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ABSTRACT In a typical data pipeline, the dataflow starts from the first node, where the data is initiated,
and moves to the last node in the pipeline, where the processed data will be stored. Due to the sheer number
of involved participants, it is crucial to protect the dataflow integrity in the pipeline. While previous studies
have outlined solutions to this matter, the solution for an untrusted data pipeline is still left unexplored,
which motivates us to propose SIGNORA. Our proposal combines the concept of a chain of signatures
with blockchain receipt to provide dataflow integrity. The chain of signatures provides a non-repudiation
guarantee from participants, while the hash of the data and signatures is anchored in the blockchain for
a non-tampering guarantee through blockchain receipt. Aside from that, SIGNORA also satisfies essential
requirements of running data pipeline processing in an open and untrusted environment, such as (i) providing
reliable identity management, (ii) solving the trust and accountability issues through a reputation system,
(iii) supporting various devices through multiple cryptographic algorithms (i.e., ECDSA, EdDSA, RSA, and
HMAC), and (iv) off-chain processing. Our experiment results show that SIGNORA can provide dataflow
integrity provisioning in multiple scenarios of data payload size with reasonable overhead. Furthermore, the
cost of smart contract methods has also been analyzed, and several off-chain solutions have been addressed
to reduce transaction costs. Finally, the reputation system can adapt to the history of nodes’ activities
by increasing their scores when they actively perform honest behavior while reducing their scores when
they become inactive. Therefore, SIGNORA can provide a high degree of accountability for participants
collaborating in an untrusted environment.

INDEX TERMS Dataflow integrity, blockchain, chain of signatures, blockchain receipt, data pipeline.

I. INTRODUCTION
The combination of digital signature and hashing algorithm
can provide non-repudiation and non-tampering guarantee
during data transmission from senders to receivers. At the
receivers’ ends, third-party validators can check the signa-
tures and hash to determine if senders previously transmit-
ted the data and whether receivers have modified the data.

The associate editor coordinating the review of this manuscript and

approving it for publication was Sedat Akleylek .

Those solutions are easy-to-implement in two actors (i.e., a
sender and receiver) scenarios. However, some complex
dataflow (e.g., supply-chain manufacturing, internet traffic
routing, and commodity trading) requires extension usages
of those digital signatures and hash algorithms applicable to
multiple senders and receivers. This is where the chain of
signatures emerges as a contender for solutions.

The chain of signatures provides accountability to multiple
entities in a data pipeline by allowing participants to sign the
data they process before transmitting it to others. This signing
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operation begins sequentially from the start of the pipeline to
the end, where the data and signatures will be hashed and
stored for future validations. While the chain of signatures
alone can support integrity for multiple users, it is still not
enough to provide integrity in an open data pipeline, where
several untrusted organizations are most likely to exist in such
environments. Distrust between parties hinders the collab-
orative effort to produce a reliable chain of signatures and
becomes a significant challenge.

Blockchain [1] and smart contract [2] have been widely
used as a tool to preserve digital data by anchoring the hash
of the data in the blockchain network [3]. This trend rises
as the possibility of blockchain being used as a forensically-
sound legal argument is discussed [4]. Many researchers then
leveraged blockchain as trusted platforms in an untrusted
environment (e.g., in a crowdsourcing platform [5] or in a
decentralized marketplace [6]). Similarly, previous studies
have constructed blockchain-based preliminary assessments
to make the deploying chain of signatures in a data pipeline
possible. However, those studies assume a more trusted
setting, where each participant is always assumed to act
honestly when cooperating in the data pipeline. No account-
ability metrics are available; thus, malicious behaviors are
left unpunished. Furthermore, they also do not consider the
heterogeneity of the pipeline nodes, which limits the data
pipeline to operate only in a closed environment.

Our proposal targets a more sophisticated data pipeline
environment where (i) several competing and untrusted orga-
nizations exist as nodes in the pipeline, and (ii) they can
deploy their nodes in a BYOD (bring your own device)
fashion. Furthermore, we define several requirements (R) that
must be addressed to provide dataflow integrity in such a data
pipeline.

R1: The system must deploy trusted identity management.
A reliable identity service is essential, especially in an

open environment, where anyone can create new identities
and can perform Sybil attack [7] easily; all participants in
the pipeline must be identifiable through a trusted identity
service. Therefore, the system can pinpoint the source of
problems and hold the entity that causes it accountable if such
cases happen.

R2: The system needs to provide a reliable accountability
metric for each participant contributing to the pipeline.

A regulation must be established in the system to enforce
participants to behave honestly such that adversaries can-
not gain any benefits from performing malicious actions.
When unfortunate events (crashes or byzantine failures) are
detected, the system should punish destructive behaviors
while rewarding good conduct from participants.

R3: The system has to support various devices by employ-
ing variations of cryptography algorithms.

Since participants may deploy various device types in a
given pipeline, the systemmust provide several alternatives of
cryptography algorithms to match the device specifications.
For example, a prior signature signed with A algorithm can
be extended with B algorithm, thus providing flexibility and

further boosting usability because it can cover a wide range
of possible devices.

R4: The system must allow participants to process a chain
of signatures off-chain.

As a continuation of the previous requirement, not all
devices have enough resources to become a blockchain node,
and chain of signatures operations should have an option to
be processed off-chain while still preserving a relatively high
degree of integrity guarantee.
Contributions: Driven by the motivation to fulfill those

requirements, we propose SIGNORA, a framework for
dataflow integrity provisioning in an untrusted data pipeline
using chain-of-signature (chainsig) and blockchain receipt
(receipt) ,1 which can be summarized through the following
contributions.
• We build identity management in the smart contract to
answerR1. Each organization deploys its trusted Certifi-
cate Authority (CA) in the network, which can be used
to generate accounts for devices in the pipeline.

• A reputation system is deployed in the smart contract
to solve R2, which monitors the devices’ history of
behavior throughout the lifetime of a pipeline. Positive
behavior results in better scores than malicious ones.
Furthermore, the organization’s reputation will also be
affected by the device’s performance they own.

• As our commitment to solving R3, we support four sig-
nature algorithms: ECDSA, EdDSA, RSA, and HMAC,
with four hashing algorithms from the SHA-2 family:
SHA-224, SHA-256, SHA-384, and SHA-512.

• R4 is satisfied by providing two types of mode to create
chainsig: FULL and PAIR mode, which translates into
whether to perform chainsig operations off-chain (in the
former case) or on-chain (in the latter case).

• Finally, we present a prototype implementation of our
proposal and evaluate it to give insights on some lim-
itations and pointers to be taken by developers when
deploying the proposal in a production case.

Roadmaps: We organize the rest of this paper as fol-
lows. Section II explores previous related works. Section III
presents our system models in more detail while their secu-
rity analysis and feasibility assessments are explained in
Section IV and V. We then discuss several limitations of our
approach in Section VI. Finally, we conclude in Section VII.

II. RELATED WORK
This section discusses studies that provide dataflow integrity
using chainsig and receipt from a diverse type of data
pipeline. The brief summary is depicted in Table 1.

A. CHAIN OF SIGNATURES
TrustChain [8] proposes a digital signature preservation
system for X.509 certificates using blockchain. Proposers
submit new certificates in the blockchain, and TrustChain,

1Throughout the rest of this paper, we use the term ‘‘chain of signature’’
and ‘‘chainsig,’’ also ‘‘blockchain receipt’’ and ‘‘receipt,’’ interchangeably.
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TABLE 1. Feature comparisons of previous works whether the given
works provide: chain of signature (C), blockchain receipt (B), prototype
implementation (P), identity management (R1), accountability through
reputation or incentive (R2), diverse set of cryptographic algorithms (R3),
and off-chain computation alternative (R4). We give a checkmark (3) if
the work satisfies the requirement and cross (7) if not. The off-chain
approach only applies for chainsig; thus, the dash (-) indicates
inapplicable.

through Certificate Authority (CA), will check if the certifi-
cate already exists, is expired, or is revoked. Furthermore,
TrustChain also allows nodes to vote on each other’s certifi-
cates. Themore votes that a certificate gets, themore trustable
it becomes. The chainsig is used to map interactions between
certificate proposers, CAs, and voters.

Abegg et al. [9] leverage chains of signature to secure the
publish/subscribe protocol. Publishers include their signature
when publishing a newmessage, where it will be chainedwith
the previous messages from the same topic. The blockchain
is then used as a fail-safe mechanism; when publishers do not
receive acknowledgments from subscribers, they upload their
signatures to the blockchain as proof of distribution.

The chainsig can be used to preserve digital evidence data
for forensic purposes. Brotsis et al. [10] employ a smart gate-
way agent (SGA) that monitors traffic and performs device
profiling, anomaly detection, and evidence gathering. This
chainsig evidence is then submitted to the blockchain, where
the evidence is stored and preserved. Zhao et al. [12] use
chainsig to preserve Beidou’s GPS location in the smart
grid. The GPS measurements from devices will be stored in
the server and protected by blockchain for auditing. In FiF-
IoT [11], chainsig is used to track sequences of the requests
and responses between IoT users and IoT devices to preserve
forensic evidence in IoT networks. In particular, all entities
involved in an IoT request/response workflow must include
their signatures when processing IoT data. The last node in
the workflow uploads all signatures, including the hash of
request and response bytes, as transactions in the blockchain.

When processing digital forensic evidence, a trusted and
chronological Chain of Custody (CoC) must be created to
assess the legality of methods used during evidence pro-
cessing. For this purpose, Forensic-Chain [13] proposes to
use blockchain as a platform to build CoC. The chainsig
reveals the interaction between the evidence submitter and

all investigators who process the evidence, which can later be
presented in the court.

Moving aside from forensic domains, Huang et al. [14]
propose an RDF data quality assessment model in a decen-
tralized environment using blockchain with the chainsig used
for logging quality assessment records. First, a quality assess-
ment is broadcast to all nodes. Then, according to the order
of joining the system, each node signs and returns its assess-
ments to the system. After obtaining all node signatures, the
results can be saved in the blockchain.

Finally, chainsig can also be used in Domain Name Sys-
tem (DNS) management as presented in [15]. The authors
leverage chainsig to chain domain trust from Hyperledger to
extend domain names and their corresponding data files.

B. BLOCKCHAIN RECEIPT
Blockchain receipt [3] can be used to boost the integrity of
data storage in the Cloud environment. ProvChain [16] and
BlockCloud [17] build a public time-stamped log of all user
operations on cloud data without the presence of a trusted
third party. They do so by requiring every provenance entry
to be assigned with a blockchain receipt for future validation.
This way, all users’ actions in the Cloud have a corresponding
permanent data log in the blockchain. Zhang et al. [18] lever-
age blockchain receipt to log the submissions of Cloud foren-
sic data fromCloud Service Providers (CSP). The Provenance
Auditor will process this log, whichwill later be relayed to the
Investigator for court actions. Finally, Kwon et al. [19] create
a receipt for every user file submitted to the Cloud to protect
its integrity so that the file can be easily identified if modified
by adversaries in the future.

Aside from Cloud, blockchain receipt can be used in
IoT use cases. For example, Liang et al. [20] employ receipt
to secure drone communication during data collection and
transmission and to preserve the data’s integrity. Specifi-
cally, the control system anchors the hashed data records
collected from drones to the blockchain network and gener-
ates a blockchain receipt for each data record. This record is
then forwarded to the Cloud for permanent storage. Before
accepting the request, the Cloud verifies the submitted data
and its receipt. Therefore, all data stored in the Cloud have
the corresponding receipt, boosting storage integrity.

Finally, Baldi et al. [21] discuss the usage of receipt to pro-
vide authenticity assurance of academic certifications. The
certificate’s hash and metadata are stored in the blockchain
using a receipt. From this receipt, others can validate if a given
certificate is authentic or counterfeit.

C. COMPARISON WITH RELATED WORKS
Most related studies mentioned identity management (R1)
in their proposals. Since they utilize blockchain in their sys-
tem, which requires nodes to create a blockchain address as
identity, this requirement can be easily overcome. We also
notice that some researchers takes consideration about the
cost of blockchain operations by providing an off-chain solu-
tions (R4) to perform chainsig as in [9], [11], and [14].
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TABLE 2. List of actors available in the given data pipeline.

TABLE 3. List of notations used in this paper.

This indicates that secure and trusted off-chain methods are
always preferable to on-chains.

Unfortunately, other studies have not considered the diver-
sity of the nodes that can participate in their data pipeline.
When many different nodes with heterogeneous computing
capability join the pipeline, we need to provide diverse sets
of cryptography (R3) for everyone involved. Furthermore,
other researchers also do not consider that nodes can behave
maliciously or have different interests. Therefore, they do
not provide any accountability (R2) for pipeline nodes either
through a reputation system or incentive mechanism.

We propose SIGNORA as a general-purpose framework
that can be integrated with related studies while also trying
to satisfy the requirements (R1-R4) that were partly left
unanswered by previous studies.

III. SYSTEM MODEL
Our proposed system can be divided into three parts. The
first describes how the dataflow provisioning works, while

FIGURE 1. An overview of SIGNORA’s integrity provisioning on a single
dataflow (D6) over five nodes (N = 5) using FULL (top) and PAIR
mode (bottom).

its validation process is explained in the second part. The
third section explores how we leverage the smart contract to
boost the reliability of the provisioning and validation tasks.
Table 2 lists all actors involved in a given dataflow pipeline,
and Table 3 summarizes all notations used in the rest of this
paper.

A. DATAFLOW INTEGRITY PROVISIONING
Nodes in a data pipeline can have one of the following roles:
(i) generator, (ii) relayer, or (iii) keeper. The generator node is
the onewho generates data and becomes the initiator of chain-
sig by producing genesis chainsig as a proof of origin. The
keeper node is located at the other end of the pipeline, stor-
ing the received data and chainsig permanently. Meanwhile,
the relayer is an intermediary node that routes data from the
generator to the keeper while extending chainsig along the
way as a proof of distribution. When relaying data, nodes
can choose whether to retransmit all elements of chainsig
(i.e., so-called FULL mode) or only the current and previous
element (i.e., PAIR mode) to the next node. Once the data
arrives at the keeper nodes, they create blockchain receipts
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and anchor the root hash in the blockchain as a proof of stor-
age. Figure 1 depicts the overview of our dataflow integrity
provisioning strategy.

1) GENERATING AND EXTENDING CHAINSIG
Let us assume that N = {1, 2, 3, . . . , n, . . .N } is a list of
nodes n in a data pipeline. The generator node is indexed with
n = 1 while the keeper node is n = N . Meanwhile, the rest
are relayer nodes. Note that N also indicates the total number
of nodes in the pipeline. The whole chainsig process can be
explained in the following paragraphs.
Step 1 Creating Genesis Chainsig:The generator node pro-

duces important data D, which its integrity must be protected
by SIGNORA. The node signs the data and produces a genesis
chainsig S1 as follows.

S1 = SIGNSKn (D), where n = 1

The node then sends D and S1 to the relayer nodes.
Step 2 Extending Chainsig: The relayer nodes then first get

the latest chainsig element (i.e., (n−1)th signature, assuming
that this node is the nth node). After that, nodes verify whether
the previous nodes signed the signature correctly. If this node
is the first relayer node, then the node verifies whether

VERPKn−1(D, Sn−1) equals True for n = 2

Otherwise, the node makes sure that

VERPKn−1 (D ‖ Sn−2, Sn−1) equals True for n > 2

Upon successful verification, the node extends the chainsig
by signing the previous signature and the relayed data to
produce a new signature Sn, as shown in Equation 1.

Sn = SIGNSKn (D ‖ Sn−1) (1)

Note that if verification is invalid, the chainsig will not be
extended, and the process will stop.

Depending on how the received data and chainsig is
retransmitted from one node to another, relayer nodes can
use FULL or PAIR mode. In FULL mode, the relayer nodes
redistribute all of the received data and elements of chainsig,
which is D, S1, . . . , Sn to the next nodes. Meanwhile, they
only relay D, Sn−1, and Sn to the next nodes if using PAIR
mode.

Each element of chainsig Sn contains additional metadata
such as (i) the cryptographic algorithm γn used to generate
the signature, (ii) the blockchain address αn of the signa-
ture creator, and (iii) the timestamp tn indicating when the
signature is generated. This metadata is submitted through
AddChainSig(·) method in the smart contract when using
PAIR mode.

Note that each node still needs to send Sn and its metadata
to the next node off-chain because the subsequent node must
verify the relayed data and chainsig quickly.2 Therefore, both

2The data stored in the blockchain may not be processed fast enough.
Depending on the consensus algorithm, the blockchain may produce forks;
therefore, transactions cannot be confirmed immediately.

PAIR and FULL nodes receive Sn and its metadata. However,
they are not uploaded to the smart contract when using FULL
mode.

These steps are repeated in all relayer nodes until the data
and chainsig reach keeper nodes.
Step 3 Storing Chainsig: The keeper nodes store all of the

received data and chainsig to its database permanently. Due
to the difference in the delivery process, when using FULL
mode, keeper nodes stores the whole chainsig (i.e., S =
{S1, S2, S3, . . . , Sn, . . . , SN }) in their local storage off-chain.
Meanwhile, PAIRmode utilizes SIGNORA smart contract to
store S on-chain.

2) PRODUCING BLOCKCHAIN RECEIPTS
Let us assume that the manager m for keeper nodes n = N
provide some values to the following parameters: tleaf and
troot . The tleaf indicates the interval when we should create
leaf hashes, which are parts of theMerkle Tree for the receipt.
Meanwhile, troot tells us the interval when we should form
the root hash of the Merkle Tree based on the previously
calculated leaf hashes. The whole receipt process can be
described as follows.
Step 1 Leaf Hash Generation:When it is time to create leaf

hashes, keeper nodes queries all of the previous data D and
chainsig S from tnow− tleaf to tnow and hash them all together
to create a leaf hash Xleaf . Formally,

Xleaf = H
( tnow⋃
t=tnow−tleaf

Dt ||St
)

This procedure occurs at every interval of tleaf . If the keeper
node does not receive any data during that interval, the node
can create a dummy payload (e.g., 1 byte of zero data) to fill
in leaf hashes. tnow is the current timestamp.
Step 2 Root Hash Generation: Given enough time, keeper

nodes will produce several leaf hashes. After that, they can
create a root hash when troot is triggered. Keeper nodes gather
all previous leaf hashes and form root hash Xroot following
algorithm specified in Chainpoint [3] as formally denoted in
Equation 2.

Xroot = MerkleRoot
( tnow⋃
t=tnow−troot

Xleaf ,t

)
(2)

This procedure repeats at each interval of troot .
Step 3 Blockchain Anchoring: After the keeper nodes

obtain the root hash, they upload it to the smart contract. The
SIGNORA smart contract has the AddRootHash(·) method,
which allows keeper nodes to anchor their root hash in the
blockchain network. Once the root hash is stored, keeper
nodes create receipts for each leaf hashes in JSON format,
similar to ones in [3]. This receipt can be used later to verify
the integrity of the data chunk stored in the keeper nodes.

B. DATAFLOW INTEGRITY VALIDATION
Trusted validators are tasked to verify dataflow integrity on
the keeper nodes’ storage. In particular, they validate whether
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FIGURE 2. An overview of SIGNORA’s integrity validation on a single
dataflow (D6) over five nodes (N = 5) using FULL and PAIR mode. The
validation in the keeper node includes receipt verification (top) and
chainsig validation (bottom).

the data stored in keepers’ storage are not maliciously altered
by checking the corresponding blockchain receipts. After
that, validators continue verifying each element of chain
signatures, starting from the latest to the genesis one. Finally,
validators can conclude that the stored data has complete
dataflow integrity only if both the receipt and chainsig ver-
ification are successful. Figure 2 shows the overview of our
dataflow integrity validation strategy.

1) VALIDATING DATA CHUNK OF BLOCKCHAIN RECEIPTS
The first validation step is to ensure that the data stored in
the keeper’s database has not been maliciously modified.
Validators perform these steps for formal verification.
Step 1 Data Splitting: Validators obtain tleaf and troot

parameters from the keeper node. They then split the whole
database into multiple data chunks according to that informa-
tion. Each data chunk will be represented by one blockchain
receipt.
Step 2 Receipt Verification: Depending on the task

assigned, validators can verify one, several, or all data
chunks from the database. They can follow detailed steps in
the receipt to verify a particular data chunk. Specifically, the
receipt instructs how to hash the data chunk and obtain the
Merkle Root hash (c.f., [3] on detail verification steps).
Step 3 Anchor Verification: After obtaining the Root hash,

validators must check if this Root hash exists in the smart

contract or not by invoking GetRootHash(·) method. If val-
idators can find the hash, the data chunk has a strong integrity
guarantee because it would be tough to tamper with the smart
contract and blockchain security.

2) VERIFYING ELEMENT OF CHAINSIG
The following validation step is to verify the corresponding
chainsig for each data chunk.
Step 1 Chainsig Construction: First, the validator must get

all of the chainsig-to-be-verified. In FULLmode, all elements
of chainsig can be found from the keeper’s database directly.
Meanwhile, only the latest two elements are found from the
keeper’s database if using PAIR mode. Therefore, validators
need to do extra steps by calling GetChainSig(·) method to
get all the remaining chainsig from the smart contract before
constructing all elements of chainsig.
Step 2 Credentials Gathering: From the constructed chain-

sig, we can tell how many nodes are involved in generating
and distributing this data. Validators must collect all nodes’
credentials for verification. Aside from the signature value,
each element of chainsig also has a blockchain address αn,
which indicates who generated this signature element. From
this address, validators can query the required keys to verify
the data in the smart contract. Specifically, they call the
GetCredential(·) method to obtain all PKn; ∀n ∈ N where
Sn ∈ S .
Step 3 Chainsig Validation:After the chainsig is fully con-

structed and all keys are ready, validators can begin the vali-
dation. Assuming that the node under verification is indexed
as n, starting from the latest element of chainsig, validators
verify if

VERPKn (D ‖ Sn−1, Sn) equals True for n > 1

This action confirms whether this node n signs the data pay-
load from the previous node or not. In this case, the previous
payload to be verified is D ‖ Sn−1. Validators repeat this
verification operation for all elements of chainsig. The last
element to be verified will be the genesis chainsig, which the
validators check differently by making sure if

VERPKn (D, Sn) equals True where n = 1

Note that, different from the rest of the signatures, genesis
chainsig only signs the original data. Therefore, the payload
to be verified is only D. If all chainsig elements are suc-
cessfully verified, the validators can conclude that the data
corresponding to this chainsig is valid.

C. SIGNORA SMART CONTRACT
SIGNORA smart contract provides valuable on-chain services
for (i) identity management, (ii) HMAC key distribution, and
(iii) a reputation system that further augments the security
of the proposed chain of signatures and blockchain receipt.
Algorithm 1 depicts the list of available methods in the smart
contract.
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Algorithm 1 SIGNORA Smart Contract Methods
1: {List of writable methods}
2: procedure AddChainSig(Sn, tn, γn, αn)
3: saves Sn ‖ tn ‖ γn ‖ αn to S
4: procedure AddRootHash(Xroot , αn)
5: if Xroot ∈ R then abort end if
6: saves Xroot ‖ αn toR
7: procedure AddValidator(αv,Cv)
8: saves αv ‖ Cv to V
9: procedure AddManager(αm,Cm)

10: saves αm ‖ Cm to M
11: procedure AddNode(αn, αm)
12: saves αn ‖ αm to N
13: procedure RegisterKey(αv/αm/αn, PK/Ycommit , γ )
14: if γ is HMAC then k = Ycommit else k = PK
15: if αv then saves αv ‖ k ‖ γ to V
16: if αm then saves αm ‖ k ‖ γ to M
17: if αn then saves αn ‖ k ‖ γ to N
18: procedure RevealHMAC(Ycommit , αn)
19: remove Ycommit for αn in N
20: procedure SubmitScore(zn, αn)
21: tzn = tnow
22: saves zn ‖ αn ‖ tzn to Z
23: procedure SubmitReport(rn, αn)
24: saves rn ‖ αn ‖ tnow to P
25: {List of read-only methods}
26: function GetChainSig(Sn)
27: return Sn ‖ tn ‖ γn ‖ αn from S
28: function GetRootHash(Xroot , αn)
29: if Xroot ∈ R for αn return True else False
30: function GetCredential(αv/αm/αn)
31: if αv return αv ‖ PK/Ycommit ‖ γ from V
32: if αm return αm ‖ PK/Ycommit ‖ γ fromM
33: if αn return αn ‖ PK/Ycommit ‖ γ from N
34: function GetReputation(αm/αn)
35: if αm return Zm from Equation 10
36: if αn return Zn from Equation 9

1) IDENTITY MANAGEMENT
All participants must have verifiable identities to provide
accountability during data creation, distribution, or storage.
Managers m and validators v register at least one blockchain
address α to the SIGNORA smart contract by calling the
AddManager(·) and AddValidator(·) method. Meanwhile,
m can use the AddNode(·) method to register their pipeline
nodes n address. When calling this method to store n’s iden-
tity, the smart contract will create a map that ties m and n
identity. Therefore, anyone can be directly informed to which
m this n belongs.
Aside from the blockchain address, several parameters

must also be included during the registration. First, man-
agers and nodes must disclose the keys used to verify their
signatures by uploading them to the smart contract through
RegisterKey(·) method. Those keys can vary depending

on the signature algorithm (e.g., ECDSA, EdDSA, RSA,
or HMAC). Secondly, because anyone can create new iden-
tities and upload them to the smart contract, it becomes
effortless to spoof an identity or perform Sybil attack [7] on
the identity. To mitigate these issues, managers must have a
trusted and reputable CA to represent their organization, simi-
lar to how identities are organized in Hyperledger Fabric [22].
This CA can approve any identity created for their organi-
zation by signing the corresponding address as a certificate,
which is illustrated in Equation 3.

Cm = SIGNSKCAm (αm) (3)

Managers must include this certificate Cm to the smart con-
tract when registering their identities.

Note that we assume the CA information has been recorded
in the smart contract prior to the manager registration; hence,
anyone can get the CA’s public key and verify the published
certificates from the smart contract. Furthermore, m will act
as CAs for all n that they register. Since the smart contract
has mapped the relationship betweenm and n, certificates are
unnecessary for n.

2) HMAC KEY DISTRIBUTION
To facilitate various use cases, especially those in constrained
resources such as IoT devices, SIGNORA allows nodes in a
data pipeline to sign using a symmetric algorithm such as
HMAC, despite its weaker non-repudiation guarantee com-
pared to asymmetric ones.

Ideally, the HMAC secret key must be shared securely
between the nodes and the validator at the initiation stage.
However, because we never know who will be the future
validator for our data, it is not easy to do the sharing early.
Suppose if the key is uploaded to the smart contract during
registration, anyone can then spoof the identity by gener-
ating unintended signatures because the information in the
smart contract is open to the public. In contrast, if the key
is uploaded later (e.g., during the validation process after
the validator has been appointed), the nodes can repudiate
the already-generated signature by claiming that they did not
make the signature. From the validators’ point of view, there
is no way to tell if the nodes are telling the truth because the
key is not shared at the early stage.
SIGNORA solves this problem bymandatingHMACnodes

to reveal their secret keys in the form of commitment hashes.
Step 1 Commitment Hash Submission: Managers m gen-

erate a new secret key for nodes SKn and deliver the key
securely to the nodes. The nodes save this key in their local
private database. After that, m create a commitment hash
Ycommit by hashing the concatenation of the secret key with
a random nonce η, as shown in Equation 4.

Ycommit = H (SKn ‖ η) (4)

m then upload Ycommit and αn to the smart contract by call-
ing the RegisterKey(·) method. Note that only m, as the
CAs/operators for n, can call this method. The smart contract
then ties this hash to n’s identity.
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Step 2 Perform Chainsig Using HMAC: In daily operation,
n sign the data using SKn that is previously assigned.
Step 3 Commitment Hash Verification: During validation,

the validators v may verify an element of chainsig Sn that
is previously signed by n using HMAC. First, v must obtain
information regarding m in the smart contract (recall that the
mapping between m and n is stored in the smart contract).
Then, v ask m to share the node n’s secret key SK ′n along with
its nonce η′. The validator then create a new commitment
hash Y ′commit and checks if this hash matches Ycommit in the
smart contract using RevealHMAC(·) method. This step is
formally denoted in Equation 5.

Y ′commit = H (SK ′n ‖ η
′)

with Y ′commit ,
{
valid, if Y ′commit = Ycommit

invalid, otherwise
(5)

An equal comparison indicates that the secret key that was
previously used to sign the data in the earlier stage is the same
as the one in the current validation process; therefore, we can
trust this HMAC signature.

Additionally, the secret key can be accompanied by an
expiry time texp to improve the security of HMAC further.
When enabled, m must include this expiry time when call-
ing RegisterKey(·) method. During validation, aside from
the commitment hash comparison, v must also validate if
the nodes signed the chainsig with an expired key or not.
They can do so by contrasting the timestamp property in the
chainsig tn with texp (i.e., signature is invalid if tn > texp).
Finally, if a secret key expires or if a secret key is revealed,

mmust create a new secret key, re-deliver it to the nodes, and
re-upload a new commitment hash to the smart contract.

3) REPUTATION SYSTEM
SIGNORA takes the history of nodes’ activity to build their
corresponding reputation scores.When nodes perform honest
dataflow integrity provisioning more frequently, they receive
more scores. Furthermore, SIGNORA also considers recent
activities to yield a more significant value than older activi-
ties. This policy is to encourage active behavior from nodes.

a: REWARDING DATA GENERATION
The generator nodes receive some scores for each dataflow
originating from them, denoted in Equation 6.

zn = β, for all n ∈ N ,where n = 1 (6)

A constant value of bounty score β is previously config-
ured as part of the initiation of the smart contract.

b: REWARDING DELIVERY TIME
The timestamp property in each chainsig element is used
to calculate delivery scores for relayer nodes. We define
t1, t2, t3, . . . , tn, . . . , tN as the timestamp of a particular node
n from its corresponding chainsig. The delivery scores zn for
each node will be measured as in Equation 7.

zn = β −
(
β ×
|tn − tn−1|

texp

)
for all n ∈ N ,where n 6= 1 and n 6= N (7)

This equation tells us that the delivery scores depend on
how fast the node processes the received data and retransmits
it to the subsequent nodes. A smaller delay between the cur-
rent and previous nodes indicates better processing quality.

c: REWARDING STORAGE SPACE
We create a separate storage score metric to assess keeper
nodes’ performance. We define two parameters: L and E . L
corresponds to the total number of leaf hashes in one root
hash, and E is the total number of chainsig elements in one
leaf hash. Then, the storages scores zn can be calculated as in
Equation 8.

zn = β ×
L∑
l=1

El, for n ∈ N ,where n = N (8)

This equation informs us that the storage scores depend
on how many storage spaces are allocated to store chainsig
and receipts. More spaces mean the nodes are on a higher
burden; thus, they must be rewarded accordingly by giving
them better scores.

d: SUBMITTING CONTRIBUTION SCORES
The generation, delivery, and storage scores are measured
when the validator conducts the dataflow integrity valida-
tion in Section III-B. After obtaining the scores, v must
upload them to the smart contract by calling SubmitScore(·)
method. The smart contract saves the scores zn and records
the timestamp indicating when the scores are saved tzn in the
blockchain.

Note that validators must submit contribution scores for all
nodes involved. However, because the scores for one node
may come from multiple sources (e.g., multiple chainsig and
receipts), instead of calling SubmitScore(·) method many
times, validators can aggregate scores for one node off-chain.
Once fully aggregated, they can settle the final score to the
smart contract.

e: REPUTATION FOR NODES
At any given time, other participants can determine the total
reputation score Zn that a particular node has by calling
GetReputation(·) method, defined as:

Zn =
∑
zn∈Z

zn × e
−

(
tnow−tzn
texp

)
(9)

Equation 9 sums all of the node’s generation, delivery,
or storage scores, whereZ contains all scores for node n in the
smart contract. Each contribution score will be weighted rel-
ative to the current timestamp. Older scores will be weighted
less than new ones. Hence, amplifying the impact of inactive
nodes as they will produce lower scores.

f: REPUTATION FOR MANAGERS
Organizations have their own reputation scores. If the
organizations have many nodes that perform poorly in
SIGNORA, it reduces the overall organization’s reputation
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score because the system sums up all the nodes’ reputation
scores that the organizations manage. We define Qm =

{1, 2, 3, . . . , q, . . .Q} as a list of nodes q under management
of manager m. Q represents the total number of nodes that m
have. The organization reputation scores Zm can be denoted
as in Equation 10.

Zm =
∑
q∈Qm

Zq,where q ∈ N (10)

Anyone can call the calculation of organization reputation
through the same GetReputation(·) method.

IV. SECURITY ANALYSIS
A. SECURITY ASSUMPTIONS
We assume that our on-chain and off-chain implementations
have no bugs and work as intended. We also assume that
the adopted cryptographic algorithm design and implemen-
tation are secure. The smart contract is deployed initially by
a trusted law enforcer. The source code for the contract is
also publicly available and can be validated before usage.
Furthermore, we also assume that the underlying blockchain
network remains secure (no 51% or eclipse attack). All par-
ticipants can trust that the smart contract execution is always
deterministic.

B. THREAT MODELS
Each manager only trusts its own nodes and, by default,
does not trust the operations taken by nodes owned by other
managers. Based on this trust environment, the following
threat models may exist in the system.
Managers can create and register as many nodes as they

want: Managers may perform Sybil attacks with intentions
of (i) flooding the system with bogus accounts and (ii) gain-
ing more reputation scores because the managers’ reputation
score is the sum of their nodes’ score (c.f., Equation 10).
Therefore, the more clients the manager has, the better the
score may become.
Managers can create fake nodes to impersonate other

managers: Managers can create new accounts and claim that
other managers own them. Then, they use these fake accounts
to perform malicious behavior in the pipeline to blame their
competitors.
Managers can lie about their involvement in the pipeline:

In case of an accident in the pipeline, managers may claim
that their generator, relayer, or keeper nodes do not process
suspected data (the one that causes harm) even though they
did so.
Malicious nodes may withhold a given data and delay

the retransmission to the subsequent node: Upon receiving
data from previous nodes, relayer nodes may intentionally
postpone the data processing. In this case, they create a long
delay before transmitting the processed data to the subsequent
nodes. This way, malicious nodes can indirectly prolong the
overall pipeline processing.
Malicious nodes may fabricate false information about

their works: As a continuation of the previous threat,

malicious nodes may provide fake timestamp information
attached to their processed data. This way, when delaying
the retransmission of data, adversaries may break through
other managers’ suspicion by claiming that they process the
data in a very short duration and gain better delivery scores
(c.f., Equation 7).

C. SECURITY GUARANTEES
Based on the previously mentioned security assumptions and
threat models, we analyze that SIGNORA can provide the
following security guarantees.
Theorem: Nodes cannot repudiate their contributions to a

dataflow pipeline.
Proof: Each node must sign the delivered data along with

the signatures from the previous nodes (c.f., Equation 1),
creating a strong verifiable chain-of-execution that provides
non-repudiation properties to all involved nodes. This guar-
antee remains true even if nodes use the arguably weaker
non-repudiation property of the HMAC signature. Because
the manager uploads the HMAC commitment hash to the
blockchain in the early stage (c.f., Equation 4), the associated
nodes cannot refute their signature during the validation stage
(c.f., Equation 5).
Theorem: Keeper nodes cannot modify the stored data

without being detected.
Proof: The keeper nodes anchor their stored data through

Root Hash in the blockchain when creating blockchain
receipts (c.f., Equation 2), which can be used later to verify if
the data is modified or not.
Theorem: Managers cannot impersonate other managers

from a different organization as long as the corresponding
CAs are secure.
Proof: During the identity registration, managers must

include the certificate of their corresponding CAs (c.f., Equa-
tion 3). Lets assume that Cm is the certificate created by
CAm. Then, other party can validate if a given manager’s
address αm belongs to organization m by make sure that
VERPKCAm (αm,Cm) returns True.
Theorem: Managers cannot steal other party’s node iden-

tities as long as the organization account is secure.
Proof: Only m can create nodes n by calling AddNode(·)

method. The mapping between them is stored in the
blockchain. Thus, participants cannot steal nodes’ identities
without compromising the account used to register the nodes.
Theorem: The reputation system discourages organiza-

tions from creating fake nodes and performing Sybil attacks.
Proof: New nodes will not have any delivery or storage

score; therefore, the resulting reputation scores will always be
zero. Lets assume that a is a new node in the system, za = 0
and tza = 0. The reputation scores for this node in Equation 9

will become Za =
∑

za∈Z 0× e
−

(
tnow−0
texp

)
= 0.

When β 6= 0 , any existing nodes n that have performed
a task in the system will have some value of Zn. The gener-
ator node obtains scores for each data it generates based on
Equation 6. The divisors in Equation 7 is an absolute value;
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therefore, relayer nodes always get some score values for each
distribution. Finally, E in Equation 8 is a count value; thus,
E 6= 0 when the keeper nodes have performed some actions.
Based on this reasoning, the reputation of existing nodes will
always be bigger than 0. Thus, new nodes do not have any
benefit over existing nodes.

Assume that a manager m owns several of new nodes
Am = {1, 2, 3, . . . , a, . . .A} on top of existing nodes Qm =

{1, 2, 3, . . . , q, . . .Q}. A and Q are the total number of new
and existing nodes. Themanager reputation fromEquation 10
can be calculated as follows.

Zm =
∑
q∈Qm

Zq +
∑
a∈Am

Za,where q, a ∈ N

=

∑
q∈Qm

Zq + 0

The scores from new nodes do not impact the overall orga-
nization scores. Therefore, managers cannot gain any score
advantage simply by creating a lot of new nodes.
Theorem: Nodes are discouraged from withholding data

processing in the pipeline.
Proof: Let us assume that node n withholds the data pro-

cessing to delay the overall pipeline workflow. Because of
how the delivery score is calculated in Equation 7, n’s action
are not beneficial for n’s sake because it will create a bigger
divisor when compared to the timestamp processed by previ-
ous node (n− 1), resulting in a lower score.
Theorem: The reputation system remains secure as long as

we can trust the timestamp.
Proof: In PAIR mode, each node records the chainsig

metadata in the smart contract using AddChainsig(·) method.
The smart contract code will create a timestamp tn in the
blockchain depending on the time this method is executed.
Since we trust the smart contract, we can also trust the
created timestamp. Furthermore, the timestamp tzn from Sub-
mitScore(·) method is also performed similarly. Thus, it has
the same trust guarantee as tn.
Because the chainsig metadata in FULLmode is processed

off-chain, each node can generate fake timestamps when
relaying chainsig to one another. Assuming that the receiving
nodes n are honest, if they found that tn−1 < tn−2, which
means that the sender (n − 1) creates invalid out-of-order
timestamp, n can report this malicious behaviour to the smart
contract using SubmitReport(·) method. Otherwise, if n found
that tn−1 > tn, which means that the sender generates ahead-
of-time timestamp, n can also report this malicious actions
to the smart contract. The contract will mark the timestamp
when n execute SubmitReport(·) method in the blockchain.
Thus, the validator can later verify if n’s claim against the
sender is true or not.

Unfortunately, the system cannot detect a fake timestamp
that is not out-of-order or ahead-of-time in FULLmode. Such
timestamp integrity is difficult to validate in an off-chain
scenario. A possible solution is to get the timestamp from
Trusted Execution Environment (TEE). However, this will

FIGURE 3. The testbed environment that is used in this paper.

limit the requirement of joinable nodes to only TEE-enabled
devices and reduce system openness.

V. EXPERIMENTAL RESULTS
This section analyzes and discusses our proposal’s feasibility
and possible overhead based on our local testbed environment
shown in Figure 3.

A. OFF-CHAIN EVALUATION
We first measure the overhead of our chain of signature and
blockchain receipt implementation in an off-chain scenario,
where we analyze parts of the proposals unrelated to the
blockchain.

1) SETUP
The experiment is performed in hardware with the following
specification: Intel Core i7-10700K CPU @ 3.80 GHz and
Samsung DIMM @ 2667MHz RAM. We build docker con-
tainers utilizing 1 core of CPU and 2 GB of RAM to run the
benchmark. SIGNORA’s dataflow integrity provisioning and
validation is implemented in the Go language.

2) PRODUCING CHAINSIG BENCHMARK
a: SCENARIO
We perform multiple creating-chainsig operations for up to
100 chains. The first node signs a given data payload and
generates a genesis signature. After that, the node passes the
data and signature to the second node. The node first verifies
the received signature when receiving signatures from the
previous node. Then, the node signs the received data and
signatures to generate a new subsequent signature. After that,
this node relays the data and signature to the subsequent
nodes following a configuration whether the node applies
FULL or PAIR mode. These steps repeat until they reach the
last node, the 100th node.

It is essential to point out that we perform this scenario
100 times at each chain, using various signature algorithms
such as ECDSA, EdDSA, RSA, and HMAC. Meanwhile, the
SHA256 algorithm is chosen as a complementary hashing
method to generate the signature. We also vary the data
payload size using a configuration of 1 KB, 10 KB, 100 KB,
and 1 MB data payload to simulate many application use
cases (e.g., IoT, Web, Multimedia files). Furthermore, all
nodes are simulated on the same docker container; therefore,
we ignore the network latency between nodes and focus more
on the internal processing at each node. Finally, we record
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the execution time for each scenario and present the results
in Figure 4.

b: RESULTS
First of all, huge drops appear at the early chains (from
chain #1 to chain #2) throughout the whole scenario because
it is easier (having less overhead) to generate the genesis
chainsig than extending a chainsig. The node only needs
to perform signing operations when generating, while the
node must perform verification and signing operations when
extending.

Second, during transmission of chainsig to subsequent
nodes, the sender must encode or marshall the chainsig ele-
ment to JSON format. The receiver decodes or unmarshals the
JSON into the Go object and obtains the transmitted chainsig
element. After that, the node can verify the last element and
extend it by producing a new signature. We notice that this
JSON marshaling cause some overheads during our bench-
mark. The bigger the size of input data to encode or decode,
the slower the system processes it. Thus, the total overhead
in Figure 4 is for both marshaling and generating/verifying a
signature.

Third, the performance of FULL worsens as the number of
chains grows when processing 1 KB, 10 KB, and 100 KB of
data payload (c.f., Figure 4(a), 4(b), 4(c)).

In FULLmode, each node must relay data and all previous
chainsig it receives (from (N−N+1)th to theN th signature) to
the next node. As we can see from Figure 5(a), the chainsig
size grows linearly as the number of chains increases. The
amount of data to encode, decode, sign, and verify then
becomes bigger at later chains, thus, decreasing the through-
put. For 1 KB and 10 KB data payload scenarios, the size of
chainsig is greater than the data payload itself. This causes
a big difference in the amount of data to process between
the beginning of the chain and at the later chain, pushing
those scenarios to suffer more performance degradation than
the 100 KB scenario.

On the other hand, PAIR mode allows each node to
relay only the data, the (N − 1)th signature, and the N th

signature to the next node instead of relaying the whole
chain of signatures. Therefore, the number of data pay-
loads that each node must encode, decode, sign and verify
remains relatively the same throughout the whole 99 chains
(c.f., Figure 5(b)). This behaviour results in more consistent
overall performance throughout the whole chains, as shown
in Figure 4(e), 4(f), 4(g), and 4(h).

Fourth, the throughput of FULL and PAIR are relatively
similar on 1 MB data payload (c.f., Figure 4(d) and 4(h)).
At higher data payload, the difference of the total number of
data to process between FULL and PAIR is slightly small
because the data payload is way bigger than the chainsig size.

Finally, the HMAC performance is better at 1 KB and
10KB data payload sizes. However, HMAC losses to ECDSA
and EdDSA at 100 KB and 1 MB scenario. This may sug-
gest that HMAC is better used on smaller data payload
sizes. Moreover, the performance of RSA is outperformed

by ECDSA and EdDSA throughout the whole scenario while
also producing larger chainsig sizes compared to ECDSA and
EdDSA.

3) VALIDATING CHAINSIG BENCHMARK
a: SCENARIO
We first generate up to 100 chains using the same data pay-
load size, signature, and hashing algorithms as the previous
benchmark. Then, wemeasure the execution time of verifying
chainsig from the latest N th signature down to the genesis
(N −N +1)th signature. This scenario is used to simulate the
overhead of a third-party validator when verifying a chainsig.
Finally, we run our experiment 100 times and record the
execution time to complete each scenario at the end of each
run. The results are summarized in Figure 6.

b: RESULTS
The overall trends show that the throughput of verifications
significantly decreased as chains increased. This is because
more chains mean that the system must verify more elements
of chainsig. For example, during chain #100, the system
must verify 100 signatures, while in chain #50, the system
validates 50 signatures. Furthermore, the data payload size
also impacts the verification speed, with a more extensive
data payload yielding slower throughput than a smaller data
payload.

Similar to the results in the previous benchmark, HMAC
seems to generate better results on the smaller data payload
(1 KB and 10 KB), while ECDSA and EdDSA outperform it
in larger data payload sizes (100KB and 1MB). Interestingly,
RSA verification performance is better compared to ECDSA
and EdDSA. This result is in line with the findings in the
community that suggest RSA verifications are faster than
ECC-variant [23].

4) BLOCKCHAIN RECEIPT BENCHMARK
a: SCENARIO
We analyze the blockchain receipt implementation for diverse
data payload sizes: 1 KB, 10 KB, 100 KB, and 1 MB using
multiple hashing algorithms from the SHA-2 family such
as SHA224, SHA256, SHA384, and SHA512. We assume
the system will generate a root hash whenever the total data
accumulated in the storage reaches 100MB. Furthermore, the
system generates one corresponding leaf hash for each data
payload. As a result, for a 1 KB data payload, the system
creates 100,000 leaf hashes, while it produces 100 leaf hashes
for a 1 MB data payload.

We run simulations of generating and verifying receipts
100 times and record the execution time to complete each
scenario.We alsomeasure the size of blockchain receipts pro-
duced in each scenario. Figure 7 summarizes our experiment
results.

b: RESULTS
The throughput of generating and verifying receipts increases
as the data payload size rises (c.f., the result of 1KB and 1MB
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FIGURE 4. The performance evaluation of creating chainsig using FULL (a-d) and PAIR (e-h) mode on multiple data byte: 1 KB (a, e), 10 KB (b, f),
100 KB (c, g), and 1 MB (d, h). SHA256 algorithm was used to create up to 100 chains of signatures using multiple signature algorithms: ECDSA, EdDSA,
RSA, and HMAC.

FIGURE 5. The size of chainsig in FULL (a) and PAIR (b) mode. SHA256
algorithm was used to create up to 100 chains of signatures using
multiple signature algorithms: ECDSA, EdDSA, RSA, and HMAC.

in Figure 7(a) and 7(b)). A higher data payload produces
fewer leaf hashes, meaning the system performs hashing
operations less frequently. However, the throughput increase
does not scale linearly as we can see that the performance
of 100 KB and 1 MB data payload are nearly similar in
Figure 7(a) and 7(b). Finally, the performance of SHA384
and SHA512 is higher than SHA224 and SHA256 algo-
rithms because we run the experiment on the x64 machine.
In contrast, the x86 machine will favor the latter over the
former [24].

In terms of storage, a smaller data payload size generates
a larger total byte size of receipts (c.f., Figure 7(c)) since
smaller data payload generates more leaf hashes. Further-
more, the hashing algorithms also determine the receipt byte
size. The figure shows that SHA512 produces more receipt
bytes than the alternatives.

B. ON-CHAIN EVALUATION
In the next experiment, we evaluate our implemented smart
contract methods as one way to analyze blockchain-related
performance.

1) SETUP
We build a docker container utilizing 1 core of CPU and 2 GB
of RAM to run Ganache [25], a simulated local Ethereum
testbed. The SIGNORA smart contract is written in Solidity
language and is deployed to the Ganache network using
Truffle [26]. SIGNORA client communicates with Ganache
using the Web3 library.

2) SMART CONTRACT COMPLEXITY
Ethereum introduces a ‘‘gas’’ unit to prevent nodes from
overloading the network (e.g., storing massive garbage data
or performing an infinite loop that depletes other nodes’
resources). Most operations done in the Ethereum network
is subject to a gas. For example, the amount of transactions
inserted into a block is partly controlled by a ‘‘gas limit.’’
The execution of smart contract methods also has the same
restrictions in which the more complex the method is, the
more gas it consumes, resulting in a higher transaction fee.
Therefore, it is ideal for contract methods to be as efficient
and straightforward as possible.

We can analyze the overhead of on-chain operations by
measuring the gas used property for each implemented
smart contract method. Table 4 summarizes the list of
SIGNORA smart contract’s methods and their gas con-
sumptions. Only writeable methods are subject to a gas
fee; meanwhile, read-only methods, e.g., GetChainSig(·) or
GetReputation(·), do not consume gas because they do not
modify the blockchain network state.
Results: Adding a new node costs more (about twice)

than registering for a new manager or validator. The node
registration for generator, relayer, or keeper nodes includes
mapping between the manager and nodes. Therefore we store
more data in this method, increasing the gas consumption.
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FIGURE 6. The performance evaluation of verifying chainsig from multiple data bytes: 1 KB (a), 10 KB (b), 100 KB (c), and 1 MB (d). SHA256 algorithm
was initially used to create up to 100 chains of signatures using multiple signature algorithms: ECDSA, EdDSA, RSA, and HMAC.

FIGURE 7. The performance evaluation of creating (a) and verifying (b) blockchain receipts on multiple data bytes: 1 KB, 10 KB, 100 KB, and 1 MB.
Multiple hashing algorithms such as SHA224, SHA256, SHA384, and SHA512 are used to generate receipts. The total size of the generated receipt is
shown in (c).

TABLE 4. List of writable smart contract methods in SIGNORA. The USD
price statistic is taken from ETH Gas Station [27] on Feb 14th, 2022, using
an average gas price of 48 Gwei.

Regarding the key registration, RSA is implemented with a
270 bytes long public key, encoded in X.509 format; ECDSA
generates 64 bytes long public key while EdDSA produces
32 bytes key. Because of the limitation in storing bytes in
Solidity, we have to split the long keys into an array of
32 bytes. We then save the key-length information so that we
can reformat the arrays back to the original form. A lengthy
public key such as RSA is a disadvantage because it consumes
more gas than the rest. Finally, the HMAC secret key is

represented as a commitment hash using the KECCAK-256
algorithm. Because the algorithm always returns a fixed
32 bytes length hash string, we can save only the hash (with-
out length information) in the contract, resulting in cheaper
gas consumption.

During daily operations, nodes must submit their signa-
tures (as parts of the chainsig element) to the smart con-
tract when using PAIR mode. The gas consumption for
this step depends on the cryptographic algorithms. HMAC
(in SHA-256) produces a shorter signature length than oth-
ers. EdDSA comes in second place, which is slightly more
efficient than ECDSA. Meanwhile, RSA generates longer
signatures than the alternatives, thus, consuming the most
gas. Aside from signature, this method also stores additional
information such as the signature length, signature algorithm,
timestamp, and task identifier. Therefore, this method con-
sumes a lot of gas.

The smart contract saves the timestamp, the reporter
address, and the task identifier when reporting a malicious
behavior. Meanwhile, revealing HMAC and adding root hash
only deals with a 32-byte hash; hence, they consume less gas
than reporting cases. The adding validation score is expensive
because we track the root hash to prevent validators from
adding multiple scores for a given user, rendering a double
scoring impossible. Finally, contract deployment is the most
expensive operation among all methods. This behavior is
expected since we need to store the smart contract’s byte-
code in the blockchain. SIGNORA contract produces about
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3.6 million gas, which is still within a boundary of Ethereum
block size (about 15-30 million gas). Thus, it can be appro-
priately deployed in the public network.

In conclusion, some of the gas costs are manageable. For
example, the contract deployment and identity registration
are performed only once during the contract’s lifetime. Thus,
higher gas metrics can be considered investments. Similarly,
the key registration also happens less frequently (one in a very
long time), assuming that the corresponding secret key is not
leaked. The reporting procedure is an optional step that nodes
can take when receiving malicious chainsig elements. When
malicious activities rarely happen, calls to this method are not
frequent.

Moreover, even though some methods produce high gas
consumption and must be executed frequently, several steps
can be taken off-chain to save transaction costs. For exam-
ple, the keeper nodes can adjust the internal parameters on
how frequently they form a root hash and anchor it to the
blockchain. If the root hash can be produced once in a long
duration, it can cut the gas cost. The validator can aggregate
the evaluation score for each node off-chain and then sub-
mit the aggregated scores to the contract. Finally, adding a
chainsig element to the smart contract is very expensive to be
performed frequently. Therefore, we provide an alternative of
PAIR mode, which is FULL mode.

Note that if developers decide to use permissioned/private
blockchains instead of public ones, the gas consumption
will have less impact on the system. Still, this metric is
an excellent evaluation of the system’s efficiency. Finally,
the transaction fee for executing the method’s call is sub-
ject to market economic evaluations; thus, the total fee can
fluctuate.

3) REPUTATION SYSTEM
a: MEASURING CONTRIBUTION SCORES
We set the bounty scores β to 50 or 100. This parameter
setting is merely used as an example. Developers can tweak
this value according to their desired use cases. We then create
a simulation to show how generator, relayer, and keeper nodes
can improve their reputation scores.

Based on Equation 6, generators’ contribution scores are
calculated based on the number of data they can produce
within a given validation time window. Therefore, we see
linear growth in Figure 8(a); generators obtain scores as more
data being generated. Similarly, keepers nodes also improve
their contribution scores based on the number of stored chain-
sig elements (c.f., Equation 8). Hence, we can see the same
linear growth in Figure 8(c).

Unlike previous scenarios, relayer nodes must process and
retransmit the received data to the next node as quickly as
possible to obtain the best scores. Figure 8(b) shows that the
higher the processing delay, the smaller contribution scores
that a relayer node can get from the system. In this case, we set
texp from Equation 7 to 60 seconds. If node takes longer than
60 seconds to process data, they will receive 0 scores.

TABLE 5. List of configurations used to calculate contribution scores.
Node 1 is the generator node; Node 2 and Node 3 are relayers, while
Node 4 acts as the keeper node.

b: MEASURING DECAY OF REPUTATION SCORES
The reputation score for nodes and managers will expire over
time. The developer can control how fast the score expires
using texp parameter. We first set one initial reputation score
(zn in Equation 9) to 1000. After that, we set the texp to
either 30 or 60 seconds. Similar to previous evaluations, these
numbers are chosen merely as examples. We then call the
GetReputation(·) method every second and record the result
to see how the reputation score evolves.

Figure 9(a) shows that shorter duration of texp makes the
reputation score to reduce to zero more quickly than longer
duration of texp. Furthermore, a low value of texp also makes
the scores decrease more drastically in the early seconds
(having a deeper slope in the first 20 seconds) than the high
value of texp. This indicates that the systemwill quickly ignore
this particular score in lower texp. Scores closer to zero will
have less impact when it is summed together in Equation 9.

c: MEASURING DYNAMIC OF REPUTATION SCORES
Four nodes (n1, n2, n3, n4) are deployed in the system. n1 is
a generator node. n2 and n3 are relayer nodes. n4 is a keeper
node. We also have two managers (m1,m2). m1 owns n1 and
n4 while m2 governs n2 and n3.
At each validation time window, n1 generates 100 data,

which are relayed by n2 and n3 to n4. n2 is considered a slow
processing node that processes data with a 10 minutes delay,
while n3 can process data quickly with a 5minutes delay. This
processing delay corresponds to |tn − tn−1| in Equation 7,
and we previously set the texp for Equation 7 to 20 minutes.
Because we have four nodes, the number of chainsig elements
becomes 4. For each chainsig, n4 creates one receipt resulting
in 100 leaf hashes. The summary of the simulation parameters
is shown in Table 5.

Contribution scores (i.e., the generation, delivery, and stor-
age scores) are then calculated based on Equation 6, 7, and 8
for all nodes. The resulting scores are then submitted to
the smart contract by calling SubmitScore(·) method at the
end of each validation time window. Note that the bounty β
parameter is set to 100, and the validation is performed every
20 minutes.

We present the simulation over 3 hours duration, including
(i) a 2-hour active period (where we validate nodes, calculate
contribution scores, and add the scores to the smart contract
every 20 minutes) and (ii) a 1-hour non-active period, where
no scores will be added. During this simulation, we call
the GetReputation(·) method every minute and plot nodes’
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FIGURE 8. The results of contribution score evaluation: for generator (a), relayer (b), and keeper (c) nodes.

FIGURE 9. The results of reputation system evaluation: the decay of reputation score (a), node reputation (b), and manager reputation (c).

and managers’ reputation overtime in Figure 9(b) and 9(c).
Note that, texp for Equation 9 is configured with the value of
1200 seconds.

Several observations can be made from those figures. First,
nodes and managers are initiated with zero reputation scores.
Hence, we ensure that new nodes always have the lowest
scores possible.

Second, the reputation scores for managers are exactly
the sum of reputation scores from all managers’ nodes
(c.f., Equation 10).

Third, nodes and managers improve their reputation scores
as we add contribution scores during the active period (at
t ≤ 120 ). They obtain the scores every 20 minutes,
hence, their scores are updated accordingly at t = 21,
41, 61, 81, 101, and 121.
Fourth, the resulting reputation scores form the sawtooth

wave due to the stored contribution scores decay over time
(c.f. Equation 9). The highest scores (peak) happen right after
we update the scores at t = 21, 41, 61, 81, 101, and 121.
The reputation scores put attention only on the recent score
updates. Old scores will contribute less to the equation, and
therefore, with static score updates, nodes can see drastic
peak increases at t = 0 to t ≤ 61 , but later only see steady
peak increases at t = 61 to t ≤ 121 . This indicates that new
nodes are rewarded with a good amount of reputation scores
at the beginning to catch up with the scores of existing nodes.
However, at some point, the only way to maintain their scores
is by actively conducting honest behavior to receive the same
amount of contribution scores at regular intervals.

Finally, similar to Figure 9(a), the reputation scores
keep decreasing towards zero values during the non-active
period (at t > 121). Given a very long non-active period
(e.g., at t � 180 ), all nodes’ scores will be much closer
to zero. This behavior is intentional as we want to incentivize
active behaviors from nodes. We should treat existing nodes
as new nodes when they are inactive for a long time.

4) WHITE-BOX TESTING
Once the smart contract has been deployed in the blockchain
network, it cannot be patched if a bug is found. Hence,
unit testing becomes crucial in smart contract development.
We have developed 49 unit test scenarios to ensure that
SIGNORA smart contract works as intended. The test sce-
narios include not only primary cases such as registering
user, chainsig, root hash, or scores but also more complex
scenarios such as implementing access control when calling
methods (e.g., only the manager can add nodes) and time-
limited restrictions on methods’ call (e.g., submitting scores
can only be done in validation stage).

5) DEPENDENCY ON BLOCKCHAIN NETWORK
In this study, we do not propose a new blockchain net-
work. Instead, our framework resides on top of the existing
Ethereum blockchain network, whether it is a public or per-
missioned blockchain. Therefore, we inherit the security and
performance properties of the actual implementation of the
blockchain network. Because of this reasoning, we refrain
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from analyzing the underlying peer-to-peer network per-
formance such as throughput (in terms of transactions per
second), latency, CPU, RAM, and storage consumption.
Those metrics can be varied depending on the blockchain
consensus algorithm (c.f. [28]) and have been intensely
investigated in [29].

VI. DISCUSSION
This section discusses several limitations and pointers to
deploying our proposal in production cases.

A. HYBRID MODE
FULL mode is cheaper to operate in public blockchain
because of having lesser on-chain processing compared to
PAIR mode. However, it requires many network resources
to transmit chainsig off-chain (from genesis to the latest),
especially in a higher number of pipeline nodes. On the other
hand,PAIRmode can reduce the off-chain network resources
and have a stronger integrity guarantee than FULL mode
at the expense of higher on-chain cost. Ideally, if the same
organization owns all nodes inside a pipeline, we can safely
use FULL mode to generate chainsig because all nodes are
trusted. However, suppose they belong to different organiza-
tions. In that case, it is more beneficial (if economic cost is
not the issue) to use PAIR mode because we can provide a
better non-repudiation guarantee and limit the possibility of
malicious behavior through on-chain processing. As a trade-
off, a hybrid approach between FULL and PAIR mode can
then be made out of this trend. For example, given n1, . . . , n5
pipeline, if n1 and n2 belongs to m1, n3 comes from m2, and
m3 deploy n4 and n5. Then, we can put FULL mode from n1
to n2 and from n4 to n5. Meanwhile, the PAIR mode is built
on n2, n3, and n4.

B. PERMISSIONED BLOCKCHAIN
On permissioned blockchain, we suggest using PAIR mode
on all pipeline nodes rather than using FULL mode because
we do not need to pay the transactions fee when call-
ing the smart contract methods; thus, extending chainsig
becomes affordable. This makes FULL mode less attractive
in comparison.

C. ORDER OF PIPELINE NODES
Because chainsig performance drops on a higher number of
chains when using FULL mode, more resource-constrained
devices should not be put in the latter chain order. On the
other hand, the order does not matter in PAIR mode because
every node transmits about the same amount of bytes to the
subsequent nodes.

D. ONLY ON ESSENTIAL DATAFLOW
Based on our evaluation results, the generations and
validations of chainsig and receipt produce overheads that
may hinder day-to-day operational tasks. Therefore, we sug-
gest limiting SIGNORA use case only to be employed on

‘‘essential dataflow’’ 3 such as control sequence data that
have a massive impact on the pipeline workflow. This way,
SIGNORA can protect the system with minimal overhead.

E. CRYPTOGRAPHY ALGORITHMS
The chosen cryptography algorithm to use should depend
on the actual use cases. For example, asymmetric cryptog-
raphy becomes mandatory if the system needs a solid non-
repudiation guarantee. Therefore, we suggest using either
ECDSA or EdDSA because they produce better performance
and lower signature bytes with the same security strength as
RSA. However, RSA should only be used if those two options
cannot be implemented due to backward compatibility or
policy issues. On the other hand, if the system can accept the
non-repudiation guarantee of HMACkey distribution through
the proposed commitment hash, we suggest using HMAC if
the delivered data is small (less or equal than 10 KB) since it
can significantly improve the performance.

F. DATA LEAKAGE
Blockchain transparency can benefit multiple parties to
quickly audit the correctness of the data stored in the net-
work. However, this transparency also brings privacy issues
in which all nodes that connect to the blockchain network can
see the data. In our case, observers (valid blockchain nodes)
can pinpoint the participants’ identity and status. For exam-
ple, to which organizations they belong (by observing the
CAs), the current reputation scores (by calling methods in the
smart contract), and the number of pipeline nodes that partici-
pants have (by monitoring the mapping in the smart contract).
Furthermore, if using PAIR mode, the chainsig metadata is
also revealed in the blockchain; therefore, the relationship
between pipeline nodes can be leaked as well. Depending
on the production requirements, this kind of data publicity
may not be tolerable. Therefore, a thought-out design for
constructing the blockchain networkmust be implemented by
considering permissioned blockchain networks if necessary.

G. TRUSTED IDENTITIES
Our proposal is not fully decentralized because it requires
trusted CA and validators to enable trust among multiple
organizations. The trust is enforced easily in a centralized
manner, for example, using the current PKI-based certificate
management [30] for TLS/SSL. Meanwhile, decentralized
solution such as PGP [31] or Web of Trust [32] is still not
widely used.

H. MOTIVATION TO VALIDATE
The reputation system is functional as long as it is reliable.
Some policy enforcements or incentives are required for
participants to use the reputation system and drive system
usability. For example, the Openly Operated standard [33],
which requires service providers to be transparent and audited
regularly, is a good starting point to motivate participants to

3We leave the definition of ‘‘essential dataflow’’ to the developers as it
differs from one use case to another.
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audit their system using SIGNORA. When enforced correctly,
this standard will drive the validation requests and make
the reputation system alive because of a higher number of
contribution score updates.

VII. CONCLUSION
This paper proposed SIGNORA, a framework to provide
dataflow integrity provisioning on an untrusted data pipeline.
SIGNORA combined the concept of a chain of signatures with
blockchain receipt, where involved participants took turns
producing signatures of data they were currently processing.
The hash of the data and signatures were then anchored
in the blockchain for a stronger integrity guarantee through
blockchain receipt.

Through the results of our experiments, we have shown
that SIGNORA can provide dataflow integrity provisioning
in multiple scenarios of data payload size with reasonable
overhead. The cost of smart contract methods has also been
analyzed, and several off-chain solutions have been addressed
to reduce costs. Furthermore, we have shown that the rep-
utation system can adapt to the history of nodes’ activities
by increasing their scores when they actively perform honest
behavior and reducing their scores when they become inac-
tive.

Still, developers must make crucial design decisions when
deploying SIGNORA in their use case. For example, using
a permissioned blockchain allows developers to eradicate
the cost of storing data in the blockchain, but the system
becomes more centralized. Furthermore, the chain of signa-
tures should only be employed to provide integrity only on
essential dataflow to reduce the overall processing overhead,
especially in a high number of pipeline nodes.

For future works, we plan to improve our performance
further and solve JSON marshaling issues by refactoring the
code to be more efficient and employing an in-memory cache
to speed up overall data processing. The vertical scalabil-
ity of our code will also be investigated to reap the multi-
threading benefits of the deployed hardware. Furthermore,
SIGNORA can be implemented in Trusted Execution Envi-
ronment (TEE) to solve the blockchain oracle issues further
(e.g., make a trustable off-chain timestamp) that are still
present in the current system.
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