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ABSTRACT The use of autonomous systems at wood processing sites of forest industries can significantly
increase safety, productivity and efficiency by reducing the number of monotonous and dangerous tasks
conducted by human labor utilizing heavy machinery. However, autonomous machine operation in mill
yards is challenging because of the dynamic and complex working environment and partly unstructured
processes. The inherent complexity of wood handling and storage tasks requires significant human expertise.
Rapid advancements in sensor technologies and machine learning techniques, along with increases in
available computational power have enabled progress in automated operation frameworks and algorithms
development, which opens the door to the introduction of novel autonomous systems into this environment.
With the aim of gaining a better understanding of current issues and facilitating optimal strategies for
the deployment of high-level autonomous systems in mill yard environments, this study: (1) utilizes a
systematic literature review to map current autonomous technologies and algorithms suitable for adoption
by the forest industry in automation of vehicles working in mill yards; (2) summarizes and discusses the
potential feasibility of the considered sensors, systems and adoption strategies, and considers implementation
challenges for high-level autonomous machinery in mill yard environments; and (3) proposes a system
framework that integrates multiple technologies to enable autonomous navigation and material handling in
mill yards. The study is the first of its kind as a comprehensive study on autonomous vehicles and machinery
in mill yard environments. Our novel framework aids in the identification of follow-up research areas and
thus promotes the adoption and use of complex autonomous systems in industrial environments.

INDEX TERMS Automation, autonomous vehicles, autonomous heavy machinery, forestry, terminals, mill
yards, systematic literature review (SLR).

I. INTRODUCTION
Continued growth in the world economy in a context of
climate change is stimulating high demand for renewable raw
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materials such as wood [1], as can be seen in the production
of industrial roundwood and sawn goods, which reached
a new record high in 2018 with increases on the previous
year of 5% and 2%, respectively [2]. To meet this demand,
suppliers are constantly trying to increase production vol-
umes, leading to a need to hire more workers. Globally, the
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current estimated number of workers in the forestry sector is
30–45 million people [3]. Many of these workers have little
or no training, which leads to an unnecessarily high rate of
work-related accidents in the forest industry compared with
other similar industries. Some estimates suggest that work-
related accidents in forestry and the forest industry exceed
170,000 accidents a year [4] and the EU-27 report published
in 2020 stated that the forest industry has one of the highest
work-related accident rates found in the primary sector [5].

Mechanization has been a typical industry solution to
decrease the number of accidents [6], increase productivity
and efficiency [7], and safeguard humans from high-speed
asset handling operations [8]. While mechanization results
in fewer disabling accidents, it often comes at a cost of
an increase in cumulative trauma disorders (repetitive stress
injuries) among machine operators due to the complicated
tasks and machine sizes they are required to operate, which
demand constant vigilance [6]. Additionally, as modern
machines become better and faster, operators are expected
to be more productive and work more intensively. How-
ever, despite the increasingly challenging nature of the mod-
ern workplace, developing countries and nations with low
birthrates are facing pressure to consider raising the retire-
ment age [9]. Although higher retirement ages for men and
women are associated with lower mortality, diabetes risk
and depression [10], changes in the retirement age, on the
other hand, can result in huge social inequalities, pushing
some workers to stay in the labor market despite their poor
health, which can lead to more accidents [11]. Furthermore,
with modern machines becomingmore complicated, required
training time has increased considerably [7].

The changing social and technical environment is leading
to a growing labor shortage in the forest industry, which
will have serious effects on the industry’s ability to meet
increasing demand for forest industry products [12]. In this
context of increasing demand and growing labor shortages,
automation can offer potential solutions enabling employers
to reduce the need for monotonous and dangerous tasks, thus
lessening the danger of workplace accidents while improving
productivity. Additionally, automation can address the issue
of long working hours doing tasks that require high alertness,
as well as reduce the need for long training times, and help
in transformation of industry-related operational models [13],
increasing the attractiveness of the industry. The forest indus-
try and mill yards can be considered valid locations for the

adoption of automation technology because current working
conditions are physically demanding and involve repetitive
tasks and activities requiring constant alertness. This working
environment can lead to cumulative trauma and push people
to early retirement. Vehicle automation in mill yards could
help the workforce increase productivity as well as improve
cost and energy efficiency while reducing stress and the risk
of injury.

In light of safety-related issues and the working environ-
ment, our study investigates the possibility of automating
vehicle operations in wood terminals and mill yard areas. Our
results are based on currently available technologies. Several
studies on autonomous forest machines (i.e., forest harvesters
and forwarders) as well as work on teleoperation and robotics
in forest operations have been presented (e.g. [7], [16], [17],
[18], [19], [20], [21]) and an in-depth review of forest robotics
can be found in [22].Moreover, the idea of self-driving timber
trucks on highways, i.e., public roads, has been introduced in
recent years [23]. Nevertheless, to the best of our knowledge,
there are no comprehensive studies on vehicle automation in
mill yards of forest industries.

The main research question of this study is: What cur-
rent autonomous systems are feasible for use with vehicles
operating in mill yards and terminals of forest industries? In
more detail, this study aims to ascertain technologies suitable
for mill yard automation and suggests practical solutions
from other industries that can be adopted by vehicles and
machines currently operating in wood terminals and mill
yards. The functionality of the considered technologies in
the discussed environment must be fully considered through-
out the process as the working environment differs greatly
from urban, construction, mining, agriculture, or even the
forest environment. As a research method, the study utilizes
literature review and mapping work. Then, a novel system
framework for autonomous vehicle operations in mill yards
is suggested based on the findings. The framework integrates
various technologies to enable autonomous navigation and
material handling. The study helps determine areas of future
research that will make it possible to introduce autonomous
systems in the mill yards of the forest industry.

The remainder of this paper is structured as follows.
Section II provides background information and highlights
the research motivation. Section III presents the selected
research methodologies. Section IV contains the findings of
this study. Section V presents a summary and discussion of

FIGURE 1. Examples of wood handling vehicles: From left to right: Volvo L90E wheel loader shaping a pile of wood chips, RTD3126 TW Log Stacker,
manufactured by SKS Toijala Works Oy handling a bundle of industrial roundwood logs, and Mantsinen 300 material handler unloading train wagons.
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the study results. Section VI introduces a novel framework
based on the study findings. Limitations and threats to the
validity of the study are discussed in Section VII. Finally,
Section VIII summarizes our conclusions and proposes future
research directions.

II. RESEARCH MOTIVATION AND BACKGROUND
The topic under research is automation in the forest indus-
try context, more particularly, operations in outdoor envi-
ronments or mill yards that utilize vehicles and machinery
to handle industrial roundwood for use as input raw mate-
rial. Worldwide industrial roundwood cuttings in 2019 were
around 2.0 billion m3 (under bark), with the production of
sawn goods and wood-based panels being 488 and 357 mil-
lion m3, respectively [14]. In the same period, the world-
wide production of wood pulp, and paperboard was 190 and
404 million tons, respectively [14]. Many different vehicles
are used to handle the material flow of industrial round-
wood and wood chips, i.e., when carrying out unloading,
stacking to storage, loading, and transportation operations.
Such material handling machines include log stackers, wheel
loaders, bulldozers, and timber and chip trucks (examples
are given in Fig. 1) and the scale of this fleet alone shows
the huge potential for automation in mill areas and across
multiple operational sites when optimization is done at fleet
level [24], [25].

Within this specific context (operations size and envi-
ronment), our study examines practical automatization and
technology transfer possibilities from other industries. The
material in the mill yard operations under consideration is
mostly common industrial roundwood and wood chips. The
layout, transportation sequences used, and volumes handled
by the terminals differ considerably, e.g., port activities (wood
deliveries by water) and other services are provided by some
terminals, somemill yards have railways coming directly into
the yard areas, and other sites rely 100% on truck delivery.
This process is presented in a simplified format in Fig. 2. The
focus area of the study is from the point where the raw mate-
rial arrives in the yard area to the input point into the factory

wood processing units. The research in this study excluded
supply chain aspects related to, e.g., road and rail logistics
into the mill yards. Additionally, wood processing operations
inside the mills, for example, debarking and chipping, are not
covered. Generally speaking, the most pertinent operations
for this research are material receipt, material measurement,
material unloading to storage or straight to the mill process,
and material transit from storage to the mill. Navigation,
material manipulation, and control and management activ-
ities connected to automated processes are common tasks
at wood terminals, which are then followed by mill-related
wood operations and handling processes.

In the dynamic environment of mill yard operations,
machines and vehicles work in quite close proximity, and in
some cases, workers and site visitors may be moving around
the operation area, which increases the need to constantly
consider 360 degrees around the work area and complicates
safety issues, especially when planning changes to work pro-
cesses [15]. Furthermore, the yards have different road types
(structured, unstructured, paved, unpaved) and are usually
outdoors, and consequently affected by changing weather
conditions (rain, snow, fog, drought, high heat). These con-
ditions impose constraints on production site management
and provide motivation for increased automation and work
process simplification.

When considering the operational area of the yard’s vehi-
cles and machinery, it is worth noting that some vehi-
cles and machines in these closed mills / terminal areas
might move around for just some tens of meters, whereas
others may move up to several kilometers (going around
obstacles, buildings, and wood stockpiles) while executing
different work tasks. In this sort of environment, drivers
and operators can suffer work fatigue as they can be
constantly repeating (familiar) driving routes and opera-
tion actions. At the same time, as operators know they
are working in closed fence-protected areas, they may be
surprised by unexpected encounters with outside person-
nel and/or vehicles, which can increase the likelihood of
accidents.

FIGURE 2. Simplified wood flow visualization for wood delivery and feeding to process of mill.
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FIGURE 3. Adapted version of systematic literature review (SLR) based on Kitchenham & Charters [23].

III. RESEARCH METHODOLOGY
As mentioned previously the main research question of this
study is: What current autonomous systems are feasible for
use with vehicles operating in the mill yards and terminals
of forest industries? Specifically, the study examines the
current practical solutions introduced in the academic liter-
ature to ascertain technologies from other fields suitable for
the automation of heavy machinery and different types of
vehicles and machines that are used in mill yard and wood
terminal areas (Fig. 1). In more detail, the study investi-
gates autonomous navigation and material handling systems
that can be adopted by vehicles operating in the mill yard
environment. Furthermore, the study also looks at the types
of sensors utilized by those systems. To answer the main
research question, thework is supported by the following sub-
questions:

1. What current practical autonomous navigation and
material handling solutions in the literature are suitable
for the mill yard environment?

2. What sorts of sensors are utilized in these systems?
The study utilizes a systematic literature review (SLR) to

delve into the literature for the purpose of extracting data
and examining technology transfer possibilities from other
industries. The SLR is a well-recognized and extensively
used literature assessment approach that evaluates research
associated with a particular study area. An SLR differs from a
standard literature review in that it is systematically designed
and implemented. Additionally, an SLR has a higher level of
validity through its systematic process of locating, evaluating,
and summarizing all existing evidence on a specific study
question [26]. Our literature review is based on the guide-
lines of Kitchenham and Charters [27] and is enhanced by
the suggestions given by Akbar et al. in [28]. Furthermore,
we investigated the Preferred Reporting Items for System-
atic reviews and Meta-Analyses (PRISMA) [29] and utilized
them to develop the studies’ quality evaluation questions. The

SLR method used is depicted in Fig. 3 and described further
in the following sections.

A. PLANNING THE REVIEW
1) RESEARCH QUESTIONS
The research questions are given above.

2) DATA SOURCES
As mentioned earlier, our research focuses on academic
literature, which is a literature form commonly found in
scientific reference databases such as the Web of Science
(WOS). WOS is one of the most widely used databases for
tracking high-quality research [30]. The database includes
over 21,100 high-quality indexed academic journals with
almost 75 million records [31], [32], [33]. Furthermore, other
databases are also indexed in the WOS database, such as
IEEE Xplore digital library database, CABI Databases, KCI
- Korean Journal Database, Scientific Electronic Library On-
line (SciELO) database, and many others, together with most
of the journals indexed in SpringerLink [34], [35]. Hence, the
WOS core collection database was selected as the main data
source for this study.

3) SEARCH KEYWORDS
Different literature reviews and mapping studies on top-
ics such as automation, sensor technologies, autonomous
vehicles and forest machinery were first studied [22],
[36], [37], [38], [39], [40], [41], [42], [43], [44] to gain
an overview of the field. Based on the findings, a set
of keywords were extracted as a starting point for our
search strings. This procedure resulted in a series of
topic-related keywords relevant to the topics under research:
Group A – autonomous vehicles, navigation and environ-
ment mapping related keywords; Group B – words related to
sensor technologies; Group C – keywords related to vehicles
used in the forest industry and other related industries; and
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TABLE 1. Keywords’ groups extracted from different studies.

Group D – keywords related to the forest and related indus-
tries. The keyword groups are given in Table 1.

From the first round of searches, two things became very
apparent. First, a few terms were identified as irrelevant or
unconnected to the research objectives. Studying the most
important keywords in each of the studies, we were able to
compile a list of keywords to be excluded from later searches.
These excluded keywords are: underwater, flying, cyber-
attacks, 3D printed, aerial, repair, air, indoor, underground,
water, ‘‘air vehicle∗’’, humanoid, ‘‘fire-detection’’, UAV, and
‘‘Biologic∗’’. Second, it was noted that many search phrases
connected to automation or autonomous vehicles are far too
broad and vague to be used as topics, since the number of
results is too large to be examined, and a short overview
of the resulting publications showed that they are primarily
unrelated to the specific area of automation considered in
this research. To limit all further queries, different search
term combinations were carefully built using the Boolean
‘‘OR’’, ‘‘AND’’ and ‘‘NOT’’ operators to concatenate and
formulate the complete search strings. In total, 17 search
strings (Table 2) were formulated. The searches were then
limited only to the publications’ titles, and only in some cases
was the topic included when the search results were con-
sidered insufficient. Then, an online search was conducted
using the set of keyword combinations on theWeb of Science
core collection database. The time period for publications for
inclusion in the study was set between 2000 to 2021 to focus
on recent automation technology research. A table showing
the different search combinations is given in Table 2.

4) STUDY SELECTION CRITERIA
To focus on technologies that are adaptable to the mill yard
environment, a set of inclusion and exclusion criteria were
established:

• The system should rely on a set of sensors to support
navigation in different weather and lighting conditions.

• The system should be able to work on either structured
roads or unstructured roads.

• The system should be able to conduct real-time map-
ping, perception, localization, or control.

• Real-life system robustness validation experiments were
conducted, or the system was at least tested on a large
dataset.

• The system can operate in an outdoor environment.
• The system can be converted and adopted by the forest
industry in terms of efficiency.

• Only peer-reviewed English language journal articles
and conference proceedings papers were considered.

• Only papers published between January 2000 to Decem-
ber 2021 were considered.

• All duplicate articles were excluded.

5) STUDY QUALITY ASSESSMENT CHECKLISTS AND
PROCEDURES
During the final stage of selecting the articles, a quality
evaluation assessment was conducted. Four quality evalua-
tion (QE) questions were developed in accordance with the
PRISMA statement for appraising quality criteria (Table 3).
The first QE question (QE1) was set to guarantee the rele-
vance of a study to the research topic. QE2 ensured that the
system discussed in a certain study utilizes different sensors
to support navigation and material handling in different light
and weather conditions. QE3 was designed to investigate
whether the system discussed in a specific study is feasible in
mill yard environments. The final question, QE4, ensured the
robustness of the system presented in the reviewed studies and
confirmed that the system can be presented as a practically
functional solution. An article was selected if it met all the
criteria in the quality evaluation questions.

B. CONDUCTING THE REVIEW
1) STUDY SELECTION PROCEDURES
This research utilizes the tollgate method developed by Afzal
et al. [45] to filter the list of initial search results. The method
uses three different filtering stages in order to locate the most
relevant and useful content for a study question. The steps and
results of the tollgate approach are shown in Fig. 4.

The selection process started by executing an online search
on the selected database using our 17 developed search strings
(Table 2), which generated 1882 articles in total. All dupli-
cates and non-English studies were then removed, and the
article titles, abstracts, and conclusions were scanned to ver-
ify their scope against the research objectives and topic. These
two steps resulted in 326 articles for the last scanning stage,
where the full text of every study was read and the previously
mentioned study quality evaluation questions (QE1–4) were
applied, resulting in a reduction of the number of studies for
consideration to 28 studies. The number of articles excluded
based on each of the 4 used quality evaluation questions is
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TABLE 2. List or search stings combinations & tollgate selection process results.

FIGURE 4. Steps and results of the filtering process.
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TABLE 3. Study quality evaluation (QE) questions.

shown in Table 4. All the scan stages were conducted by
the first author and then thoroughly reviewed by the second
author. A table showing the tollgate process results based on
every search string is given in Table 2.

2) DATA EXTRACTION STRATEGY
For data extraction, the papers selected were compared to the
research subject, and the studies were thoroughly analyzed
to extract data to answer the research questions set. The
extraction stage was conducted by the first author by apply-
ing the inclusion and exclusion criteria. The second author
thoroughly inspected the retrieved data. In order to rule out
interpersonal bias, the first author supervisor (second author)
participated, inspected, and reviewed all the steps of the
studies selection and data extraction process. Furthermore, all
findings, conclusions, and hypotheses made in the paper were
reviewed by industrial and academic experts in the field of
forestry and autonomous vehicles. The results of the revision
showed significant agreement between all parties.

C. REPORTING THE REVIEW
1) QUALITY ATTRIBUTES OF THE SELECTED PAPERS
The quality evaluation (QE) criteria were used to assess the
significance and value of each of the publications for the
literature review in hand. All selected papers met the four QE
criteria in the questions in Table 3 and thus were considered
suitable for further analysis.

2) PUBLICATION TIME–BASED ANALYSIS OF THE SELECTED
STUDIES
The papers scanned were published between January 2000 to
December 2021. Our work aims to present a state-of-the-art
overview of sensors and autonomous vehicle systems that can
be adopted bymachinery working inmill yards. The selection
of the time frame was based on preliminary research which
found that the main studies on sensors and automation before
January 2000 were outdated and their findings unsuitable for
adoption by the present-day forest industry. It should be noted
that all the studies that passed to the analysis stage of the
literature review were published between January 2012 and

TABLE 4. Number of excluded studies during the third filtering stage
based on the QE Criteria.

December 2021, i.e., in the latter half of the examined time
period.

IV. RESULTS
As a result of the search and selection process, 28 publica-
tions (out of 1882) passed to the analysis stage of our study.
The number of publications found is lower than expected, but
not worryingly low. The reason for the low size of the litera-
ture base seems to be the challenging working environment of
the mill yards, and as a result, there are currently few suitable
solutions that can be adopted by vehicles operating in this
environment. Furthermore, the search focused on practical
solutions with high proven efficiency demonstrated through
validation experiments, which also contributed to the low
selection rate. The papers resulting from the selection process
came from 22 different proceedings and journals, as shown
in Table 5. The selected papers’ findings were divided into
four categories. These four categories are the main compo-
nents of any autonomous vehicle system. The first category
is sensors in autonomous vehicles. The second category is
localization, which contains three methods: global naviga-
tion satellite systems (GNSS), simultaneous localization and
mapping (SLAM), and a priori map-based localization. The
third category is perception, which compromises two factors:
object detection and classification, and road and obstacles
detection. Finally, the fourth category is control and task
execution. The papers contributing to each category are listed
in Table 6.

It can be noticed from Table 6 that a paper can con-
tribute to several categories since some studies present a full
autonomous system, thus contributing to each category. The
contribution mapping showed that of the studies selected,
21.4% contributed to the sensor in autonomous vehicles
category, while 32.1% contributed to the localization cate-
gory. Additionally, the majority of the studies contributed
to the perception category, with a 57.1% contribution rate,
and only 7.1% of the studies contributed to the control
and task execution category, which is the least represented
category.
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TABLE 5. Database used and its associated proceeding and journals.

TABLE 6. Context and number of selected studies per category.

V. DISCUSSION AND SUMMARY
As a summary, we review the relevant technologies for each
of the previously mentioned categories based on the data
extracted from the selected studies. The section discusses the
kinds of sensor types each system utilizes and the suitability
of each technology for the mill yard environment.

A. SENSORS IN AUTONOMOUS VEHICLES
Sensors are a crucial component for all autonomous vehi-
cles as the data they provide to perceive the environment
surrounding the vehicle is essential for path planning and

control decision-making processes. Research in the field of
autonomous navigation and object detection has made great
progress in recent years, mainly because of the decreasing
cost of sensor components, advancements made in artificial
intelligence (AI), and the significant increase in available
computational power [46].

For an autonomous vehicle to be able to make decisions
in real-time, the sensors used must provide locational and
perceptive information about the environment. To achieve
these tasks, two types of sensors are used: 1) exteroceptive
sensors, and 2) proprioceptive sensors. Exteroceptive sensors
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TABLE 7. Comparison of exteroceptive sensors.

are responsible for providing information about the environ-
ment surrounding the vehicle. Commonly used exteroceptive
sensors are light detection and ranging (LIDAR) sensors,
radar sensors, cameras, and ultrasonic sensors. Proprioceptive
sensors, on the other hand, are responsible for providing
information about the vehicle’s internal data, such as location,
orientation, and acceleration. Examples of these sensors are
global positioning and navigating systems (GNSS), inertial
measurement units (IMU), and encoders [46]. More details
about sensor technologies and their working principles are
given in [46].

No sensors are perfect for all situations, and all sensors
have their technology-based advantages, limitations, and dis-
advantages. Table 7 presents a comparison of common exte-
roceptive sensors based on key characteristics. For example,
cameras are affected by lighting conditions and weather vari-
ation, but on the other hand, cameras have high resolution and
are a primary sensor for tasks like color perception, seman-
tic segmentation, and object detection. LIDAR sensors can
provide accurate range and shape measurements compared to
other sensors (such as radars and cameras) but can be affected
by snow and rain. Radar sensors have low resolution and
detection accuracy, but they have the merit of accurate target
velocity measurements and are not easily affected by adverse
weather conditions.

Ultrasonic sensors are the cheapest of all sensors used in
autonomous vehicles and the most accurate for close-range
applications. They are minimally affected by severe weather
conditions but can be heavily influenced by changes in

environmental conditions such as heat or humidity [47],
[48], [49], [50]. In view of the different characteristics of
the sensors, a target’s velocity, type, and location cannot be
ascertained accurately using a single sensor alone. To solve
this problem, autonomous vehicle systems utilize and fuse
data from different sets of sensors to enhance the accuracy
of the system [51]. Several sensor fusion techniques can be
used for this purpose, for example, state estimators, Kalman
filters, andmachine learning-basedmethods.More details are
given in [51].

B. LOCALIZATION AND MAPPING
Localization is the task of defining the vehicle’s position
relative to the environment, which is crucial information for

navigation [52]. Machines working in mill yards operate
in a dynamic and unstructured environment that contains
different road types (structured, unstructured, and off-road).
An autonomous system functioning in such an environ-
ment should be able to localize itself in real-time with
centimeter-level accuracy to safely navigate, handle material,
and avoid obstacles. Different sets of sensor combinations
and algorithms have been proposed to solve the localization
problem. The following sections review the most common
approaches that have potential for operating in mill yard
environments.

1) GLOBAL NAVIGATION SATELLITE SYSTEMS
A simple solution for the localization problem can be
achieved using a high-precision positioning system. There
are different types of GNSS systems, for example, GPS,
GLONASS, Galileo, and BeiDou. These systems can give a
vehicle estimate position at all times, but with low accuracy.
The estimated position given by these systems can be off by
more than 15 m from the true location in some cases [53].
However, GNSS accuracy can be improved by utilizing a real-
time kinematic (RTK) solution. For example, [18] presented
an autonomous path tracking system for a forwarder navi-
gating in a forest environment. The system uses a real-time
kinematic GPS (RTK-GPS) system with three receivers and
a gyro to localize the vehicle into the path. A similar approach
can be seen in [53], where a Leica Jigsaw Positioning System
(JPS) was used to localize autonomous vehicles in open
mining pits. Both systems give good positioning estimates
with centimeters level accuracy, and if coupled with other
supporting positioning systems such as inertial navigation
systems (INS) to compensate for the imprecision of GNSS
satellite signals, they could serve as a valid positioning system
for the mill yard environment.

2) SIMULTANEOUS LOCALIZATION AND MAPPING
Simultaneous localization andmapping (SLAM) is the simul-
taneous creation of an online map and localization on the
map. When using SLAM, no prior knowledge of the sur-
roundings is necessary, which makes it one of the most
effective ways to solve the localization problem, especially
in indoor environments [52]. Several approaches have been
presented for outdoor environments like mill yards.
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In [54], the authors propose a graph SLAM-based algo-
rithm for mapping large-scale and complex environments.
The map is structured using odometry, IMU, GPS and 3D
LIDAR, and the map can then be used for navigation and
localization by autonomous vehicles. The approach can be
considered useful for the environment discussed in this study
as themapping system canwork in challenging environments,
including loop closures separated by long distances. The
system was evaluated and tested by mapping three different
environments, and it delivered precise mapping and loop
closure results. Work by Kim et al. [55] specifically focuses
on navigating the challenging environment conditions found
on construction sites. These sites are highly dynamic and
as such are remarkably similar to the mill yard environ-
ment. The authors proposed SLAM-based navigation meth-
ods using multiple 2D LIDARs, infrared and sonar sensors,
and a camera. The robot was successfully able to navigate the
indoor and outdoor environment in a construction site. It was
noted, however, that the outdoor environment was muchmore
challenging due to the uneven ground and changing soil types.
A system specifically developed for off-road mapping and
localization is described in [56]. The system can produce
accurate terrain mapping while navigating in an off-road
environment. To this end, the system utilizes several cameras
with 2DLIDAR, IMU, radar, and internal vehicle information
fused through an extended Kalman filter (EKF).

3) A PRIORI MAP-BASED LOCALIZATION
A priori map-based localization approaches are based on the
concept of matching. Localization is accomplished by com-
paring online readings to information on a precise pre-built
map and determining the location of the best feasible match.
An initial pose estimation, from a GPS, for example, is fre-
quently employed [57], [58] at the start of the matching
process

Several methods can be used for creating maps, as well as
preferred modalities. For instance, [58] showed that using a
GPS + radar + camera + digital maps and a map match-
ing technique known as iterative closest point (ICP) can
increase vehicle localization accuracy. Other map match-
ing techniques can also be considered. A mapping and
localization method by fusing 3D LIDAR, odometer, IMU,
and GPS data using normal distribution transform (NDT)
matching is suggested in [57]. The proposed method gave
accurate localization and mapping results. Such techniques
can also be used in mill yards, where a high-density (HD)
map can be processed from 3D scanning of the yard. Vehi-
cles working in the yard can then use this map and the
ICP or NDT algorithm to efficiently localize themselves
at all times. Other map-based localization approaches that
require low computation power are presented in [50], where
a camera and a 2D LIDAR are used to produce a 2D local
map for real-time route generation. The suggested algorithm
removes the height value found in 3D maps to decrease the
amount of processed data, which leads to faster processing

time, but lower accuracy compared to 3D maps-based
localization.

C. PERCEPTION AND MATERIAL RECOGNITION
The primary goal of perception for autonomous vehicles is
to perceive the surrounding environment and extract infor-
mation that is necessary for safe navigation and material
handling. In the literature studied, cameras and LIDARs are
themost commonly used sensors to solve the perception prob-
lem [59]. The remainder of this section is divided into key
perception tasks such as object detection, road detection, and
obstacle detection, which are vital tasks when considering
automation for vehicles and heavy machinery operating in
mill yards.

1) OBJECT DETECTION AND CLASSIFICATION
Detecting the position and size of items of interest is referred
to as object detection [60]. Static items, such as walls,
buildings, and material, and dynamic objects, such as other
machines or vehicles and people, are all sources of concern
to vehicles operating in mill yards.

In the studies selected for examination, state-of-the-art
methods for identifying objects and their geometry all rely
on deep convolutional neural networks (DCNN). For exam-
ple, in [47], the authors propose a multisensory system for
autonomous driving that uses a fast and efficient DCNN
known as YOLO-V3 [61] for real-time object detection and
classification. Another approach is shown in [48], where data
from cameras, sonar sensors and 3D LIDAR are fused to
achieve reliable object detection in a 3D space. The system
integrates two state-of-the-art DCNNs to achieve this goal:
YOLO-V3 and Mask RCNN [62]. The proposed solution
differs from other approaches in that an end-to-end learning
strategy is not needed. However, the solution requires that
high geometric data is obtained from onboard sensors. The
result was a reliable generalized obstacle detection and object
classification solution that removes the need to annotate new
training data to overfit a certain environment. A solution
specifically designed for bad weather and bad lighting con-
dition is proposed in [63]. The system fuses color camera
images with infrared camera images to establish a dual-
modal optical sensor to attain better detection robustness
of low-observable targets (LOT). The proposed dual-modal
deep neural network was found to have better recognition
results compared with single pattern recognition methods but
requires higher computation power.

2) ROAD AND OBSTACLE DETECTION
Effective detection of the drivable surface and obstacles is
crucial to enable autonomous vehicles and machinery to
operate safely in their environment. This requirement poses
significant challenges as mill yards have different road types
(structured and unstructured, with and without paving). This
section gives an overview of existing approaches for detecting
obstacles and drivable areas that can be adopted by mill
vehicles and machinery.
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In [64], an industrial size vehicle working in the forest
environment was automated using a vision sensor + ultra-
sonic sensors+ a magnetic compass with a hierarchical fuzzy
logic controller. The ultrasonic sensors were used to detect
obstacles, while the cameras were utilized to construct coast
maps. The vehicle was able to successfully navigate several
forest trails ranging in length from 229 to 430 m. The authors
of [65] propose a mine road detection solution based on a 3D
LIDAR and double meshing method. The proposed method
has good detection results even though mine roads are not flat
and have very large slopes, which can be the case in somemill
yards. The authors in [66] present a new road (structured and
unstructured) and obstacle detection method known as co-
point mapping. Themethod relies on a novel fusion technique
between the data of a camera and a laser sensor. The method
can be generalized to different environments as it does not
need strong prior hypotheses or labeled data. High robustness
and efficiency were demonstrated by the system when tested
on the KITTI database, which is a widely used autonomous
driving benchmarking platform [67]. The co-point mapping
algorithm can be considered as having potential for detection
of drivable areas in mill yards, where both structured and
unstructured roads are also found.

In [68], a camera and 3D LIDAR are used to detect road
boundaries and the drivable area. The system calculates the
height difference between the road surface and the curb to
detect the road drivable area. Such an approach would be
suitable for the detection of the drivable area in mill yards that
have relatively flat surfaces. In [69], the authors suggest a sys-
tem for navigation in real-world urban scenarios. The system
uses 2D LIDARs and cameras and is capable of autonomous
navigation on structured and unstructured roads. It can also
deal with various challenging situations (e.g., strong shadow,
pavement distress, dirt, puddles, rain or snow, and different
lighting situations). This system differs from others in that
the optimal drivable area detection occurs without using posi-
tioning sensors such as GPS/GIS. The system is also capable
of detecting different traffic signs and road shoulders [70].
A solution for road and obstacle detection is presented in
[71] that utilizes cameras and radar fusion under an adaptive
self-learning method. The system can detect drivable areas
and obstacles, especially in an off-road scenario, without
the need for manual supervision for training. In [72], the
authors utilized a combination of 3D LIDAR + 2D LIDAR
+ radars + camera to develop an obstacle detection system.
The system uses 3D LIDAR and two radars to cover the areas
surrounding the vehicle and uses the 2D LIDAR data as a
safety layer to validate the data coming from the radars. The
camera data provide a dense representation of the area in front
of the vehicle and a low level of semantic understanding.
System testing showed accurate results in detecting obstacles
around the vehicle without the need for high computational
power. Vehicles and machinery operating in mill yards can
feasibly utilize the same approach, especially the use of 2D
LIDAR for validation and safety assessment. A system for
detecting other vehicles in the front driving area where a

monocular vision sensor and 3D LIDAR are used is described
in [73]. The suggested system had a 96.3% successful detect
rate and a 39 ms detection time for every single frame, which
is sufficient for real-time safe navigation. Other drivable
areas and obstacle, detection solutions based on DCNN are
presented in [47]. The systems use 3D LIDAR + cameras +
radar fused together through a fully convolutional network
(encoder-decoder-based) (FCNx) and extended Kalman filter
(EKF). The system focuses on segmenting the road into two
categories, free spaces (drivable areas) and not drivable areas,
rather than small fine segments as mostly used in the liter-
ature. The system then utilizes YOLO-V3 DCNN for real-
time obstacle detection. Kim et al. [55] present an obstacle
detection method for an autonomous mobile robot working in
a construction site. Themethod utilizes 2D LIDARs, infrared,
and sonar sensors with a camera to detect and avoid obstacles
in the environment. Yi et al. [49] used a camera, 2D LIDAR,
radar, and a KF to develop an accurate object detection and
tracking system that focuses on the target location, velocity,
and type. The combined use of different sensors gives the sys-
tem an edge over single sensor systems and more robustness
in different weather conditions, which also adds an additional
safety layer to the operations.

D. CONTROL AND TASK EXECUTION
After detecting the pose, location, and type of the materi-
als, the machine needs to proceed to task execution. In the
case of asset and machinery interaction like loading and
unloading operations, the task can be highly demanding to
execute with high accuracy and professional human driver-
like behavior. The basis of the problem relates to the strong
nonlinearities of the kinematics and dynamics of heavy
machinery, which challenges mathematical modeling [74].
Three types of control approaches are commonly used in
the literature: 1) nonlinear model-based approaches, which
can give high precision and accuracy but rely on an accurate
mathematical model of the system, which is very difficult
to obtain; 2) model-free approaches such as PID (Propor-
tional Integral Derivative) controllers, which do not use the
same complicated mathematical models but require tiresome
parameter tuning for every machine individually and their
performance deteriorates over time, and; 3) data-driven meth-
ods such as reinforcement learning (RL), which can effec-
tively generate and track a trajectory without the need for an
accurate mathematical model or tedious tuning of different
parameters [74], [75].

Due to the high complexity of mathematical models for
heavy machinery, reinforcement learning is considered the
most relevant method for control of the trajectory planning
and motion of such machines. RL enables the machine to
learn by interacting with the environment in a trial-and-error
technique [75].

Many studies have provided evidence on the suitability
of reinforcement learning for controlling heavy machinery
motion [74], [75]. Egli and Hutter [74] presented an example
where a reinforcement learning method is utilized to control
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a hydraulic arm that requires minimum machine parameter
knowledge. The system can be trained in a simulator and then
directly deployed to the machine after training. The method
was tested on a heavy hydraulic excavator and demonstrated
sufficient performance for practical application. A similar
approach for automating an excavator using RL has also been
presented by Kurinov et al. [75].

VI. PROPOSED SYSTEM
Research towards autonomous vehicles and autonomous
heavy machinery has been active for a long time, but, in prac-
tice, only a handful of solutions are seen as feasible. Develop-
ing autonomous forestry equipment suitable for operations in
mill yardswill require the combined efforts of researchers and
machine equipment manufacturers and investment in testing
ideas and developing prototypes.

Considering the nature of operations in mill yard envi-
ronments, and after analyzing the research papers selected,
a high-level (conceptual) autonomous vehicle framework for
mill yards combining different methods and approaches was
developed. The structure of the suggested system is given
in Fig 5. The system relies on three main components:
localization, perception, and control, to achieve autonomous
navigation and material handling in the mill yards of forest

industries. The suggested localization, perception, and con-
trol methods alongside the challenges facing systems operat-
ing in the mill yard environment are discussed in the follow-
ing sections.

A. LOCALIZATION
We propose that an a priori map-based localization method
such as presented in [50] or [57] coupled with high precision
positioning systems like real-time kinematic GPS [18] be
used. The real-time kinematic GPS estimation is used as a
validation and safety method for the autonomous localization
function. A priori map-based localization offers greater accu-
racy than SLAM-based methods [60] and can be considered
more suitable for mill yards as the layout of the roads inside
such fenced areas rarely changes.

B. PERCEPTION
Using a predefined dataset of materials, obstacles and differ-
ent road types to use in the designed structure (i.e., stereo
images, edge detection, laser scanning), the vehicle can auto-
matically perceive the environment using DCNN approaches
[47], [48]. Even if obstacles and materials are in different
shapes or locations, the system can still tell them apart.
When constructing a complex structure made up of various

FIGURE 5. Conceptual framework for Autonomous vehicles operating in the mill yards.
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materials, objects, obstacles and roads, the matching process
can provide state and action feedback to the vehicles so that
they can generate an execution plan to obtain the necessary
materials or avoid obstacles.

C. CONTROL
Vehicles working inmill yards should be able to fulfill numer-
ous tasks, for example, going across potholes, balancing on
uneven surfaces, avoiding obstacles, and handling materials.
The controllers monitoring these actions in real-time need a
lot of extra effort to be properly programmed, since the prob-
lem to be solved involves extensive analytical manipulation
of the dynamics and kinematics of the vehicles and loads
being handled. Reinforcement learning algorithms [74], [75]
appear to be a suitable fit for more complex heavy machinery
applications that require real-time environment feedbackwith
minimal error and robust localization control. The state of the
vehicle and task can be described using environment informa-
tion extracted from previous steps. Then, using a predefined
RL reward policy, algorithms can be developed to inform the
machine or vehicle of the requested motion and to control its
execution.

D. CHALLENGES AND RECOMMENDATIONS
The context of autonomous vehicles and machinery operat-
ing in mill yard environments means that complex robotic
systems operate in an unpredictable environment. As a
result, there are numerous challenges which researchers and
machine manufacturers must keep in mind when devel-
oping autonomous machines for this sort of environment.
This section reviews the high-level challenges of developing
autonomous vehicles for the mill yard environment.

1) NAVIGATION
The main challenge with navigation is detecting the drivable
area, especially as the road surfaces in mill yards can change
from large flat areas and flat structured roads to bumpy,
uneven roads (off-road), which can affect low height obstacle
detection. In an off-road situation, the roadmay have different
heights, colors, or textures from the surrounding area, which
allows machine learning and computer vision techniques
to distinguish the drivable area. On the other hand, these
differences may not be present. Also, in winter, the whole
road and yard can be covered by a snow layer. A solution
for such a problem is to always rely on a 3D localization
option and a priori map-based localization approaches as
the layout of the roads in the yards, buildings and material
stacking locations does not change frequently. This approach
would ensure sufficient localization and drivable area pre-
knowledge and include the possibility of manually defining
different static/trusted zones, such as predefined main roads,
inside the mill yard premises.

2) SEVERE WEATHER CONDITION
Detecting obstacles and materials in bad weather such as
snow, fog, and rain can be challenging. Although some stud-
ies have offered scalable solutions for such problems [63],

[69], additional tests and validation work are still needed
to ensure the reliability and robustness of these approaches.
To solve the problem of challenging weather conditions,
a multi-sensor configuration consisting of a system based on
LIDAR, radar and camera technology is needed to offer safe
and reliable obstacle detection and collision avoidance [60].
This multi-sensor setup, of course, has an effect on the cost
of adopting the technology and puts pressure on the software
development process to resolve conflicting measurements
and identify false positives/negatives depending on the reli-
ability of the sensor type relative to the weather conditions.

3) MATERIAL RECOGNITION
Recognizing the types, poses, and geometries of materials is
of extreme importance to enable safe material handling. Deep
Learning and Convolutional Neural Networks (CNNs) and
Fully Convolutional Networks (FCNs) have achieved state-
of-the-art results in object recognition and classification [47],
[48]. For CNNs to work efficiently in mill yards, a training
dataset must be developed by the industry specifically for the
intended environment. With fewer material types and objects
to be recognized, more diverse training data can be offered for
the Neural Network (NN) to achieve high recognition results
in challenging situations. The reality with wood material is
that logs that look very similar to one another to the camera
can be very different in density, quality, and moisture content,
which affects the log properties greatly.

4) MATERIAL HANDLING
The most challenging task is automating the interaction
between the machine tool and the environment as material
properties (i.e., timber assortment, density, growth rate, mois-
ture content, and surface roughness) and dimensions (i.e., top
diameter and length of logs) change rapidly. Deep learning
techniques such as RL could be a solution, but the amount of
time and data needed to achieve sufficient training could be
huge [76]. However, vehicles and heavy machinery working
in mill yards will not require the same amount of data to build
a reliable and robust system as all-road autonomous vehicles,
since they operate in a more controlled environment with
fewer possible scenarios to be trained for. Another important
aspect of model training is the need to take into account the
variety of training data required to avoid overfitting and to
estimate the computational power needed for model deploy-
ment on the vehicles when designing the system [76].

In addition, it could be the reality that some mill yard oper-
ations may need to be somehow simplified, and the materials
processed homogenized to enable process operations using
automated machinery. Also, it is highly possible that any
technological and business operations development may have
effects on the status quo of a company’s business culture [77],
which has to be taken into account, too. On the technical side,
for instance, the length of softwood pulpwood poles is known
to vary considerably. In Finland, this variation is typically
from 2.7 to 5.0 meters. It can be assumed that for autonomous
machinery, it would be more efficient and also safer to handle
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timber with a fixed length or at least with less variance in
length. This may apply especially to, e.g., automated wood
bundle lifting stability and force directions, and sizes fore-
casting in dynamic lift and movement events (cf., Fig. 1).
Moreover, equipping each autonomous material handling
machine utilizing a crane with a scale measurement system
can improve process and quantity management in mill yards.
Overall, it can most likely be assumed that some processes
would need cross supply chain related shared development
and collaboration efforts [78], good trust between collaborat-
ing partners [79], and new forms/ways of formalizing front-
end innovation processes [80] for effective automatization of
the whole wood supply chain, not just yard area operations.

VII. THREATS TO VALIDITY
The first author of this study gathered the majority of the data.
The data-gathering could include a small risk to the validity
of the study’s findings via non-intentional data bias. To min-
imize this sort of data bias threat, the co-authors observed,
validated, and examined the collation, selection, inclusion,
and exclusion of the publications and data extraction.

Furthermore, as this is the first study to specifically focus
on development towards autonomous vehicles in themill yard
environment, the criteria set to evaluate whether a system is
feasible in the environment were developed by the authors in
light of their understanding of the environment. This could
count as a threat to the validity of the results of this study as
different perspectives can lead to different evaluation criteria.
To minimize this threat, the environment was studied exten-
sively by the authors before the criteria were set. Additionally,
an expert from the forest industry reviewed the criteria to
insure their suitability for mill yard operations and the mill
yard environment.

VIII. CONCLUSION
The forest industry has the potential to benefit greatly from
mill yard machinery automation. This study utilized a sys-
tematic literature review (SLR) approach to summarize and
discuss current technologies and techniques presented in the
academic literature that can be converted to the forest industry
mill yard machinery context and can advance the develop-
ment and utilization of autonomous heavy machinery opera-
tions on the sites of forest industries. This review conducted a
bibliographic search in the Web of Science (WOS) database.
Using various inclusion and exclusion criteria, 28 studies
were selected for detailed review out of 1882 studies. The
contributions of the studies were divided into four main cate-
gories: sensors in autonomous vehicles, localization, percep-
tion, and control and task execution.

On the basis of the information gained, a conceptual frame-
work is presented capable of completing the entire navi-
gation and material handling process with minimal human
interaction. We suggest using an a priori map-based local-
ization approach with a high precision GNSS system for
localization and mapping, a deep convolutional neural net-
work, and a training dataset developed specifically for mill

yard environments to detect, identify and reconstruct objects
in the environment. The framework focuses on the use of
appropriate sensors and training the operational machines
to understand their environment, identify the required tasks,
and allocate operations to material handling. The framework
employs simulation and training stages to ensure the vehi-
cle’s motion and task execution are carried out as intended.
Simultaneously, the use of reinforcement learning to teach the
vehicles to learn like humans is proposed so that the machines
can learn from previous errors and the results of previous
simulation iterations.

Incorporating the above-mentioned techniques will bring
the forest industry one step closer to fully automated preci-
sion vehicles for mill yards, which will increase yields while
relieving humans of tedious labor. However, there are some
significant challenges in putting the proposed framework into
action. First, the complexity of the environment may cause
noise in the vehicle system, which can have a significant
impact on its efficiency and accuracy. Second, additional
testing and improvements are needed to ensure that the algo-
rithm’s calculation capacity is sufficient to execute complex
tasks and that the vehicle can operate in different weather
conditions. Third, determining that the amount of training
data and simulation is sufficient for the material recognition
and task execution process to function smoothly when unex-
pected differences and scenarios occur is a challenging task.
Moreover, some complex work phases (e.g., log lifting) may
have to be operated by a human operator using remote-control
and the rest of the work tasks carried out autonomously.

Generally, more research is needed to introduce
autonomous machinery in the mill yard environment,
and multiple stakeholders, sustainability aspects and
digitalization-related challenges [81] have to be taken into
consideration when proceeding with these development
efforts. In future research, we suggest expanding the search to
include other databases and gray literature to ascertain further
suitable technological solutions. Carrying out interviews with
experts from both the forest industry and forest machinery
manufacturers to evaluate the efficacy of the proposed solu-
tions would provide valuable insights.

Our future work will include evaluating the efficacy of the
proposed framework utilizing an autonomous robot platform
with a robotic arm. Amethod for mapping and reconstructing
a real-world mill yard is also under design and planning. Tests
are being planned to focus on task execution and material
handling using reinforcement learning. Additionally, fleet-
level training and cross-site data exchange for enhanced
fine-tuning and optimization of these operations are to be
examined.
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