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ABSTRACT After considering the spectral correlation of structure and statistics of the hyperspectral image,
the redundancy reduction is optimized using reversible transformation of integermatrices in conjunctionwith
the N-band integer reversible transformation of spectral matrices. This paper proposes a new quantization
algorithm, XCJRCT, that uses invertible matrix transformation to remove spectral redundancy and optimize
bit allocation in structure. The lifting scheme of the discrete wavelet transform (DWT) is used in conjunction
with other algorithms to reduce redundancy and set partitioning in hierarchical trees (SPIHT) coding. The
experimental results show that lossless compression is significantly better than JPEG-LS, WinZip, ARJ,
and DPCM. Using the Jet Propulsion Laboratory (JPL) Canal test image (Band Sequential) as an example
data set, the average compression ratio increases by about 73.691598%, 67.713276%, 65.175242%, and
59.107580%, respectively, compared to the above algorithms.

INDEX TERMS Hyperspectral image, lossless compression, SPIHT algorithm, wavelet transform, XCJRCT
transform.

I. INTRODUCTION
Hyperspectral images typically contain a large amount of
data, for which compression becomes critical to reduce the
required space, cost, transmission time, and processing time
and thus improve their transmission and storage efficiency
and lower their application costs. The spectral transforma-
tion is an important step in the image processing of mul-
tispectral and hyperspectral images because it can provide
a high compression ratio, and hyperspectral image codes
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compression primarily focuses on redundancy reduction and
codes algorithm.

To address the problem of congestion in aircraft and
satellite downlinks, Báscones et al. [1] used vector quan-
tization and principal component analysis (PCA) for spec-
tral decorrelation of images. However, these methods only
improved image storage and transmission for hyperspectral
image compression. The limited accuracy improvement was
obtained from high-compression, low signal-to-noise ratio
(SNR) images to low-compression near-lossless images.
Guerra et al. [2] proposed a lossy compression algorithm
based on transforms for hyperspectral image systems (hyper
LCA). Czajkowski et al. [3] proposed a new sampling
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scheme based on a random selection of Morlet wavelets
convolved with white noise, resulting in a shorter signal
acquisition time. However, only at low resolutions was the
compression ratio for single-pixel imaging slightly improved.
Valsesia and Magli [4] investigated the performance of a
lossless predictive compressor and a fast compressionmethod
based on image prequantization. Although a novel loss-
less compression method was proposed, its prediction was
performed only in conjunction with the convolutional neu-
ral network, with no verification of lossless compression
of reversible transformation. Blanes et al. [5] investigated
the impact of parameter selection on the compression per-
formance of the Consultative Committee for Space Data
Systems (CCSDS) -123.0-B-2 Low-Complexity Multispec-
tral and Hyperspectral Image Compression Standard (Loss-
less and Near-Lossless). However, because only related
parameters were provided, the study was unable to fur-
ther optimize the lossless compression method in terms of
coding performance. Pflugfelder and Scharr [6] proposed a
lossless affine transformation method for two-dimensional
images, but its runtime was significantly longer than that
of the toolbox algorithm, compromising the image quality
obtained by hardware. Hernández-Cabronero et al. [7] were
the first to combine the most competitive spectral decor-
relation approach and the best-performing low-complexity
compressor approach while considering only lossless com-
pression, and they obtained the compression performance
and execution time for a group of data in an actual remote
sensing task. To improve the efficiency of an orbiting cloud
screen targeting the spaceborne environment, Li et al. [8]
proposed a new spectral-spatial classification strategy. The
threshold exponential spectral angle map (TESAM), adap-
tive Markov random field (aMRF), and dynamic stochastic
resonance were used to create hyperspectral images (DSR).
Using only spectral information, classification performance
was improved, allowing automatic spectrum settings of cloud
covers for the ongoing Earth Observing-1 (EO-1) and related
satellites. Liu and Chen [9] proposed an adaptive spec-
tral decorrelation method based on clustering analysis, but
they did not address the image compression issue of the
moderate resolution imaging spectroradiometer (MODIS)
Wang et al. [10] reconstructed images based on significant
correlations in spatial and spectral dimensions that were
intrinsic properties of the hyperspectral image, taking into
account the notable advantages of coded aperture snapshot
spectral imaging. However, no significant improvement in
the lossless compression ratio of the compressive coding
algorithmwas observed. Xue et al. [11] proposed using struc-
tured sparsity before first characterizing spatial and spectral
images before proposing no new scheme in terms of the
compressive coding algorithm for hyperspectral images. [12]
built a low computational complexity fast lossless compres-
sion model (WCCSDS123), which was suitable for hard-
ware implementation. The method was only useful for the
wedge filter spectral imager because it predicted the values
of sampling points using the local sum and improved local

difference vectors. Kong et al. [13] proposed an end-to-end
multispectral image compression method based on a convo-
lutional neural network and investigated multispectral image
reconstruction in the inverse transformation process at the
coding and decoding ends. Li et al. [14] used the Compute
Unified Device Architecture (CUDA), a parallel computing
platform and programming model developed by NVIDIA,
to reduce the lossless compression time from 30-60 minutes
to a few seconds with almost no loss in accuracy. Fu et al.
[15] proposed a grouped multiscale dilated network structure
to increase the receptive fields of each network layer, which
was directly used for multi-band spectral image sharpening
of other types. Zhu et al. [16] investigated the design and
optimization of a perovskite quantum dot spectrometer using
a total-variation compressive sensing approach. However, the
approach only reconstructed the target spectrum in a quan-
tum dot spectrometer coupling measurement by combining
quantum dots with a single image sensor, revealing inher-
ent photoluminescence emission defects and poor batch-to-
batch repeatability. Liu and Wu [17] developed a lossless
compression method for multispectral images in dynamic
video capture limited to dynamic video acquisition scenarios.
Zhu et al. [18] also proposed a lossless compression method
for hyperspectral images based on adaptive band selec-
tion and an optimal prediction sequence, with an arith-
metic encoder used to encode the prediction residual entropy.
Li et al. [19] optimized the predictor of the CCSDS 123.0-B-1
algorithm, only using the optimized residual mapper to
improve prediction accuracy and reduce the length of the
compression code to address issues such as insufficient use
of pixel position information and spectral correlation and
a low compression ratio. Li and Gong [20] proposed a
lossless compression method for spectral information in a
remote sensing image database; this method was based on
the extraction of vector quantization features, which was
optimized using the Linde, Buzo, and Gray (LBG) algo-
rithm. Hernandez-Cabronero et al. [21] used closed-loop
quantization of prediction errors to achieve near-lossless
compression and determined the predicted sample values
using sample representatives, which may not be equal to the
reconstructed sample values. As a result, the compressed data
volume became much smaller than that achieved by CCSDS
123.0-B-1, and the quality of the decompressed images could
be controlled at the same time.

The number of studies on hyperspectral image compres-
sion and coding technology in China and elsewhere is steadily
increasing. From the standpoint of the compression principle,
the essence of image compression is removing redundant
image information in spectral spatial and temporal dimen-
sions and encoding the data, resulting in faster transmission
while reducing storage space. Because of the strong data cor-
relation in both spatial and spectral dimensions between the
hyperspectral infrared atmospheric image and the hyperspec-
tral remote sensing image, most studies on the compression
of hyperspectral infrared data are based on the compression
approach for hyperspectral images.

VOLUME 10, 2022 88633



C. Li et al.: Research on Lossless Compression Coding Algorithm

As a result, in addition to exploring the correlation in
the entire spectral range, we should also focus on min-
ing the inherent correlation characteristics in each spectral
region in the spectral domain and thus design a reasonable
scheme to remove spectral redundancy. Furthermore, while
the compression of hyperspectral images in the spectral-
spatial dimension has received a lot of attention in the lit-
erature, only a few studies have focused on compression
in the time dimension, with the majority of them referenc-
ing video compression algorithms. The data characteristics
of hyperspectral images in the time dimension differ sig-
nificantly from those of general video data, and traditional
video compression algorithms are not entirely appropriate
for hyperspectral infrared images. As a result, the distinct
data properties of hyperspectral images in the time dimension
should be thoroughly investigated. The CCSDS focuses on
predictive coding-based lossless and near-lossless compres-
sion methods, and Lossless compression of hyperspectral
imageswith reversible transformationmust be evaluated. Fur-
thermore, because of the detectors’ improved time resolution,
the daily acquired images have extremely high data redun-
dancy. As a result, simply compressing hyperspectral images
in spatial and spectral dimensions is far insufficient, and real-
time compression methods should be studied online based on
the existing relationships between images at different times,
allowing for rapid image data transmission.

Based on the aforementioned analysis, this paper
used three band parametric spectral integer reversible
transformation in conjunction with wavelet lifting scheme
transformation to remove spectral and spatial redundancy
by implementing lossless compression of the hyperspectral
image using SPIHT codes algorithm.

II. REDUNDANCY ELIMINATION TRANSFORMATION
A. XCJRCT TRANSFORM
Given that |det| = a 6= 1, any invertible n × n matrix A,
irrespective of the corresponding actual physical meaning of
the transformation results, can be transformed into the matrix
with 1 for the module of the determinant value by improving
the transformational matrix. If the module of the determinant
value of the matrix equals 1, matrix A has the basic definite
triangular matrix decomposition. Therefore, it is possible to
construct the N-band parametric spectral integer reversible
transformation matrix, and the optimal transformation can be
chosen according to the actual needs of the problem since
there are infinite such integer reversible transformations. For
example, the N-band parametric spectral reversible trans-
formation is realized by the principle of the lowest energy.
Matrix Theory states that the triangular decomposition is a
necessary part of a nonsingular matrix with P, L,D, andU as
the short forms for permutationmatrix (P), unit lower triangu-
lar matrix (L), diagonal (D) matrix, and unit upper triangular
(U ) matrix |detD| = |detPD| = |detPLDU| = |detA| =
1, respectively which implies that the invertible transform
matrix A can be found for N × N integer implementation.

The results provided constructive proof, but without being
parameterized, and any problem for optimum transform solu-
tion. We can conclude that the matrix reversible transfor-
mation of SHIRCT, RCT, YFbFr, YCbCr is not optimal for
the well-known implementation of three-band spectral inte-
gers (R, G, B) spectral integer implementation [22]. This
transformation is one of the main entry points to studying
this problem. In this paper, the reversible matrix transfor-
mation realized by the three-band spectral integer was used
as an example to illustrate the problem solving of optimal
transformation to show the importance of the problem under
study [23].

Set

T =

 1
1

a1 a2 1


 1
b1 1 b2

1


 1 c1

1 c2
1


 1

1
d1 d2 1

 (1)

T =

 1+c2d1 c1 + c2d2 c2
b1(1+c2d1)+b2d1 b1(c1+c2d2)+1+b2d2 b1c2+b2

11 12 13


(2)

Among 11 = a1× (1 + c2 × d1) + a2 × [b1× (1 + c2 ×
d1) + b2 × d1] + d1, 12 = a1× (c1 + c2 × d2) + a2×
[b1× (c1 + c2 × d2) + 1 + b2 × d2] +d2, 13 = a1 × c2 +
a2× (b1 × c2 + b2)+ 1, Set T = PLAPR, Herewith

PL =

 1 0 0
1 0 −1
0 1 0

 (3)

PR =

 0 0 1
0 1 0
1 0 0

 (4)

And,

A =

 c2 c1 + c2d2 1+ c2d1
−11 −12 −13

b1c2+b2 b1(c1+c2d2)+1+b2dd b1(1+c2d1)+b2d1


(5)

Formulas (1) and (2) show that the first two lines of the
matrix are irrelevant to a1a1 and a2a2, so the transformation
of the invertible matrix of the integer implementation can be
parameterized b1 = −0.5, b2 = −0.1, c1 = 1, c2 = 0.5,
d1 = −0.5, d2 = −0.5, and

T =

 0.75 0.75 0.5
−0.34375 0.65625 −0.3125

11 12 13

 (6)

And,
11 = v0.75 × a1 − 0.34375 × a2−0.5, 12 = 0.96875 ×

a1+0.65625×a2−0.5,13 = 0.5×a1−0.3125×a2+113 =

0.5a1 − 0.3125a2 + 1. To obtain the best effects,11 +12 +

13 = 0 11 + 12 + 13 = 0 can be obtained from a1 =
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0a1= 0, and the parameterized transformation matrix can be
deduced.

A =

 0.5 0.75 0.75
−0.3125a2+1 0.65625a2−0.5−0.34375a2−0.5

0.3125 −0.65625 0.34375


(7)

a2 = 0.75a2 = 0.75 and the well-known transformation of
SHIRCT can be obtained [13].

If Z = [Z1, Z2, Z3]T, X = [X1, X2,X3]T, then Z2 =
(0.3125× X1 − 0.65625× X2 + 0.34375× X3)× a2 + X1 −
0.5 × (X2 + X3) = Z3 × a2 + X1 − 0.5 × (X2 + X3), with
the actual effect of image compression taken into account.
Furthermore, because it is a parametric expression, |Z2| is
expected to be the smallest possible; if Z2 and X1 − 0.5 ×
(X2 + X3) are all set values, then the different choice of a2
to Z2 has a significant influence; a2 denotes the different
reversible transformation. There are an infinite number of
such reversible transformations in theory. However, the best
transformation can always be chosen based on the needs of
the current problem. For instance, consider the parametric
3-band spectral integer reversible transformation based on
the principle of least energy. The current paper presented the
following expression of the XCJRCT transform [24] for a
three-band spectrum integer invertible transformation matrix:

Forward Transform,

d = In1 − ((In2 + In3)� 1)

Out1 = In2 + In3 + (d � 1)

Out3 = −I2 + ((Out1 + (d � 3))� 1)

Out2 = d + (γ × Out3)� λ

Inverse Transform,

d = Out2 − (γ × Out3)� λ

I2 = −Out3 + ((Out1 + (d � 3))� 1)

I3 = Out1 − n2 + (d � 1)

In1 = d + ((In2 + I3)� 1)

where d represents an intermediate variable, In1, In2, and In3
represent three input signals, Out1, Out2, and Out3 represent
three output signals, and ‘�’ represents a binary left shift
symbol. The values of γ and λ are transformable parameters
that can be evaluated based on the needs of the actual problem
to be solved. For ease of hardware configuration, the above
transforms can be performed with addition and shift.

Therefore, the quantization algorithm and DWT are com-
bined to mine data redundancy. The parametric transforma-
tion in this paper is based on integer reversible transformation
of three parameters. Presented the expression of a 3 band
spectrum integer invertible transformation matrix as given
below:

T =

 1
1

x1 x2 1

×
 1
y1 1 y2

1

×
 1 z1 z2

1
1

×
 1

1
w1 w2 1


(8)

Select the suitable algorithm to obtain;

T =


1+ z2 × w1 z1 + z2 × w2 z2

y1×(1+ z2×w1)+ y2×w1 y1×(z1 + z2×w2)
+y2× w2 + 1 y1 × z2 + y2

δ1 δ2 δ3


(9)

Among them, δ1 = x1× (1+ z2 × w1)+ x2 × [y1× (z1 +
z2×w2)+ y2×w2+1]+w1, δ2 = x1 × (z1+z2×w2)+ x2×
[y1× (z1+z2×w2)+ y2×w2+1]+ w2, δ3 = x1× z2 + x2×
(y1 × z2 × y2) +1. Hence, γ and λ are adjustable parameters
for transformations, x1, x2, y1, y2, z1, z2, w1, and w2 are
parameters for matrices of integer reversible transformation,
and the different choice of parameters can lead to different
matrices of integer reversible transformation.

B. LIFTING SCHEME OF WAVELET TRANSFORM
Discrete wavelet transformation (DWT) is now recognized as
an excellent transformation for removing spatial redundancy,
and understanding of DWT in removing spatial redundancy
has matured; however, the use of DWT to remove spectral
redundancy is not always the best, and in some cases is very
poor [25]. For example, usingDWT to remove spectral redun-
dancy from a 7-band image with only one decomposition is
far from the effects of redundancy reduction. This is because
the number of bands involved in the DWT transformation is
not a power of two, the boundary extension is unsuitable for
DWT to eliminate spectral redundancy, and each extension
adds one frame of image data. Such data are massive and will
have a significant negative impact on redundancy. If removal
of spectral redundancy is required, DWT can be used in
conjunction with other transformations. DWT is used for a
portion of the power of 2, while other transformations are
used for the remainder. As a result, we propose a unified
N-band parametric spectral integer-reversible transformation
in this paper. The flexible N-band parametric spectral integer
reversible transformation can be used alone to implement
spectral redundancy reduction, or it can be combined with
DWT or subtraction transformations. Furthermore, another
significant benefit of the transformations mentioned above
can be taken with addition and change to achieve the ease
of hardware configuration with high computational speed.

The transformation of S, TS, S + P may be seen as a spe-
cial case of Sweden’s lifting scheme. The wavelet transform
process based on the lifting scheme may be divided into four
types of transforms: decomposing, predicting, updating, and
optimizing.

1) DECOMPOSING (LAZY WAVELET TRANSFORM OR
POLYPHASE WAVELET TRANSFORM)
The original signal Sj,k is divided into two disjoint subsets:
Sj+1,k, and dj+1. The original signal Sj,k is usually conducted
with a lazy wavelet and polyphase wavelet transform and
decomposed into even and odd series, i.e.,

split(Sj,k ) = (Sj,2 k , Sj,2k+1) = (Sj+1,k , dj+1,k ).
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2) PREDICTING (DUAL LIFTING STEP)
As Sj+1,k can be predicted with dj+1,k , according to the
relativity between the data, a prediction operator, P, which
is irrelevant to the structure of the data set, is used to obtain
dj+1,k = P

(
Sj+1,k

)
· dj+1,k is used with different values

between the prediction valueP
(
Sj+1,k

)
and itself to substitute

dj+1,k , and the differential value shows proximity between
the above two values. If the prediction is reasonable, the
differential value data set will consist of less information than
the original subset dj+1,k .

3) UPDATING (UPDATE LIFTING STEP)
Some properties (e.g., the mean value) of the coefficient
subset Sj+1k produced by the two previous steps are not
consistent with those of the original data and therefore require
an update process. The process is to use operator U to gen-
erate a better subset Sj+1,k to maintain some features of the
original data set Sj,k . In addition, Sj+1,k is defined as Sj+1,k =
Sj,2 k+1 + U

(
dj+1,k

)
. After division through the processes

of decomposing, predicting, and updating of Sj+1,k , Sj+1,k
can be divided into dj+2,k , and Sj+2,k , The wavelet transform
of the original data S0,k will be demonstrated as {SJ , dJ , dJ
1, . . . . . . , d1} after J times of decomposition, and SJ , among
them, represents the low-frequency part of the signal, and
{dJ , dJ−1, . . . . . . , d1} denotes the high-frequency part of the
signal.

4) OPTIMIZING LIFTING STEP
Alternately, the dual lifting step and the update lifting step can
be used to improve the properties of the wavelet transform
in light of the current situation. The lifting-based forward
transform algorithm can be expressed as follows:

S0j+1,k = Sj,2k (10)

And,

d0j+1,k = Sj,2k+1 (11)

dual lifting step,

d (i)j+1,k = d i−1j+1,k −
∑
m

p(i)m S
(i−1)
j+1,k−m (12)

Update lifting step,

S(i)j+1,k = S(i−1)j+1,k −
∑
m

u(i)m d
(i)
j+1,k−m (13)

Even sample points, coupled with scale factors n1 and nh,
become low-pass coefficients after M times operation of the
update lifting step and dual lifting step, and odd sample points
become high-pass coefficients, as shown in Formulas (14)
and (15) below:

Sj+1,k = nlS
(M )
j+1,k (14)

dj+1,k = nhd
(M )
j+1,k (15)

whereM is the number of lifting steps; nl and nh are normal-
ization factors, and for nl × nh = 1, respectively, and different

FIGURE 1. The implementation of normalization factors of the lifting
scheme.

biorthogonal wavelets result in different values of n1 and nh.
Figure 1 shows the normalization process after orthogonal
transformation using the three-level wavelet transformation
as an example.

The inverse transform may be written as:

S(M )
j+1,k =

Sj+1,k
nl

(16)

d (M )
j+1,k =

dj+1,k
nh

(17)

S(i−1)j+1,k = S(i)j+1,k +
∑
m

u(i)m d
(i)
j+1,k−m (18)

d (i−1)j+1,k = d (i)j+1,k +
∑
m

p(i)m S
(i−1)
j+1,k−m (19)

Finally, the even-sample point and the odd-sample point
are obtained, i.e., the even-sample point is as under:

Sj,2k = S0j+1,k (20)

The odd point is given by,

Sj,2k+1 = d0j+1,k (21)

The lifting scheme is usually used to implement integer-
integer wavelet transformation, i.e.

Sj,2k =
∑
m

p(i)m S
(i−1)
j+1,k−m (22)

Sj,2k+1 =
∑
m

u(i)m d
(i)
j+1,k−m (23)

It can also be written as:

Sj,2k =

⌊∑
m

p(i)m S
(i−1)
j+1,k−m

⌋
(24)

Sj,2k+1 =

⌊∑
m

u(i)m d
(i)
j+1,k−m

⌋
(25)

bc To carry out the integer operation, the decomposition and
reconstruction flow chart of the lifting scheme is indicated in
Figure 2 shown below.

III. SPIHT ALGORITHM OF ENCODER AND DECODER
A. IMPLEMENTATION SCHEME FOR PARALLEL
OPERATION OF ENCODER AND DECODER
The purpose of this research is to investigate the parallel
coding structure in order to lay a solid foundation for the
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FIGURE 2. Decomposition and reconstruction of the lifting scheme.

FIGURE 3. Parallel encoder based on DWT and bit-plane.

realization of encoder hardware. The study reveals that the
magnitude of the bit planes after the DWT transformation is
interrelated and fully predictable from the DWT coefficient.
In other words, the logic or operation of the i+ 1 bit plane to
the highest bit MSB at that pixel factor bit is the importance
of the pixel coefficient relative to the current threshold of
the i-bit plane. As a result, the bit plane can be thought
of as sitting relatively independently, and the importance of
each coefficient in each bit plane can be obtained simulta-
neously, allowing for parallel processing of the bit plane.
Figure 3 shows the bit plane and the parallel encoder based
on DWT.

The coding algorithm in Figure 3 employs SPIHT, which
is modified according to the structure of the parallel coding
tree.

B. ANTI-INTERFERENCE AND FAULT TOLERANCE SCHEME
FOR ENCODER AND DECODER
The algorithm of the code of high robustness fault-tolerance
is implemented in two aspects with the study of the anti-
interference fault tolerance of code compression.

1) CODES ALGORITHM OF HYPERSPECTRAL IMAGE
The coding algorithm proposed in this article is used to divide
the input data into independent packets of approximately the
same length [26]. When a portion of these packages is lost,
the receiving terminal uses the received packets to recover
the information that is close to the lost portion. The number
of packets received determines the quality of image recovery,
not the nature or type of package received.

2) ROBUST WAVELET ZERO TREE IMAGE COMPRESSION
WITH FIXED LENGTH PACKETIZATION
The output code stream of the wavelet zero tree encoder is
divided into fixed-length fragments that can be decoded inde-
pendently, and errors in one fragment do not affect other frag-
ments, allowing different anti-interference and fault tolerance
functions to be implemented [27]. The anti-interference and
fault-tolerance scheme of the coding algorithm was proposed
in this paper. Figure 4 shows the encoder and decoder’s anti-
interference and fault-tolerance scheme.

C. BASIC STEPS FOR SPIHT ALGORITHM
1) INITIALIZATION
Output

N =
⌊
log2(max(i, j)){|Ci,j|}

⌋
(26)

Set the LSP as an empty list, add the coordinates (i,
j)εH to the LIP, those with descendants (i.e., high-frequency
sub-bands HLJ , LHJ , and HHJ ) also to the LIS, as type A
entries [28].

2) SORTING PROCESS
1. for each (i, j)ε LIP, write
Output Sn(i, j);
If Sn(i, j) = 1 then add (i, j) to LSP, and output the signals

of C(i, j);
2. for each entry (i, j)ε LIS, Do
(1) If the entry is of type A, then
¬ Output Sn(D(i, j)) ;
­ If Sn(D(i, j)) = 1, then for each (k , l)εO(i, j), Do:
output Sn(k, l);
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FIGURE 4. Anti-interference and fault-tolerance scheme for encoder and decoder.

If Sn(k , l)= 1, then add (k , l) to LSP, and output the signals
of (k , l);

If Sn(k , l) = 0, then add (k , l) to the end of LIP;
® If L(i, j) 6= φ, then move (k , l) to the end of LIS as an

entry of type B; otherwise, remove entry (i, j) from the LIS.
(2) If the entry is of type B, then
¬ Output Sn(L(i, j));
­ If Sn(L(i, j)) = 1, then
add each (k , l)εO(i, j) to the end of the LIS as an entry of

type A;
Remove (i, j) from the LIS.

3) REFINEMENT PROCESS
For each (i, j)εLSP (except those just added above), the nth
most significant bit of |ci, j| should be outputted.

4) UPDATE OF THE QUANTIZATION STEP
If n = n− 1; go to sorting process.

The management of the quantization steps is realized by
the power dimensionality reduction of 2, and the quantization
step size is updated by n = n − 1. Furthermore, the termi-
nation of the encoding algorithm is determined by the given
bit rate. If it is noiseless compression, then the encoding will
terminate until n = 0.

The output must be replaced with the input in such an
algorithm for decoding [29].

IV. SIMULATION EXPERIMENT RESULTS AND
DISCUSSION
A. OPTIMIZATION ANALYSIS OF TIME COMPLEXITY OF
SPIHT ALGORITHM
To investigate the storage complexity and time complexity
of the encoder and decoder algorithms, different encoder and
decoder algorithmswere tested under the same test conditions
with the objective of optimizing memory storage [30]. In this
paper, algorithm validation was conducted via simulations in
Python 3.83. The Canal hyperspectral image test is provided
with 24 test images of the 3-band color standard (768×512×
24 bits) in the current study. The time complexity test of the
SPIHT algorithm encoder and decoder is shown in Table 1.

Table 1: The test results show a huge difference in the
time complexity of the SPIHT algorithm of encoder and
decoder for hyperspectral Canal test images. Therefore, it is
necessary to consider the cost-effectiveness ratio of the com-
pression algorithm to choose the lossless compression coding
algorithm.

FIGURE 5. Correlation coefficients of adjacent frequency bands.

B. SIMULATION EXPERIMENT RESULTS
The test hyperspectral image, canal.bsq, has a spectral reso-
lution of 10 nm, a spectral range of 400-2400 nm, 223 bands,
and correlation coefficients Ri. Figure 5 shows the correlation
coefficients of adjacent frequency bands.

The spectral correlation between the 106th-113th bands,
the 152nd-157th bands, and the 217th-222nd bands has
decreased significantly. The entire hyperspectral image is
divided into five parts that can be transformed based on the
different spectral correlation groups. The analysis demon-
strates that previously published predictions and transfor-
mations to remove spectral redundancy were ineffective in
improving the compression ratio. As a result, research is
needed into the segmented matrix transformation to eliminate
spectral redundancy and improve the effect of hyperspectral
image compression.

As a result, the compression simulation experiment was
performed with a 160-band canal.bsq (hyperspectral remote
sensing image). The spectral and spatial joint transforma-
tion method is used to remove redundancy, employing the
XCJRCT algorithm for spectral transformation, the wavelet
transformation of the CDF (2, 2) lifting scheme for in-frame
transformation, and SPIHT coding for transformation results.

Table 2 demonstrates the experimental results of the SPIHT
compression coding experiment on the front 160- wavebands
of the hyperspectral canal test image, canal.Bsq, conducted
with SPIHT compression coding.
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TABLE 1. Time complexity test of the SPIHT algorithm of encoder and decoder for hyperspectral Canal test images.

This paper highlights the experimental contrast between
other lossless compressional algorithms and other classical
lossless compression algorithms. The JPEG-lossless algo-
rithm is based on the Lossless Compression for Images
(LOCO-I) algorithm [31], which employs context modeling
and error feedback to reduce the entropy of error images and
perform run-length encoding on error images. At identical
compression ratios for JPEG-LS, optimized transforms pro-
duce images that are more similar to the original than other
state-of-the-art transforms [32].

On the 160 wavebands, which were divided into ten
groups, SPIHT compression encoding was used, with
1D-CDF (2, 2) DWT for spectral compression and 2D-CDF
(2, 2) DWT for in-frame compression. Figure 6 shows the
change curve of the lossless compression ratio in relation
to the previous 160 wavebands of the hyperspectral image
canal.bsq.

WinZip is a famous method of lossless image compression
[33]. ARJ utilizes a one-way self-adaptive Huffman loss-
less compression algorithm [34]. The difference pulse code
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TABLE 2. The experimental results of the front 160- wavebands of the hyperspectral standard canal test image, canal.bsq, conducted with SPIHT
compression coding.

modulation (DPCM) method is a traditional prediction-based
lossless compression algorithm [14].

Table 3 shows the results of the comparison experiment
between the algorithm proposed in this paper and the classical
algorithm.

The experimental results reveal that the lossless compres-
sion ratio of each band increases faster with the change
in the band, the compression ratio changes in the range
of 1.574865–4.063182. The compression ratio of the pro-
posed scheme is 2.728695, which is improved by about
73.691598%, 67.713276%, 65.175242%, and 59.107580%,
in contrast to the classical algorithms, such as JPEG-
LS, WinZip, ARJ, and DPCM, respectively. Therefore, the
XCJRCTwavelet lifting scheme is very effective. It is of great
significance for future applications of hyperspectral images.
The hyperspectral images are multi-band images with a large
amount of extremely valuable data, causing bandwidth con-
straints in information transmission. Therefore, the proposed
XCJRCT wavelet lifting scheme has important research val-
ues for lossless hyperspectral image compression.

C. EXPERIMENT RESULTS AND DISCUSSION
This paper presents a comparative study of key spectral cor-
relation techniques, both in China and elsewhere, in terms
of the spectral characteristics of the lossless compression
coding algorithm of the hyperspectral image. The simula-
tion experiment shows the time complexity of the SPIHT
algorithm of both encoder and decoder on canal hyper-
spectral test image using XCJRCT’s 3-band spectral inte-
ger reversible transformation matrix in combination with
the wavelet transformation lifting scheme and the SPIHT
algorithm of encoder and decoder. The time complexity
test of the SPIHT algorithm of encoder and decoder on
the Canal hyperspectral test image is implemented using
experimental results from the SPIHT algorithm of encoder
and decoder on the first 160 bands of the hyperspectral
standard test image canal.bsq. Furthermore, a comparison
experiment with the classical lossless compression algo-
rithm demonstrates that the scheme proposed in this paper
is more efficient with a higher compression ratio than other
methods.
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FIGURE 6. The change curve of the lossless compression ratio against the previous 160 bands of the hyperspectral image canal.bsq.

TABLE 3. The results of the contrast experiment with the algorithm proposed in this paper and the classical algorithm are presented.

As a result of the specificity and periodicity of the data
collected by the target, the choice of parameters can be deter-
mined by applying the hyperspectral image in different fields,
according to the materialization principle.

V. CONCLUSION
Hyperspectral remote sensing images have promising appli-
cations in agriculture, geography, resources, and the military.
For example, in the field of agriculture engineering, the use
of spectral detection sensors can provide timely and accurate
information on the nutrient content of the soil; the use of
correlation analysis can extract the combinations of the sensi-
tive bands and the featured bands of the available phosphorus
content; and the wavelet transformation of reflectance of
hyperspectral image data. In addition, a spectral diagnostic
model of available phosphorus in soil has been established
based on various combinations of sensitive bands. Spectral
technology and computer vision technology methods add
more practical value to the study of the automatic detection
method of ecological factors in crop environments, as well as
the analysis of the characteristics of spectral and image data.

Overall, this paper proposes the XCJRCT transform in
conjunction with the lifting wavelet transform scheme as the
algorithm for the code for lossless compression of hyperspec-
tral images. This effectively achieves lossless hyperspectral
image compression, provides a high-efficiency algorithm for

the development of spectral detection sensor hardware in the
engineering field, and enables spectral detection sensors to
capture, transmit, identify, and return information on environ-
mental ecological factors in real time.
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