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ABSTRACT This paper addresses the problem of resilient adaptive event-triggered control for singular
networked cascade control systems (SNCCSs) under time-varying actuator faults, actuator saturation, DoS
attacks, external disturbances, and time-varying delay. The purpose of DoS attacks is to obstruct network
communication from time to time, which happens aperiodically. According to the adaptive threshold
technique, a resilient adaptive event-triggered mechanism (AETM) is developed to reduce the transmission
frequency and also combating the aperiodic DoS attacks. Moreover, the discussed SNCCS is modeled as a
switched system due to the presence of attacks that is closely restricted by DoS frequency and duration. Then,
the exponential admissible analysis and controller synthesis conditions of the resulting switched SNCCS
are obtained and the extended dissipative performance is satisfied by using the Wirtinger-based integral
inequality and Lyapunov-Krasovskii functional (LKF) approach. Additionally, a co-design method of the
primary and secondary controllers and triggering parameters for the system under consideration is given.
Simulation results of a boiler-turbine power plant are presented to validate the proposed method.

INDEX TERMS Singular networked cascade control systems (SNCCSs), adaptive event-triggered (ET)
control, actuator saturation, DoS attacks.

I. INTRODUCTION
In recent years, cascade control system has attracted signif-
icant attention from researchers due to its wide applicability
in many engineering fields such as power plants, chemical
reactors, and neural networks. Specifically, a pair of control
loops is used in control algorithm, where the outer (secondary
control) loop is embedded with inner (primary control) loop.
In this algorithm, the outer loop is able to quickly eliminate
disturbances, while the inner loop is responsible for the sta-
bility of the system. They have been successfully used to
improve the performance of control systems in the face of
disturbances, e.g., in networked control systems (NCSs) [1],
[2], [3], [4]. The network in the control loop creates com-
munication constraints due to the inherent limitation of the
network bandwidth. Delay and dropout of data packets are

The associate editor coordinating the review of this manuscript and

approving it for publication was Feiqi Deng .

two major problems known to cause instability or perfor-
mance degradation in this type of control system [5], [6], [7].
Various techniques have been used for stability analysis of
NCS considering these inherent characteristics [8], [9].

The open communication environment can expose many
sensitive or private data to malicious attacks, which would
lead to data unavailability and unreliability, even serious
incidents or control performance degradation [10], [11], [12].
Most network communication-based attacks are categorized
as replay attacks, deception attacks, and DoS attacks. Unlike
replay attacks and deception attacks, DoS attacks use high
traffic to disrupt their targets’ communication links. There-
fore, these types of attack models are not only less com-
plicated, but also increasing the profit for the attackers due
to their higher success rate in the network environment.
These features make DoS attacks more often and useful [13],
[14]. In [15], the authors discussed exponential stability
and L2 performance issues for NCSs with DoS attacks and
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transmission delays under ET mechanism. Based on different
DoS attackmodels in communication channels, ET predictive
control was investigated in [16] to stabilize NCSs.

Singular systems have been extensively discussed and are
also called differential algebraic or descriptive systems. The
emerging field has attracted attention since they appear in
a variety of domains, including mechanical systems, power
systems, chemical processes, and electrical networks. Despite
the fact that SNCCSs have many advantages, they inevitably
introduce some crucial problems, such as exogenous distur-
bances, network-based attacks, unpredictable actuator faults,
and time-varying delays, which pose a great challenge to
the analysis and design of SNCCSs. For example, in [17],
the authors discussed H∞ control for SNCCSs with state
delay. By introducing an ETH∞ control, the authors reported
stabilization and modelling problems for SNCCSs with con-
stant delay in [18]. Hence, it is crucial to examine how to
develop the performance requirements for SNCCSs under
fundamental problems of network induced delays and DoS
attacks. This is our initial motivation for this paper.

It should be noted that a large amount of data is generated
during information transmission. As a result, a networked
transmission channel’s limited communication bandwidth
increases network load and, to some extent, reduces trans-
mission efficiency. For networked systems, solving the band-
width limitation issue has always been an important issue.
Currently, the ET scheme becomes a predominant approach
to solving these issues. In contrast to the traditional time-
triggered scheme, the ET scheme can decide whether to send
the currently sampled data to the next control terminal when
a predefined protocol is violated. This is an effective method
for reducing the waste of computing resources and enhanc-
ing the efficiency of transmission [16], [19], [20] and the
references therein. For example, the load frequency control
was designed in [21] for interconnected multi-area power
systems, where an ET scheme is used to reduce unwanted data
transfers through the network. Nevertheless, the triggering
conditions for the conventional ET scheme are almost static,
i.e., the parameters for the triggering threshold are constant
and cannot be dynamically adjusted to adapt to the effects of
emergencies.

To overcome the conservative nature of constant parame-
ters, some researchers have focused on a variable threshold
AETM. The AETM was proposed in [22], with the trigger
threshold parameter being a time-varying function that can
be adjusted in real time according to the changes in the error
dynamics. So far, some results based on the AETM have been
reported [23]. In [24], an adaptive rule-based ET slidingmode
control problem for stochastic systems under semi-Markov
switching parameters was investigated. Adaptive dynamic
program based control for nonlinear systems under DoS
attacks was discussed in [25] using an adaptively adjusting
ET mechanism. From another point of view, new methods
for SNCCS have been proposed, in which H-infinity analysis
is an effective method [17], [18]. The concept of extended
dissipative analysis for Markov jump systems was developed

in [26]. In addition, the new concept can be transformed into
well-known performance indicators through the proper selec-
tion of the weighting matrix and the examples are dissipative,
H-infinity, passive, and L2−L∞. As far as we know, extended
dissipative and admissible analysis issues for SNCCSs with
time-varying faults and aperiodic DoS attacks have not been
studied yet, which highly inspired us to do this work.

Moreover, the problem of adaptive ET control with DoS
attacks seems to be a challenging task with the following four
main difficulties: (1) In order to eliminate the effects of ape-
riodic DoS attacks, how do we design an appropriate AETM?
(2) If information transmission is subject to DoS attacks, how
to determine the next triggering instant for communication?
(3) When communication is interrupted, how to update the
control protocol? (4) How to reduce the number of trigger
instants while achieving the desired system performance?

In light of the discussion above, we investigate the problem
of resilient adaptive ET control of SNCCSs with DoS attacks
and actuator saturation in the current study. The overall con-
tributions of this article can be given in the following aspects:

(1) In the admissible analysis of SNCCS, four impor-
tant inherent attributes are considered simultaneously,
including network based DoS attacks, actuator faults,
network delays, and actuator saturation.Most of the pub-
lished work addresses only one or two of these inherent
attributes, while ignoring others [17], [18].

(2) Most of the existing results refer to periodic DoS
attacks [20], [27], in the present study we deal with
aperiodic DoS attacks, and the conditions developed
for DoS duration and frequency are closer to the real
situation.

(3) The AETM is designed to actively balance the negative
impact of aperiodic DoS attacks. In contrast to conven-
tional ET scheme, the method we have developed in this
paper can result in a smaller amount of transmitted data.
This can help to save more network bandwidth while
guaranteeing the desired system performance.

In summary, the goal of the present work is to study the
admissible analysis of SNCCSs while considering actuator
faults, DoS attacks, delays, and actuator saturation simulta-
neously, which is much closer to the actual conditions. Here,
the state-feedback controller is designed under AETM, which
involves a number of LMIs. Finally, simulation results of
a boiler-turbine power plant are presented to validate the
proposed scheme.

II. PRELIMINARIES AND PROBLEM FORMULATION
In this paper, we consider a two-loop SNCCS, where the
outer loop comprises the Plant 61, Sensor 1, Controller 1,
and Actuator, and the inner loop composes of the Plant
62, Sensor 2, Controller 2, and Actuator. As given in
FIGURE 1, the communication channels between Sensor
1 and Controller 1 in the primary control loop, and Con-
troller 2 and Actuator in the secondary control loop may be
attacked by the malicious adversaries, that is, DoS attacks.
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FIGURE 1. Structure of SNCCSs under AETM with DoS attacks.

The communication is not allowed when DoS threats are
presented so that data cannot be successfully transmitted over
the network. This means that the sampled state released by the
AETM cannot be sent to Controller 1 in the outer control
loop, and the control signal transmitted by Controller 2 can-
not be transmitted to Actuator in the inner control loop. The
following are the system description, DoS attacks, AETM,
control protocol and the resulting switched system are pre-
sented, which are useful for understanding the problem.

A. SYSTEM DESCRIPTION
We consider the primary plant of NCCSs as

61:

{
ẋ1(t) = A1x1(t)+ B1y2(t),
y1(t) = C1x1(t)+ D1w(t),

(1)

where x1(t) represents the state vector of the primary plant
61; y1(t) denotes the output vector of the primary plant 61;
y2(t) represents the output vector of the secondary plant 62.
A1, B1, C1 and D1 denote the known constant matrices in the
primary system (1) with suitable dimensions. By using the
singular system, the secondary plant 62 is modeled as

62:


Eẋ2(t) = A2x2(t)+ A3x2(t − τ (t))
+B2satu(u2(t))+ B3w(t),
y2(t) = C2x2(t)+ D2w(t),
x2(t) = φ(t), t ∈ [−τ2, 0],

(2)

where x2(t), u2(t), y2(t) denote the state, control input, out-
put vectors of the secondary plant 62, respectively, and
w(t) is the exogenous disturbances. In (2), E represents
the singular matrix that satisfies rank(E) = r ≤ n.
A2, A3, B2, B3, C2, D2 denote the appropriate known con-
stant matrices. The initial condition of the function φ(t)
is defined as [−τ2, 0] and τ (t) implies the time-varying
delay that satisfies τ (t) ∈ [0, τ2] with τ̇ (t) ≤ ν < ∞,

where ν is a positive integer. Moreover, satu(u2(t)) denotes
the saturation function, which is defined as satu(u2(t)) =[
satu(u12(t)) satu(u

2
2(t)) · · · satu(u

m
2 (t))

]T
∈ Rm with

satu(ui2(t)) =


9i, ui2 > 9i,

ui2, −9i ≤ ui2 ≤ 9i,

−9i, ui2 < −9i,

(3)

where 9i (i = 1, 2, · · · ,m) is the upper bound of (2) and
is known. The saturation function satu(u2(t)) is divided into

a linear and a nonlinear function. Hence, we consider the
following saturation model as

satu(u2(t)) = u2(t)−4(u2(t)). (4)

In addition, 4(u2(t)) denotes the dead-zone nonlinearity
function and holds the below constraint that there exists ε ∈
(0, 1) with ε = max{ε1, ε2, · · · , εm} such that

εuT2 (t)u2(t) ≥ 4
T (u2(t))4(u2(t)). (5)

B. ACTUATOR FAILURES
In this subsection, the following actuator fault model for the
primary controller is developed as

uℵ1,k (t) = (1− ℵk (t))u1,k (t), 0 ≤ ℵk (t) ≤ ℵ̄k < 1, (6)

where, for k = 1, 2, · · · ,m (denotes the kth actuator) and
uℵ1,k (t) denotes the output signal from the primary actuator,
u1,k represents the input signal of the primary actuator. ℵk (t)
is an unknown and piecewise continuous bounded failure
factor of the primary actuator, indicating the degree of effec-
tiveness of the primary actuator. The upper bound of ℵk (t) is
a known constant and is denoted by ℵ̄k . It noted that if ℵk (t)
is equal to zero, then the kth actuator is healthy or normal
(i.e., no fault); when 0 < ℵk (t) < 1, then the kth actuator
is respect to loss of effectiveness fault (i.e., partially failure).
Next, we denote uℵ1 (t) =

[
uℵ1,1(t) u

ℵ

1,2(t) · · · u
ℵ

1,m(t)
]T

and
ℵ(t) = diag

{
ℵ1(t) ℵ2(t) · · · ℵm(t)

}
. Hence, an uniform

actuator fault model for primary controller is constructed as

uℵ1 (t) = (Im − ℵ(t))u1(t) = (Im − ℵ(t))K1x̂1(t), (7)

where K1 represents the primary controller’s state feedback
control gain matrix and 0m ≤ ℵ(t) ≤ ℵ̄ < Im. x̂1(t) denotes
the actual state input of uℵ1 (t). Based on the above primary
controller (7), we consider the secondary controller as

u2(t) = uℵ1 (t)+ K2x̂2(t), (8)

where K2 and x̂2(t) denote the state feedback control gain and
actual state input of secondary controller, respectively.

C. DESIGN OF AETM
In this study, we used the AETM, which is shown in FIG-
URE 1. Here, tkh be the current transmitted instant with h
denotes the sampling period. In addition, the constraint for
triggering instant tk+1h is expressed as

tk+1h = tkh+min
l∈N

{
lh|µTk (tkh)Hµk (tkh)

−χ (t)xT1 (tkh)Hx1(tkh) > 0
}
, (9)

where l = 1, 2, · · · , l̃ with l̃ denoting the maximum suc-
cessive packet losses, χ (t) denotes threshold variable and it
satisfies 0 < χ(t) ≤ 1. H being weighting positive definite
matrix, and µk (tkh) = x1(tkh + lh) − x1(tkh) in which
x1(tkh + lh) denotes the current sampling time and x1(tkh)
means latest transmitted data of the primary state.
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The threshold variable χ (t) in (9) satisfies the following
equality:

χ̇ (t) =
1
χ (t)

(
1
χ (t)
− ϑ

)
µTk (tkh)Hµk (tkh), (10)

here, to adjust the convergence rate of χ (t), ϑ > 0 is
used. 0 < χ (t) ≤ 1. Thus, the triggering constraint
µTk (tkh)Hµk (tkh)− χ (t)x

T
1 (tkh)Hx1(tkh) > 0 can be dynam-

ically modified according to the system states.

D. DoS ATTACK MODEL
In SNCCSs, the network is more vulnerable to malicious
signals namely DoS attacks due to the communication chan-
nel’s openness and the network environment’s complexity.
The frame work of SNCCSs with DoS attacks is given in
FIGURE 1, where the duration and frequency of DoS attacks
are restricted. When a network is subjected to DoS attacks,
the actuator signals take the following form:

x̂1(t) = ϑ(t)x1e(t),

x̂2(t) = ϑ(t)x2(t), (11)

where ϑ(t) represents the DoS attack signals. In addition,
ϑ(t) = 0 or ϑ(t) = 1 means DoS attacks occur or do not
occur, respectively. ϑ(t) = 0 means that the DoS signal is
active when t ∈ [bn + ~n, bn+1); ϑ(t) = 1 means that the
DoS signal is inactive when t ∈ [bn, bn + ~n). n ∈ N denotes
the number of periods. bn+1 represents the end time of the
nth active period and the start time of the (n + 1)th sleeping
period; the length of the nth sleeping period is denoted by ~n.
It is obvious that the start and end times of the DoS sleeping
period clearly satisfy the following conditions: 0 ≤ b0 <
b0 + ~0 < b1 < b1 + ~1 < b2 < · · · < bn < bn +
~n < bn+1 < · · · . x1e(t) is the standard signal sent over the
network. For notation simplification, M1,n , [bn, bn + ~n)
and M2,n , [bn + ~n, bn+1) for all n ∈ N.

E. EVENT-BASED CONTROLLER DESIGN
Due to the effect of the aperiodic DoS attacks, i.e., the trans-
mitted data is interrupted inM2,n, the ET condition (9) is not
suitable, hence, this condition must be changed. Based on the
above conditions and considering the impact of DoS attacks,
the ET condition of the modified AETM can be expressed as
follows:

tk,nh =
{
tkc satisfying (9)|tkch ∈M1,n

}
∪ {bn}, (12)

where n, kc, c ∈ N and k is the number of triggering instant in
n-th DoS attack period such that k ∈ {1, 2, · · · , k(n)} , F(n)
and k(n) = sup{k ∈ N|tk,nh ≤ bn + ~n}.
Remark 1: Based on the condition (12), we design resilient

controllers for SNCCSs under DoS attacks. Moreover, the
control law is constructed in the presence of DoS attacks as
u1(t) = u2(t) = 0, when t ∈ [bn + ~n, bn+1). In addition, the
control update policy is formulated while the absence of DoS
attacks for t ∈ [tk,nh, tk+1,nh) ∩ [bn, bn + ~n).

For the sake of convenience, we assume Sk,n ,
[tk,nh, tk+1,nh), t0,nh , bn for all n ∈ N. Moreover, the
interval Sk,n can be divided into

Sk,n =
ϕk,n⋃
υ=1

ϒυk,n ∪ ϒ
ϕk,n+1
k,n , (13)

where n ∈ N, k ∈ F(n), ϕk,n , inf{υ ∈ N|tk,nh + υh ≤
tk+1,nh}, ϒυk,n = [tk,nh + (υ − 1)h, tk,nh + υh), ϒ

ϕk,n+1
k,n =

[tk,nh+ ϕk,nh, tk+1,nh) and υ ∈ {1, · · · , ϕk,n}.
Note that the following term holds:

M1,n =

F (n)⋃
k=0

{
Sk,n ∩M1,n

}
⊆

F (n)⋃
k=0

Sk,n. (14)

Based on (13) and (14), the interval M1,n is expressed as

M1,n =

F (n)⋃
k=0

ϕk,n+1⋃
υ=1

{
ϒυk,n ∩M1,n

}
. (15)

Accordingly, we define

dk,n(t) = t − tk,nh− (ῑ− 1)h, t ∈ ϒ ῑk,n ∩M1,n (16)

and

µk,n(t) = x1(tk,nh)− x1(tk,nh+ (ῑ− 1)h), (17)

where ῑ ∈ {1, · · · , ϕk,n + 1}.
From (16) and (17), it follows that dk,n(t) ∈ [0, h), and

t ∈ Sk,n ∩M1,n. Hence, the sampled state x1(tk,nh) is given
as

x1e(t) = x1(tk,nh) = x1(t − dk,n(t))+ µk,n(t) (18)

and the threshold variable χ (t) satisfies the constraint:

χ̇ (t) = 1
χ (t)

(
1
χ (t) − ϑ

)
µTk,n(t)Hµk,n(t). (19)

From (9) and (18), we get

µTk,n(t)Hµk,n(t) ≤ χ (t)
[
xT1 (t − dk,n(t))+ µ

T
k,n(t)

]
×H

[
x1(t − dk,n(t))+ µk,n(t)

]
. (20)

Combining (1), (2), (6), (11), and (18), a new model for the
SNCCS as

ẋ1(t) = A1x1(t)+ B1C2x2(t)+ B1D2w(t),
Eẋ2(t) = (A2 + B1)x2(t)+ A3x2(t − τ (t))

−B24(u2(t))+ B1

[
x1(t − dk,n(t))+ µk,n(t)

]
+B3w(t), t ∈M1,n

y1(t) = C1x1(t)+ D1w(t),

(21)


ẋ1(t) = A1x1(t)+ B1C2x2(t)+ B1D2w(t),

Eẋ2(t) = A2x̄2(t)+ A3x2(t − τ (t))+ B3w(t),
y1(t) = C1x1(t)+ D1w(t), t ∈M2,n

(22)

where B1 = B2K2 and B1 = B2(I − ℵ(t))K1. For simplicity
of notation, we define ε(t) = 1 for t ∈ [−h, 0] ∪ (∪M1,n)
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and if ε(t) = 2 for t ∈M2,n. For ε(t) = q ∈ {1, 2}, by letting
that

tq,n =
{
bn, q = 1
bn + ~n, q = 2

(23)

we getMq,n = [tq,n, t3−q,n+q−1). According to (21) and (22),
the switched system is obtained as

ẋ1(t) = A1x1(t)+ B1C2x2(t)+ B1D2w(t),
Eẋ2(t) = (A2 + Bq)x2(t)+ A3x2(t − τ (t))
−B̄q4(u2(t))+ Bq

[
x1(t − dk,n(t))+ µk,n(t)

]
+B3w(t), t ∈ [tq,n, t3−q,n+q−1), q = 1, 2,
y1(t) = C1x1(t)+ D1w(t),

(24)

where B̄1 = B2 and B2 = B̄2 = B2 = 0.
To achieve the main results, the definitions and assump-

tions listed below are used.
Definition 2: The SNCCS (24) with w(t) = 0

(1) The pair (E,A2) is said to be regular and impulse free,
respectively, if det(sE − A2) is not identically zero and
deg(det(sE − A2)) =rank(E).

(2) If the pair (E,A2) is regular and impulse free, the
unforced singular system is also regular and impulse
free.

(3) The SNCCS (24) with w(t) = 0 is said to be exponen-
tially stable, if positive constants ū and v̄ exist such that
‖x2(t)‖2 ≤ ūe−v̄t‖φ(t)‖2.

(4) If the SNCCS (24) is regular, impulse-free, and exponen-
tially stable, it is said to be exponentially admissible.

Definition 3: For the given real matrices 31 = 3
T
1 ≤ 0,

32, 33 = 3T
3 > 0, and 34 = 3T

4 ≥ 0 satisfying
(‖31‖+‖32‖)34 = 0, the SNCCS (24) is said to be extended
dissipative if the following inequality holds for any tf ≥ 0 and
w(t) ∈ L2[0,∞):∫ tf

0
J(t)dt ≥ sup

0≤t≤tf
yT1 (t)34y1(t),

where J(t) = yT1 (t)31y1(t)+ 2yT1 (t)32w(t)+ wT (t)33w(t).
Intuitively, the choice of intervalsM1,n andM2,n must not

be completely arbitrary, since both the duration and frequency
of DoS must be limited in order to achieve admissibility.
In light of this, the following assumptions are considered.
Assumption 4: (DoS Duration) Let ϒ(0, t) =

∪n∈NM2,n
⋂
[0, t] denote the total interval of DoS attacks

over [0, t]. There exists ι ∈ R≥0 and ωG ∈ R>1 such that
|ϒ(0, t)| ≤ ι+ t

ωG
.

Assumption 5: (DoS Frequency) Let n(t) represent the
number of DoS off/on transitions in the range [0, t), i.e.,
n(t) = card{n ∈ N|bn + ~n < t}, where card denotes the
number of elements in the set. ∃ ῐ ∈ R≥0, ωD ∈ R>0 such
that n(0, t) ≤ ῐ+ t

ωD
.

Remark 6: This paper does not discuss the rationality of
Assumptions 4 and 5, which have been extensively discussed
in [9] and [12].
Remark 7: From the proposed AETM (9) in this paper, the

threshold variableχ (t) has a significant impact on the number

of packets transmitted over the network in a given period.χ (t)
is an optimal result regulated by the adaptive law (10) on-line,
while the predefined threshold scalar σ in [18], by which it
can not be accommodated with varying external disturbance.

III. MAIN RESULTS
A. STABILITY ANALYSIS
In this subsection, according to the Wirtinger-based integral
inequality approach, we obtain a set of sufficient conditions
for the exponential admissibility of SNCCS (24) with known
actuator fault matrix ℵ̄ and aperiodic DoS attacks.
Theorem 8: For the given scalars δq, kq, hτ = max{h, τ2},

trigger parameter ϑ , DoS parameters ωG ∈ R>0 and ωD ∈
R>1 satisfying

I := 2δ1 −
2(δ1 + δ2)hτ + ln(k1k2)

ωG
−

2(δ1 + δ2)
ωD

> 0,

(25)

matrices 31, 32, 33, 34 satisfying Definition 3, actuator
fault matrix ℵ̄, primary gain K1 and secondary gain K2 are
known, the system (24) is exponentially admissible and sat-
isfies extended dissipative, if there exists symmetric matrices
Okq > 0, H > 0, O ∈ {P,Q,R,Z }, such that for k, q = 1, 2,
the following LMIs hold:

�q < 0, (26)

Pk1 ≤ k2Pk2, (27)

Pk2 ≤ k1e2(δ1+δ2)hτPk1, (28)

Wkq ≤ k3−qWk(3−q), W ∈ {Q,R,Z } (29)

P1q − CT
1 34C1 ≥ 0, (30)

ETP2q = PT2qE ≥ 0, (31)

where

�1
=


�1

13×13 �1
1 �1

2 �1
3 �1

4
∗ −Z−111 0 0 0
∗ ∗ −Z−121 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −I

 ,

�2
=


�2

11×11 �2
1 �2

2 �2
4

∗ −Z−112 0 0
∗ ∗ −Z−122 0
∗ ∗ ∗ −I

 ,
�
q
1,1 = P1qA1 + AT1 P1q + Q1q − 4e2(−1)

qδqhZ1q
− 2(−1)qδqP1q,

�
q
1,2 = −2e

2(−1)qδqhZ1q,

�
q
1,4 = 6e2(−1)

qδqhZ1q,

�
q
1,6 = P1qB1C2,

�1
1,13 = P11B1C2 − CT

1 32,

�2
1,11 = P12B1C2 − CT

1 32,

�1
2,2 = −8e

−2δ1hZ11 + ϑH,

�2
2,2 = −8e

2δ2hZ12,
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�
q
2,3 = −2e

2(−1)qδqhZ1q,

�
q
2,4 = 6e2(−1)

qδqhZ1q,

�
q
2,5 = 6e2(−1)

qδqhZ1q,

�1
2,6 = B̂T1 P

T
21,

�1
2,11 = ϑH,

�
q
3,3 = −e

2(−1)qδqh(Q1q + 4Z1q),

�
q
3,5 = 6e2(−1)

qδqhZ1q,

�
q
4,4 = −12e

2(−1)qδqhZ1q,

�
q
5,5 = −12e

2(−1)qδqhZ1q,

�1
6,6 = P21A2 + AT2 P21 + 2P21B1 + Q21 + R1q + τ2R21

+ 2δ1ETP21 − 4e−2δ1τ2ETZ21E,

�2
6,6 = P22A2 + AT2 P22 + Q22 + R12 + τ2R22 − 2δ2ETP22

− 4e2δ2τ2ETZ22E,

�
q
6,7 = P2qA3 − 2e2(−1)

qδqτ2ETZ2qE,

�
q
6,9 = 6e2(−1)

qδqτ2ETZ2qE,

�1
6,11 = P21B̂1,

�1
6,12 = −P21B̄1,

�1
6,13 = P21B3,

�2
6,11 = P22B3,

�
q
7,7 = −(1− ν)e

2(−1)qδqτ2R1q − 8e2(−1)
qδqτ2ETZ2qE,

�
q
7,8 = −2e

2(−1)qδqτ2ETZ2qE,

�
q
7,9 = 6e2(−1)

qδqτ2ETZ2qE,

�
q
7,10 = 6e2(−1)

qδqτ2ETZ2qE,

�
q
8,8 = −e

2(−1)qδqτ2 (Q2q + 4ETZ2qE),

�
q
8,10 = 6e2(−1)

qδqτ2ETZ2qE,

�
q
9,9 = −12e

2(−1)qδqτ2ETZ2qE −
1
τ2
R2q,

�
q
10,10 = −12e

2(−1)qδqτ2ETZ2qE −
1
τ2
R2q,

�1
11,11 = −H,

�1
12,12 = −I ,

�1
13,13 = −2D

T
132 −33,

�2
11,11 = −2D

T
132 −33,

�1
1 =

[
A1 01×4 B1C2 01×6 B1D2

]T
,

�1
2 =

[
0 B̂1 01×3 (A2 + B1) A3 01×3 B̂1 − B̄1 B3

]
,

�1
3 =

[
0
√
εIK1 01×3

√
εK2 01×4

√
εIK1 0 0

]T
,

�1
4 =

[
3̂1C1 01×11 3̂1D1

]T
,

�2
1 =

[
A1 01×4 B1C2 01×4 B1D2

]T
,

�2
2 =

[
01×5 A2 A3 01×3 B3

]T
,

�2
4 =

[
3̂1C1 01×9 3̂1D1

]T
,

I = (I − ℵ̄) and B̂1 = B2(I − ℵ̄)K1.

Proof: To obtain that the system (24) with w(t) = 0 is
admissible, we first prove that the system (24) is exponen-
tially stable. For this purpose, we choose the LKF candidate
as

Vq(t) = V1q(t)+ V2q(t)+ V3q(t)+ V4q(t), (32)

where

V1q(t) = xT1 (t)P1qx1(t)+ x
T
2 (t)E

TP2qx2(t),

V2q(t) =
∫ t

t−h
f (•)xT1 (s)Q1qx1(s)ds

+

∫ t

t−τ2
f (•)xT2 (s)Q2qx2(s)ds,

V3q(t) =
∫ t

t−τ (t)
f (•)xT2 (s)R1qx2(s)ds

+

∫ 0

−τ2

∫ t

t+θ
f (•)xT2 (s)R2qx2(s)dsdθ,

V4q(t) = h
∫ 0

−h

∫ t

t+θ
f (•)ẋT1 (s)Z1qẋ1(s)dsdθ

+ τ2

∫ 0

−τ2

∫ t

t+θ
f (•)ẋT2 (s)E

TZ2qEẋ2(s)dsdθ

with f (•) = e(−1)
q2δq(t−s).

If we fix q = 1, by taking the derivative of V1(t) with
respect to time t , we obtain that

V̇11(t) = −2δ1V11(t)+ 2δ1xT1 (t)P11x1(t)+ 2xT1 (t)P11ẋ1(t)

+ 2δ1xT2 (t)E
TP21x2(t)

+ 2xT2 (t)P21Eẋ2(t), (33)

V̇21(t) =

− 2δ1V21(t)+ xT1 (t)Q11x1(t)+ xT2 (t)Q21x2(t)

− e−2δ1hxT1 (t − h)Q11x1(t − h)

− e−2δ1τ2xT2 (t − τ2)Q21x2(t − τ2), (34)

V̇31(t) ≤

− 2δ1V31(t)

+ xT2 (t)R11x2(t)

+ τ2xT2 (t)R21x2(t)

− (1− ν)e−2δ1τ2xT2 (t − τ (t))R11x2(t − τ (t)) (35)

−

∫ t

t−τ2
e−2δ1τ2xT2 (s)R21x2(s)ds,

V̇41(t) ≤

− 2δ1V41(t)

+ h2ẋT1 (t)Z11ẋ1(t)

+ τ 22 ẋ
T
2 (t)E

TZ21Eẋ2(t)

− h
∫ t

t−h
e−2δ1hẋT1 (s)Z11ẋ1(s)ds

− τ2

∫ t

t−τ2
e−2δ1τ2 ẋT2 (s)E

TZ21Eẋ2(s)ds. (36)
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By applying the time delay intervals to the integral terms in
V̇41(t), the following can be obtained:

−

∫ t

t−h
ẋT1 (s)Z11ẋ1(s)ds

= −

∫ t−dk,n(t)

t−h
ẋT1 (s)Z11ẋ1(s)ds

−

∫ t

t−dk,n(t)
ẋT1 (s)Z11ẋ1(s)ds,

(37)

−

∫ t

t−τ2
ẋT2 (s)E

TZ21Eẋ2(s)ds

= −

∫ t−τ (t)

t−τ2
ẋT2 (s)E

TZ21Eẋ2(s)ds

−

∫ t

t−τ (t)
ẋT2 (s)E

TZ21Eẋ2(s)ds.

(38)

By using Wirtinger-based integral inequality to the above
inequalities, we obtain that

−

∫ t−dk,n(t)

t−h
ẋT1 (s)Z11ẋ1(s)ds ≤ −

1
h
ζ T1 3

TZ13ζ1,

(39)

−

∫ t

t−dk,n(t)
ẋT1 (s)Z11ẋ1(s)ds ≤ −

1
h
ζ T2 3

TZ13ζ2,

(40)

−

∫ t−τ (t)

t−τ2
ẋT2 (s)E

TZ21Eẋ2(s)ds ≤ −
1
τ2
ζ T3 3

TZ23ζ3,

(41)

−

∫ t

t−τ (t)
ẋT2 (s)E

TZ21Eẋ2(s)ds ≤ −
1
τ2
ζ T4 3

TZ23ζ4,

(42)

where

ζ1 =

[
xT1 (t − dk,n(t)) x1(t − h)

1
h−dk,n(t)

×
∫ t−dk,n(t)
t−h xT1 (s)ds

]T
ζ2 =

[
x1(t) xT1 (t − dk,n(t))

1
dk,n(t)

∫ t
t−dk,n(t)

xT1 (s)ds
]T
,

ζ3 =
[
xT2 (t − τ (t)) x2(t − τ2)

1
τ2−τ (t)

∫ t−τ (t)
t−τ2

xT2 (s)ds
]T
,

ζ4 =
[
x2(t) xT2 (t − τ (t))

1
τ (t)

∫ t
t−τ (t) x

T
2 (s)ds

]T
,

Z1 =

[
Z11 0
0 3Z11

]
,

Z2 =

[
ETZ21E 0

0 3ETZ21E

]
,

and 3 =
[
In −In 0
In In −2In.

]

By using Jensen’s inequality to the integral term in V̇31(t), the
following relationship holds.

−

∫ t

t−τ2
xT2 (s)R21x2(s)ds ≤

−1
τ2

[∫ t−τ (t)
t−τ2

x2(s)ds∫ t
t−τ (t) x2(s)ds

]T

×

[
R21 0
∗ R21

][∫ t−τ (t)
t−τ2

x2(s)ds∫ t
t−τ (t) x2(s)ds

]
.

(43)

Next, by combining (5), (20), (24), (33)-(43) and using Schur
complement lemma, it yields that

V̇1(t) ≤ −2δ1V1(t)+ ξT1 (t)2
1ξ1(t), (44)

where

21
=


�̄1

12×12 �̄1
1 �̄1

2 �̄1
3

∗ −Z−111 0 0
∗ ∗ −Z−121 0
∗ ∗ ∗ −I

 ,
�̄1

12×12 = �
1
12×12, �̄

1
1 =

[
A1 01×4 B1C2 01×6

]T
,

�̄1
2 =

[
0 B̂1 01×3 (A2 + B1) A3 01×3 B̂1 −B̄1

]T
,

�̄1
3 =

[
0
√
εIK1 01×3

√
εK2 01×4

√
εIK1 0

]T
,

ξ1(t) =
[
η(t) µTk,n(t) 4

T (u2(t)) I I I
]

with

η(t) =
[
xT1 (t) x

T
1 (t − dk,n(t)) x

T
1 (t − h)

1
dk,n(t)

∫ t
t−dk,n(t)

xT1 (s)ds
1

h−dk,n(t)

∫ t−dk,n(t)
t−h xT1 (s)ds

xT2 (t) x
T
2 (t − τ (t)) x2(t − τ2)

1
τ (t)

∫ t
t−τ (t) x

T
2 (s)ds

1
τ2−τ (t)

∫ t−τ (t)
t−τ2

xT2 (s)ds
]
.

Since 21 < 0 is ensured by (26), it yields that V̇1(t) ≤
−2δ1V1(t).
When q = 2, by taking the derivative of V2(t) and by using
the similar approach for case q = 1, we have

V̇2(t) ≤ 2δ2V2(t)+ ξT2 (t)2
2ξ2(t), (45)

where 22
=

�̄2
10×10 �̄2

1 �̄2
2

∗ −Z−112 0
∗ ∗ −Z−122

, �̄2
10×10 = �2

10×10,

�̄2
1 =

[
A1 01×4 B1C2 01×4

]T , �̄2
2 =

[
01×5 A2 A3 01×3

]T ,
and ξ2(t) =

[
η(t) I I

]
. According to the 22 < 0 which is

ensured by (26), it yields V̇2(t) ≤ 2δ2V2(t).
Inspired by [28], one has from (44)-(45) that

V (t) =

{
e−2δ1(t−bn))V1(bn), t ∈ [bn, bn + ~n)
e2δ2(t−bn−~n))V2(bn + ~n), t ∈ [bn + ~n, bn+1).

(46)

From (27)-(29), we get{
k2V2(b−n )− V1(bn) ≥ 0
e2(δ1+δ2)hk1V1(b−n + ~

−
n ) − V2(bn + ~n) ≥ 0.

(47)
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For all t ≥ 0, then it can be divided as t ∈ [bn, bn + ~n)
and t ∈ [bn + ~n, bn+1). In the first case t ∈ [bn, bn + ~n),
it follows from (46) and (47) that

V1(t) ≤ k2e−2δ1(t−bn)V2(b−n )

≤ k2e−2δ1(t−(bn−1+~n−1))+2(δ1+δ2)(bn−(bn−1+~n−1))

×V2(bn−1 + ~n−1)

≤ · · · (48)

≤ e−2δ1t+%1(t,0)V1(0).

Similarly, when t ∈ [bn + ~n, ~n+1), by using the similar
procedure as presented in the above case, we get

V2(t) ≤
e−2δ1t+%1(t,0)

k2
V1(0). (49)

From Assumptions 4, 5, the use of (48) yields that

V (t) ≤ eFe−ItV1(0), (50)

whereF = (2(δ1+δ2)hτ+ln(k1k2))ι+2(δ1+δ2)ῐ. Similarly,
using (49), Assumptions 4 and 5 yield that

V (t) ≤ eF e−It
k2

V1(0). (51)

From the definition of V (t), we get that

F1‖φ‖
2
h ≥ V1(0), F2‖x(t)‖2 ≤ V (t), (52)

where F1 = F3 +max
{
λmaxP1q + hλmaxQ1q +

h2
2 λmaxZ1q

}
with F3 = max

{
λmaxP1q

}
and F2 = min

{
λminP1q

}
. Hence,

from (50)-(52), we have that

‖x1(t)‖2 ≤
F2

F1
e−It‖φ‖2h. (53)

According to Definition 2, it is clear that the system (24) is
exponentially stable with decay rate I. By using the similar
method, we can complete the proof for the secondary plant.
Hence, it is omitted here.

Next, we shall prove that the system (24) is impulse-free
and regularity. In doing so, we let the singular matrix Ê and
state vector x2(t) have the following forms:

x2(t) =
[
x21(t)
x22(t)

]
and Ê =

[
Ir 0r×(n−r)

0(n−r)×r 0(n−r)

]
,

where x21(t) ∈ Rr and x22(t) ∈ R(n−r). Then, it follows from
(44) and (45) that

�
q
6,6 = Q2q + 2P2qÂ2. (54)

Next, we define

P2q =
[
P21q P22q
P23q P24q

]
, A2 =

[
A21 A22
A23 A24

]
, Q2q =

[
Q1q Q2q
Q3q Q4q

]
.

By substituting P2q, Â2, and Q2q into (54), it yields that

(P24qA24 + AT24P
T
24q)+ Q4q < 0.

Then, it obvious that det(sÊ−Â2) = det(sE−A2) which tends
to det(sE − A2) is not identically zero and det(sE − A2) =
r = rank(E). Hence, the system (24) is regular and impulse

free. Based on the Definition 2, the system (24) is therefore
exponentially admissible.
From Definition 3 and system (24) with disturbances,

we get {
V̇1(t)+ 2δ1V1(t)− J(t) ≤ ξ̄T1 (t)�̄

1ξ̄1(t),
V̇2(t)− 2δ2V2(t)− J(t) ≤ ξ̄T2 (t)�̄

2ξ̄2(t),
(55)

where ξ̄1(t) =
[
η(t) µTk,n(t) 4

T (u2(t)) wT (t) I I I I
]
,

ξ̄2(t) =
[
η(t) wT (t) I I I

]
. Next, by integrating both sides of

(55) from 0 to t ≥ 0, we get∫ t

0
J(s)ds ≥ V (t)− V (0) ≥ xT1 (t)P1qx1(t) (56)

Based on the extended dissipative definition (Definition 3),
the following condition holds for any matrices 31, 32, 33,
34 satisfying:∫ tf

0
J(s)ds ≥ sup

0≤t≤tf
yT1 (t)34y1(t), (57)

where tf is any nonnegative scalar. Due to the extended
dissipative condition, 34 is divided into two cases, namely
34 = 0 and 34 > 0. The first case involves the strict
(Q,S,R)-dissipative condition as well as passivity and H∞
performance. When 34 > 0, the L2 − L∞ performance
criterion is satisfied.
Firstly, by considering that 34 = 0, we have∫ tf

0
J(s)ds ≥ 0,

which implies the extended dissipative definition with 34 =

0.
In the second case with 34 > 0, as given in Definition 3,

we have the following matrices 31 = 0, 32 = 0, 33 > 0
with ‖31‖+‖32‖ = 0 and ‖D1‖ = 0. For any t ∈ [0, tf ] and
(56), we get

∫ tf
0 J(s)ds ≥

∫ tf
0 J(s)ds ≥ xT1 (t)P1qx1(t). Hence,

from (30), we have

yT1 (t)34y1(t) = xT1 (t)C
T
1 34C1x1(t) ≤ xT1 (t)P1qx1(t)

≤

∫ tf

0
J(s)ds. (58)

Therefore, the above results discuss two cases of34. It is easy
to conclude that system (24) is extended dissipative for any
w(t) 6= 0 based on Definition 3, which ends the proof.

B. ADAPTIVE EVENT-TRIGGERED EXTENDED DISSIPATIVE
CONTROL DESIGN
By using the above theorem, we derive the primary and sec-
ondary controller gain matrices and the associated sufficient
conditions that guarantee the system (24) being exponentially
admissible as stated in the following theorem.
Theorem 9: For the given scalars δq, kq, hτ = max{h, τ2},

zkq, εkq, ϕkq, ςkq, trigger parameter ϑ , DoS parameters ωG ∈
R>0 and ωD ∈ R>1 satisfying (25), matrices 31, 32, 33,
34 satisfying Definition 3, known fault matrix ℵ̄, the primary
and secondary gains are computed as Y1 = K1X11 and Y2 =
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K2X21, respectively. Then, the system (24) is exponentially
admissible and satisfies the extended dissipative condition,
if there exists symmetric matrices Õkq > 0, H̃ > 0, Õ ∈
{P̃, Q̃, R̃, Z̃ }, such that for k, q = 1, 2, the following LMIs
hold:

8q < 0, (59)[
−k2Xk2 Xk2
∗ −Xk1

]
≤ 0, (60)[

−k1e2(δ1+δ2)hτXk1 Xk1
∗ −Xk2

]
≤ 0, (61)[

−k3−qQ̃k(3−q) Xk(3−q)
∗ ε2kqQ̃kq − 2εkqXkq

]
≤ 0, (62)[

−k3−qR̃k(3−q) Xk(3−q)
∗ ϕ2kqR̃kq − 2ϕkqXkq

]
≤ 0, (63)[

−k3−qZ̃k(3−q) Xk(3−q)
∗ ς2kqZ̃kq − 2ςkqXkq

]
≤ 0, (64)[

−X1q X1qCT
1

∗ −3−14

]
≤ 0, (65)

where

81

=


81

13×13

√
h81

1
√
τ28

1
2 8

1
3 8

1
4

∗ 81
2 0 0 0

∗ ∗ 81
3 0 0

∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −I

 ,
82

=


82

11×11 8
2
1 8

2
2 8

2
4

∗ 82
2 0 0

∗ ∗ 82
3 0

∗ ∗ ∗ −I

 ,
8
q
1,1

= A1X1q + XT1qA
T
1 + Q̃1q − 4e2(−1)

qδqhZ̃1q
− 2(−1)qδqX1q,

8
q
1,2 = −2e

2(−1)qδqhZ̃1q,

8
q
1,4 = 6e2(−1)

qδqhZ̃1q,

8
q
1,6 = B1C2X2q,

81
1,13 = B1D2 − X11CT

1 32,

82
1,11 = B1D2 − X12CT

1 32,

81
2,2 = −8e

−2δ1hZ̃11 + ϑH̃,

82
2,2 = −8e

2δ2hZ̃12,

8
q
2,3 = −2e

2(−1)qδqhZ̃1q,

8
q
2,4 = 6e2(−1)

qδqhZ̃1q,

8
q
2,5 = 6e2(−1)

qδqhZ̃1q,

81
2,6 = B̃T1 ,

81
2,11 = ϑH̃,

8
q
3,3 = −e

2(−1)qδqh(Q̃1q + 4Z̃1q),

8
q
3,5 = 6e2(−1)

qδqhZ̃1q,

8
q
4,4 = −12e

2(−1)qδqhZ̃1q,

8
q
5,5 = −12e

2(−1)qδqhZ̃1q,

81
6,6 = A2X21 + XT21A

T
2 + 2B̂1

+ Q̃21 + R̃1q + τ2R̃21 + 2δ1ETX21
− 4e−2δ1τ2ET Z̃21E,

82
6,6 = A2X22 + XT22A

T
2 + Q̃22 + R̃12 + τ2R̃22

− 2δ2ETX22 − 4e2δ2τ2ET Z̃22E,

8
q
6,7 = A3X2q − 2e2(−1)

qδqτ2ET Z̃2qE,

8
q
6,9 = 6e2(−1)

qδqτ2ET Z̃2qE,

81
6,11 = B̃1,

81
6,12 = −B̄1,

81
6,13 = B3,

82
6,11 = B3,

8
q
7,7 = −(1− ν)e

2(−1)qδqτ2 R̃1q − 8e2(−1)
qδqτ2ET Z̃2qE,

8
q
7,8 = −2e

2(−1)qδqτ2ET Z̃2qE,

8
q
7,9 = 6e2(−1)

qδqτ2ET Z̃2qE,

8
q
7,10 = 6e2(−1)

qδqτ2ET Z̃2qE,

8
q
8,8 = −e

2(−1)qδqτ2 (Q̃2q + 4ET Z̃2qE),

8
q
8,10 = 6e2(−1)

qδqτ2ET Z̃2qE,

8
q
9,9 = −12e

2(−1)qδqτ2ET Z̃2qE −
1
τ2
R̃2q,

8
q
10,10 = −12e

2(−1)qδqτ2ET Z̃2qE

−
1
τ2
R̃2q,

81
11,11 = −H̃,

81
12,12 = −I ,

81
13,13 = −2D

T
132 −33,

82
11,11 = −2D

T
132 −33,

81
2 = z2

11Z̃11 − 2z11X11,

81
3 = z2

21Z̃21 − 2z21X21,

82
2 = z2

12Z̃12 − 2z12X12,

82
3 = z2

22Z̃22 − 2z22X22,

81
1 = [

A1X11 01×4 B1C2X21 01×6 B1D2
]T
,

81
2

=
[
0 B̃1 01×3 X21A2 + B̂1 X21A3 01×3 B̃1 − B̄1 B3

]T
,

81
3

=
[
0
√
εIY1 01×3

√
εY2 01×4

√
εIY1 0 0

]T
,

81
4 =

[
3̂1C1X11 01×11 3̂1D1

]T
,

82
1 =

[
X12A1 01×4 X12B1C2 01×4 B1D2

]T
,
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82
2 =

[
01×5 X22A2 X22A3 01×3 B3

]T
,

82
4

=
[
3̂1C1X12 01×9 3̂1D1

]T
, and B̃1 = B2(I − ℵ̄)Y1.

Proof: First, we define Xkq = P−1kq , S1 =

diag{S11,S21,X11, I , I ,X11,X21,X11, I }, S2 =

diag{S12,S22, I ,X12,X22,X12}, Skq = diag{Xkq,Xkq,
Xkq,Xkq,Xkq}. Then, we take the pre- and post-multiply of
�q in (26) with Sq.
Next, we define 1̃kq = Xkq1kqXkq, 1 ∈ {Q,R,Z },

H̃ = X11HX11, Y1 = K1X11, Y2 = K2X21 with (k, q =
1, 2). By using the connections Zkq = X−1kq Z̃kqX

−1
kq , Z−1kq =

XkqZ̃
−1
kq Xkq ≥ 2zkqXkq−z2

kqZ̃kq, we obtain8
q < 0 to ensure

that�q < 0 is satisfied. In addition, pre- and post-multiplying
(27) and (28) by X12 and X11, respectively. Applying Schur
Complement Lemma, we have (60) and (61) are equal to (27)
and (28), respectively. By employing the similar approach,
it is obvious that LMIs (29) and (30) tends to (62)-(64) and
(65), respectively. This completes the proof of this theorem.
Remark 10: This work mainly focuses on the problem

of dissipation, time-varying actuator faults, and DoS attacks.
The idea of extended dissipative is presented in Definition 3
and includes some well-known performance lists as special
cases where the weight matrices are
• L2 − L∞ performance: 31 = 0, 32 = 0, 33 = γ 2I ,
34 = I .

• H∞ performance: 31 = −I , 32 = 0, 33 = γ
2I , 34 =

0.
• Passivity performance: 31 = 0, 32 = I , 33 = γ I ,
34 = 0.

• (Q,S,R)-dissipativity performance:31 = Q,32 = S,
33 = R− βI , 34 = 0.

Remark 11: The choice of the LKF plays crucial role
in stability analysis for time-delay systems. Apart from the
functional choice, the significance of conservatism is deter-
mined by how to bound some cross terms that appeared
when calculating LKF differentiation. From this perspective,
Jensen’s andWirtinger-based integral inequalities are used by
researchers to obtain a more accurate lower bound of these
cross terms. Moreover, Wirtinger-based integral inequality
approach produces less conservative results than Jensen’s
integral inequality approach, which is presented in [29] and
theoretically proven.
Remark 12: It should be noted that the proposed AETM

is only considered in the absence of DoS attack. In addition,
the proposed scheme is implemented in a periodic sampling
context. Thus, the minimum release intervals between two
consecutive transmission instants of considered triggering
mechanism (9) is one sampling period h. As a result, the Zeno
behavior can be ruled out completely. Besides, the resilient
ET mechanism does not transmit data during the active
period of DoS attacks, thus attack-induced data dropouts are
avoided.
Remark 13: In this paper, the output of the saturation

function (4) can be divided into linear and nonlinear terms.

FIGURE 2. Structure diagram of SNCCS for a power plant boiler-turbine
system.

In particular, this nonlinear term adds the dimension of LMI
condition. The computational complexity of the proposed
method will be increased due to the large size of LMI con-
dition. With the help of standard optimization software, the
obtained conditions in Theorems 8 and 9 can then be easily
solved.
Remark 14: It should be pointed out that the LMI method

was used to achieve the desired results in this study. More-
over, a large number of decision variables in the LMI leads
to computational problems for the main outcomes. In this
present study, our objective is to develop a new stabil-
ity criterion that is less conservative and contains fewer
decision variables. In order to accomplish this, we used
the Wirtinger-based integral inequality and Jensen’s integral
inequality to reduce conservatism without introducing new
variables in the main results.

IV. SIMULATION EXAMPLE
In this example, we borrow a power plant gas turbine sys-
tem [17] to illustrate the effectiveness of the theoretical
results. The operating principle of the SNCCS is displayed
in FIGURE 2, where the safety and reliability of the turbine
largely depends on the temperature of the superheated gas.
When the gas generation is carried out, the blower increases
the velocity of the air and directs it to a 3-way plug valve,
which in turn directs air to two different sides. First, the
air is used to cool the superheated gas. Then, it acts as a
combustion enhancer in the combustion of fuel oil to produce
the superheated gas. In order to generate superheated gas with
an appropriate temperature, the SNCCS is designed for the
gas turbine system. In this design, the gas outlet temperature
is determined by the primary sensor Sensor 1 and the cooling
air temperature is determined by the secondary sensor Sen-
sor 2.

The data from the primary sensor Sensor 1 is transmitted
to the primary controller Controller 1 through a real-time
network. The output of the secondary controllerController 2
controls the 3-way control valve to modulate the outlet air
over two directions. The output signals from the primary con-
troller Controller 1 and the secondary sensor Sensor 2 are
passed to secondary controller Controller 2, which controls
the three-way control valve to regulate the air outlets on both
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FIGURE 3. State, control, and threshold responses for considered system
under H∞ controller.

sides to ensure an suitable gas temperature. In the following,
the parameter values of the primary and secondary plants of
the SNCCS are taken from [17] such that

ẋ1(t) =
[
−1 0
−1 −2

]
x1(t)+

[
0.2
0.1

]
y2(t),

y1(t) =
[
0 0.1

]
x1(t)+ 0.2w(t),

[
1 0
0 0

]
ẋ2(t) =

[
1.3 1
0.2 0

]
x2(t) +

[
0.2 0.1
0.2 1

]
x2(t − τ (t))

+

[
0.2
1

]
u2(t)+

[
−0.4
0.1

]
w(t),

y2(t) =
[
−0.3 0.1

]
x2(t)+ 0.1w(t).

The other parameters are as follows: δ1 = 0.7, δ2 = 2,
k1 = 1.5, k2 = 1.5, z1q = 8, z2q = 8, ε1q = 8,
ε2q = 8, ϕ1q = 8, ϕ2q = 8, ς1q = 8, ς2q = 8, ϑ = 5,
ωG = 3.5s, ωD = 5s, and the fault model is adopted as
ℵ(t) = 0.85 + 0.05 sin(5t). Therefore, Definition 3 includes
L2 − L∞, H∞, mixed H∞ and passivity, passivity, and also
(Q,S,R)-dissipativity performances as special cases.We are
able to discuss all the above performances in the follow-
ing cases when the weighting parameters 31, 32, 33, and
34 are set as indicated in Remark 10. For the simulation,
we choose

[
−5.5 −2.5

]T and
[
6 −12.96

]T as initial condi-
tions for61 and62, respectively. The external disturbance is

taken as w(t) =
{
sin(t), 0 < t ≤ 10,
0, otherwise

.

FIGURE 4. Simulation results of release instant and intervals under H∞

controller.

FIGURE 5. State and control responses for considered system without
DoS attacks.

H∞ performance: Let 31 = −I , 32 = 0, 33 = γ 2I ,
34 = 0, h = 0.2s, and τ2 = 0.2s. By using the above
parameters and calculating the feasibility issue for the LMIs
in Theorem 9 with the MATLAB LMI Toolbox, we obtain
the primary and secondary controller gain matrices, and the
triggering parameter as follows:

K1 =
[
0.0476 0.0239

]
,

K2 =
[
−20.6146 −8.2811

]
,

and H =

[
0.8098 0.1660
0.1660 2.4320

]
.

By using the controller gains and initial conditions deter-
mined above, the primary and secondary state trajectories
of the system (24) are plotted in FIGURES 3 (a) and (b),
respectively, where the shaded regions represent the time
intervals of the aperiodic DoS attacks. The control response
of u2(t) is shown in FIGURE 3 (c). Our proposed control
strategy can eliminate the effects of aperiodic DoS attacks and
reduce the communication burden under H∞ performance,
which shows the effectiveness of the proposed control strat-
egy. The adaptive threshold response of χ (t) is depicted in
FIGURE 3 (d), and the corresponding relationship between
triggering instants and release intervals is given in FIGURE 4
(a). The releasing time instants and intervals according to the
traditional ET scheme are shown in FIGURE 4 (b).

In the H∞ case, we observe that 42 and 46 packets are
transmitted to the controller with the proposed AETM and
the traditional ET scheme, respectively. The average trans-
mission time for the AETM and the traditional ET scheme
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FIGURE 6. State response of SNCCSs for heating furnace.

TABLE 1. Calculated number of transmitted data for various methods
under H∞ case.

TABLE 2. Calculated γmin for different values of τ2 with h = 0.2 under
H∞ case.

are 0.9524 and 0.8696, respectively. From TABLE 1, it can
be seen that the number of transmitted data packets with the
proposed AETM is less than that with the traditional ET
scheme. TABLE 2 displays the γmin of various values of
τ2 with h = 0.2s, where the delay of the secondary state
increases and the associated minimum performance index
γmin also increases.

In the absence of aperiodic DoS attacks, the trajectories
of the primary state and secondary state are presented in
FIGURES 5 (a) and (b), respectively.Moreover, it can be seen
in FIGURES 3 and 5 that the trajectories of the primary and
secondary system states quickly approach zerowhen there are
no aperiodic DoS attacks under H∞ performance.
For comparison, we consider the external disturbance w(t)

is
{
sin(t), 0 < t ≤ 5,
0, otherwise

and the time period t ∈ (0, 20], the

primary and secondary state responses are plotted in FIG-
URE 6 (a) under proposedmethodwithout DoS attacks, while

FIGURE 7. State and control responses for considered system under
dissipative controller.

the H∞ controller method in [17] is shown in FIGURE 6 (b).
According to the FIGURE 6, it is concluded that the tra-
jectories of the system states converge to the equilibrium
point faster under AETM without DoS attacks than the H∞
controller in [17], which shows the superiority of the pro-
posed controller scheme. The simulation results clearly show
that the proposed method is feasible and effectively removed
the attack signals. Also, the proposed AETM reduced the
communication bandwidth.

(Q,S,R) - dissipative performance: We consider 31 =

Q,32 = S,33 = R− βI ,34 = 0, h = 0.2s, and τ2 = 0.2s
withQ = −1,S = 0.3,R = 0.5 and β = 0.0001. By solving
conditions (25), (59)-(65), and using the above parameters
found to be feasible, the following primary and secondary
controller gains and triggering parameter are obtained as

K1 =
[
0.0627 0.0185

]
,

K2 =
[
−19.8495 −8.1371

]
,

and H =

[
0.6207 0.1429
0.1429 2.1786

]
.

Under the above primary and secondary gainmatrices, exoge-
nous disturbance, and initial condition, the state responses
of the primary plant (66) are plotted in FIGURE 7 (a).
FIGURE 7 (b) shows the secondary state response of the
system (66). The control response of the secondary control
input is presented in FIGURE 7 (c), where the shaded areas
represent the time intervals of the aperiodic DoS attacks. Our
proposed AETM can remove the consequences of aperiodic
DoS attacks and also reduce the communication burden under
(Q,S,R) - dissipative. The adaptive threshold response of
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FIGURE 8. Simulation results of χ(t) and the corresponding release
instant and intervals under dissipative controller.

TABLE 3. Maximum allowable upper bound of τ2 with h = 0.2 and
γ = 0.5 for various cases.

χ (t) is plotted in FIGURE 8 (a). Moreover, the release time
instants and release intervals are displayed in FIGURE 8 (b).
It is noted that the 37 packets are transmitted to the con-
troller under proposed AETM. Furthermore, the maximum
allowable upper bound for τ2 is given for various cases, such
as H∞, L2 − L∞, passivity, and (Q,S,R) - dissipative in
TABLE 3, where h = 0.2s. The simulation results show that
the system trajectories converge well in the different cases
even under DoS attacks. The transmission frequency is also
significantly reduced by AETM.

V. CONCLUSION
The problem of resilient adaptive ET control for SNCCSs
with aperiodic DoS attacks was investigated. In particu-
lar, a switched strategy was developed to describe aperiodic
DoS attacks. The AETM was introduced to reduce the data
transmission in SNCCSs while mitigating the aperiodic DoS
attacks. Using the Wirtinger-based integral inequality and
the LKF approach, sufficient conditions for the exponential
admissibility of SNCCSs with a prescribed extended dissipa-
tive performance under AETM have been derived in terms of
LMIs. Finally, a simulation example was used to show the
efficacy of the developed method. In future work, we will
investigate the proposed method for neural-network-based
control design [11] and filtering-based control design [25]
with DoS attacks.
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