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ABSTRACT Understanding students’ emotional states during the learning process is one of the important
aspects to improve learning quality. Measurements of emotion in an academic setting can be performed
manually or automatically using a computer. However, developing an emotion recognition method using an
imaging modality that is contactless, harmless, and illumination-independent is challenging. Thermography,
as a non-invasive emotion recognition method, can recognize emotion variance during learning by observing
the temperature distributions in a facial region. Deep learning models, such as convolutional neural networks
(CNNs), can be used to interpret thermograms. CNNs can automatically classify emotion thermograms
into several emotional states, such as happiness, anger, sadness, and fear. Despite their promising ability,
CNN s have not been widely used in emotion recognition. In this study, we aimed to summarize the previous
works and progress in emotion recognition in academic settings based on thermography and CNN. We first
discussed the previous works on emotion recognition to provide an overview of the availability of modalities
with their advantages and disadvantages. We also discussed emotion thermography potential for the academic
context to find if there is any information in the available emotion thermal datasets related to the subjects’
educational backgrounds. Emotion classification using the proposed CNN model was described step by step,
including the feature learning illustration. Lastly, we proposed future research directions for developing a
representative dataset in the academic settings, fed the segmented image, assigned a good kernel, and built
a CNN model to improve the recognition performance.

INDEX TERMS Academic emotions, convolutional neural network, deep learning, emotion recognition,
thermograms.

I. INTRODUCTION academic achievement and personal growth. Experiencing

Classroom is a place where students experience many types of
emotion while doing activities, such as completing projects,
taking exams, and building social relationships. Emotions,
such as enjoyment, curiosity, interest, hope, pride, anger, anx-
iety, shame, confusion, frustration, and boredom frequently
emerge during the learning process. Emotions experienced in
educational settings have a strong correlation with students’
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positive emotions, such as enjoyment, while working on class
projects can help students envision goals, improve creativity
and problem solving, and support self-regulation [1], [2], [3].
On the other hand, experiencing negative emotions, such as
anxiety, can hinder academic performance and negatively
influence physical and psychological health [4]. The impor-
tance of emotions in education also equally applies to teach-
ers, authorities, and administrators [5].

Emotions comprise a set of psychological processes,
including affective, cognitive, physiological, motivational,
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and expressive components [6]. Since emotions are mentally
represented in the conscious mind and humans are able to
communicate their feelings using verbal language, self-report
has been widely used as a method to measure academic
emotions [7]. Test anxiety, the first emotion method using
self-report measurement, has been used since the 1930s [8].
It also has dominated emotion studies until the 1990s [3].
Later, researchers began to develop a method to measure other
types of emotion.

However, self-report as a measurement instrument has
several disadvantages. First, the assessment of emotional
responses is limited to what is represented in the conscious
mind [9]. Second, it has limited language preferences [10].
Last, it is difficult to maintain the respondents’ emotions
during the assessment. Self-report emotion has a possibility
to produce a biased report [11]. Regarding the above issues,
there is an opportunity to complement or substitute self-report
with other methods to fill the gap. With the advancement of
Affective Computing (AC) researchers are able to objectively
measure academic emotions in a real-time manner, both in the
conscious and subconscious mind [12].

AC is a multidisciplinary area that attempts to explore
human affective experiences using computer technology
combined with other disciplines, such as psychology, edu-
cation, cognitive science, neuroscience, sociology, and psy-
chophysiology. With AC, it is possible to detect, express,
and create a system that is able to feel emotions [13], [14].
AC has great potential considering recent studies showing
that emotional skill is one of the key factors that supports
various activities, especially in critical related fields, such
as health, security, and engineering [15]. AC studies are
challenging since in humans, emotional states usually are less
varied during activities, especially in learning [16].

The number of AC studies in education has steadily
increased since 2010 [17]. There are various modalities that
have been used, such as textual, visual, vocal, physiolog-
ical, and multimodal, which indicate that various sensing
technologies have been widely utilized. The advancement
of computationally efficient devices and cheap sensing
instruments have made it possible for an emotion recogni-
tion system to be massively implemented in the education
sector.

Among other modalities, research focus on assessing
human physiological signals to measure emotion in AC has
significantly increased since 2011 [12]. Most measurement
methods used were contact-based, such as to record skin
conductance response, electroencephalography signals, facial
expression recognition, and electrocardiogram measurement.
However, contact-based methods can prevent elicitation in the
subjects while wearing sensors [18].

Nevertheless, based on a review conducted by [17],
body temperature measurement has not yet been explored.
As warm-blooded beings, humans self-regulate their own
body core and skin conditions to adapt to environmental
changes and internal needs [19]. The self-regulating process
involves physiological activities, and it has an impact on
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temperatures changes. These changes can be interpreted as
signals to understand the human body and mind.

The human face has been widely chosen as a local area
of emotion recognition because, as a part of the body, it is
highly responsive to emotions [20]. It can express more than
30 emotional states [21], be easily recorded, and is naturally
exposed to social stimuli [22]. This condition is suitable for a
classroom setting where the face becomes the most exposed
part during the learning process. Thermal changes on facial
regions have also been dominantly explored in their relation
with human affective states considering a human face consists
of a number of micro-muscle units [23]. It causes temperature
changes whenever they are activated [24].

Recently, several computer-based methods have been
developed to recognize facial expression through thermo-
grams [22], [25], [26], [27], [28], [29], [30], [31], [32]. Pre-
vious research shows that feature learning is still performed
manually and not specifically designed for the education
sector. However, so far, there is no study focusing on develop-
ing non-invasive emotional expression thermography using a
Deep Neural Network (DNN), especially for the education
sector.

Considering the current limited resources, it can be said
that the work on emotion recognition using facial thermog-
raphy based on DNN for the education sector is still at
its early stage. Hence, significant effort is required to ini-
tiate the development of a reliable non-invasive technol-
ogy to enable the recognition of emotional expressions for
academic purposes. The study can be directed and focused
on substantial issues identified during research to provide
a better understanding of the most suitable approach to be
implemented.

In this study, we aimed to review the current progress
in emotion expressions recognition using Deep Learn-
ing (DL) and the use of thermography as a non-invasive
approach. We also highlighted necessary future research
directions to improve the accuracy of emotion recognition
using thermal-imaging and DL for the academic context.
The novelty and contributions of this study are arranged as
follows:

« Section II presents review strategy on selecting refer-
ences used on this paper

o Section III describes an overview of emotions in aca-
demic settings.

o Section IV presents the current measurements of emo-
tions in academic settings.

o Section V presents the state-of-the-art of CNN as an
image classifier in the DNN model for emotion recog-
nition.

« Section VI discusses previous research on emotion clas-
sification using the available algorithms and CNN mod-
els.

o Section VII proposes recommendations for future works

o Section VIII summarizes future direction and its chal-
lenges to improve the accuracy and processing speed.
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FIGURE 1. Distribution of studies based on publication source.

Il. REVIEW STRATEGY

In this study, we considered the articles from journals, con-
ferences, and workshops published in the English language
from 2010 to 2022. This period of time is chosen considering
the term Affective Computing has been increasingly used
in education sector since 2010 [12]. However, there is no
effort that specifically focuses on the implementation of two
recent potential technologies namely thermography and deep
learning published from 2010 onwards.

A. STUDY SELECTION PROCESS

This review consisted of both manual and automatic search
for selecting the references. We reviewed several digital
databases including IEEE Explore, Springer Link, Science
Direct, ISI Web of Knowledge. The main search key-
words/phrase used in this study includes: ““affective comput-
ing”, “affective computing in education”, “academic emo-
tion”, “emotion recognition”, “‘thermal imaging™, “artifi-
cial intelligence for thermal emotion”, “‘emotion recognition
database”. Manual search was done for selecting the refer-
ences to ensure that all relevant articles were retrieved for
review. During the review process, if new articles were found,
the search process was started again. The step repeated until
no new article was found.

B. DATA EXTRACTION

The automatic search conducted on the selected digital
libraries retrieved 232 studies. After manually checking the
title, abstract, keywords, and conclusions of these studies,
157 studies excluded because there where not clearly relevant
to our goal, leaving 123 studies. Figure 1 shows the distribu-
tion of studies based on publication source.

Figure 1 shows that the majority of sources were from
journals 95 (77%), followed by conference 24 (20%), and
workshop 4 (3%).

In this research, each paper was classified into one of
four relevant categories: emotions in academic settings, mea-
surement of emotions in academic settings, thermogram-
based emotion recognition in education, and deep learning
for thermogram-based emotion recognition in education.
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Figure 2 demonstrates that the most common deep learn-
ing studies for thermogram-based emotion recognition in
education 31% (38 articles), followed by thermogram-based
emotion recognition in education 28% (34 articles), measure-
ment of emotions in academic settings 26% (32 articles) and
emotions in academic settings 15% (19 articles).

Ill. EMOTIONS IN ACADEMIC SETTINGS
Academic emotions are defined as emotions experienced by
students in a learning environment [33]. Academic emotions
have a strong correlation with students’ achievement in the
learning process [34]. Achievement emotions are emotions
related to the activities or outcomes based on competency
set by certain standards [5]. In education, the activities are
mostly related to academic activities, such as studying, doing
exams and homework, having class discussions, doing stu-
dent projects, succeeding or failing in these activities. The
emotions can also be caused by cognitive loads of infor-
mation and time taken to process the information related to
knowledge-generating aspects of cognitive activities [35].
During a learning process, a student can experience var-
ious types of emotion depending on the focus of attention.
In addition, emotion can be stimulated by the topic being
discussed and influence students’ and teachers’ interest and
motivation in an academic environment [36]. Lastly, social
emotions have a strong influence on students’ engagement
during class interactions and emotions caused by the events
outside school, such as problems in the family [37].

A. EMOTION COMPONENTS

Emotions are multicomponent structures that can be differen-
tiated from one another. The structures help us know the emo-
tions that play a role in learning and teaching, the emotions
that should be encouraged and discouraged, and the ways to
regulate emotions in educational settings [5].

Emotions consist of multiple components viz subjective
feeling, action tendency, appraisal, motor activity, and phys-
iological component [38], [39], [40]. Each component is
associated with a different function. Subjective feeling is
associated with a monitoring function, action tendency with

VOLUME 10, 2022



F. Fardian et al.: Thermography for Emotion Recognition Using Deep Learning in Academic Settings: A Review

IEEE Access

remorse ~ " disapproval

FIGURE 3. Plutchik model [45].

communicative function, appraisal with meaning-making
function, and physiological with the support function of other
components.

Several models have illustrated the structures of emo-
tion, such as Plutchik’s Circumplex Model [38], Scherer’s
Component Model [41], Geneva’s Emotion Wheel [42], and
Willcox’s Feeling Wheel Model [43]. An attempt to connect
emotion measurement with a computational system has been
performed by Kelley [44], in which he used two emotional
models, namely the Plutchik (Figure 3) and the Willcox
model (Figure 4).

B. EMOTIONS IN EDUCATION: CONTENT DOMAIN,
CONTEXT AND CULTURE

Emotions in education can be experienced differently in each
content domain. Both teachers and students often have a
complex interaction that requires a cognition process, stim-
ulating positive or negative emotions. In addition, activities
in a school subject often involve activities, such as prob-
lem solving, procedure handling, dealing with new concepts,
adjusting to the learning standard defined in a curriculum,
doing frequent evaluations, and adapting to various situa-
tions. These activities may stimulate different kinds of emo-
tion [47].

School subjects, such as science education presenting in
human pursuit, may also trigger certain kinds of emotion.
During the teaching process, a student may experience more
complex types of emotion than a teacher [48].

In educational settings, students frequently engage in read-
ing and comprehending content materials through writing
activities. These tasks involve organizing and communicating
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FIGURE 4. Wilcoxx model [46].

written thoughts [49]. Reading and writing activities involve
positive and negative emotions which may cause anxiety [50].

Emotions may also appear in daily classroom life. Emo-
tions during interrelationship between students and teach-
ers have a central role in supporting learning achieve-
ment [51]. Cultural backgrounds may uniquely involve emo-
tions depending on race, ethnicity, and identity during the
learning process [52].

IV. MEASUREMENT OF EMOTIONS IN ACADEMIC
SETTINGS

A. AVAILABLE MODALITIES

The number of AC studies in the education domain mod-
erately has increased since 2010. They are grouped into
five categories, namely textual, visual, vocal, physiologi-
cal, and multimodal channels [17]. The methods used to
assess emotional states vary from self-reporting and expert
observation [53], [54], [55], [56]; facial expression, body
poses, and gestures [57], [58], [59]; speech and intonation
[60], [12], human organ system monitoring, such as elec-
troencephalogram (EEQG), electrocardiogram (ECG), heart
rate variability (HRV), blood volume pulse (BVP), and eye-
tracking [61], [62], [63], [64], to integration of different
channels [65], [66], [67], [68], [69]. Most of the previous
AC studies focused on negative emotions, in which the
researchers attempted to find suitable techniques to manage
negative emotions to improve learning quality [70], [71]. The
available methods used in different modalities are presented
in Table 1.

B. CURRENT MODALITIES: ADVANTAGES AND
DISADVANTAGES

Textual modality has several advantages. First, it is easy
to implement. Second, it does not depend on specific
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TABLE 1. Methods used in the available modalities to measure emotions
in academic settings.

Modality Method

Textual - Self-reporting
- Expert Observation
Visual - Facial expression
-Head pose
-Body gesture
Vocal - Speech
- Intonation
Physiological ~ -EEG
-ECG
-HRV
-BVP
- Eye Tracking
Integration of different modalities

Multimodal

instruments. Third, the instruments it requires are more cost-
effective. Last, it can provide meaningful feedback. However,
textual modality also has several disadvantages, such as not
being real-time, having low accuracy and limited language
preferences.

Visual channel also offers several benefits. First, it is nat-
urally exposed. Second, it can be observed visually. Third,
it is practical to use. Last, the equipment it requires is afford-
able. However, the noise, image processing complexity, and
privacy issues have become the issues of this modality type.

Being natural, noticeable, accurate, practically deployable
are the advantages of the vocal modality. However, it also
has some limitations, such as using dialogue-based systems,
being time- and resource-consuming, and having cultural and
language differences.

There are two advantages of physiological signals. First,
they have closer access to body bio-signals. Second, it can be
implemented in a real-time manner. On the other hand, the use
of the physiological instruments has several drawbacks, such
as being less observable and uncomfortable, having privacy
issues, requiring highly controlled environmental settings as
well as specialized and fragile equipment, and being difficult
to interpret.

Multimodal channel proposes better approaches to over-
come the constraints of a single channel with great potential
to generate a more accurate measurement. However, there are
technical issues when integrating multiple channels and com-
plexity in data analysis [17]. Table 2 sums up the advantages
and disadvantages of current modalities.

C. THERMAL IMAGING AND VISUAL IMAGING: A
COMPARISON
Capturing affect-related physiological signatures can be done
in contactless manner such as body motion-based system [72]
and voice-based system [73]. In addition, the signatures can
be also performed via non-contact sensing devices such as
visual cameras [74] and thermal cameras [75], [76].

In order to understand the advantages of thermal imaging
over visible imaging, we need to understand how they work.
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TABLE 2. Advantages and disadvantages of the available modalities in
measuring emotions in the academic settings.

Modality Advantages Disadvantages
Textual - Easy to implement - Not real-time
- Less dependent - Lack of accuracy
Specific instrument - Language barrier
- Cheap
- Meaningful feedback
Visual - Naturally exposed - Noise
- Visually observed - Image processing
- Practically used complexity
- Affordable - Privacy issues
equipment
Vocal - Natural - Dialog based system
- Noticeable - Time-consuming
- Accurate - Culture obstacle
- Practically deployed
Physiological - Closer access to - Visually less-
body bio-signals observable
-Real-time - Uncomfortable
- Privacy issues
- Tight environment
settings
- Specialized and fragile
instrument
- Interpretation
complexity
Multimodal Combination of other - Multiple channel

modalities integration complexity
- Data analysis

complexity

Basically, visible cameras mimic how human eyes work that
only sensitive to a narrow range of visible light of electro-
magnetic spectrum. They collect data from objects through
the radiations in the visible spectrum objects’ surface emits
or reflects when hit by source of light [77]. This means that
without emission from visible light sources such as the sun or
incandescent bulbs, this vision system is generally unable to
sense objects.

However, thermal cameras are designed to capture infrared
radiations while visible cameras are not. According to
Planck’s law, every object above absolute zero temperature
emits thermal radiation. Most of emitted radiations fall in the
infrared spectrum range (0.9 — 14 um) rather than visible
spectrum range (380 — 780 nm) [78].

Since thermal and visual imaging work on different elec-
tromagnetic spectrum, thermal imaging could be more infor-
mative than visual imaging because:

1. Visible imaging suffers from illumination effects such
as extremes of darkness and brightness due to sensor
saturation or sensitivity [79], [80] while thermal imag-
ing is less affected than those constraints [81].

2. Thermal imaging has less privacy issues rather than
visual imaging [81].

3. Thermal imaging can penetrate smokes, aerosols, dust,
and mist more effectively than visual imaging [82].
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4. Thermal imaging is able to read more different types
of physiological activities other than visual imaging
ability [75], [83], [84].

V. THERMOGRAM-BASED EMOTION RECOGNITION IN
EDUCATION

This section discusses four main aspects of thermogram-
based emotion recognition in education. First, it explains the
thermography potential in terms of body heat generation from
humans’ physiological activity and its relationship with emo-
tions. Second, it presents the advantages of using thermog-
raphy for emotion recognition compared to other modalities.
Third, it describes public dataset availability in the academic
context. Last, it discusses the available techniques to extract
thermal features related to emotions in facial regions.

A. POTENTIAL

A number of recent studies have shown a strong correlation
between emotion response and automatic nervous system
(ANS) activity. However, the level of specificity of ANS
activation widely diverges, varying from undifferentiated
arousal to clearly specific predictions of patterns for cer-
tain emotions [85]. Some studies show that physiological
aspects are strongly related to ANS, such as cardiovascular,
respiratory, perspiratory, and muscular activity. Signals gen-
erated from these physiological cues have been widely used
to measure a person’s affective states [86], [87], [88], [89].
Recent studies show that the use of choreography provides
possibilities for thermal imaging to monitor physiological
signatures from facial regions. The most widely imple-
mented aspect to physiological thermal signals is temperature
change triggered by activities related to cardiovascular activ-
ity [89], [90], [91], [92], [93].

Vasodilation and dilatation in cardiovascular activity
induce thermal directional changes and have demonstrated
temperature patterns mainly in the facial areas [89], [90],
[91], [92], [94], [95]. Vasoconstriction causes a decrease
in temperature, whereas vasodilation occurs in the opposite
way. They work by narrowing or widening blood vessels,
causing blood flow to decrease or increase. It also has a strong
correlation with temperature changes. In addition to that, skin
regions containing many sweat glands also cause either an
increase or decrease in temperature [96], [84], [97].

Furthermore, air exchanges from the breathing cycle can be
monitored using thermal imaging because it produces thermal
patterns [98], [99], [100], [101], [102], [75]. Lastly, muscular
activation can also be observed using thermal imaging and is
closely be linked with behavioral changes related to human’s
affection [76].

B. EMOTION THERMOGRAPHY IN EDUCATION

Despite its great potential, thermography is still understudied.
There is only a little amount of research devoted to ther-
mography for emotion recognition in education. Thermog-
raphy presents more advantages compared to the other listed
methods.
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First, as a non-invasive method, it provides a better oppor-
tunity to capture actual emotions. The use of a contact-
based method may prevent elicitation of genuine emotions
while wearing the device [18]. This is suitable for capturing
emotions during the learning process. Second, it is a risk-
free monitoring system. The use of other measurements, such
as sound and magnetic force, can harm our health [103].
Third, it needs a low-cost thermal camera that has been
available in the market, unlike other methods that require
expensive equipment with electromagnetic spectra, such as
gamma, x-rays, ultraviolet, and other higher ranges of fre-
quency [104]. Last, thermography does not depend on the
illumination effect because it only relies on thermal emission
from an object where a visible camera is light-sensitive [105].

C. DATASET OF EMOTION THERMOGRAPHY IN
EDUCATION
In deep learning, a dataset can be treated by a computer
for analytic and prediction purposes. This paper attempts
to explore the available datasets of emotion thermography
to identify the correlation with education by investigating
the educational backgrounds of human subjects used on the
datasets. Table 3 presents the available emotion datasets of
the human subjects with their educational backgrounds.
Table 3 shows that there are only two datasets that
contain the information on the human subjects’ educa-
tional background information, namely the USTC-NVIE and
KTFE database. Although all datasets are made for gen-
eral purposes, these two datasets are the readiest datasets to
implement in the academic context. Having compared both
datasets, we found that USTC-NVIE is superior to KTFE for
several reasons. First, USTC-NVIE represents more general
features because it has a greater number of participants. It also
consists of 215 students while KTFE only has 26 students.
Second, USTC-NVIE only has one age group (17-31 years
old), whereas KTFE has more diverse age groups ranging
from children to adults (12-32 years old). Children are not
small adults. Unlike adults, children’s neurological develop-
ment is still actively growing [115].

D. FACIAL EMOTION THERMAL FEATURES

The main goal of feature extraction is to obtain the most
relevant information from the original data and represent
the information in a lower dimensionality shape [116]. For
the computational process, when the data to be input to an
algorithm are too large and have potential to be reduced,
transforming them into a reduced representation set of fea-
tures is necessary.

Recent studies reported that facial muscular ther-
mal signature has a relation to human’s affective states
[24], [76], [107], [117], [118]. In addition, facial micro-
muscle activations generate heat and contribute to the pro-
duction of numerous emotional expressions.

Wang et.al [107] proposed the use of Principal Component
Analysis (PCA) and Linear Discriminant Analysis (LDA) to
reduce the dimension and select informative features of the
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TABLE 3. Emotion thermography dataset with educational background
information.

Education Age

Dataset Pose Emotions Background  (year)
Equinox Posed Smile, n/a n/a
[106] Frown,
Surprise
USTC- Posed and Happy, 215 students  17-31
NVIE Spontaneous  Angry, (157 males +
[107] Neutral, 58 females)
Disgust,
Fear, Sad,
Surprise
UCHT Posed Happy, n/a n/a
Thermal Sad, Angry FIGURE 5. Face segmentation of five facial regions (forehead, eyes, nose,
Face ’ mouth, and cheeks) [107].
[108]
KTFE Spontaneous  Neutral, 3 post docs, 12-32
Database Angry, 9 PhDs, 11
[109] Happy, masters, 2
Sad, Fear, bachelors, 1
Disgust, pupil
Surprise Activation
Iris [110]  Posed Surprise, n/a n/a s oo
Laugh, o )
Angry <
RGB-D- Posed Neutral, n/a n/a . Summing
T[111] Happy, junction
Sad,
Angry, ©
Surprise
VIS-TH Posed Neutral, n/a n/a L.
[112] Happy, FIGURE 6. Neural network model mimics the human nervous system
Sad, [121].
Angry,
Surprise
RWTH Posed Neutral, / / . . . . .
Aachen s¢ Hz;pr; e e to analyze which emotional states differ most in each facial
Univ Sad, sub-region.
[113] Angry,
Surprise,
Feat, VI. DEEP LEARNING FOR THERMOGRAM-BASED
Disgust, EMOTION RECOGNITION IN EDUCATION
: Contempt Artificial Neural Network (ANN) mimics the physiology
?322 Posed Is\lrizlf;al’ n/a a and functioning of the human brain. Like the human brain,
Database Shocked each neuron receives input and performs a dot operation

[114]

activated facial action units and K-nearest neighbors is used
as a classifier. Each emotion has particular thermographic
patterns or characteristics in several parts of the human
face, such as nose, mouth, eyes, forehead, and cheeks [119].
To retain temperature for data analysis [107], thermogram
images are segmented manually into five regions to ensure
consistent segmentation, as shown in Figure 5.

The three-step ANOVA analysis using five statistical
parameters was used. The first step is to ensure which sta-
tistical parameter is the most useful to reflect temperature
changes related to emotion changes. The second step aims to
monitor which facial regions with different emotional states
result in the greatest temperature change. The third step is

96482

with weights and biases. Weight describes the strength of the
connection between two nodes, whereas bias is an external
value that changes the network input of the activation function
[120]. Nodes are described as individual processing units in
each layer. Figure 6 illustrates the mathematical model of how
NN operates.

An ANN comprises neurons as units with activation func-
tion ¢(-) and parameter 8 = {W, B}, where W is the vector
of weights (kernel) while B is the vector of biases. Equation
(1) formulates the convolution operation [122].

y= wixi+b=¢W'x+B (1)

The activation function defines a linear combination of
input x with respect to neurons and parameters, followed
by element-wise non-linearity. The function also decides
whether the neuron status is active or inactive based on the
weighted sum of input signals.
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The ANN learns the data to understand the process of data
and data interpretation, and to predict future outcomes. Pre-
dictions do not require a probabilistic accuracy rate. However,
high accuracy is necessary to ensure that decision making
during learning is efficient.

ANN has some advantages in terms of learning ability,
generalization, and robustness [123], [124]. Recently, studies
in the neural networks have increased significantly, especially
in Deep Neural Networks (DNNs) [125]. Deep Learning
(DL) along with neural networks with multi hidden layers
and massive training data aims to learn essential feature
representation of the data by constructing high-level features
from low-level pixels. Among other various DL techniques,
Convolutional Neural Network (CNN) is the most widely
used.

CNN is a DL algorithm that processes input images by
assigning certain learnable weights and biases to map impor-
tant features to differentiate one image from another. The
output of CNN is the classification results. While performing
data learning using CNN, three phases must be considered:
dataset image pre-processing, feature learning, and classifica-
tion steps. The classification may comprise several emotional
states, such as happiness, anger, neutrality, disgust, fear, sad-
ness, and surprise. In the next section, we will review the
concepts and attempts in CNN implementation for emotion
recognition classification of the dataset associated with the
provided academic backgrounds of human subjects.

A. IMAGE PRE-PROCESSING AND FACIAL EXTRACTION
Image pre-processing is a step that aims to improve the
quality of image data by eliminating the unwanted parts of
the data and enhancing the important features to increase
the performance of the NN model. In many cases, image
pre-processing is crucial to support the learning process in
terms of accuracy or timing process. Image pre-processing
may be performed using mean subtractions, normalization,
PCA whitening, and local contrast normalization [126].

Unlike visible images, thermal-based images comprise dif-
ferent characteristics of geometric, appearance, and texture
[127]. Thermal-based images need different pre-processing
methods for image enhancement and noise reduction, espe-
cially for facial extraction. Several studies have shown vari-
ous methods to enhance thermal images and to extract facial
regions, as shown in Table 4.

Table 2 shows various methods proposed for thermal image
enhancement and facial extraction. In terms of the recognition
performance, the best method for a general dataset still cannot
be decided since each study was conducted using thermal
cameras with different specifications, different environmental
settings, and varied subjects’ backgrounds. This statement is
also strengthened by [138] that agrees there is no particular
standard dataset for thermal facial emotion recognition imag-
ing used consistently across the studies. However, consider-
ing the available datasets supported by the advancement of
the current pre-processing techniques and various improved
algorithms, there is still a great opportunity available to
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TABLE 4. Emotion thermography datasets pre-preprocessing and facial
extraction techniques.

Study Dataset Method
Kopaczka RWTH - Unsharp mask for image
etal [128] Aachen Univ enhancement
(2016) Gaussian filter for image
smoothing
Kopaczka RWTH HOG with SVM for face detection
etal [129] Aachen Univ
(2018)
Liu and Their own Unified model (Face detection,
Yin [130] dataset and pose estimation, and landmark
USTC-NVIE localization [132] + first frame
of video to calculate head
motion)
Wang et al USTC-NVIE - Otsu Thresholding for image
[132] binarization
- Facial edge detection from a
binary image
Latif et al Their own Contrast Limited Histogram
[133] dataset Equalization (CLHE) to improve
image contrast
Mohd etal  Their own - Viola-Jones boosting
[134] dataset algorithm + Haar features to
detect facial region
- Bilateral filter for noise
reduction and facial edge
detection
Nguyen et KTFE Temperature space method to
al [135] distinguish the facial region from

the background
Bi-modal thresholding method to

Trujillo et IRIS

al [136] locate facial boundaries
Kolli et al Their own Region growing with a
[137] dataset morphological operation for
facial detection
Goulart et Espirito Santo - Median and Gaussian filters to
al [138] University extract the facial region
- Image binarization
Khan et al Their own - Median smoothing filter for
[139] dataset blurring and noise reduction
- Sobel filter for edge detection
Albarran et Their own Image thresholding to separate the
al [140] dataset facial region from the background
Mostafa et Their own A proposed tracking ROI method
al [141] dataset to track facial ROI

produce a system with more accurate measurement and lower
computational cost in the future.

B. CONVOLUTIONAL NEURAL NETWORKS (CNNs) IN
THERMAL FACIAL EMOTION RECOGNITION (FER)

The ability to shift from hand-crafted feature extraction
to automatic learning through Neural Networks (NN) has
brought some advantages for thermal image translation to
visible image translation [142], [143], [144] and automated
vector extraction of facial emotion recognition [145]. Early
works on the implementation of thermal FER in Deep Learn-
ing (DL) began in 2014. Table 5 summarizes the studies of
thermal FER in DL.
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TABLE 5. Studies of thermal FER in deep learning.

Author / Affect ROIs DL Dataset Accuracy
Year States Model

Wang / Spontaneous  Whole =~ DBM  USTC- 62.9%

2014 face NVIE

[132]

Wu/ Posed Whole CNN RGB- 99.4%

2016 face D-T

[145]

Simon / Posed Whole CNN RGB- UNK

2016 face D-T

[111]

Cho/ Stress Nose CNN Custom  85.59%

2017 Dataset

[146]

Elbarawy  Posed Whole  CNN IRIS 96.7%

/2019 face

[147]

Tlikci / Posed Whole  CNN IRIS 92.72%

2019 face

[148]

Kamath/  Posed Whole CNN Tufts 96.2 %

2019 face Face

[149]

Table 5 demonstrates that the majority of the DL models
used were Convolutional Neural Networks (CNN). This find-
ing shows that CNNGs are still considered the most suitable DL
technique for image recognition, especially for thermal FER
because CNN is a deep network that imitates how the brain
processes and recognizes images [150]. CNN enables feature
extraction to learn patterns from high dimensional inputs
performed automatically. As shown in Figure V, a CNN
architecture consists of two main layers: a feature extraction
layer and a fully connected layer.

1) FEATURE EXTRACTION LAYER

A feature extraction layer is a phase where input images are
extracted to generate image features. This layer consists of
two sub-layers: a convolutional layer and a pooling layer.
The convolutional layer performs image conversion using
convolution operation by applying digital filters (kernels).
Raw FER images taken from a thermal camera are usually
converted into visual images consisting of three-color chan-
nels (RGB), where these three channels correspond with three
kernels. A kernel slides along the width and height of the
input feature map, where each slide denotes the dot product
operation of each part from the feature map with a suitable
kernel value. For instance, an image transformed into a 4 x 4
2D feature image contains numbers. Then, a 2 x 2 convolution
filter is applied to it.

The convolutional layer performs the multiplication of the
feature image with the filter size of 2 x 2. This procedure is
repeated until the whole input area is multiplied by the filter.
The resulting values are then summed to generate one output
called activation map. The number of feature maps depends
on the sizes of the kernels.
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In the convolution operation, the size of stride and padding
must be taken into account. Stride is the parameter that deter-
mines the steps taken along the horizontal positions followed
by vertical positions. For instance, if the stride size is 2, the
kernel steps will consist of 2 pixels in a horizontal position
and 2 pixels in a vertical position [126]. The smaller stride
produces more detailed information retrieval. However, the
smaller stride size is not always related to good performance.

Output dimension will always be smaller than the size of
the input dimension, except the kernel size being 1 x 1 width
and the stride size being 1 x 1. Since the output will be
fed as input for the next layer, more information will be
rendered unnecessary. To overcome this obstacle, a padding
parameter is applied to the input. Padding is the parameter
determining the number of pixels to be added at each side of
the input to manipulate the output dimension of the feature
map. By applying the padding to all input sides, the output
dimension can be made equal. This allows a deeper convo-
lutional layer to be applied, which results in more features
being extracted. The padding step may improve the DNN
performance by allowing the convolution filter to identify true
information among zero values.

The feature map from the feature layer process is then
fed into the pooling layer. The pooling layer comprises one
filter with a certain size of stride. In the convolutional layer,
the feature map is up-sampled. To avoid overfitting, in the
pooling layer, the dimension of the feature map is reduced.
There are two commonly used activation functions in this
layer: max pooling and average pooling. The maximum value
of the feature maps is selected in the max-pooling, whereas
the average value of feature maps is selected in the average
pooling.

CNN layers are commonly followed by a non-linear acti-
vation function. The activation function takes an input with
a real value and transforms it into small ranges, such as
[0,1] and [1,1]. The implementation of the activation function
allows NN to learn from non-linear mapping. It works like a
switch that decides whether a neuron can be activated or not
when provided with certain inputs. Sigmoid, Tanh, and ReLU
activation functions are widely used in DNN [126].

In the learning features, CNNs iterate convolution and
max-pooling processes several times to recognize the features
of the input. Figure 7 illustrates the convolutional process
using facial expression thermograms as the input images.
Since each input has three channels (RGB), each kernel also
comprises three kernels. The size of each kernel is determined
by the number of feature maps.

Figure 8 illustrates the visual results of the convolutional
phases of the NN in learning the features of the facial ther-
mograms’ affective states. The feature maps are stored in the
pooling layer, and the position of one pixel in the activation
function of one channel corresponds to the same position in
the original image. Each tile in the grid of the feature map
represents the convolution results of the input image with a
particular kernel. Some feature maps provide important infor-
mation about the input images. The interpretation of feature
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FIGURE 7. Visualization of the convolutional process of a facial emotion thermogram; modified from a previous study [151].

mapping results indicates that a suitable kernel confidently
extracts the input features. Assigning a good kernel should
reduce the training time to make the learning process perform
rapidly.

2) FULLY CONNECTED LAYER

A fully connected layer, also known as a dense layer, operates
based on features of an image from the feature extraction
layer and generates an output. Feature maps resulting from
the convolutional layer are in the form of a multidimensional
array. A fully connected layer reshapes the multidimensional
array into one dimensional array (vector). Each input from the
feature extraction layer is fully mapped to final outputs with
the probability score of each class in a classification task. The
final fully-connected layer usually has the same number of
output nodes as that of classes [152]. Figure 9 demonstrates
fully connected layers with the classification results of the
recognition process described in the probability value of each
output.

3) IMAGE CLASSIFICATION
Image classification is a process of categorizing and labelling
images according to their visual content and specific rules.
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The training process where a thermogram with a given emo-
tional state label is known as supervised learning [153].

CNN often produces the categories with different proba-
bilistic values that will decide the types of emotions being
displayed in the thermograms. The output categories will be
an array of numbers between 0 and 1. One common type of
output model is the soft-max function. The soft-max function
works by calculating the probability of an output image over
possible target classes [152].

4) BACKPROPAGATION

Backpropagation is performed in the final layer of CNN and
is only used during the training process. With backpropa-
gation, NNs learn from errors during training. This process
iteratively updates weights and changes the biases’ values
to zero based on the differences in the target output and
predicted output.

An optimization algorithm is needed to reduce loss.
Recently, several algorithms applied as optimizers, such
as stochastic gradient descent (SGD) [154], limited-
BGFS [155], parallelized SGD [156], stochastic variance
reduced gradient [157], and Adam optimizer [158].
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FIGURE 9. Feature mapping of facial emotion thermogram with a size of 244 x 244 into 32 feature maps.

VIl. FUTURE DIRECTIONS when working with a certain dataset. The first factor is the
A. REPRESENTATIVE DATASET quantity of the dataset. A large number of samples will
The availability of a representative dataset is important for the provide more accurate mean values and reduce the margin
training process. A good dataset will increase the robustness error. The second is the quality of the dataset, which has been

of training performance. Several factors must be considered described in data reliability and feature representation [159].
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The third is dataset domain specific. A good dataset is specif-
ically built for a suitable case.

Based on the review of the emotion datasets shown in
Table 3, the available datasets for thermogram emotion are
made for the general context even though two of them
(USTC-NVIE and KTFE) have the educational background
information of their human subjects. Therefore, it is highly
necessary to have datasets specifically designed for emo-
tion recognition in the academic context. The datasets must
represent content domain, context, and culture in education,
as described in Section III.B.

Suitable dataset pre-processing to reduce unwanted data
and enhancing important image features is also needed. For
better performance, dataset pre-processing must suit the cho-
sen CNN model architecture. The right pre-processing step
will increase emotion recognition accuracy and decrease time
process.

B. AUTOMATIC SEGMENTATION AND AUGMENTATION
Image segmentation is an important factor in image process-
ing and computer vision. The segmentation process influ-
ences the training data, the choice of the network archi-
tectures, loss functions, training strategies, and performance
results [159]. Image segmentation can include image denois-
ing dan taking ROIs of a facial thermogram.

Another potential strategy is data augmentation. Data aug-
mentation is an approach to deal with limited datasets. Thus,
it is a useful technique to improve data learning, increase
interpretation accuracy, and minimize the time needed for the
emotion recognition process.

C. GOOD KERNEL

CNN enables automatic feature extraction. Automatic extrac-
tion simplifies the complexity provided by manual extraction.
A good kernel is achieved by knowing important features in
facial emotion thermograms. This information is important
because we can shorten the feature learning process when
designing a DL model. In addition, a convolutional calcu-
lation may be minimized, and the classification process can
take place more efficiently.

D. LIGHTWEIGHT MODEL

Designing a simple CNN model with adequate layers and
good kernels can speed up the convolution computation.
A lightweight model will enable an emotion recognition sys-
tem to be implemented widely in the academic context. The
system can be used for self-evaluation using a mobile device
or alow-cost computer with a minimum specification to allow
the installation in every classroom to monitor students’ and
teachers’ emotional states.

VIil. CONCLUSION

This study has presented a review of thermography for emo-
tion recognition using deep learning in academic settings.
We conclude that understanding emotional states during the
learning process is one of the key aspects to developing a
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better learning system. Thermography has been proposed
considering its advantages compared to other computer-based
emotion recognition methods. Thermography enables emo-
tion recognition to be interpreted from signals generated
from internal physiological activities represented in thermal
distribution.

Thermal distribution on facial regions can be evaluated
using computer-assisted technology to measure emotional
states. This technology can automatically perform feature
extraction to minimize errors. Our review has shown that the
current NN models have achieved higher accuracy rates in
emotion recognition classification. Nevertheless, the perfor-
mance of the NNs model still has to be improved.

Further research needs to work toward an improved clas-
sification of facial emotion thermograms in the academic
context. This will require providing representative datasets,
preparing suitable ROIs, assigning good kernels, and imple-
menting lightweight models. These objectives will improve
performance in terms of computation time efficiency and
increase classification accuracy rates. A suitable method
using thermography can be proposed for self-evaluation and
the learning process in a classroom during learning.
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