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ABSTRACT Operational knowledge is one of themost valuable assets in a company, as it provides a strategic
advantage over competitors and ensures steady and optimal operation in machines. An (interactive) assess-
ment system on the shop floor can optimize the process and reduce stopovers because it can provide constant
valuable information regarding the machine condition to the operators. However, formalizing operational
(tacit) knowledge to explicit knowledge is not an easy task. This transformation considers modeling expert
knowledge, quantification of knowledge uncertainty, and validation of the acquired knowledge. This study
proposes a novel approach for production assessment using a knowledge transfer framework and evidence
theory to address the aforementioned challenges. The main contribution of this paper is a methodology for
the formalization of tacit knowledge based on an extended failure mode and effect analysis for knowledge
extraction, as well as the use of evidence theory for the uncertainty definition of knowledge. Moreover,
this approach uses primitive recursive functions for knowledge modeling and proposes a validation strategy
of the knowledge using machine data. These elements are integrated into an interactive recommendation
system hosted on a backend that uses HoloLens as a visual interface. We demonstrate this approach using
an industrial setup: a laboratory bulk good system. The results yield interesting insights, including the
knowledge validation, uncertainty behavior of knowledge, and interactive troubleshooting for the machine
operator.

INDEX TERMS Production assessment, knowledge extraction, knowledgemodeling, uncertainty definition,
DSET, FMEA, HoloLens.

I. INTRODUCTION
Sustaining operational know-how guarantees companies an
advantage over competitors. This can be achieved by estab-
lishing best practices that ensure the optimal operation of
machines and recording troubleshooting approaches that
reduce downtime [1]. This knowledge has been accumu-
lated in company logs over the years. In the best of cases,
it is recorded in the form of best-practice manuals, mainte-
nance documents, and troubleshooting guides, so that future
machine operators can access it. This type of knowledge is
referred to as explicit knowledge. In comparison, tacit or
implicit knowledge refers to the empirical expertise gained
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by operators on the shop floor. The transformation of implicit
knowledge into explicit knowledge is not an easy task. The
reasons for this involve lack of adequate knowledge transfer
strategies, procedures and tools for institutional knowledge
internalization [2]. Knowledge transfer has been addressed
through different strategies, such as peer-to-peer commu-
nication, producing written sources (e.g., books and user
guides), audiovisual guides, or immersive augmented reality
(AR) and virtual reality (VR) applications. However, some of
these strategies might introduce bias in the acquired knowl-
edge [3] (e.g., in peer-to-peer communication where the
sender chooses the information shared in terms of perceived
relevance). Additional challenges include the quantification
of knowledge uncertainty, and effective strategies to validate
the extracted knowledge.
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TABLE 1. List of symbols and abbreviations.

Knowledge transfer involves different stages such as
extraction, modeling, uncertainty definition, validation, and
visualization [4]–[7]. Thus, defining a knowledge transfer
framework would provide a substantial step towards inter-
active knowledge transfer as it would clearly identify each
stage and the relevant challenges to be addressed. A knowl-
edge transfer framework would allow the deployment of an
interactive assessment system on the shop floor, which would
provide a constant flow of valuable information concerning
machine conditions to the operators, as well as a set of
recommendations geared at solving process issues.

This article proposes a novel methodology for production
assessment based on an interactive knowledge transfer frame-
work in which evidence theory is an intrinsic part. It provides
a knowledge transfer framework that considers all knowledge
stages, as it allows the extraction and transfer of knowledge,
and is facilitated through a user interface (UI). This research
identifies the existing challenges for each step in the knowl-
edge chain and methodologically addresses them.

The contributions of this paper are summarized as follows:

• Defining a methodology for the formalization of tacit
knowledge based on an extended failure mode and
effects analysis (FMEA) to extract knowledge from an
expert panel objectively and systematically. In addition,
the Dempster-Shafer evidence theory was used to eval-
uate the existing uncertainty factors in the extracted
knowledge.

• Presenting the use of primitive recursive functions to
create a knowledge-based model. This model integrates

the knowledge extracted from an extended FMEA and
the uncertainty defined through evidence theory.

• Presenting a strategy for knowledge validation based on
key performance indicator (KPI) analysis. The KPIs are
calculated using machine data in short- and long-term
periods to consider the effects of knowledge across time.

• Finally, defining a strategy to embed a knowledge trans-
fer framework into an interactive assessment system
hosted in a backend. The assessment system uses an
augmented reality device as the UI to enhance user
experience. Moreover, we demonstrate this approach
using a small-scale industrial setup.

This article is organized as follows. In Section II,
we present state-of-the-art knowledge transfer stages, quan-
tification of knowledge uncertainty, and production assess-
ment applications. Section III introduces the proposed model
and methodology to address the knowledge chain. Section IV
describes a practical implementation of this approach in an
industrial setup. Finally, Section V presents the findings and
remarks of the authors and provides an outlook for further
research.

II. RELATED WORK
This article presents an approach to production assessment
using an interactive knowledge transfer framework. The
knowledge transfer framework addresses three main points:
the formalization of tacit knowledge into explicit knowledge,
quantification of knowledge uncertainty, and definition of a
strategy to embed the knowledge framework into an inter-
active assessment system. Fig. 1 shows the stages of the
knowledge transfer framework.

FIGURE 1. Knowledge stages.

A. EXTRACTION OF TACIT KNOWLEDGE AND
UNCERTAINTY QUANTIFICATION
The extraction of tacit knowledge involves a knowledge
extractionmethod. For this purpose, different methodologies
have been proposed, which include, among others, the use
of question-answering systems [8]–[10], the use of process
mapping [11], ontologies [12], [13], and lean manufacturing
tools, such as failure mode and effects analysis (FMEA)
[14], [15]. However, knowledge extraction can be challeng-
ing, because the information should be representative and
free of bias. Moreover, the knowledge extraction process can
be time-consuming (e.g., especially for question-answering
systems and interviews), or in the case of ontologies that
require a high level of detail and implementation. Therefore,
we require a methodology that allows us to store information
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systematically, frequently, and without bias [16] to provide
the machine operator with an objective, representative, and
relevant assessment. Taking a systematic approach would
allow overcoming information bias, as it would avoid sub-
jective preferences in one expert’s opinion.

When establishing a body of explicit knowledge, one
crucial feature is the uncertainty quantification of the
knowledge or confidence level concerning expert state-
ments. Knowledge inaccuracies can be attributed to slightly
detailed information or the existence of new unknown events.
Knowledge uncertainty has been represented using fuzzy
systems [17], evidence theory [18]–[20], or hybrid sys-
tems [21], [22]. The next step in consolidating acquired
knowledge is to define a strategy for knowledge uncertainty
quantification.

B. KNOWLEDGE MODELING AND VALIDATION
Knowledge modeling has been addressed using (rule-based)
expert systems [23], [24], ontologies [12], [13], fuzzy
systems [17], and knowledge graphs [25], among others.
However, modeling the extracted knowledge can be an
exhausting task because of the detailed level of information
to be provided, especially for expert systems and ontologies.
The upside of such models is the inclusion of the expert
domain in modeling, whereas the downsides are the risk
of biased information, increased time consumption owing
to the number of rules to be defined and the subjectivity.
The maintenance of the knowledge-based model needs to be
considered as the knowledge would be modified frequently.

To this end, a knowledge extraction methodology using
FMEA was presented in [26], where the authors proposed a
strategy to formalize tacit knowledge, specifically machine
faults, into a knowledge-based model in a systematic man-
ner. This knowledge-based model contains rules that can be
triggered using machine data. However, although the authors
proposed a strategy to digitize the knowledge quickly, and
although the recommendation system detected the faults in
the process, no uncertainty quantification of the knowledge
rules that could assess the certainty of the triggered fault to
the machine operator was provided.
Knowledge validation is necessary to evaluate the effec-

tiveness of the knowledge models. An evaluation performed
using machine data can provide objective insights based
on machine performance. Key performance indicators (KPI)
have been used to assess the performance of machines and
processes, such as acceptance rate, mean downtime, and oper-
ating time [27]. Lindenberg et al. [28] stressed the impor-
tance of KPIs in performance monitoring in the industry
because they can help identify poor performance and, thus,
create improvement potential. Meier et al. [27] explained the
role of KPI within the assessment of the delivery of industrial
service.

C. INTERACTIVE ASSESSMENT SYSTEMS
Interactive assessment systems have industrial applications
using AR for remote maintenance [29], production and

quality monitoring on the shop floor [30], and cross-platform
dashboards for assembly operations [31]. Written docu-
mentation is popular on the shop floor while perform-
ing troubleshooting; however, the operator must find the
proper terms that identify the problem and then search
for a suitable solution [32]. Online documentation eases
this problem when available. However, the assessment pro-
vided to the operator is a set of statements rather than
a list of recommendations with an associated confidence
level. An interactive recommendation system would sup-
port the operator in the decision-making process on the
shop floor. Segovia et al. [30] investigated the effectiveness
of an AR-based interactive system to decrease defects on
the shop floor, where the AR implementation assisted in the
improvement of quality reporting and decision making while
displaying necessary information to the user. Additionally,
Hoffmann et al. [7] demonstrated the effectiveness of using
the AR device HoloLens, as a tool in a cyber-physical system
(CPS) for knowledge and expertise sharing in manufacturing.
This study discussed the importance of visualization and
interaction of knowledge transfer between knowledgeable
persons and knowledge seekers throughCPS. Thus, gamifica-
tion positively contributes to the knowledge transfer process.
Mourtzis et al. [29] presented another method for interactive
assessment using AR remote assistance. The user would be
able to contact remote experts for recommendations that were
presented through AR scenes. This implementation managed
to reduce travel costs and downtime. Kokkas et al. [33] used
holograms in an AR application to test new plant layouts as
a method for interactive assessments. This paper stresses the
importance of having a real environment, stating that it allows
a realistic assessment of solutions based on a quantitative and
qualitative approach.

Our approach is distinct from the known state-of-the-
art approaches in three ways. First, we propose a holistic
approach to managing the overall knowledge chain. Specif-
ically, we concentrate on the quantification of knowledge
uncertainty, as well as its inclusion in a knowledge-based
model based on primitive recursive functions. Second,
we propose a strategy for embedding a knowledge transfer
framework into an interactive assessment system hosted in the
backend. Third, we demonstrated the industrial plausibility
of this approach using an industrial laboratory testbed that is
comparable to industrial setups.

III. KLAFATE: KNOWLEDGE TRANSFER FRAMEWORK
AND EVIDENCE THEORY
This research proposes a user-centered approach to gather
process expertise from the shop floor using a KnowLedge
trAnsfer FrAmework using evidence ThEory (KLAFATE).
The system architecture is shown in Figure 2, which
portrays the knowledge flow from its tacit form to
an explicit (digitized) version. KLAFATE comprises two
major sections: knowledge update and the operational
system.
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FIGURE 2. Knowledge framework overview.

The knowledge update section considers all necessary
steps to acquire knowledge from the first time, as well as
every time the knowledge needs to be updated. The stages
of knowledge update are summarized as follows:

• Extraction of tacit knowledge and uncertainty quan-
tification: The tacit knowledge from process assets is
transformed into an explicit form using an extended
version of the causal method failure mode and effect
analysis (FMEA). The knowledge was extracted from
an expert panel and written in the templates of the
extended FMEA. The expert panel quantified knowl-
edge uncertainty by definingweights for each rule. Thus,
each rule weight is a function of predefined criteria:
wR = f (c1, c2, c3, . . . , cn), where c1, c2. . . symbolize
the criteria. A list of symbols and abbreviations is pre-
sented in Table 1.

• Knowledge modeling and validation: Knowledge
rules are transformed into a knowledge model using
primitive recursive functions. Thus, the system can be
represented as a switch case where each case is a knowl-
edge rule. The knowledge rules need to be validated
regularly according to the criteria. The criteria consider
a data-based method that uses the KPIs of the system to
validate the rule.

• Interactive assessment systems: The system interacts
with the user through a visual interface. This interface
displays the assessment while experimenting a fault and
allows the operator to input feedback to the system in
terms of system usability.

The operational system receives artifacts from the
knowledge update section, namely, the knowledge model,
rule weights, knowledge validation strategy, and AR
application.

A. THEORETICAL BACKGROUND
1) BOOLEAN LOGIC RULES
A rule can be written as

Ri = ( Pj Oj Pj+1 Oj+1 . . . PM−1 OM−1 PM ) (1)

where Ri is the ith knowledge rule, Pj is the jth operand, Oj
is the jth operator, and i, j,M ∈ N. The operator Oj is a logic
operator (e.g., ≤,≥, 6=,=,∨,∧,¬, etc.).

The jth operand Pj can be represented as a function of
process variables V and process thresholds T as follows:

Pj = f (V ,T ) (2)

Successively, the operand Pj can be represented using:

Pj = ( Pk Ok Pk+1 Ok+1 . . . PN−1 ON−1 PN ) (3)

where Pj is the jth operand, Pk the kth operand, and Ok the kth
operator, and j, k,N ∈ N.
Thus, the operatorPj could take one of the following forms:

Pj =


Ck
¬ Ck
Pk Ok Pk+1

(4)

where Ck is a condition that is a function of the process
variables V and process thresholds T :

Ck = f (V ,T ) (5)

Thus, the condition Ck could take one of the following
forms:

Ck =


Vi > Ti
Vi == Ti
Ti if Ci else Ti+1

(6)
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The knowledge rules return a Boolean output, which sig-
nalize that a knowledge rule is active (e.g., the first two
examples in Equation (6) return a Boolean output). In the
case of the rule weights, the output is a real number in the
range [0,1] (e.g., in the third example in Equation (6), an if-
else statement returns a real number).

2) DEMPSTER SHAFER EVIDENCE THEORY
Definition 1 (Dempster-Shafer [34]): Let2 be a frame of

discernment, in which each focal element represents a con-
dition. A basic probability assignment (BPA) can be defined
using a function m: 2θ → [0, 1], whenever:

m(φ) = 0 (7)∑
A⊆2

m(A) = 1 (8)

Thus, considering a frame of discernment 2 = {A,B}, the
power set 2θ is represented by:

2θ = {φ, {A}, {B},2}} (9)

The sum of the BPAs from (8) can be transformed into:

Sbpa =
∑
A⊆2

m(A) =
n∑
j=1

mj = 1 (10)

where mj is the jth focal element of 2, and j, n ∈ N.
The elements of 2 are considered mutually exclusive.

For example, given a 2 = {A,B}, a combination of focal
elements is not possible:

A ∩ B = φ (11)

A BPA describes the certainty of each focal element (e.g.,
a condition, a fault). Considering the weights of each focal
element can help while quantifying the overall uncertainty.
To this end, this paper presents a new weighted Sbpa, denoted
as Swbpa, that describes the overall uncertainty of a BPA by
using the weights of each BPA.
Proposition 1: The sum of BPAs from Equation (10) can

be transformed into:

Swbpa =
n∑
j=1

mj ∗ wmj + U = 1 (12)

where wmj is the jth confidence weight of the BPA mi, and
U is the overall uncertainty. The confidence weight wmj
represents the confidence level of the evidence mi, which can
be quantified using a predefined criteria.

The overall uncertainty of the body of knowledge can be
represented as:

U = 1−
n∑
j=1

mj ∗ wmj (13)

where the value of U will increase as the confidence weights
of the focal elements of2 decrease. Thus, a large value of U
corresponds to a high uncertainty in the body of knowledge.

In this sense, the overall uncertaintyU represents the amount
of unknown information or the lack of evidence.

At least one of the focal elements of 2 is different from
zero:

∀mj. mj > 0 (14)

Definition 2: Each confidence weight wmj is bounded:

wmj → [0, 1] (15)
Knowing the value of the overall uncertainty, we could

assess the confidence in the available evidence. Therefore,
Proposition 1 paves the way to obtain an overall uncertainty
measurement considering the confidence weight of each
piece of evidence. However, the integrity of Equation (12)
(sum of BPAs) should be preserved. For this reason, Proposi-
tion 1 must be consistent with Equation (12) by mathematical
proof.
Lemma 1: Denote the Sbpa and Swbpa as the BPA sum

and BPA weighted sum with an explicit overall uncertainty
definition, respectively. Then, it holds:

Sbpa = Swbpa (16)
Proof: Considering each weight wmj → 1, then U =

1−
∑n

j=1mj, and if Equation (10) holds, U = 0. Hence, (10)
is fulfilled as both sides equals to one. Likewise, considering
each weight wmj → 0, then the term

∑n
j=1mj ∗ wmj tends

to zero, and U = 1, thus, both sides equal to one. The first
scenario represents a total certainty on the provided evidence,
which in turn result in U = 0. Whereas the second scenario
represents a total uncertainty on the provided evidence, which
results in U = 1. Any other case in which wmj → [0, 1]
will result on the condition equal to one, due to the mutual
cancellation of

∑n
j=1mj ∗ wmj .

B. EXTRACTION OF TACIT KNOWLEDGE AND
UNCERTAINTY QUANTIFICATION
1) KNOWLEDGE EXTRACTION
The lean manufacturing tool failure mode and effect analysis
(FMEA) is extended for use as a causal method to transfer
tacit knowledge from the shop floor into an explicit form,
which can be easily modeled as knowledge rules. The FMEA
is built by an expert panel from the process, and identifies the
failure modes, possible causes, and recommendations from a
determined system. This research uses an extended FMEA to
extract the knowledge into a digital format.

The knowledge tuple TU has the form:

TUi = (P, SP,FM ,C,E,RE,R,wR) (17)

where, i ∈ N. Each knowledge tuple has only one associated
rule R and only one rule weight wR. Each failure mode FM
is associated with one process P and one sub-process SP.
Each FM can have several causes C , effects E , and recom-
mendations RE . Knowledge rule R can be used for process
optimization or troubleshooting purposes. This article pro-
poses an improved version of the extended FMEA from [26],
which consists of a spreadsheet with four templates: settings,
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TABLE 2. FMEA template.

TABLE 3. Extended FMEA template.

TABLE 4. Settings template.

weight update, system and component. Moreover, this study
formalizes the previous approach mathematically, allowing
further improvements and modifications.

The extended FMEA provides a framework for estab-
lishing knowledge rules using templates (see Table 3 and
Table 4). These rules are used to detect faults in the system,
and they follow the criteria defined in the Controls - Diag-
nosis of the traditional FMEA (see Table 3). The rules were
written in a programming-friendly manner to make infor-
mation parsing manageable. Each rule contains a formula
for detecting a failure mode, which is a function of process
variables V and process thresholds T . This formula can be
more detailed using sub-rules.

The previous procedure is illustrated graphically
in Figure 3, which shows the relationships between the
templates.

The template settings included the thresholds and system
set points in one place (see Table 4). This is implemented such
that the variables can be changed easily without the hassle
of changing individual variables in different templates. This
template included a section for the team, system, and compo-
nent. Team thresholds change variables of the templateweight
update, whereas the system thresholds and component thresh-
olds affect the templates system and component, respectively.
The template weight update contains information to quantify
the uncertainty of the knowledge rules as confidence weights.
The confidence weights used the criteria specified by the
expert panel.

2) UNCERTAINTY QUANTIFICATION OF THE
KNOWLEDGE RULES
The uncertainty of the knowledge rules can be quantified
using confidence weights for each rule. This implies finding
criterion that can represent the uncertainty of the rule so that
the weight for the rule can be defined. The weight of the

knowledge rule will have a value in the range [0, 1], and it
was used to assess the certainty of the rules. The weight of
each rule wR is built using:

wRj =
1
NR

NR∑
i=1

wRCi (V ,T ) (18)

whereV is the process variable, T is the process threshold,wR
is the rule weight, wRCi is the ith criterion for the rule weight,
and NR ∈ N. The criteria for the confidence weights of the
knowledge rules are found in the templateweight update. It is
important to note that the expert panel can define the extent
of the rule criteria, so these criteria could be composed of one
or several criteria. Each weight wR can contain a NR number
of sub-weights wRCi . The expert panel defines the criteria to
conform to each of these wRCi , which is a function of the
variables V and thresholds T in the template. However, this
research uses three main criteria to conform to the weight of
a rule: the weight of the expert panel wRC1 = wP, weight
of the KPI compliance wRC2 = wK , and weight of the User
Rating wRC3 = wU . Once the system is in operation, the
confidence weights can be updated dynamically using the
historical values. The accumulated value of the weight wRa
can be calculated as:

wRa =
1
NRa

NRa∑
j=1

wRj (19)

The weight of the expert panel wP is defined using:

wRC1 = wP(Vt ,Tt )

=
1
NP

NP∑
i=1

wMi (20)

, where NR,NRA ∈ N, and Vt represents the team variables,
Tt the team thresholds from the template settings, and wMi

represents the weight of the ith member of the expert panel.
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FIGURE 3. Relationship between templates.

The weight of the expert panel wMi is defined using:

wMi =
1
NM

NM∑
j=1

wMCj
(21)

where NM , j, i ∈ N, and wMCj
is the weight of the jth criteria

Cj to evaluate the members of the expert panel.
The weight of the KPI Compliance wK is defined using:

wRC2 = wK (Vs,Ts)

=
1
NK

NK∑
i=1

KCi × wKCi
KTi

(22)

where i,NK ∈ N, wKCi represents the confidence weight for
the KPI, KCi represents the current KPI calculation, and KTi
is the target or estimated KPI for the machine performance
during the member working time. The expert panel defines
KCi and KTi , where KCi is calculated using online machine
data, an KTi is set by the team.

The weight of the user rating wU is defined using:

wRC3 = wU
= US (23)

where US is the user satisfaction in the range [0, 1].
The prior weights for the knowledge rules are composed

solely of the expert panel weight, thus:

wRj = wP(Vt ,Tt ) (24)

Fig. 4 shows an overview diagram of the confidence
weights. The weight for each rule will have a value in
the range [0, 1]. Though the confidence weight can pro-
vide the certainty of the active rule, there is no assessment of
the overall uncertainty, particularly for knowledge rules that
are under the evaluation of acceptance. The Dempster Shafer
Evidence Theory (DSET) can support themodeling of overall
uncertainty.

The knowledge rule, when triggered, will have a value
defined in:

2 = {R1, . . . ,Rn} (25)

Having a triggered rule Ri:

Ri = True (26)

where Ri is the ith focal element of 2, and i ∈ N.
Since the system only triggers one knowledge rule at the

time, the BPA weighted sum Swbpa is represented as:

Swbpa = mRj ∗ wmRj + U = 1 (27)

where ∀Rj 6= True, mRj = 0. The Swbpa does not take in
consideration neither the other focal elements (e.g., knowl-
edge rules that are not active) nor the associated weights.
The consideration of the weights of each focal element can
improve the quantification of the overall uncertainty. To this
end, we present an approximation for the Swbpa called Sawbpa
that considers all the focal elements using a sensitivity to zero
approach.

Cheng et al. [35] proposed the use of sensitivity to zero
when building evidence, which approximates the zero and
one values to nearly-zero and nearly-one, respectively.
Remark 1: The approximation factor k enhances the evi-

dence definition because all the focal elements are consid-
ered, even if these values are nearly zero [36]:

k = 1− 10−F . (28)

where k ∈ R, and F ∈ N.
Proposition 2: Using the approximation factor k

from (28), the BPA weighted sum from (12) is transformed
into:

Sawbpa =
n∑
j=1

m′Rj ∗ wmRj + U = 1 (29)
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FIGURE 4. Overview of confidence weights.

where m′Rj is BPA using the approximation factor k , and is
represented as:

m′Rj =

k, if Rj = True
1− k
n− 1

, otherwise
(30)

Assumption 1: Considering a factor F such as: F � 1, and
therefore k → 1.

Similar to Proposition 1, the integrity of Equation (12)
must be preserved when applying Proposition 2. Therefore,
Proposition 2 must be consistent with Equation (12) by math-
ematical proof.
Lemma 2: Denote the Sbpa and Sawbpa as the BPA sum

and approximated BPA weighted sum with an explicit overall
uncertainty definition, respectively. Then, it holds:

Sbpa = Sawbpa (31)
Proof: Assuming a factor F � 1, thus, the approxima-

tion factor k → 1, and therefore, the BPA of the active rule Ri
will tendm′Rj → 1; whereas, the BPA of the inactive rules will
tend to zero. As a result, Ri∗wRi+U = Ri∗wRi+1−Ri∗wRi ,
which equals to one, satisfying, thus, Equation (10).
The BPA m′Rj can be transformed into an array form for

posterior calculations [37]:

mRj = [ R1 ∗ wR1 . . . Rn ∗ wRn U ] (32)

where Rj and wRj are the jth element of 2 for the rule and
confidence weight, respectively; U is the overall uncertainty,
and j, n ∈ N.

C. KNOWLEDGE MODELING AND VALIDATION
1) KNOWLEDGE MODELING
Now that we have extracted the knowledge using the causal
method FMEA, this knowledge can be used as a knowledge
model by formalizing the rules as primitive recursive func-
tions. Kleene [38] defined that ‘‘a function ϕ is primitive
recursive in ψ1,. . . ,ψl (briefly9), it there is a finite sequence
ϕ1,. . . ,ϕk of (occurrences) functions (called a primitive recur-
sive derivation of ϕ from 9) such that each function of

the sequence is either one of the functions 9 (the assumed
functions), or an initial function, or an immediate dependent
or preceding functions, and the last function ϕk is ϕ.’’
Definition 3 (Kleene [38]): Kleene defined the switch

case function as ‘‘a set of predicates Q1,. . . ,Qm is mutually
exclusive, if for each set of arguments not more than one of
them is true. #F. The function ϕ defined thus

ϕ(x1, . . . , xn) =


ϕ1(x1, . . . , xn) if Q1(x1, . . . , xn),
. . .

ϕm(x1, . . . , xn) if Qm(x1, . . . , xn),
ϕm+1(x1, . . . , xn) otherwise

(33)

where Q1,. . . ,Qm are mutually exclusive predicates (or
ϕ(x1, . . . , xn) shall have the value given by the first
clause which applies) is primitive recursive in ϕ1,. . . ,ϕm+1,
Q1,. . . ,Qm.’’
The knowledge rules from the extended FMEA were

defined as functions of process variables and process
thresholds:

Rj = f (V1, . . . ,Vn,T1, . . . ,Tn) (34)

where V1, . . . ,Vn represent the process variables, T1, . . . ,Tn
are the variable thresholds used in the knowledge rules, and
j, n ∈ N. The rules extracted by the extended FMEA are
mutually exclusive. The mutual exclusivity property of the
rules satisfy the condition of the switch case function of
Kleene.
Thus, the knowledge rules can be represented with

the function LR (to simplify the equations the term
(V1, . . . ,Vn,T1, . . . ,Tn) will not be written):

LR =


LR1 if R1,
. . .

LRm if Rm,
LRm+1 otherwise,

(35)
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where R1, . . . ,Rm are the knowledge rules, LR1 , . . . ,LRm
represent the labels correspondent for each rule, LRm+1 is the
exit clause, and m ∈ N.
The knowledge-based model can also be represented as:

LTR =


LTR1 if R1,

. . .

LTRm if Rm,
LTRm+1 otherwise,

(36)

where the transformed rule LTRj was defined using Equa-
tion (28):

LTRj =

k, if Rj = True
1− k
n− 1

, otherwise

The next step is the integration of the knowledge-based
model and the uncertainty of each rule to determine the
confidence level of the rules. The previous section defined
the uncertainty as a confidence weight for each rule using
Equation (18):

wRj =
1
NR

NR∑
i=1

wRCi (V ,T )

Having a triggered rule Rj:

LR = LTRj (37)

with its corresponding confidence wRj , it provides a rele-
vant assessment of the process, however, the overall uncer-
tainty of the body of knowledge remains unknown. Knowing
the uncertainty could provide a perspective on the over-
all confidence. Therefore, the overall uncertainty U of the
knowledge-based model for the current triggered rule Ri must
be calculated. For this purpose, the rule Ri is transformed into
a set of evidence mRj using the equation (11):

mRi = [ LwRj LwRj+1 . . . LwRn−1 U ]

where the term LwRj can be represented as:

LwRj = LTRj × wRj (38)

Thus, the overall uncertainty U is represented using the
equation (13):

U = 1−
n∑
j=1

LwRj

2) KNOWLEDGE VALIDATION
Having a knowledge model containing explicit knowledge
in the form of rules, the next step is to define a validation
strategy to evaluate their performance. For this purpose, the
knowledge rules are validated using the KPI calculation for a
period of time. Thus, the validation of knowledge rule Rj is
represented by:

KVRj =
1
NV

NV∑
i=1

KCi × wKCi
KTi

, (39)

where i,NV ∈ N. wKCi represents the confidence weight for
the KPI,KCi represents the current KPI calculation, andKTi is
the target or estimated KPI for the knowledge rule. The next
step was to compare the validation results of the KVRj with a
threshold to approve the rule, if successful. In this study, the
rules are evaluated on short-term and long-term bases. The
short-term basis evaluates the acceptance of a new knowledge
rule; whereas, the long-term basis evaluates the long-term
effects.

D. INTERACTIVE ASSESSMENT SYSTEM
This subsection provides considerations from the software
engineering side for the deployment of the KLAFATE as a
backend, as well as the user interface using the augmented
reality device HoloLens. Software development followed an
agile methodology, as the issues were defined and grouped
in working package sprints for a 2-weeks time slot, keeping
a backlog for future tasks. The first challenge is to define
software requirements. For this purpose, the backend and
HoloLens are addressed first separately, and second, it is
addressed as a system. In the first step, the backend must
fulfill the following tasks:
• Communication to the machine and to the HoloLens
• Data collection of the machine
• Knowledge Extraction through FMEA parsing
• Uncertainty Quantification of the Knowledge Rules
• Sending assessment messages to the HoloLens
• Receiving user rating and report
• Updating rule weights
• Calculating the time response of the system and commu-
nications

The HoloLens needed to fulfill the following tasks:
• Display the assessment provided by the backend
• Request a report from the user in case no effective
diagnosis is available

• Request a user rating
• Provide a voice command to enhance the user experience
Having defined the tasks for the backend and HoloLens,

it is possible to sketch a sequence diagram that shows the
interactions between the backend and HoloLens.

As shown in Figure 5, the major actors are the machine,
backend, and HoloLens. However, the backend has main
modules for communication using OPC-UA and MQTT for
reading and writing, an MQTT broker, a parsing module to
extract information from the FMEA, build the knowledge
model, and the main function. The next step is to define the
flow diagrams and pseudo-codes to identify the modules and
functions. We considered the use of Git, a version control
system, to work collaboratively and keep track of software
changes. Finally, we addressed the hardware, for which we
considered a laptop as a device for software development and
testing, and HoloLens as the user interface. Having tested the
functionality of the backend, it is possible to use different
hardware setups to host the backend, such as a cloud platform,
locally on a server, or even as edge computing (e.g., using an
industrial PC on the shop floor).
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FIGURE 5. Sequence diagram of the interactive assessment system.

IV. USE CASE: APPLICATION OF THE KLAFATE IN A
LABORATORY BULK GOOD SYSTEM
This section describes the practical implementation of
KLAFATE, as well as the test results using a laboratory
testbed consisting of a small-scale bulk good system (BGS).
This section is divided into the following subsections: BGS
description, implementation of KLAFATE, results, and dis-
cussion. An overview of this use case is shown in Figure 6.
The backend hosts the KLAFATE and provides the commu-
nication interfaces OPC-UA and MQTT, which are used for
the communication of the BGS and augmented reality device
HoloLens, respectively.

The backend was developed using Python 3.8 in the IDE
Anaconda. The backend was tested on a laptop with an Intel
Core i7, 32GBRAM, and 475GBHDD. The backendwas run
in Windows 10 64-Bit. The interactive user assessment sys-
tem consists of a backend and augmented reality (AR) device
as the user interface. We chose Microsoft’s HoloLens 2 as
the AR device for user experience (e.g., holographic support,
voice command, head/eye/hand tracking, and customized
programming for MQTT communication). The HoloLens
specifications include a Qualcomm Snapdragon 850 proces-
sor with 64-GB of storage and 4-GBDRAMmemory running
the Windows holographic operating system. The software
Unity 3D was used to develop the AR application. This is
a cross-platform game engine developed by Unity Technolo-
gies. Unity uses the C# programming language for software
development.

A. BULK GOOD SYSTEM LABORATORY PLANT
The BGS is a discrete process comprising four stations:
loading, storage, weighing, and filling. The BGS uses plastic
pellets as bulk goods and possesses common components of a
large-scale industrial BGS (e.g., conveyors (motor, vacuum),
silos, valves, weighing and dosing stations, and an automation
platform). Figure 7 shows the stations in the BGS.
Each station can function standalone or together as a sys-

tem. The station loading has an industrial PC (IPC) containing
a human-machine interface (HMI). The remaining stations
possessed a PLC ET200. Each station has an embedded
OPC-UA server that facilitates data exchange between the
stations and the KLAFATE hosted in the backend. Table 5
summarizes the list of setpoints for each station. Table 6 lists
the variables used in data collection.

TABLE 5. BGS operation parameters of the stations loading, storage,
weighing, and filling.

TABLE 6. BGS variables of the stations loading, storage, weighing and
filling for data collection.

B. EXPERIMENT DESIGN
The experiment illustrates the application of KLAFATE in
a small-scale industrial testbed. To pursue the experiments,
it is necessary to perform a setup procedure in the BGS,
KLAFATE, and expert panel.

The expert panel setup included two experts, each with at
least 1-year of experience working with the Bulk Good Sys-
tem, and one apprentice with no experience in the machine.
The panel discusses and proposes a troubleshooting program
and new recipes to optimize the process. These recipes are
a collection of machine parameters that allows the machine
to achieve the best KPIs. The years of experience of the
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FIGURE 6. Overview diagram for the use case.

FIGURE 7. BGS. From left to right: loading, storage, weighing, and filling.

TABLE 7. Expert panel from the template profile.

experienced worker have been exaggerated for illustration
purposes in the experiments (see Table 7).

The BGS setup consists of the initial conditions for the
stations, such as the machine parameters, product weight, and
compressed air pressure. In addition, before every experiment
(e.g., testing a process recipe), the silos were filled to 90% of
its capacity.

The KLAFATE setup defines the constants in the settings
template. These constants are the thresholds for the rules
and confidence weights. Thresholds are grouped into team,
system, and component. Some of the thresholds for the team,
system, and component are listed in Tables 8, 9 and 10,
respectively. According to the experiment, the calculation
time for KPICompliance was set to 10min, 20min, and 30min.

C. IMPLEMENTATION OF THE PROPOSED
METHODOLOGY
The KLAFATE methodology was applied in two stages:
offline and online. Data collection supported the offline
stage. The main script supported the online stage. Around
these two scripts, several scripts provide services such
as OPC-UA and MQTT communication, fusion functions,

TABLE 8. Team thresholds from the template settings.

TABLE 9. System thresholds from the template settings.

TABLE 10. Component thresholds from the template settings.

parsing functions for the FMEA templates, and auxiliary
functions. In addition, an MQTT broker allows communica-
tion between the backend and HoloLens. The offline stage
uses the backend data collectionmodule, in which the console
is used as the user interface. The collected data are used
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for the uncertainty quantification of a failure mode and to
validate process knowledge (e.g., process recipes). The online
stage or interactive assessment system consists of the backend
and augmented reality application in the HoloLens. To oper-
ate the KLAFATE, the expert panel needs to complete the
following steps: filling up the FMEA templates, initializing
the BGS, and running the backend and HoloLens application.
The backend contains the MQTT broker for communication
to the main script and HoloLens and the main script. The
pseudo-code of the main script is displayed in Algorithm 1.

Algorithm 1 Backend Algorithm
1: procedure Backend Main Script
2: initialize MQTT communication
3: loading FMEA dictionaries
4: FIRST_RUN ← True
5: user_stop← False
6: while user_stop do
7: if FIRST_RUN then
8: load prior weights wR← wRpr by Eq.(24)
9: else

10: read OPC-UA variables from BGS
11: evaluating active system FM FMS
12: if FMS then
13: normal ← False
14: else
15: normal ← True
16: evaluating component FM FMC
17: NFMC ← count of active FMC
18: for i = 0 to NFMC do
19: if FMC = FMS then
20: ListFMC ← FMC

21: transform evidence EFMS by Eq. (28)-(32)
22: calculating overall uncertainty UEFMS
23: for i = 0 to NFMC do
24: retrieving causes CFMC for FMC
25: retrieving recommend. RFMC for FMC
26: message← CFMC ,RFMC

27: message← FMS ,wR,EFMS ,UEFMS
28: sending message using MQTT to HoloLens
29: waiting for ACK from HoloLens AHo
30: waiting for end from HoloLens EndHo
31: if AHo AND NOT normal AND EndHo then
32: waiting for user report
33: storing user report
34: if AHo AND normal then
35: sending solved to HoloLens
36: waiting for SolvedHo from HoloLens
37: if SolvedHo then
38: update weight wR of the FM by Eq. (18)
39: return

The HoloLens application contains an interactive
assessment application that provides information regarding
triggered failure modes. The HoloLens application provides

different (internal) services, such as voice commands, recog-
nition of hand gesture, and customized programmed services
(e.g., MQTT client, state machines, and handshake commu-
nication with the backend). The system latency was also
calculated using the backend.

D. RESULTS
This section shows the functionality of KLAFATE: a data
collection script for data analysis (e.g., validation of new
recipes and uncertainty quantification), data storage of the
system time response, and an interactive assessment system
through the HoloLens and the backend.

1) EXAMPLE USING A FAILURE MODE AT THE SYSTEM LEVEL
This section provides an example of KLAFATE. For this
purpose, we chose a failure mode (FM) at the system level,
specifically, low_quality_status. Table 11 lists the extended
FMEA at the system level for this FM, whereas Table 12 lists
the extended FMEA at the component level.

The rule low_quality_status is built using the logic pre-
sented in Equations (1) - (6). Defining the active rule
low_quality_status at the system level (see Table 11 for the
system FMEA) using Equation (1):

Ri = ( Pj Oj Pj+1)

= C1 or not C2

where C1 and C2 are defined in Table 11, and the causes
and recommendations for the active rule low_quality_status
are provided by the active FM at the component level (see
Table 12). Thus, the active FM no_vacuum_pump at the
component level can be defined using Equation (1):

Ri = (Pj Oj Pj+1)

=

(
Pj Oj

(
Pk Ok (Pk+1) Ok+1 Pk+2 Ok+2 Pk+3

))
where:

Pj = (C1 and C2 and C3 ) Oj = or

Pj+1 =
(
Pk Ok (Pk+1) Ok+1 Pk+2 Ok+2 Pk+3

)
where:

Pk = C1 Ok = and Pk+1 = C2 Ok+1 = and

Pk+2 = not C3 Ok+2 = and Pk+3 = C4

Thus, Ri can be represented as:

Ri =
((
C1 and C2 and C3

)
or(

C1 and C2 and (not C3) and C4
))

where C1 - C4 are defined in Table 12. The weight of the
rule low_quality_status can be defined using Equations (18),
(20)-(22):

wRj =
1
NR

NR∑
i=1

wRCi (V ,T ) =
1
3
(wP + wK + wU )
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TABLE 11. Recipe validation experiment.

TABLE 12. Extended FMEA at the component level.

TABLE 13. Update of rule weights.

Likewise, the weight of the rule, it can be modeled using
the previous procedure. Fig. 8 shows the overview diagram
of the confidence weights for the use case.

Table 7 shows the team setup, where three operators op1,
op2, and op3 constitute the expert panel (NP = 3). The weight
panel wP can be calculated using the equations (20), (21):

wRC1 = wP(Vt ,Tt ) =
1
NP

NP∑
i=1

wMi

=
1
3
(wMop1

+ wMop2
+ wMop3

)

Each operator weight wMi is calculated using the criteria
wMCj

: years of experience in general EG, years of experi-
ence in machine EM , and individual performance KA cal-
culated from the KPIs waste w and production rate p (see
Table 7). Where each operator weight wMi is defined using
Equation (21):

wMi =
1
NM

NM∑
j=1

wMCj
=

1
3
(wEG + wEM + wkpm )

The formulas for wEG , wEM , and wKA are defined in
Table 13. Thus, the weight for the years of experience wEG
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FIGURE 8. Overview of confidence weights.

TABLE 14. Dynamic confidence weights for the expert panel.

can be represented using:

wEG = WEIGHT_YOE_HIGH if C1 else

WEIGHT_YOE_MEDIUM if C2

else WEIGHT_YOE_LOW if C3 else − 1

where C1, C2, and C3 are described in Table 13.
The weight of the years of experience in the machine wEM

can be represented using:

wEM = WEIGHT_YOEM_HIGH if C1 else

WEIGHT_YOEM_MEDIUM if C2

else WEIGHT_YOEM_LOW if C3 else − 1

where C1, C2, and C3 are described in Table 13.
Finally, the weight for the KPI performance wkpm can be

represented using:

wKA = HIGH_KPI if C1 and C2 else

MEDIUM_KPI if C3 and C4

else LOW_KPI if C5 else − 1

where C1, C2, C3, C4, and C5 are described in Table 13.
The results are summarized in Table 14.
Thus, the weight panel wP can be calculated as:

wP =
1
3
(wop1 + wop2 + wop3 ) = 0.88+ 0.75+ 0.5

= 0.71

Using the machine availability Kma as KPI (NK = 1), and
assuming that the assessment solved the problem (Kma = 1,
KTma = 1, and wKma = 1), the KPI compliance can be
calculated using (22):

wRC2 = wK (Vs,Ts) =
1
NK

NK∑
i=1

KCi × wKCi
KTi

=
KC1 × wKC1

KT1
=
Kma × wKma

KTma
= 1.0

If the problem has no appropriate diagnosis or cannot be
solved, KPI is Kma = 0.
Assuming a satisfied operator (US = 0.8), the user rating

weight can be calculated using (23):

wRC3 = wU = US = 0.8

Thus, the weight for the rule RLQ is calculated using:

wRj =
1
3
(wP + wK + wU ) =

1
3
(0.71+ 1.0+ 0.8) = 0.84

Assuming that the FMEA system has three FMs: low_
quality_status (LQ), high_quality_low_production_status
(LP), and high_quality_normal_production_status (NP), the
knowledge-based model can be represented using equa-
tion (36):

LTR =


LTRLQ if RLQ,

LTRLP if RLP,

LTRNP if RNP,

LTRE otherwise,

The weights of the rules wRLP and wRNP will be assumed to be
the prior weights using (24):

wRLP = wRNP = wP(Vt ,Tt ) = 0.71

The knowledge-based model triggers rule RLQ, which can
be transformed into LwR using (37):

LwR = LTRLQ × wRLQ

where LTRLQ is defined using Equation (14):

LTRLQ =

k, if RLQ = True
1− k
n− 1

, otherwise

Assuming an F = 2, the approximation factor k is calculated
using equation (12):

k = 1− 10−F = 1− 10−2 = 0.99

Thus, since RLQ is active, LTRLQ yields:

LTRLQ = k = 0.99
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The rest of the rules are calculated using:

LTRLP = LTRNP =
1− k
n− 1

=
1− 0.99
3− 1

= 0.005

The uncertainty of the system is calculated using the
evidence theory, where the power set is represented using
Equation (9):

2 = {LQ,LP,NP}

The rule LwR can be transformed into a set of evidencemRLQ
using the equation (11):

mLwR = [ LwRLQ LwRLP LwRNP U ]

which can also be represented as:

mRLQ = [LTRLQ × wRLQ LTRLP × wRLP LTRNP × wRNP U ]

where the overall uncertainty U is represented using the
equation (14):

U = 1−
n∑
j=1

LwRj

= 1−
n∑
j=1

LTRj × wRj

= 1− (LTRLQ × wRLQ + LTRLP × wRLP
+LTRNP × wRNP )

= 1− (0.99 ∗ 0.84+ 0.005 ∗ 0.71+ 0.005 ∗ 0.71)

= 0.16

Thus, the set of evidence is calculated as:

mRLQ = [LTRLQ × wRLQ LTRLP × wRLP
LTRNP × wRNP U ]

= [0.99 ∗ 0.84 0.005 ∗ 0.71 0.005 ∗ 0.71 0.16]

= [0.83 0.003 0.003 0.16]

Thus, the active rule RLQ has a confidence level of 83%,
and the overall uncertainty lies by 16%.

2) UNCERTAINTY REPRESENTATION
The weight wR represents the uncertainty of the rule R (e.g.,
a process recipe). The rule was evaluated at intervals of
10min, 20min, and 30min. Assuming a steady process, syn-
thetic data are created to illustrate the change in the weight
over time. For this purpose, the panel weightwp was assumed
to change twice a year, assuming a regular evaluation (e.g.,
the operators received training). The production rate was
assumed to be steady with an average value of 3.5 prod/min.
However, external disturbances (e.g., material shortages or
pressure decay) were considered during April and September,
as shown in Fig. 9. These fluctuations in the production rate
also influenced the user rating weight wu, which is, in this
case, the user satisfaction that was not fulfilled (e.g., the esti-
mation of the KPI was not reached). The weight wR follows
fluctuations in the production rate, as shown in Figure 9.
In contrast, the accumulated weight wRa has a steadier trend
absorbing the disturbances.

FIGURE 9. Production rate against uncertainty representation for the rule
weight.

3) KNOWLEDGE VALIDATION
The scenario illustrates the machine operation by an inex-
perienced operator and using KLAFATE. The KPI under
observation is the production ratePRmeasured in [prod/min].
This experiment was conducted using different time slots: 10,
20, and 30 min for the KPI calculations. The data collection
script is used to evaluate the performance of the machine by
comparing the current production rate with user estimation.
The experiment began with a steady or normal condition on
the machine. This machine condition corresponds to the label
NP or normal production, which corresponds to an average
production rate of 3.4 prod/min for the 30 min time slot,
as shown in Figure 10. An inexperienced operator sets a new
recipe X1 in the machine with an estimated production rate of
4 prod/min, corresponding to an improvement of 18%. This
recipe yielded a production rate of 2.9 prod/min. The recipe
did not reach the estimation or the current normal production
rate NP; therefore, the recipe was discarded and the operator
loaded the previous recipe NP. The expert panel suggested a
new recipe X2 in the machine with an estimated production
rate of 4.2 prod/min, which corresponds to an improvement
of 23%. Observing the plot in Fig. 10a, using the new recipe
fulfills the estimation using a time slot of 10min with amoving
average of five samples. However, evaluating the time slots
for 20min and 30min (Figures 10b, and 10c respectively), the
production rate decays. The reason for this decay relies on the
silo levels, which cannot be filled by the selected suction time
of 3s. This effect can only be observed over a long evaluation
period. Thus, using a time slot of 30 min, the production rate
did not fulfill the estimation. However, the new recipe yields
a better production rate than the current recipe. Nevertheless,
to approve a new recipe, a new analysis should be performed
using a longer time slot.

The second experiment, as seen in Figure 11, begins with a
low production LP condition on the machine. This condition
corresponds to an average production rate of 3.2 prod/min.
Similarly, an inexperienced operator sets a new recipe X3 to
improve the production rate; however, this also causes the
production rate to dip, as seen in the previous experiment.
In contrast, this experiment changes the recipe to NP after
detecting the failure of the recipe X3. This recipe resulted
in an increase in the production rate by 6%. The expert
panel then suggests a new recipe X4 in the machine, with an
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FIGURE 10. Recipe validation for experiment 1.

FIGURE 11. Recipe validation for experiment 2.

FIGURE 12. Interactive user assessment using augmented reality.

estimated production of 4 prod/min. Similar to the previous
experiment, the initial estimate was achieved. However, as it
progressed towards 30 minutes, the production rate started
to decay. The cause of this decay is similar to what was
discussed in the first experiment. As a result, another recipe

X5 was suggested by the expert panel, where it manages to
stop the decay and slightly increase the production by 6%
compared to X3.

A one-way ANOVA test was conducted to determine
whether there were significant differences between the
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production rates of the recipes. An initial null hypothesis and
an alternative hypothesis were set, where the null hypothesis
stated that all setpoints yielded the same production rates.
By contrast, the alternative hypothesis contradicts this by
stating that there is a difference between production rates.
This test was done on the three recipes. Given an alpha
of 0.05, the resulting p-value was 3.12 × 10−23, indicating
that the null hypothesis should be rejected. Therefore, it can
be concluded that the three recipes did not yield the same
production rates and had significant differences.

4) TIME RESPONSE OF THE SYSTEM
The time response of the system is evaluated using different
perspectives: the communication between the backend and
HoloLens, internal backend cycle, and time required for
failure mode detection and user assessment. The latency of
the MQTT communication had an average of 1s; however,
the last trials had an average of less than 1s. This time is
required to send the assessment message from the backend to
its reception in the HoloLens. The time required from failure
mode detection until visualization on the HoloLens had an
average of 5s. The internal cycle time of the backend had
an average of 10s. This cycle time also depends on the user
interaction, which implies that the user can influence this
time measurement (e.g., an inexperienced user would require
additional time to evaluate the recommendation).

5) INTERACTIVE ASSESSMENT SYSTEM USING THE
BACKEND AND THE HoloLens
The backend collects data from the background and evaluates
knowledge rules. HoloLens runs an internal loop and remains
on standby until it receives a message from the backend.
The scenario started with an inexperienced operator wearing
HoloLens. The BGS operates in a normal condition, and thus
the HoloLens displays no fault, see Fig. 12a.
The compressed air pressure valve is closed, which triggers

a system failure mode with low quality at the backend.
The backend sends an assessment message to HoloLens
containing the following information regarding the failure
mode (e.g., description, effect, causes, and recommenda-
tions). In addition, it contains the weight of the failure mode
and overall uncertainty of the system. This uncertainty was
calculated by transforming the active failure mode into a
set of evidence. HoloLens displays the assessment message,
as shown in Figure 12b. The causes and recommendations of
the system failuremode are the associated failuremodes at the
component level. Thus, a system failure mode triggers more
than one component failuremode. The operator uses the voice
command to select the next cause/recommendation pair, say-
ingNext (e.g., in the case of several causes/recommendations)
or solved (e.g., in the case where the failure mode has been
addressed). After the failure mode has been categorized as
solved, HoloLens displays a summary of the current failure
mode and requests a user rating to rate the user satisfaction
from one to five stars. In the case where there is no available
diagnosis, which means that the HoloLens reached the last

pair of causes/recommendations, the HoloLens requests a
report from the user, as shown in Figure 12d. As displayed
on the screen, the HoloLens requests an error report from the
user. The backend receives amessagewith either the solved or
report status, and it assigns the KPI compliance as 1.0, or 0.0,
respectively. The backend updates the weight of failure mode
wR using the expert panelweight wP, KPI complianceweight
wK , and user rating weight wU .

E. DISCUSSION
KLAFATE presented a way to formalize tacit knowledge and
integrate it into an interactive assessment system. Remarkable
features are the uncertainty representation of knowledge,
validation of knowledge rules, and implementation of the
framework into a small-scale industrial testbed. The data
collection module allowed us to quantify knowledge uncer-
tainty and validate new process recipes. The limitations of
this approach include multi-fault scenarios at the system
level. Currently, only mutually exclusive faults are explicitly
addressed. Addressing a scenario with simultaneous faults
requires special treatment based on evidence theory, in which
a combination of faults is considered. Consequently, the focal
elements of the evidence increase to 2Faults. The knowl-
edge model does not consider the historical nature of the
fault, which means that the model cannot handle time-series
data. This scenario can be addressed using a hybrid system
composed of a current knowledge model and a machine
learning model trained with time series. Uncertainty quan-
tification is based on the criteria given by the expert panel’s
weights, KPI analysis and user ratings. This uncertainty
assigns a confidence level to the triggered operational rule of
the knowledge model. Knowledge validation was performed
using KPI compliance, specifically production rate. A typ-
ical industrial process include several KPIs to validate the
process recipes (e.g., delay, machine availability, quality, and
energy consumption). The methodology of KLAFATE and
its implementation opens a discussion on the importance of
user-centered approaches, especially in knowledge transfer
and knowledge applicability on the shop floor.

V. CONCLUSION
This research demonstrates how an interactive knowledge
transfer framework can support the task of transforming tacit
knowledge into explicit knowledge. The knowledge-based
model was the outcome of this transformation, and was
integrated into an interactive assistance system that could
support the operator on the shop floor. In addition, DSET
quantified the uncertainty of the acquired knowledge, which
was visually reflected in the results. The knowledge trans-
fer framework provided a clear methodology for integrating
uncertainty with the rules generated for the knowledge-based
model. The findings of this research would stimulate the dis-
cussion of how to transfer knowledge from the shop floor into
a more institutionalized version, specifically, as a knowledge-
based model embedded into an interactive assistance system.
Furthermore, this novel methodology extracts expert domain
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knowledge that can be widely used in other disciplines that
rely on expert feedback. The use of the DSET presents a new
method for quantifying the uncertainty of expert knowledge.
The integration of DSET and the knowledge-based model
provides more reliable support to the operator, as it provides
the assessment with a degree of certainty, which means that
the operator can still use her own expertise to make the final
decision. The uncertainty plot helps in the decision-making
process when validating a new body of knowledge, specif-
ically when adopting a new recipe or set of setpoints. The
validation plot portrayed KPI behavior while using a new
body of knowledge, specifically new recipes (e.g., bad recipes
yielded low KPIs, which consequently led to discarding the
new recipe, whereas high KPIs encouraged the adoption of
the recipe). The KLAFATE application presented an early
adoption of the knowledge framework in an industrial setup.
The demonstration provided a detailed sequence of the steps
to be followed, as well as the results obtained after each step.

Although the present study provided a holistic approach to
managing the knowledge chain through an interactive knowl-
edge transfer framework, new questions arose during the
development of this research. These new questions rely on the
human nature of the information, specifically intrinsic bias,
while extracting knowledge. This bias can play a significant
role during the selection of knowledge to be included in
the model and during the selection of criteria to quantify the
uncertainty. These limitations must be addressed to adopt the
knowledge framework into a fully automatic scenario. To this
end, further research could explore new knowledge extraction
strategies and methodologies to quantify uncertainty. Finally,
knowledge internalization is a prospective line of research
that should address the internalization institutionally and at
the operator level.
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