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ABSTRACT Understanding students’ emotional states during the learning process is one of the important
aspects to improve learning quality. Measurements of emotion in an academic setting can be performed
manually or automatically using a computer. However, developing an emotion recognition method using an
imaging modality that is contactless, harmless, and illumination-independent is challenging. Thermography,
as a non-invasive emotion recognition method, can recognize emotion variance during learning by observing
the temperature distributions in a facial region. Deep learning models, such as convolutional neural networks
(CNNs), can be used to interpret thermograms. CNNs can automatically classify emotion thermograms
into several emotional states, such as happiness, anger, sadness, and fear. Despite their promising ability,
CNNs have not been widely used in emotion recognition. In this study, we aimed to summarize the previous
works and progress in emotion recognition in academic settings based on thermography and CNN. We first
discussed the previous works on emotion recognition to provide an overview of the availability of modalities
with their advantages and disadvantages.We also discussed emotion thermography potential for the academic
context to find if there is any information in the available emotion thermal datasets related to the subjects’
educational backgrounds. Emotion classification using the proposed CNNmodel was described step by step,
including the feature learning illustration. Lastly, we proposed future research directions for developing a
representative dataset in the academic settings, fed the segmented image, assigned a good kernel, and built
a CNN model to improve the recognition performance.
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INDEX TERMS Academic emotions, convolutional neural network, deep learning, emotion recognition,
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I. INTRODUCTION20

Classroom is a placewhere students experiencemany types of21

emotion while doing activities, such as completing projects,22

taking exams, and building social relationships. Emotions,23

such as enjoyment, curiosity, interest, hope, pride, anger, anx-24

iety, shame, confusion, frustration, and boredom frequently25

emerge during the learning process. Emotions experienced in26

educational settings have a strong correlation with students’27

The associate editor coordinating the review of this manuscript and

approving it for publication was Ge Wang .

academic achievement and personal growth. Experiencing 28

positive emotions, such as enjoyment, while working on class 29

projects can help students envision goals, improve creativity 30

and problem solving, and support self-regulation [1], [2], [3]. 31

On the other hand, experiencing negative emotions, such as 32

anxiety, can hinder academic performance and negatively 33

influence physical and psychological health [4]. The impor- 34

tance of emotions in education also equally applies to teach- 35

ers, authorities, and administrators [5]. 36

Emotions comprise a set of psychological processes, 37

including affective, cognitive, physiological, motivational, 38
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and expressive components [6]. Since emotions are mentally39

represented in the conscious mind and humans are able to40

communicate their feelings using verbal language, self-report41

has been widely used as a method to measure academic42

emotions [7]. Test anxiety, the first emotion method using43

self-report measurement, has been used since the 1930s [8].44

It also has dominated emotion studies until the 1990s [3].45

Later, researchers began to develop amethod tomeasure other46

types of emotion.47

However, self-report as a measurement instrument has48

several disadvantages. First, the assessment of emotional49

responses is limited to what is represented in the conscious50

mind [9]. Second, it has limited language preferences [10].51

Last, it is difficult to maintain the respondents’ emotions52

during the assessment. Self-report emotion has a possibility53

to produce a biased report [11]. Regarding the above issues,54

there is an opportunity to complement or substitute self-report55

with other methods to fill the gap. With the advancement of56

Affective Computing (AC) researchers are able to objectively57

measure academic emotions in a real-timemanner, both in the58

conscious and subconscious mind [12].59

AC is a multidisciplinary area that attempts to explore60

human affective experiences using computer technology61

combined with other disciplines, such as psychology, edu-62

cation, cognitive science, neuroscience, sociology, and psy-63

chophysiology. With AC, it is possible to detect, express,64

and create a system that is able to feel emotions [13], [14].65

AC has great potential considering recent studies showing66

that emotional skill is one of the key factors that supports67

various activities, especially in critical related fields, such68

as health, security, and engineering [15]. AC studies are69

challenging since in humans, emotional states usually are less70

varied during activities, especially in learning [16].71

The number of AC studies in education has steadily72

increased since 2010 [17]. There are various modalities that73

have been used, such as textual, visual, vocal, physiolog-74

ical, and multimodal, which indicate that various sensing75

technologies have been widely utilized. The advancement76

of computationally efficient devices and cheap sensing77

instruments have made it possible for an emotion recogni-78

tion system to be massively implemented in the education79

sector.80

Among other modalities, research focus on assessing81

human physiological signals to measure emotion in AC has82

significantly increased since 2011 [12]. Most measurement83

methods used were contact-based, such as to record skin84

conductance response, electroencephalography signals, facial85

expression recognition, and electrocardiogram measurement.86

However, contact-basedmethods can prevent elicitation in the87

subjects while wearing sensors [18].88

Nevertheless, based on a review conducted by [17],89

body temperature measurement has not yet been explored.90

As warm-blooded beings, humans self-regulate their own91

body core and skin conditions to adapt to environmental92

changes and internal needs [19]. The self-regulating process93

involves physiological activities, and it has an impact on94

temperatures changes. These changes can be interpreted as 95

signals to understand the human body and mind. 96

The human face has been widely chosen as a local area 97

of emotion recognition because, as a part of the body, it is 98

highly responsive to emotions [20]. It can express more than 99

30 emotional states [21], be easily recorded, and is naturally 100

exposed to social stimuli [22]. This condition is suitable for a 101

classroom setting where the face becomes the most exposed 102

part during the learning process. Thermal changes on facial 103

regions have also been dominantly explored in their relation 104

with human affective states considering a human face consists 105

of a number of micro-muscle units [23]. It causes temperature 106

changes whenever they are activated [24]. 107

Recently, several computer-based methods have been 108

developed to recognize facial expression through thermo- 109

grams [22], [25], [26], [27], [28], [29], [30], [31], [32]. Pre- 110

vious research shows that feature learning is still performed 111

manually and not specifically designed for the education 112

sector. However, so far, there is no study focusing on develop- 113

ing non-invasive emotional expression thermography using a 114

Deep Neural Network (DNN), especially for the education 115

sector. 116

Considering the current limited resources, it can be said 117

that the work on emotion recognition using facial thermog- 118

raphy based on DNN for the education sector is still at 119

its early stage. Hence, significant effort is required to ini- 120

tiate the development of a reliable non-invasive technol- 121

ogy to enable the recognition of emotional expressions for 122

academic purposes. The study can be directed and focused 123

on substantial issues identified during research to provide 124

a better understanding of the most suitable approach to be 125

implemented. 126

In this study, we aimed to review the current progress 127

in emotion expressions recognition using Deep Learn- 128

ing (DL) and the use of thermography as a non-invasive 129

approach. We also highlighted necessary future research 130

directions to improve the accuracy of emotion recognition 131

using thermal-imaging and DL for the academic context. 132

The novelty and contributions of this study are arranged as 133

follows: 134

• Section II presents review strategy on selecting refer- 135

ences used on this paper 136

• Section III describes an overview of emotions in aca- 137

demic settings. 138

• Section IV presents the current measurements of emo- 139

tions in academic settings. 140

• Section V presents the state-of-the-art of CNN as an 141

image classifier in the DNN model for emotion recog- 142

nition. 143

• Section VI discusses previous research on emotion clas- 144

sification using the available algorithms and CNN mod- 145

els. 146

• Section VII proposes recommendations for future works 147

• Section VIII summarizes future direction and its chal- 148

lenges to improve the accuracy and processing speed. 149
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FIGURE 1. Distribution of studies based on publication source.

II. REVIEW STRATEGY150

In this study, we considered the articles from journals, con-151

ferences, and workshops published in the English language152

from 2010 to 2022. This period of time is chosen considering153

the term Affective Computing has been increasingly used154

in education sector since 2010 [12]. However, there is no155

effort that specifically focuses on the implementation of two156

recent potential technologies namely thermography and deep157

learning published from 2010 onwards.158

A. STUDY SELECTION PROCESS159

This review consisted of both manual and automatic search160

for selecting the references. We reviewed several digital161

databases including IEEE Explore, Springer Link, Science162

Direct, ISI Web of Knowledge. The main search key-163

words/phrase used in this study includes: ‘‘affective comput-164

ing’’, ‘‘affective computing in education’’, ‘‘academic emo-165

tion’’, ‘‘emotion recognition’’, ‘‘thermal imaging’’, ‘‘artifi-166

cial intelligence for thermal emotion’’, ‘‘emotion recognition167

database’’. Manual search was done for selecting the refer-168

ences to ensure that all relevant articles were retrieved for169

review. During the review process, if new articles were found,170

the search process was started again. The step repeated until171

no new article was found.172

B. DATA EXTRACTION173

The automatic search conducted on the selected digital174

libraries retrieved 232 studies. After manually checking the175

title, abstract, keywords, and conclusions of these studies,176

157 studies excluded because there where not clearly relevant177

to our goal, leaving 123 studies. Figure 1 shows the distribu-178

tion of studies based on publication source.179

Figure 1 shows that the majority of sources were from180

journals 95 (77%), followed by conference 24 (20%), and181

workshop 4 (3%).182

In this research, each paper was classified into one of183

four relevant categories: emotions in academic settings, mea-184

surement of emotions in academic settings, thermogram-185

based emotion recognition in education, and deep learning186

for thermogram-based emotion recognition in education.187

FIGURE 2. Distribution of studies categories.

Figure 2 demonstrates that the most common deep learn- 188

ing studies for thermogram-based emotion recognition in 189

education 31% (38 articles), followed by thermogram-based 190

emotion recognition in education 28% (34 articles), measure- 191

ment of emotions in academic settings 26% (32 articles) and 192

emotions in academic settings 15% (19 articles). 193

III. EMOTIONS IN ACADEMIC SETTINGS 194

Academic emotions are defined as emotions experienced by 195

students in a learning environment [33]. Academic emotions 196

have a strong correlation with students’ achievement in the 197

learning process [34]. Achievement emotions are emotions 198

related to the activities or outcomes based on competency 199

set by certain standards [5]. In education, the activities are 200

mostly related to academic activities, such as studying, doing 201

exams and homework, having class discussions, doing stu- 202

dent projects, succeeding or failing in these activities. The 203

emotions can also be caused by cognitive loads of infor- 204

mation and time taken to process the information related to 205

knowledge-generating aspects of cognitive activities [35]. 206

During a learning process, a student can experience var- 207

ious types of emotion depending on the focus of attention. 208

In addition, emotion can be stimulated by the topic being 209

discussed and influence students’ and teachers’ interest and 210

motivation in an academic environment [36]. Lastly, social 211

emotions have a strong influence on students’ engagement 212

during class interactions and emotions caused by the events 213

outside school, such as problems in the family [37]. 214

A. EMOTION COMPONENTS 215

Emotions are multicomponent structures that can be differen- 216

tiated from one another. The structures help us know the emo- 217

tions that play a role in learning and teaching, the emotions 218

that should be encouraged and discouraged, and the ways to 219

regulate emotions in educational settings [5]. 220

Emotions consist of multiple components viz subjective 221

feeling, action tendency, appraisal, motor activity, and phys- 222

iological component [38], [39], [40]. Each component is 223

associated with a different function. Subjective feeling is 224

associated with a monitoring function, action tendency with 225
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FIGURE 3. Plutchik model [45].

communicative function, appraisal with meaning-making226

function, and physiological with the support function of other227

components.228

Several models have illustrated the structures of emo-229

tion, such as Plutchik’s Circumplex Model [38], Scherer’s230

Component Model [41], Geneva’s Emotion Wheel [42], and231

Willcox’s Feeling Wheel Model [43]. An attempt to connect232

emotion measurement with a computational system has been233

performed by Kelley [44], in which he used two emotional234

models, namely the Plutchik (Figure 3) and the Willcox235

model (Figure 4).236

B. EMOTIONS IN EDUCATION: CONTENT DOMAIN,237

CONTEXT AND CULTURE238

Emotions in education can be experienced differently in each239

content domain. Both teachers and students often have a240

complex interaction that requires a cognition process, stim-241

ulating positive or negative emotions. In addition, activities242

in a school subject often involve activities, such as prob-243

lem solving, procedure handling, dealing with new concepts,244

adjusting to the learning standard defined in a curriculum,245

doing frequent evaluations, and adapting to various situa-246

tions. These activities may stimulate different kinds of emo-247

tion [47].248

School subjects, such as science education presenting in249

human pursuit, may also trigger certain kinds of emotion.250

During the teaching process, a student may experience more251

complex types of emotion than a teacher [48].252

In educational settings, students frequently engage in read-253

ing and comprehending content materials through writing254

activities. These tasks involve organizing and communicating255

FIGURE 4. Wilcoxx model [46].

written thoughts [49]. Reading and writing activities involve 256

positive and negative emotions whichmay cause anxiety [50]. 257

Emotions may also appear in daily classroom life. Emo- 258

tions during interrelationship between students and teach- 259

ers have a central role in supporting learning achieve- 260

ment [51]. Cultural backgrounds may uniquely involve emo- 261

tions depending on race, ethnicity, and identity during the 262

learning process [52]. 263

IV. MEASUREMENT OF EMOTIONS IN ACADEMIC 264

SETTINGS 265

A. AVAILABLE MODALITIES 266

The number of AC studies in the education domain mod- 267

erately has increased since 2010. They are grouped into 268

five categories, namely textual, visual, vocal, physiologi- 269

cal, and multimodal channels [17]. The methods used to 270

assess emotional states vary from self-reporting and expert 271

observation [53], [54], [55], [56]; facial expression, body 272

poses, and gestures [57], [58], [59]; speech and intonation 273

[60], [12], human organ system monitoring, such as elec- 274

troencephalogram (EEG), electrocardiogram (ECG), heart 275

rate variability (HRV), blood volume pulse (BVP), and eye- 276

tracking [61], [62], [63], [64], to integration of different 277

channels [65], [66], [67], [68], [69]. Most of the previous 278

AC studies focused on negative emotions, in which the 279

researchers attempted to find suitable techniques to manage 280

negative emotions to improve learning quality [70], [71]. The 281

available methods used in different modalities are presented 282

in Table 1. 283

B. CURRENT MODALITIES: ADVANTAGES AND 284

DISADVANTAGES 285

Textual modality has several advantages. First, it is easy 286

to implement. Second, it does not depend on specific 287
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TABLE 1. Methods used in the available modalities to measure emotions
in academic settings.

instruments. Third, the instruments it requires are more cost-288

effective. Last, it can provide meaningful feedback. However,289

textual modality also has several disadvantages, such as not290

being real-time, having low accuracy and limited language291

preferences.292

Visual channel also offers several benefits. First, it is nat-293

urally exposed. Second, it can be observed visually. Third,294

it is practical to use. Last, the equipment it requires is afford-295

able. However, the noise, image processing complexity, and296

privacy issues have become the issues of this modality type.297

Being natural, noticeable, accurate, practically deployable298

are the advantages of the vocal modality. However, it also299

has some limitations, such as using dialogue-based systems,300

being time- and resource-consuming, and having cultural and301

language differences.302

There are two advantages of physiological signals. First,303

they have closer access to body bio-signals. Second, it can be304

implemented in a real-timemanner. On the other hand, the use305

of the physiological instruments has several drawbacks, such306

as being less observable and uncomfortable, having privacy307

issues, requiring highly controlled environmental settings as308

well as specialized and fragile equipment, and being difficult309

to interpret.310

Multimodal channel proposes better approaches to over-311

come the constraints of a single channel with great potential312

to generate a more accurate measurement. However, there are313

technical issues when integrating multiple channels and com-314

plexity in data analysis [17]. Table 2 sums up the advantages315

and disadvantages of current modalities.316

C. THERMAL IMAGING AND VISUAL IMAGING: A317

COMPARISON318

Capturing affect-related physiological signatures can be done319

in contactless manner such as bodymotion-based system [72]320

and voice-based system [73]. In addition, the signatures can321

be also performed via non-contact sensing devices such as322

visual cameras [74] and thermal cameras [75], [76].323

In order to understand the advantages of thermal imaging324

over visible imaging, we need to understand how they work.325

TABLE 2. Advantages and disadvantages of the available modalities in
measuring emotions in the academic settings.

Basically, visible cameras mimic how human eyes work that 326

only sensitive to a narrow range of visible light of electro- 327

magnetic spectrum. They collect data from objects through 328

the radiations in the visible spectrum objects’ surface emits 329

or reflects when hit by source of light [77]. This means that 330

without emission from visible light sources such as the sun or 331

incandescent bulbs, this vision system is generally unable to 332

sense objects. 333

However, thermal cameras are designed to capture infrared 334

radiations while visible cameras are not. According to 335

Planck’s law, every object above absolute zero temperature 336

emits thermal radiation. Most of emitted radiations fall in the 337

infrared spectrum range (0.9 – 14 µm) rather than visible 338

spectrum range (380 – 780 nm) [78]. 339

Since thermal and visual imaging work on different elec- 340

tromagnetic spectrum, thermal imaging could be more infor- 341

mative than visual imaging because: 342

1. Visible imaging suffers from illumination effects such 343

as extremes of darkness and brightness due to sensor 344

saturation or sensitivity [79], [80] while thermal imag- 345

ing is less affected than those constraints [81]. 346

2. Thermal imaging has less privacy issues rather than 347

visual imaging [81]. 348

3. Thermal imaging can penetrate smokes, aerosols, dust, 349

and mist more effectively than visual imaging [82]. 350
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4. Thermal imaging is able to read more different types351

of physiological activities other than visual imaging352

ability [75], [83], [84].353

V. THERMOGRAM-BASED EMOTION RECOGNITION IN354

EDUCATION355

This section discusses four main aspects of thermogram-356

based emotion recognition in education. First, it explains the357

thermography potential in terms of body heat generation from358

humans’ physiological activity and its relationship with emo-359

tions. Second, it presents the advantages of using thermog-360

raphy for emotion recognition compared to other modalities.361

Third, it describes public dataset availability in the academic362

context. Last, it discusses the available techniques to extract363

thermal features related to emotions in facial regions.364

A. POTENTIAL365

A number of recent studies have shown a strong correlation366

between emotion response and automatic nervous system367

(ANS) activity. However, the level of specificity of ANS368

activation widely diverges, varying from undifferentiated369

arousal to clearly specific predictions of patterns for cer-370

tain emotions [85]. Some studies show that physiological371

aspects are strongly related to ANS, such as cardiovascular,372

respiratory, perspiratory, and muscular activity. Signals gen-373

erated from these physiological cues have been widely used374

to measure a person’s affective states [86], [87], [88], [89].375

Recent studies show that the use of choreography provides376

possibilities for thermal imaging to monitor physiological377

signatures from facial regions. The most widely imple-378

mented aspect to physiological thermal signals is temperature379

change triggered by activities related to cardiovascular activ-380

ity [89], [90], [91], [92], [93].381

Vasodilation and dilatation in cardiovascular activity382

induce thermal directional changes and have demonstrated383

temperature patterns mainly in the facial areas [89], [90],384

[91], [92], [94], [95]. Vasoconstriction causes a decrease385

in temperature, whereas vasodilation occurs in the opposite386

way. They work by narrowing or widening blood vessels,387

causing blood flow to decrease or increase. It also has a strong388

correlation with temperature changes. In addition to that, skin389

regions containing many sweat glands also cause either an390

increase or decrease in temperature [96], [84], [97].391

Furthermore, air exchanges from the breathing cycle can be392

monitored using thermal imaging because it produces thermal393

patterns [98], [99], [100], [101], [102], [75]. Lastly, muscular394

activation can also be observed using thermal imaging and is395

closely be linked with behavioral changes related to human’s396

affection [76].397

B. EMOTION THERMOGRAPHY IN EDUCATION398

Despite its great potential, thermography is still understudied.399

There is only a little amount of research devoted to ther-400

mography for emotion recognition in education. Thermog-401

raphy presents more advantages compared to the other listed402

methods.403

First, as a non-invasive method, it provides a better oppor- 404

tunity to capture actual emotions. The use of a contact- 405

based method may prevent elicitation of genuine emotions 406

while wearing the device [18]. This is suitable for capturing 407

emotions during the learning process. Second, it is a risk- 408

free monitoring system. The use of other measurements, such 409

as sound and magnetic force, can harm our health [103]. 410

Third, it needs a low-cost thermal camera that has been 411

available in the market, unlike other methods that require 412

expensive equipment with electromagnetic spectra, such as 413

gamma, x-rays, ultraviolet, and other higher ranges of fre- 414

quency [104]. Last, thermography does not depend on the 415

illumination effect because it only relies on thermal emission 416

from an object where a visible camera is light-sensitive [105]. 417

C. DATASET OF EMOTION THERMOGRAPHY IN 418

EDUCATION 419

In deep learning, a dataset can be treated by a computer 420

for analytic and prediction purposes. This paper attempts 421

to explore the available datasets of emotion thermography 422

to identify the correlation with education by investigating 423

the educational backgrounds of human subjects used on the 424

datasets. Table 3 presents the available emotion datasets of 425

the human subjects with their educational backgrounds. 426

Table 3 shows that there are only two datasets that 427

contain the information on the human subjects’ educa- 428

tional background information, namely the USTC-NVIE and 429

KTFE database. Although all datasets are made for gen- 430

eral purposes, these two datasets are the readiest datasets to 431

implement in the academic context. Having compared both 432

datasets, we found that USTC-NVIE is superior to KTFE for 433

several reasons. First, USTC-NVIE represents more general 434

features because it has a greater number of participants. It also 435

consists of 215 students while KTFE only has 26 students. 436

Second, USTC-NVIE only has one age group (17-31 years 437

old), whereas KTFE has more diverse age groups ranging 438

from children to adults (12-32 years old). Children are not 439

small adults. Unlike adults, children’s neurological develop- 440

ment is still actively growing [115]. 441

D. FACIAL EMOTION THERMAL FEATURES 442

The main goal of feature extraction is to obtain the most 443

relevant information from the original data and represent 444

the information in a lower dimensionality shape [116]. For 445

the computational process, when the data to be input to an 446

algorithm are too large and have potential to be reduced, 447

transforming them into a reduced representation set of fea- 448

tures is necessary. 449

Recent studies reported that facial muscular ther- 450

mal signature has a relation to human’s affective states 451

[24], [76], [107], [117], [118]. In addition, facial micro- 452

muscle activations generate heat and contribute to the pro- 453

duction of numerous emotional expressions. 454

Wang et.al [107] proposed the use of Principal Component 455

Analysis (PCA) and Linear Discriminant Analysis (LDA) to 456

reduce the dimension and select informative features of the 457
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TABLE 3. Emotion thermography dataset with educational background
information.

activated facial action units and K-nearest neighbors is used458

as a classifier. Each emotion has particular thermographic459

patterns or characteristics in several parts of the human460

face, such as nose, mouth, eyes, forehead, and cheeks [119].461

To retain temperature for data analysis [107], thermogram462

images are segmented manually into five regions to ensure463

consistent segmentation, as shown in Figure 5.464

The three-step ANOVA analysis using five statistical465

parameters was used. The first step is to ensure which sta-466

tistical parameter is the most useful to reflect temperature467

changes related to emotion changes. The second step aims to468

monitor which facial regions with different emotional states469

result in the greatest temperature change. The third step is470

FIGURE 5. Face segmentation of five facial regions (forehead, eyes, nose,
mouth, and cheeks) [107].

FIGURE 6. Neural network model mimics the human nervous system
[121].

to analyze which emotional states differ most in each facial 471

sub-region. 472

VI. DEEP LEARNING FOR THERMOGRAM-BASED 473

EMOTION RECOGNITION IN EDUCATION 474

Artificial Neural Network (ANN) mimics the physiology 475

and functioning of the human brain. Like the human brain, 476

each neuron receives input and performs a dot operation 477

with weights and biases. Weight describes the strength of the 478

connection between two nodes, whereas bias is an external 479

value that changes the network input of the activation function 480

[120]. Nodes are described as individual processing units in 481

each layer. Figure 6 illustrates themathematical model of how 482

NN operates. 483

An ANN comprises neurons as units with activation func- 484

tion ϕ(·) and parameter θ = {W ,B}, where W is the vector 485

of weights (kernel) while B is the vector of biases. Equation 486

(1) formulates the convolution operation [122]. 487

y =
∑

i
wixi + b = ϕ(W T x + B) (1) 488

The activation function defines a linear combination of 489

input x with respect to neurons and parameters, followed 490

by element-wise non-linearity. The function also decides 491

whether the neuron status is active or inactive based on the 492

weighted sum of input signals. 493
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The ANN learns the data to understand the process of data494

and data interpretation, and to predict future outcomes. Pre-495

dictions do not require a probabilistic accuracy rate. However,496

high accuracy is necessary to ensure that decision making497

during learning is efficient.498

ANN has some advantages in terms of learning ability,499

generalization, and robustness [123], [124]. Recently, studies500

in the neural networks have increased significantly, especially501

in Deep Neural Networks (DNNs) [125]. Deep Learning502

(DL) along with neural networks with multi hidden layers503

and massive training data aims to learn essential feature504

representation of the data by constructing high-level features505

from low-level pixels. Among other various DL techniques,506

Convolutional Neural Network (CNN) is the most widely507

used.508

CNN is a DL algorithm that processes input images by509

assigning certain learnable weights and biases to map impor-510

tant features to differentiate one image from another. The511

output of CNN is the classification results. While performing512

data learning using CNN, three phases must be considered:513

dataset image pre-processing, feature learning, and classifica-514

tion steps. The classification may comprise several emotional515

states, such as happiness, anger, neutrality, disgust, fear, sad-516

ness, and surprise. In the next section, we will review the517

concepts and attempts in CNN implementation for emotion518

recognition classification of the dataset associated with the519

provided academic backgrounds of human subjects.520

A. IMAGE PRE-PROCESSING AND FACIAL EXTRACTION521

Image pre-processing is a step that aims to improve the522

quality of image data by eliminating the unwanted parts of523

the data and enhancing the important features to increase524

the performance of the NN model. In many cases, image525

pre-processing is crucial to support the learning process in526

terms of accuracy or timing process. Image pre-processing527

may be performed using mean subtractions, normalization,528

PCA whitening, and local contrast normalization [126].529

Unlike visible images, thermal-based images comprise dif-530

ferent characteristics of geometric, appearance, and texture531

[127]. Thermal-based images need different pre-processing532

methods for image enhancement and noise reduction, espe-533

cially for facial extraction. Several studies have shown vari-534

ous methods to enhance thermal images and to extract facial535

regions, as shown in Table 4.536

Table 2 shows variousmethods proposed for thermal image537

enhancement and facial extraction. In terms of the recognition538

performance, the best method for a general dataset still cannot539

be decided since each study was conducted using thermal540

cameraswith different specifications, different environmental541

settings, and varied subjects’ backgrounds. This statement is542

also strengthened by [138] that agrees there is no particular543

standard dataset for thermal facial emotion recognition imag-544

ing used consistently across the studies. However, consider-545

ing the available datasets supported by the advancement of546

the current pre-processing techniques and various improved547

algorithms, there is still a great opportunity available to548

TABLE 4. Emotion thermography datasets pre-preprocessing and facial
extraction techniques.

produce a system with more accurate measurement and lower 549

computational cost in the future. 550

B. CONVOLUTIONAL NEURAL NETWORKS (CNNs) IN 551

THERMAL FACIAL EMOTION RECOGNITION (FER) 552

The ability to shift from hand-crafted feature extraction 553

to automatic learning through Neural Networks (NN) has 554

brought some advantages for thermal image translation to 555

visible image translation [142], [143], [144] and automated 556

vector extraction of facial emotion recognition [145]. Early 557

works on the implementation of thermal FER in Deep Learn- 558

ing (DL) began in 2014. Table 5 summarizes the studies of 559

thermal FER in DL. 560
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TABLE 5. Studies of thermal FER in deep learning.

Table 5 demonstrates that the majority of the DL models561

used were Convolutional Neural Networks (CNN). This find-562

ing shows that CNNs are still considered themost suitable DL563

technique for image recognition, especially for thermal FER564

because CNN is a deep network that imitates how the brain565

processes and recognizes images [150]. CNN enables feature566

extraction to learn patterns from high dimensional inputs567

performed automatically. As shown in Figure V, a CNN568

architecture consists of two main layers: a feature extraction569

layer and a fully connected layer.570

1) FEATURE EXTRACTION LAYER571

A feature extraction layer is a phase where input images are572

extracted to generate image features. This layer consists of573

two sub-layers: a convolutional layer and a pooling layer.574

The convolutional layer performs image conversion using575

convolution operation by applying digital filters (kernels).576

Raw FER images taken from a thermal camera are usually577

converted into visual images consisting of three-color chan-578

nels (RGB), where these three channels correspondwith three579

kernels. A kernel slides along the width and height of the580

input feature map, where each slide denotes the dot product581

operation of each part from the feature map with a suitable582

kernel value. For instance, an image transformed into a 4× 4583

2D feature image contains numbers. Then, a 2×2 convolution584

filter is applied to it.585

The convolutional layer performs the multiplication of the586

feature image with the filter size of 2 × 2. This procedure is587

repeated until the whole input area is multiplied by the filter.588

The resulting values are then summed to generate one output589

called activation map. The number of feature maps depends590

on the sizes of the kernels.591

In the convolution operation, the size of stride and padding 592

must be taken into account. Stride is the parameter that deter- 593

mines the steps taken along the horizontal positions followed 594

by vertical positions. For instance, if the stride size is 2, the 595

kernel steps will consist of 2 pixels in a horizontal position 596

and 2 pixels in a vertical position [126]. The smaller stride 597

produces more detailed information retrieval. However, the 598

smaller stride size is not always related to good performance. 599

Output dimension will always be smaller than the size of 600

the input dimension, except the kernel size being 1× 1 width 601

and the stride size being 1 × 1. Since the output will be 602

fed as input for the next layer, more information will be 603

rendered unnecessary. To overcome this obstacle, a padding 604

parameter is applied to the input. Padding is the parameter 605

determining the number of pixels to be added at each side of 606

the input to manipulate the output dimension of the feature 607

map. By applying the padding to all input sides, the output 608

dimension can be made equal. This allows a deeper convo- 609

lutional layer to be applied, which results in more features 610

being extracted. The padding step may improve the DNN 611

performance by allowing the convolution filter to identify true 612

information among zero values. 613

The feature map from the feature layer process is then 614

fed into the pooling layer. The pooling layer comprises one 615

filter with a certain size of stride. In the convolutional layer, 616

the feature map is up-sampled. To avoid overfitting, in the 617

pooling layer, the dimension of the feature map is reduced. 618

There are two commonly used activation functions in this 619

layer: max pooling and average pooling. The maximum value 620

of the feature maps is selected in the max-pooling, whereas 621

the average value of feature maps is selected in the average 622

pooling. 623

CNN layers are commonly followed by a non-linear acti- 624

vation function. The activation function takes an input with 625

a real value and transforms it into small ranges, such as 626

[0,1] and [1,1]. The implementation of the activation function 627

allows NNs to learn from non-linear mapping. It works like a 628

switch that decides whether a neuron can be activated or not 629

when provided with certain inputs. Sigmoid, Tanh, and ReLU 630

activation functions are widely used in DNN [126]. 631

In the learning features, CNNs iterate convolution and 632

max-pooling processes several times to recognize the features 633

of the input. Figure 7 illustrates the convolutional process 634

using facial expression thermograms as the input images. 635

Since each input has three channels (RGB), each kernel also 636

comprises three kernels. The size of each kernel is determined 637

by the number of feature maps. 638

Figure 8 illustrates the visual results of the convolutional 639

phases of the NN in learning the features of the facial ther- 640

mograms’ affective states. The feature maps are stored in the 641

pooling layer, and the position of one pixel in the activation 642

function of one channel corresponds to the same position in 643

the original image. Each tile in the grid of the feature map 644

represents the convolution results of the input image with a 645

particular kernel. Some feature maps provide important infor- 646

mation about the input images. The interpretation of feature 647
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FIGURE 7. Visualization of the convolutional process of a facial emotion thermogram; modified from a previous study [151].

mapping results indicates that a suitable kernel confidently648

extracts the input features. Assigning a good kernel should649

reduce the training time to make the learning process perform650

rapidly.651

2) FULLY CONNECTED LAYER652

A fully connected layer, also known as a dense layer, operates653

based on features of an image from the feature extraction654

layer and generates an output. Feature maps resulting from655

the convolutional layer are in the form of a multidimensional656

array. A fully connected layer reshapes the multidimensional657

array into one dimensional array (vector). Each input from the658

feature extraction layer is fully mapped to final outputs with659

the probability score of each class in a classification task. The660

final fully-connected layer usually has the same number of661

output nodes as that of classes [152]. Figure 9 demonstrates662

fully connected layers with the classification results of the663

recognition process described in the probability value of each664

output.665

3) IMAGE CLASSIFICATION666

Image classification is a process of categorizing and labelling667

images according to their visual content and specific rules.668

The training process where a thermogram with a given emo- 669

tional state label is known as supervised learning [153]. 670

CNN often produces the categories with different proba- 671

bilistic values that will decide the types of emotions being 672

displayed in the thermograms. The output categories will be 673

an array of numbers between 0 and 1. One common type of 674

output model is the soft-max function. The soft-max function 675

works by calculating the probability of an output image over 676

possible target classes [152]. 677

4) BACKPROPAGATION 678

Backpropagation is performed in the final layer of CNN and 679

is only used during the training process. With backpropa- 680

gation, NNs learn from errors during training. This process 681

iteratively updates weights and changes the biases’ values 682

to zero based on the differences in the target output and 683

predicted output. 684

An optimization algorithm is needed to reduce loss. 685

Recently, several algorithms applied as optimizers, such 686

as stochastic gradient descent (SGD) [154], limited- 687

BGFS [155], parallelized SGD [156], stochastic variance 688

reduced gradient [157], and Adam optimizer [158]. 689
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FIGURE 8. Visualization of segmentation process of a facial emotion thermogram; modified from a previous study [151].

FIGURE 9. Feature mapping of facial emotion thermogram with a size of 244 × 244 into 32 feature maps.

VII. FUTURE DIRECTIONS690

A. REPRESENTATIVE DATASET691

The availability of a representative dataset is important for the692

training process. A good dataset will increase the robustness693

of training performance. Several factors must be considered694

when working with a certain dataset. The first factor is the 695

quantity of the dataset. A large number of samples will 696

provide more accurate mean values and reduce the margin 697

error. The second is the quality of the dataset, which has been 698

described in data reliability and feature representation [159]. 699
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The third is dataset domain specific. A good dataset is specif-700

ically built for a suitable case.701

Based on the review of the emotion datasets shown in702

Table 3, the available datasets for thermogram emotion are703

made for the general context even though two of them704

(USTC-NVIE and KTFE) have the educational background705

information of their human subjects. Therefore, it is highly706

necessary to have datasets specifically designed for emo-707

tion recognition in the academic context. The datasets must708

represent content domain, context, and culture in education,709

as described in Section III.B.710

Suitable dataset pre-processing to reduce unwanted data711

and enhancing important image features is also needed. For712

better performance, dataset pre-processing must suit the cho-713

sen CNN model architecture. The right pre-processing step714

will increase emotion recognition accuracy and decrease time715

process.716

B. AUTOMATIC SEGMENTATION AND AUGMENTATION717

Image segmentation is an important factor in image process-718

ing and computer vision. The segmentation process influ-719

ences the training data, the choice of the network archi-720

tectures, loss functions, training strategies, and performance721

results [159]. Image segmentation can include image denois-722

ing dan taking ROIs of a facial thermogram.723

Another potential strategy is data augmentation. Data aug-724

mentation is an approach to deal with limited datasets. Thus,725

it is a useful technique to improve data learning, increase726

interpretation accuracy, and minimize the time needed for the727

emotion recognition process.728

C. GOOD KERNEL729

CNN enables automatic feature extraction. Automatic extrac-730

tion simplifies the complexity provided bymanual extraction.731

A good kernel is achieved by knowing important features in732

facial emotion thermograms. This information is important733

because we can shorten the feature learning process when734

designing a DL model. In addition, a convolutional calcu-735

lation may be minimized, and the classification process can736

take place more efficiently.737

D. LIGHTWEIGHT MODEL738

Designing a simple CNN model with adequate layers and739

good kernels can speed up the convolution computation.740

A lightweight model will enable an emotion recognition sys-741

tem to be implemented widely in the academic context. The742

system can be used for self-evaluation using a mobile device743

or a low-cost computer with aminimum specification to allow744

the installation in every classroom to monitor students’ and745

teachers’ emotional states.746

VIII. CONCLUSION747

This study has presented a review of thermography for emo-748

tion recognition using deep learning in academic settings.749

We conclude that understanding emotional states during the750

learning process is one of the key aspects to developing a751

better learning system. Thermography has been proposed 752

considering its advantages compared to other computer-based 753

emotion recognition methods. Thermography enables emo- 754

tion recognition to be interpreted from signals generated 755

from internal physiological activities represented in thermal 756

distribution. 757

Thermal distribution on facial regions can be evaluated 758

using computer-assisted technology to measure emotional 759

states. This technology can automatically perform feature 760

extraction to minimize errors. Our review has shown that the 761

current NN models have achieved higher accuracy rates in 762

emotion recognition classification. Nevertheless, the perfor- 763

mance of the NNs model still has to be improved. 764

Further research needs to work toward an improved clas- 765

sification of facial emotion thermograms in the academic 766

context. This will require providing representative datasets, 767

preparing suitable ROIs, assigning good kernels, and imple- 768

menting lightweight models. These objectives will improve 769

performance in terms of computation time efficiency and 770

increase classification accuracy rates. A suitable method 771

using thermography can be proposed for self-evaluation and 772

the learning process in a classroom during learning. 773
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