, for practical
implementation, it should be selected or rounded such that
β K2 is an integer for implementation.

A popular design of the transmit filter g[i] is based on a
weighted sum of Q sinusoids, expressed as

g[i] = C

a0 + 2
Q−1∑
q=1

aq cos
(
2πqi
KL

) ,
i = 0, . . . ,KL − 1, (3)

where L is called the overlapping factor (or filter span in units
of symbols) and the length of the filter is KL. In essence, (3)
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FIGURE 1. Block diagram of the MFTN-OQAM system.

defines the transmit filter throughQ frequency coefficients aq.
The scaling factor C is chosen to make an unit-energy filter,
i.e.,

∑KL−1
i=0 g2[i] = 1. It is noted that the filter defined as

in (3) is quite comprehensive in the sense that any filter of
length KL can be represented as a combination of {aq}. As an
example, the simplest filter in the FBMC-OQAM system is
designed with Q = 2 and {a0, a1} = {1,−1/

√
2} in [8].

Since the interference caused by the non-orthogonality
among the subcarriers and signalling at a faster-than-Nyquist
rate is the main performance limiting factor for the MFTN-
OQAM system, we are interested in analyzing the interfer-
ence power. To this end, we focus on the ideal scenario of
having a noiseless channel, which means that the received
signal is equal to the transmitted signal, i.e., r[i] = x[i]. The
block diagram for the front-end of the receiver is also shown
in Fig. 1. The output of the matched filter corresponding to
the mth carrier and lth symbol is

s̃m,l = R
{
∞∑
i=0

r[i]γ ∗m,l[i]

}
= R


lβK/2+KL−1∑
i=lβK/2

x[i]γ ∗m,l[i]


= sm,l0

(m,l)
(m,l)︸ ︷︷ ︸

desired symbol

+

∑
(k,n)6=(m,l)

sk,n0
(m,l)
(k,n)︸ ︷︷ ︸

interference

, (4)

where

0
(m,l)
(k,n) = R

{ lβK/2+KL−1∑
i=lβK/2

ej
π
2 (k+n−m−l)e

j2π (k−m)αi
K

×g
[
i− nβ

K
2

]
g
[
i− lβ

K
2

]}
(5)

is the cross correlation coefficient between a symbol carried
on the kth subcarrier during the nth time slot and another
symbol carried on the mth subcarrier during the lth time slot.
For convenience, these two symbols shall be referred to as the
(k, n)th and (m, l)th symbols, respectively.
Regardless of the detection algorithm, the receiver’s per-

formance strongly depends on the signal-to-interference ratio
(SIR) at the output of the matched filter. Our main objective

is to design the transmit filter (and also the receive filter) to
maximize the average SIR. Of course, the design should meet
specified constraints on the length and spectrum compactness
of the filter. The formulations of the average SIR as a function
of the filter coefficients and the filter design problem are
presented in the next section.

III. PROBLEM FORMULATION AND OPTIMIZATION
PROCEDURE
In order to obtain an expression of the average SIR in terms
of the filter coefficients, we focus on the cross correlation
coefficient, which can be rewritten as

0
(m,l)
(k,n) = R

{ KL−1∑
i=0

ej
π
2 (k+n−m−l)e

j2π (k−m)α
(
i+ lβK2

)
K

×g
[
i+ (l − n)β

K
2

]
g[i]

}
. (6)

Define a vector of the filter’s frequency coefficients
a = [a0, . . . , aQ−1]>. Then, it is simple to show that
[g[0], . . . , g[KL − 1]]> = D0a, in which D0 is a KL × Q
matrix whose elements are

D0(u, v) = cos
(
2πuv
KL

)
(2− 0v), (7)

where 0 ≤ u ≤ KL − 1 and 0 ≤ v ≤ Q − 1. Next, define
a KL × Q matrix D(m,l)

(k,n) whose element at the uth row and
vth column is given in (8), as shown at the bottom of the
next page. Then it can be seen that the ith entry of D(m,l)

(k,n)a is

ej
π
2 (k+n−m−l)e

j2π (k−m)α
(
i+ lβK2

)
K g

[
i+ (l − n)β K2

]
. Now, (6) can

be expressed as

0
(m,l)
(k,n) = a>D(m,l),>

(k,n) D0a = a>G(m,l)
(k,n)a, (9)

where G(m,l)
(k,n) = D(m,l),>

(k,n) D0.
According to (4), the average power of the desired signal

component is

Ps(a) = E
{(
sm,l0

(m,l)
(m,l)

)2}
= E{s2m,l}

(
0
(m,l)
(m,l)

)2
89360 VOLUME 10, 2022



N. H. Nguyen et al.: Filter Optimization for MFTN-OQAM Systems

=

(
0
(m,l)
(m,l)

)2
=

(
a>G(m,l)

(m,l)a
)2
=

(
a>G0a

)2
, (10)

where G0 = G(m,l)
(m,l) is a diagonal matrix that is independent

of m and l. Specifically, the uth element on the diagonal of
G0 is

G0(u, u)

=

KL−1∑
i=0

cos
(
2π iu
KL

)
(2− 0i) cos

(
2π iu
KL

)
(2− 0u). (11)

This means that the signal power is the same for every symbol
in an MFTN-OQAM frame.

On the other hand, for the interference term in (4), denoted
as Im,l =

∑
(k,n)6=(m,l) sk,n0

(m,l)
(k,n) , it is made up of various

components caused by symbols transmitted in neighboring
subcarriers and adjacent time slots. Statistically, Im,l is a
sum of uniformly-distributed random variables with different
variances. Given the large number of components in Im,l ,
it can be approximated as a zero-mean Gaussian random
variable with variance

σ 2
m,l=

∑
(k,n)6=(m,l)

(
0
(m,l)
(k,n)

)2
=

∑
(k,n)6=(m,l)

(
a>G(m,l)

(k,n)a
)2
. (12)

We define the average SIR as

ξ̄ (a) =
Ps(a)

1
KN

∑K−1
m=0

∑N−1
l=0 σ

2
m,l

=
KNPs(a)∑K−1

m=0
∑N−1

l=0
∑

(k,n)6=(m,l)

(
a>G(m,l)

(k,n)a
)2 . (13)

Unlike FBMC-OQAM, the value of σ 2
m,l varies with l,

since σ 2
m,l 6= σ

2
m,l′ in general. However, a close examination

of (8), (9) and (12) reveals that σ 2
m,l = σ 2

m,l+N̄
, where N̄

is the smallest integer making R
{
D(m,l+N̄ )
(k,n+N̄ )

}
= R

{
D(m,l)
(k,n)

}
,

which is equivalent to making N̄αβ
2 an integer. For example,

if 1
αβ
= 1.1 one finds N̄ = 11. Using N̄ , one can simplify the

SIR expression to

ξ̄ (a) =
KN̄

(
a>G0a

)2
∑K−1

m=0
∑d2L/βe+N̄−1

l=d2L/βe
∑

(k,n)6=(m,l)

(
a>G(m,l)

(k,n)a
)2 . (14)

Finally, the optimization of the filter’s frequency coeffi-
cients to maximize the average SIR can be stated as follows:

argmax
a

ξ̄ (a) (15)

subject to µ ≥ µ∗, (16)

where µ ≤ 1 is the localization ratio that controls the spec-
tral leakage and µ∗ is a specified tolerable level of spectral
leakage. This ratio is computed as follows:

1) Construct filter g[i] from a
2) Compute DFT G[k] =

∑KL−1
i=0 g[i]e

j2π (k−1)(i−1)
KL .

3) Among the total KL samples in frequency domain, the
in-band components are the first and last L/2 samples
ofG[k], i.e.,G[0 : L/2] andG[KL−L/2+1 : KL−1].
The localization ratio µ is then computed as

µ =

∑KL−1
k=0 |G

2[k]| −
∑KL−L/2

k=L/2+1 |G
2[k]|∑KL−1

n=0 |G
2[k]|

.

It is pointed out that the above optimization problem is
invariant to the scaling of a. As such, one can arbitrarily
set a0 = 1 to reduce one unknown variable. The solution
obtained by solving the optimization problem can then be
normalized to yield an unit-energy impulse response of the
transmit filter.

Maximizing ξ̄ (a) is equivalent to minimizing f = −ξ̄ (a),
which can be expressed as1

f = −KNkEs
1∑K−1

m=0
∑2L+Nk−1

l=2L σ 2
m,l︸ ︷︷ ︸

E1

. (17)

The gradient vector of f is

∇f = −KNk (E1∇Es + Es∇E1) . (18)

The relevant terms in (18) are derived as follows:

∇Es = ∇
(
a>G0a

)2
= 2

(
a>G0a

)
∇
(
a>G0a

)
= 2

(
a>G0a

)
2G0a, (19)

and

∇E1 = ∇
1∑K−1

m=0
∑2L+Nk−1

l=2L σ 2
m,l

=
−
∑K−1

m=0
∑2L+Nk−1

l=2L ∇σ 2
m,l(∑K−1

m=0
∑2L+Nk−1

l=2L σ 2
m,l

)2 , (20)

where

∇σ 2
m,l =

∑
(k,n)6=(m,l)

∇
(
a>G(m,l)

(k,n)a
)2

1For notational simplicity, the explicit dependence of f on a is dropped.

D(m,l)
(k,n)(u, v)=


R

e
j π2 (k+n−m−l)e

j2πα

u+lβK
2

(k−m)

K

cos
(2πv((l − n)βK

2
+ u

)
KL

)
(2− 0v), 0 ≤

(
(l−n)

βK
2
+u
)
≤KL−1

0, otherwise

(8)
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=

∑
(k,n)6=(m,l)

2
(
a>G(m,l)

(k,n)a
)(

G(m,l)
(k,n) +

(
G(m,l)

(k,n)

)>)
a.

(21)

The final expression for gradient ∇f is given as in (22),
shown at the bottom of the next page. With the expression
of ∇f , the pseudocode for solving the filter optimization
problem is given below.
1: maxIter← 1000 F Maximum number of iterations
2: c← 0 F Iteration count
3: tolerance← 10−10 F Tolerance for |∇f (a)|
4: S ← 0.1 F Step size
5: an = a0 F Initialize coefficients
6: while c ≤ maxIter and ||∇f (an)|| ≥ tolerance do
7: a = an
8: an = a−S∇f (a) F Update coefficients
9: S = |(an−a)(∇f (an)−∇f (a))|

||∇f (an)−∇f (a)||2 F Update step size
10: c = c+ 1
11: if µ ≤ µ∗ then F Check spectrum leakage
12: break
13: end if
14: end while
15: return a
It is pointed out that, since f is a non-convex function, the

starting point a0 plays a crucial role in finding the optimal
solution. A reasonable strategy would be to begin with the
coefficient set of the Martin filter, although one may find
a randomized set of coefficients that yields better results
when η increases since the optimized set could be far away
from the Martin filter’s set. Due to the nature of gradient
descent search, multiple trials with different starting points
are required to assure that the global optimal solution is
obtained.

IV. RESULTS AND DISCUSSIONS
A. SIR IMPROVEMENTS
In this section, the filters obtained by the proposed optimiza-
tion are presented for several configurations of the MFTN-
OQAM systems. The number of subcarriers is set to K =
32, whereas the overlapping factor is either L = 3 or
L = 4, which are the two most widely-used values in
FBMC-OQAM. The spectral efficiency is determined as η =
R log2(M )

αβ
(bits/s/Hz), where M and R are the modulation

order and the coding rate, respectively. As one can see, for
fixed code rate R and modulation order M , different gains in
spectral efficiency can be obtained for MFTN by adjusting
the product αβ. In contrast, the spectral efficiency of FBMC
is fixed at R log2(M ) (bits/s/Hz). Furthermore, sinceM and R
do not affect the calculation of the average SIR, one can set
R = 0.5 and M = 4, which means sk,n ∈ {−1, 1}. For all the
results presented in this section, the tolerable level of spectral
leakage is specified as µ∗ = 95%.

First, the optimization algorithm is performed for the case
that the number of filter’s frequency coefficients is equal to
the overlapping factor, i.e., Q = L. Although not necessarily

an ideal choice, it has been widely adopted in the literature
of FBMC-OQAM [8]. In particular, for the case Q = L = 3,
the frequency coefficients of the Martin filter obtained in [8]
for FBMC-OQAM is a0 = [1,−0.91143783, 0.41143783].
Practically, spectral efficiency (which is controlled through

the product αβ) is often specified as one of the design targets,
and then one should choose α and β accordingly to maximize
the SIR for the specified spectral efficiency. Therefore, with
each value of η, the optimization algorithm refines an and
outputs the optimized a as shown in Table 1. The table also
compares the SIR values between the optimized filter and
the original Martin filter for the same set of compression
factors (α, β). It can be seen that for all combinations of
(α, β), our optimized filters always perform better than the
Martin filter, especially when η is close to 1. For example,
a gain of 1.5 dB is achieved when using the proposed filter
for η = 1 (i.e., a FBMC-OQAM system). On the other
hand, a gain of 2.1 dB is obtained by the proposed filter
for η = 1.1.
Similar SIR improvements are obtained with the fil-

ters optimized with Q = L = 4 and reported
in Table 2, in which the largest SIR gain is observed
when η = 1.1. The coefficients of the original Mar-
tin filter designed for FBMC-OQAM systems are a0 =
[1,−0.97195983,

√
2/2,−0.23514695] [8]. Since the filter

length is larger in this case (with L = 4), the average
SIRs are higher than those in Table 1 (with L = 3).
It is worth pointing out that, even for an FBMC-OQAM
system, the proposed filter always provides SIR improve-
ment over the original Martin filter, regardless of filter
length.

As discussed before, the number of filter’s frequency coef-
ficients Q needs not be the same as the overlapping factor L,
nor does it affect the length (hence complexity) of the filter in
the time domain. In fact, one should use a large value forQ in
order to have more flexibility in optimizing the spectrum of
the filter, and consequently achieve higher SIR. This is easily
explored with the proposed optimization algorithm and the
results are presented in Fig. 2 for η = 1 (corresponding to an
FBMC system) and two different values of L. It can be seen
that, for the case L = 3, using Q = L = 3 delivers the max-
imum SIR of 43 dB, whereas the maximum SIR increases to
68 dB with Q = 7, i.e., a gain of 25 dB over the conventional
Martin filter. The optimized filter’s frequency coefficients
found with Q = 7 are a = [1, −0.8868850, 0.5412187,
−0.2014944, 0.0415070, 0.0254808, −0.0201625]. Simi-
larly, for the case of L = 4, the maximum SIR jumps from
65 dB to 88 dB when switching from Q = 4 to Q = 8.
The filter’s frequency coefficients found with Q = 8 are
a = [1, −0.9518146, 0.7071373, −0.3011248, 0.0074495,
0.0561705, −0.0000126, −0.0177636]. Although the opti-
mization algorithm can also find optimal filters for the cases
η > 1 (corresponding to MFTN systems), no significant
improvements in SIR are observed by increasing the number
of filter’s frequency coefficients (Q > L) in those cases. As a
result, our proposed method can be used to obtain optimized
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TABLE 1. Optimal combinations of {α, β,a} to maximize ξ̄ when Q = L = 3.

TABLE 2. Optimal combinations of {α, β,a} to maximize ξ̄ when Q = L = 4.

FIGURE 2. Maximum ξ̄ versus the number of filter’s frequency
coefficients.

filters for MFTN-OQAM by setting Q = L, since using
higher values of Q is practically unnecessary.

B. FILTER RESPONSES
In this part, the original Martin filter and the optimized filter
are compared in terms of ISI immunity and spectrum local-
ization. Consider an FBMC-OQAM system (i.e., an MFTN-
OQAM system with α = β = 1) with K = 32 and

FIGURE 3. Impulse responses of cascaded filters, L = 3.

L = 3. For each design, the impulse response of the cascaded
transmit-receive filter is plotted in Fig. 3. Recall that the
original Martin filter achieves ξ̄ = 43.4 dB, whereas the
optimized filter has ξ̄ = 68 dB. As expected, both cascaded
filters peak at KL + 1 = 97. At samples KL + 1 + iK , the
optimized filter satisfies the zero-ISI criterion better than the
original filter, with amplitude difference of 10−3.
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FIGURE 4. Magnitude responses of two transmit filters under
comparison, L = 3.

FIGURE 5. PSDs of transmit FBMC-OQAM signals with two different filter
designs, L = 3.

Compared to the original Martin filter, the optimized filter
has poorer spectral localization as shown in Fig. 4. Specifi-
cally the stopband of the optimized filter is wider and there is
a notable sidelobe next to the passband of the filter. However,
it is stressed that the relevant and important assessment is the
power spectrum density (PSD) of the FBMC-OQAM signal,
which is shown in Fig. 5 for both filter designs. Although
having higher spectral sidelobes, the overall PSD obtained
with the proposed filter has very sharp transition band and
very low amount of out-of-band power emission.

Similar observations can be made from Figs. 6, 7 and 8
for the case L = 4. In Fig. 6, the cascaded response of the
optimized filter is infinitesimal at samples KL+ 1+ iK , with
the difference of 2× 10−4. Figs. 7 and 8 show some deterio-
rations of the magnitude response and PSD of the optimized
filter compared to the original Martin filter. However, such
deteriorations can be well justified by the much better ISI
immunity, and consequently by the much better overall SIR.

C. BIT ERROR RATES
Next, we investigate how the SIR improvement translates to
the bit error rate (BER) performance when the optimized

FIGURE 6. Impulse responses of cascaded filters, L = 4.

FIGURE 7. Magnitude responses of two transmit filters under
comparison, L = 4.

FIGURE 8. PSDs of transmit FBMC-OQAM signals with two different filter
designs, L = 4.

filters are compared to the original Martin filter. To this
end, we obtain the BER over an additive white Gaussian
noise (AWGN) channel for systems that implement a rate
R = 1/2 convolutional code with constraint length 10,
whose generator matrix is [2473, 3217] in octal form. The
coded sequence is mapped to symbols sk,n using the standard

89364 VOLUME 10, 2022



N. H. Nguyen et al.: Filter Optimization for MFTN-OQAM Systems

FIGURE 9. BER comparison of different MFTN-OQAM systems.

QPSK constellation and Gray mapping. At the receiver, the
soft-input hard-output Viterbi algorithm is implemented to
decode the log-likelihood ratio of the demodulated binary
sequence. It is noted that no interference cancelation method
is implemented before channel decoding. This is to observe
the gross performance improvement in terms of BERwith the
optimized filters.

As can be seen in Fig. 9, when η = 1 and L = 4, the
use of both original and optimized filters leads to virtually
identical BER performance. This is because the average SIR
resulting from using these two filters are very high, making
the interference insignificant compared to thermal noise. For
the same reason, the BER performance of the system using
the optimized filter with L = 3 (which achieves an SIR of
about 68 dB) is equivalent to the two filters having L = 4.
This comparison means that our filter optimization algorithm
reduces the filter length by 25%, from 4K to 3K , without
sacrificing the error performance.

When η = 1.1, the SIR gain helps to improve the BER.
Specifically, it can be seen from Fig. 9 that the optimized
filters with both L = 3 and L = 4 deliver better BER
performance compared to the original filter designed with
L = 4. At the BER level of 10−5, a 4 dB gain is achieved with
the optimized filter designed with L = 4 over the original
filter of the same length. Note that the SIR improvement
between these two filters is about 2.2 dB as discussed before.
Similar observation can be made when η = 1.2. The SIR
improvement of 1.1 dB translates to 3.2 dB gain in Eb/N0 at
the BER level of 2 × 10−5. The results clearly show that
the optimized filters are preferred over the original filters
when the system is designed for a higher spectral efficiency
(η > 1).

V. CONCLUSION
This paper has formulated and solved the filter design prob-
lem for multicarrier faster-than-Nyquist (MFTN) systems
with offset quadrature amplitude modulation (OQAM). With

the objective of maximizing the signal-to-interference ratio
(SIR) at the output of the matched filter, the frequency coef-
ficients of the transmit filter are found that meet a criterion
on spectral localization and for a fixed spectral efficiency.
The obtained results showed that the optimized filters can
boost SIR up to 25 dB in the orthogonal multicarrier sys-
tems (FBMC-OQAM), and up to 2.2 dB for non-orthogonal
MFTN-OQAM systems that implement compression factors
to increase the spectral efficiency. The BER results have
also confirmed the usefulness of the optimized filters and
showed that, for the non-orthogonal MFTN-OQAM systems,
the SIR improvement translates to a larger power gain by
using the optimized filters. Future works could investigate the
MFTN-OQAMsystemswith the optimized filters under other
channel models, as well as with more advanced receivers.
The extension of this work to multiple-input multiple-output
(MIMO) systems is interesting, considering that filter design
can help reduce intrinsic interference that is more problem-
atic with MIMO channels. Such an extension is beyond the
scope of this work and deserves a further and extensive
study.
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