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ABSTRACT The majority of the paper is devoted to debunking flawed methods proposed in the literature
within the context of multiresonant control systems for grid-connected converters and then a novel approach
is proposed. Several flawed approaches to grid tied power electronic converters (rectifiers and shunt active
power filters) are discussed to initiate a critical discussion regarding some tuning methods reported in the
topical literature. In this paper we analytically show that some of them are even erroneous from the control
theory point of view or are based on mathematically erroneous derivations. That is especially prevalent for
papers in which the Naslin polynomial method is employed to tune proportional-multiresonant controllers.
Some authors recognize that the resulting control systems are not robust, i.e. not practical, and use obtained
gains only as a starting point for further tuning using the trial and error method or evolutionary global
optimization. Robustness of such systems is often not guaranteed and if it occurs at all, it is by chance or
thanks to a combination of luck and expert knowledge of the engineer (not by deliberate design). Therefore,
the absence of such a guarantee motivates the search for better ways to tune such controllers. As a result,
a practical robust controller tuning method for multiresonant grid current controllers is proposed and verified
experimentally. We are convinced that one of the solutions can be based on the disk margin stability
analysis and a global search algorithm. The required robustness is expressed as stability margins. The design
procedure is very user-friendly and the disk size is the key design parameter to be selected by an engineer.
The practicality of the tuning method is demonstrated empirically in a 10 kVA physical grid-tied converter.

INDEX TERMS Grid-tied converter, multiresonant controllers, robust control, Naslin polynomial method,
disk margin analysis, evolutionary global optimization.

NOMENCLATURE

APF active power filter.
DSC-PLL delayed signal cancellation PLL.
iff if and only if.
LQG linear quadratic Gaussian (regulator).
LMI linear matrix ineqality.
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LTI linear time-invariant.
MPC model predictive control.
MIMO multiple-input multiple-output (system).
PSO particle swarm optimization (or optimizer).
PIR proportional-integral-resonant.
PWM pulse width modulation.
PLL phase locked loop.
PI-MR proportional-resonant.
P-MR proportional-multiresonant.
PR proportional-resonant.

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 88211

https://orcid.org/0000-0002-5557-3514
https://orcid.org/0000-0003-1239-0387
https://orcid.org/0000-0001-8382-7860
https://orcid.org/0000-0002-0257-5647


B. Ufnalski et al.: Robust Tuning of Multiresonant Current Controllers for Grid-Tied Converters and Erroneous

SSE sum of squared errors.
VOC voltage oriented control.
VSC voltage source converter.

I. INTRODUCTION
Multiresonant controllers have become an industrial stan-
dard in power electronic converters interfacing grid-tied
systems nowadays. Such controllers are used to com-
ply with harmonic distortion limits specified for electrical
appliances [1], [2]. Multiresonant controllers are adopted to
enable sinusoidal currents regardless of the distorted grid
voltage harmonic content. Selected frequencies are rejected
by incorporating relevant oscillators into the controller. The
number of the resulting controller gains to be tuned grows
linearly with the number of frequencies to be dealt with. The
problem is fairly trivial for a proportional-resonant (PR) con-
troller with two gains to be determined, whereas it becomes
quite challenging for a proportional-multiresonant (P-MR)
controller. The problem is also equally difficult for repetitive
controllers [3]. The proposed tuning procedures often require
good expert knowledge to get robust, thus practical, controller
gains. That is due to the presence of many parameters that
have to be selected, usually by guessing and checking, for
the tuning algorithm itself to make it produce robust gains
for a given plant at hand. Those optimisation methods tend to
shift the guessing and checking activity from direct guessing
controller gains to guessing successful settings for the tuning
procedure. This motivates some (if not many or even most)
practitioners to go back to direct guessing controller gains for
the multioscillatory part. It should not be concluded though,
that among the reported analytical tuning methods there are
no potential candidates for becoming industrial standards.

Regarding grid current control of grid-tied converters, the
most commonly discussed methods of solving the problem
of the multi-resonant (multi-oscillatory) controller tuning are
probably pole placement and linear quadratic regulator [4],
[5], [6]. These methods require good expert knowledge and
they do not necessarily ensure the expected robustness of the
system. Therefore, some designers try to use LQG and LMI
to address this issue [7], [8]. It is also possible to use global
optimization tools such as PSO to support a non-intuitive
selection of weighting matrices in a multi-oscillatory current
controller designed using the LQR method [9]. Alternatively,
online optimisation may be applied as in model predictive
control (MPC) [10], [11], still taking into account that such
methods may also be parameter dependant and often are
very computation intense. The latter has been addressed in
numerous publications and several improvements reducing
the computational burden have been proposed, e.g. [12].

With all of the above in mind, it is important to remember
that our goal should be not just to do things differently, but
first and foremost innovatively, and by innovative solutions
we mean not just novel ones but first and foremost prac-
tical and improving ways we do things. At the same time
it is worth mentioning that innovation often comes from
applying already well-established tools in a slightly different

arrangement to solve a given problem more effectively. And
this is the case for the proposedmethod in which the diskmar-
gin analysis and the particle swarm optimizer are employed to
determine robust settings for the multioscillatory controller.
Yet, this is discussed in the second part of the paper. The first
part of the paper is devoted to different reported attempts to
tune multioscillatory controllers using the Naslin polynomial
method. That is to serve two purposes. First of all, several of
these methods are flawed (if not entirely erroneous) and they
do not seem to have been assessed critically in the literature.
As a consequence, consecutive generations of engineers try to
employ them in their systems to little or no practical effect,
simply wasting their time. What is also worrying, new papers
that claim to use these approaches are still being published.
Our second purpose in pointing out these flawed methods is
to illustrate that the problem is not trivial and there is a need
for more thorough discussion regarding tuning multiresonant
controllers in the context of power electronic converters.
We would like to initiate that discussion by presenting our
most successful (up to now) attempt to produce amultioscilla-
tory control system for a grid-tied converter with guaranteed
robustness measured in stability margins.

II. OVERVIEW OF THE CONTROL SYSTEM
This section presents a model of the system and the con-
trol system design process. The physical plant consists of a
voltage source converter (VSC) connected to the grid using
an L-type filter (Fig. 1). Selected parameters of the system
(for the stage of simulation and physical experiments) are
given in Table 1. The three-level neutral point clamped (NPC)
topology is used; therefore, the DC-link voltage (vdc1+ vdc2)
is divided with a use of two capacitors of equal capacity. The
DC-link capacitor voltage balancing strategy is realized by
a proper pulse width modulation (PWM) algorithm [13].

The analyzed control system of the converter is based on
voltage oriented control (VOC). The applied cascade control
system involves two control loops. The inner grid current
loop is equipped with a proportional-integral-multiresonant
(PI-MR) controller, while the outer DC-link voltage loop
includes a proportional-integral (PI) controller. The grid cur-
rent feedback signals are transformed to the dq frame using
angle θ received from a phase lock loop (PLL) based on the
delayed signal cancellation method (DSC-PLL) [14].

Themain objective of using the PI-MR current controller is
to obtain sinusoidal symmetrical grid currents under distorted
grid voltage conditions. The 5th, 7th, 11th and 13th harmonics
of the grid voltage usually have the largest amplitudes and
the L filter has the weakest attenuation for these harmonics.
In order to reduce the sinusoidal component of the error in
current tracking, caused by this type of voltage distortion, the
resonant controllers are incorporated. The compensation for
the unbalance and the 5th, 7th, 11th and 13th harmonics in the
natural reference frame takes place in the dq frame through
the compensation of the 2nd, 6th and 12th harmonics of the
grid currents. A gain selection process for the PI-MR current
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controller is the key step to whichwe devotemost of our effort
in this paper.

The outer DC-link voltage control loop includes a
proportional-integral (PI) controller. In this loop, there are
the following filters: a low-pass (LPF) one and two band-
stop (NF2ω , NF6ω ) ones with the resonant pulsatances of 2ω
and 6ω. The DC-link voltage controller is tuned with a use of
the symmetrical optimum method as shown in detail in [15].

TABLE 1. Selected parameters of the system.

III. NASLIN POLYNOMIAL METHOD
The Naslin polynomial method uses

GNaslin(s)

=
a0

aN sN + . . .+ ansn + . . .+ a2s2 + a1s+ a0
, (1)

as the reference transfer function for a closed loop sys-
tem [16], where

ωn =
an
an+1

(2)

and

αn =
ωn

ωn−1
(3)

are the characteristic pulsatances and the characteristic ratios.
More on the characteristic ratios and the characteristic pulsa-
tances can be found in [17], [18], and [19]. The basic original
method then gives all the characteristic ratios a common
value α, which possesses the value of a genuine damping
factor (α = 4ζ 2) in the second order system. The resulting
coefficients for n = 1 . . .N are then

an = ω
−n
0 α−n(n−1)/2. (4)

Such systems have very similar step responses for a given
α, regardless of their orderN , which is demonstrated in Fig. 2.
In this way we obtain a family of standard systems with
characteristic polynomials with adjustable damping. These
polynomials are then used to design controller gains by solv-
ing a system of equations resulting from equating coefficients
of the characteristic polynomial of the closed-loop system
to the coefficients of the reference characteristic polynomial
with adjustable damping ζ . The key remark here is that the
method is successful only if the system of equations has a
solution, i.e. is consistent.

IV. PROPORTIONAL-RESONANT CURRENT CONTROLLER
For the grid-tied converter with an L filter shown in Fig. 1
a simplified transfer function of the plant to be controlled in
terms of the current control loop is

Gplant(s) =
1

sL + R
, (5)

where the pulse width modulator is configured to introduce
a unity gain along with the converter. The simplification
neglects the delay introduced by the modulator and the digital
controller. Applying a proportional-resonant controller

GPR(s) = kP +
sk1

s2 + ω2
1

, (6)

we get the open loop transfer function

Gopen(s)=

(
kP +

sk1
s2 + ω2

1

)
1

sL + R
=
kP(s2 + ω2

1)+ sk1
(s2 + ω2

1)(sL + R)
.

(7)

The characteristic polynomial of the closed loop system is
then

Dclosed(s) = kP(s2 + ω2
1)+ sk1 + (s2 + ω2

1)(sL + R). (8)

Arranging by descending order gives

Dclosed(s)=Ls3 + (kP + R)s2 + (k1+Lω2
1)s+(kP + R)ω

2
1.

(9)

The relevant reference Naslin polynomial has coefficients
given by (4) and is as follows

PNaslin(s) = a0

(
s3

α3ω3
0

+
s2

αω2
0

+
s
ω0
+ 1

)
. (10)

Polynomials (9) and (10) are equivalent iff (if and only if)

a0
α3ω3

0

= L

a0
αω2

0

= kP + R

a0
ω0
= k1 + Lω2

1

a0 = (kP + R)ω2
1,

(11)

where L > 0, R > 0, ω1 > 0 and α > 0 (often set to 2)
are specified by the designer (known parameters), whereas
a0, ω0 > 0, kP and k1 are unknowns to solve for. Note that
the system of equations is exactly determined, i.e. having
the same number of equations as unknowns. Substituting
kP + R =

a0
ω2
1
from the last equation we get

a0
αω2

0

=
a0
ω2
1

⇐⇒ αω2
0 = ω

2
1 ⇐⇒ ω0 = ω1α

−0.5 . (12)

Substituting a0 = α3ω3
0L we get the PR controller gains{

kP = α2ω0L − R
k1 = α3ω2

0L − ω
2
1L,

(13)
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FIGURE 1. Control scheme for a grid-connected converter

FIGURE 2. Naslin polynomials for ζ =

√
2

2 and ω0 = 1.

where ω0 = ω1α
−0.5. This result can also be found in [20]

(pages 140 and 141) along with a numerical example. The
conclusion is that the Naslin polynomial method can be
indeed deployed for tuning the PR current controller in PWM
rectifiers. The same page 141 of [20] states that the presented
design procedure can be extended for two or more different
resonant frequencies, resulting in a multiresonant controller.
Unfortunately, that statement is incorrect. We will demon-
strate in the next section that the method already fails in the
case of the proportional-multiresonant controler with only
two resonant terms.

V. PROPORTIONAL-MULTIRESONANT CURRENT
CONTROLLER
Applying a proportional-resonant controller

GP−MR(s) = kP +
sk1

s2 + ω2
1

+
sk2

s2 + ω2
2

, (14)

to control the plant described by the transfer function (5),
we get the open loop transfer function

Gopen(s)

=

(
kP +

sk1
s2 + ω2

1

+
sk2

s2 + ω2
2

)
1

sL + R

=
kP(s2 + ω2

1)(s
2
+ ω2

2)+ sk1(s
2
+ ω2

2)+ sk2(s
2
+ ω2

1)

(s2 + ω2
1)(s

2 + ω2
2)(sL + R)

.

(15)

The characteristic polynomial of the closed loop system is
then

Dclosed(s) = kP(s2 + ω2
1)(s

2
+ ω2

2)

+sk1(s2 + ω2
2)+ sk2(s

2
+ ω2

1)

+(s2 + ω2
1)(s

2
+ ω2

2)(sL + R). (16)

Arranging by descending order gives

Dclosed(s) = Ls5 + (kP + R)s4

+(k1 + k2 + L(ω2
1 + ω

2
2))s

3

+(kP + R)(ω2
1 + ω

2
2)s

2

+(k1ω2
2 + k2ω

2
1 + Lω

2
1ω

2
2)s

+(kP + R)ω2
1ω

2
2. (17)

The matching 5th order Naslin polynomial has coefficients
given by (4) and is as follows

PNaslin(s)

= a0

(
s5

α10ω5
0

+
s4

α6ω4
0

+
s3

α3ω3
0

+
s2

αω2
0

+
s
ω0
+ 1

)
.

(18)
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Polynomials (17) and (18) are equivalent iff

a0
α10ω5

0

= L

a0
α6ω4

0

= kP + R

a0
α3ω3

0

= k1 + k2 + L(ω2
1 + ω

2
2)

a0
αω2

0

= (kP + R)(ω2
1 + ω

2
2)

a0
ω0
= k1ω2

2 + k2ω
2
1 + Lω

2
1ω

2
2

a0 = (kP + R)ω2
1ω

2
2,

(19)

where L > 0, R > 0, ω1 > 0, ω2 > 0 and α > 0 (often
set to 2) are specified by the designer (known parameters),
whereas a0, ω0 > 0, kP, k1 and k2 are unknowns to solve
for. From the algebraic point of view, the case is already sub-
stantially different in comparison with the previous case of
the PR controller. An this is because the system of equations
is not exactly determined any more – it is overdetermined,
i.e. having more equations (to be specific, six of them) than
unknowns (to be specific, five of them). Overdetermined
systems may still be consistent. Nevertheless, especially in
real life engineering problems, they should be regarded as
strong candidates for inconsistent systems of equations, thus
having no set of values for the unknowns that satisfies all of
the equations. Unfortunately, it is the case here, i.e. (19) is
inconsistent andwill not produce a feasible set of gains for the
controller. As we are going to show the inconsistency of the
parametrized system, we need to point out that inconsistency
may be parameter dependent, i.e. there may exist specific sets
of parameter values that turn the system into a consistent one.
However, in our problem the designer has little to no room
to adjust the parameters: L is designed for current ripples,
R is parasitic, ω1 > 0 and ω2 > 0 are determined solely
by the expected harmonic content of the grid voltage and
the reference frame chosen for the control system, whereas
α > 0 should be freely adjustable to get the desired damping,
thus all these cannot be used to potentially turn the system
of equations into a consistent one. We will demonstrate the
inconsistency of (19) by showing two subsets of its equations
that produce a disjoint set of solutions. Let these subsets be

a0
α6ω4

0

= kP + R

a0
αω2

0

= (kP + R)(ω2
1 + ω

2
2)

(20)

and 
a0
α6ω4

0

= kP + R

a0 = (kP + R)ω2
1ω

2
2.

(21)

Solving (20) for ω0 > 0 we get
a0
α6ω4

0

=
a0

αω2
0(ω

2
1 + ω

2
2)
⇐⇒

α5ω2
0 = ω2

1 + ω
2
2 ⇐⇒ ω0 =

√
ω2
1 + ω

2
2

α5
, (22)

FIGURE 3. Step response of the reference system with the correct Naslin
polynominal compared with the step response of the system with
incorrectly performed coefficient fitting.

whereas solving (21) for ω0 > 0 gives
a0
α6ω4

0

=
a0
ω2
1ω

2
2

⇐⇒ α6ω4
0 = ω

2
1ω

2
2 ⇐⇒

ω0 =

√
ω1ω2

α3
. (23)

Pulsatances (22) and (23) would be the same pulsatance

only for α =

√
ω2
1+ω

2
2

ω1ω2
, but as mentioned above, in practice

we do not have the flexibility of choosing α as a function
of ω1 and ω2, because α is an independent design parameter
that sets the damping for the closed loop system. There-
fore, the conclusion is that the Naslin polynomial method
cannot be used to tune the proportional-resonant controller
with two oscillatory terms of the form (14). The severity of
an error made when such equation omitting step is carried
out to conceal inconsistency of the system of equations can
be illustrated with the following example. Let us suppose
L = 2mH, R = 0.2�, ω1 = 2π · 50 · 6 rad s−1 and
ω2 = 2π · 50 · 12 rad s−1. If one chooses to calculate ω0
from (22), it would result in a coefficient mismatch yielding
the response shaped impractically far from the expected one
as shown in Fig. 3.

Obviously, one cannot infer from this single example
that adding more oscillatory terms to the controller will
always result in inconsistent equation systems. Neverteless,
we verified algebraically that P-MRwith three resonant terms
also introduces a contradiction. Moreover, the more resonant
terms, the more overdetermined the resulting equation system
becomes. This makes us believe that checking beyond three
resonant terms would not be successful.

Unfortunately, the overoptimistic statement in a very pop-
ular handbook [20] has kind of a ripple effect. For example,
in [21] the Naslin polynomial technique was used to tune
P-MR controller with three resonant terms for an APF. The
presented final formulas may suggest that the overdetermined
and inconsistent equation system was incorrectly turned into
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an exactly determined and consistent one by omitting some
equations. The error was repeated in [22] and potentially
also in [23], where the Naslin polynomial tuning method was
reported for the P-MR controller. Also other research groups
report the Naslin polynomial method to be successful for
P-MR controllers by means of some reiteration [24] without
providing any details on inner workings of the procedure.
Another example comes from [25], where a controller with
two resonant terms was tuned reportedly using the tech-
nique described in [26], which is confusing because the latter
presents formulas only for a proportional-integral-resonant
controller with a single resonant therm. A step by step deriva-
tion for the PIR controller is presented in [27] and will not be
repeated here.

Another peculiar attempt to use the Naslin polynomial
method that goes against mathematical reasoning is presented
in [28]. The PI-MR with four resonant term is being pretuned
for a shunt APF with the help of the tenth order Naslin poly-
nomial. The resulting system of equations is overdetermined:
10 equations and just 8 unknowns, including 6 controller
gains for a general case and just 6 unknowns, including
4 controller gains for the presented case with PI gains tuned
a priori using a different method. Despite that, the system is
not checked for potential inconsistencies. In fact the incon-
sistencies were found but instead of being interpreted as such
they are presented as viable solutions – all the six obtained
controller gain quadruplets. The paper states: ‘‘With a0, six
values of ω0 can be identified, since there are six equations
related to ω0 as a function of a0.’’ An equation system was
incorrectly interpreted as a logical disjunction of its equa-
tions, instead of being solved as a set of equations linked by a
logical conjunction. The existence of six equations that pro-
duce at least two different values of ω0 means that the system
of equations is inconsistent and that for a given controller
there are no settings able to match the coefficients given
by (4), thus the Naslin polynomial method cannot be applied
to tune the controller. This is similar to the case discussed
in Section V. The existence of two different (inconsistent)
formulas (22) and (23) nullifies the solution set. Nevertheless,
it should be acknowledged that the overall tuning procedure
presented in [28] may be successful. The Naslin method
was used incorrectly at the pretuning stage. The main tuning
stage involves differential evolution optimization that could
be run even on randomized initial controller gains, thus it is
also able to work with the ones produced by the erroneous
derivation. Two stage tuning procedures are not uncommon
among practitioners. If the Naslin polynomial method is to
be deployed at the first stage, a PR (not P-MR) controller
is to be used. An example of such a workflow is mentioned
in [29], in which selected controllers are tuned employing the
trial and error method with the starting point obtained from
the Naslin polynomial approach. The second stage is there to
increase robustness in the presence of less significant plant
poles neglected during the first stage (the analytical solution
assumes a first order plant (5), thus only the dominant pole is
taken into account).

VI. SUPERPOSITION PRINCIPLE AND SUPERPOSITION
OF CONTROLLERS
Another category of tuning procedures that go against the
control theory and also often fail to deliver robust enough
multiresonant controller settings involves superposition of
individually tuned PR controllers to form a P-MR controller.
These workflows are often flawed because they lack a criti-
cal assessment of amplitude-frequency characteristics of the
individually tuned PR controllers. Supposably, the root cause
for these errors is a misunderstood concept of superposition
of controllers – presumably wrongly envisaged as something
similar to the superposition principle. The superposition prin-
ciple states that the net response of an LTI system caused by
two or more stimuli is the sum of the responses that would
have been caused by each stimulus individually [30]. For
example, consider a linear time-invariant dynamic system
G(s) fed by the signal x = x1 + x2. If

y = G(s)x ∧ y1 = G(s)x1 ∧ y2 = G(s)x2 , (24)

then

y = y1 + y2. (25)

On the other hand, superposition of controllers does not
usually produce a response of the closed-loop system that
would be equal to the sum of responses for the individual
controllers. For example, consider an LTI plant Gp and LTI
controllersGc = Gc1+Gc2 connected to form three feedback
systems all fed by the same reference signal r . If

y =
GcGp

1+ GcGp
r ∧ y1=

Gc1Gp

1+ Gc1Gp
r ∧ y2=

Gc2Gp

1+ Gc2Gp
r ,

(26)

then in general

y 6= y1 + y2. (27)

To get exactly y = y1 + y2 one very impractical condition
would have to be met, i.e. Gc1Gc2 = 0 for all frequencies.
This can be obtained from:

(Gc1 + Gc2)Gp

1+ (Gc1 + Gc2)Gp

≡
Gc1Gp

1+ Gc1Gp
+

Gc2Gp

1+ Gc2Gp
⇐⇒

(Gc1 + Gc2)(1+ Gc1Gp)(1+ Gc2Gp) ≡

≡ (1+ (Gc1 + Gc2)Gp)(Gc1(1+ Gc2Gp)

+(Gc2(1+ Gc1Gp))) ⇐⇒

(Gc1 + Gc2)(1+ (Gc1 + Gc2)Gp + Gc1Gc2G2
p) ≡

≡ (1+ (Gc1 + Gc2)Gp)(Gc1 + Gc2 + 2Gc1Gc2Gp) ,

(28)

which is held under Gc1Gc2 = 0. This implies that the
separate tuning of controllers aimed at their parallel operation
in the target control system should be accompanied with an
assessment of their selectiveness in the frequency domain.
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In practice no controllers give Gc1Gc2 = 0, thus the con-
dition is replaced with Gc1Gc2 ≈ 0 and the overlapping
of an amplitude-frequency characteristic of the controllers
should be intentionally kept negligible to render the method
viable. In summary, the concept of superposition of separately
tunable individual controllers requires their selectiveness in
order to avoid overlapping of the neighbouring controllers.
This requirement is well addressed in e.g. [31], but totally
missed in e.g. [21], [22]. The latter proposes a set of sep-
arately tuned PR controllers to be superposed into a P-MR
controller. The proportional part of the P-MR controller is
calculated as the sum of proportional parts of the individ-
ual PR controllers. This does not make much sense either
from the theoretical or practical standpoints and should not
be regarded as a viable heuristics for such systems. This
is because the Naslin polynomial method was not designed
with the separation requirement in mind and the proportional
gain is not kept negligible – on the contrary, please note
that the proportional gain would increase proportionally with
the increasing resonant pulsatance of consecutive resonant
terms in the P-MR controller (13). Therefore, adding con-
secutive resonant terms would decrease stability margins till
the moment when the critical gain is crossed, destabilizing
the physical system. One should not fall here into a trap of
a simplified simulation model with (5) as the plant transfer
function. Such a simplified system has an infinite critical gain
when controlled with a proportional controller. The closed
loop system

Gclosed =
kPGplant

1+ kPGplant
=

kP
sL + R+ kP

(29)

is stable for any positive kP. This is no longer true for higher
order systems such as digitally controlled PWM converters
with delays introduced for example by the modulator and the
digital control system. Let us demonstrate that with the help
of

Gplant =
1

sτcontroller
·

1
sτmodulator

·
1

sL + R
, (30)

where L = 2mH, R = 0.2�, τcontroller = 0.1ms and
τmodulator =

1
2τcontroller. Designing individual PR controllers

using (13) to reject disturbance at ω1 = 2π · 50 · 6 rad s−1,
ω2 = 2π · 50 · 12 rad s−1 and ω3 = 2π · 50 · 18 rad s−1

would give kP1 = 10.46, kP2 = 21.13 and kP3 = 31.79.
The critical gain of the system is kcritical = 60.90 as calcu-
lated using the margin() function [32]. A superposition by
addition of proportional gains would destabilize the system,
because kP1 + kP2 + kP3 > kcritical. Our conclusion is that the
superposition of PR controllers proposed in [21] and [22] is
by no means practical and should not be presented as a viable
heuristics.

A correct heuristic for P-MR controller could involve tun-
ing the PR controller using the Naslin technique and super-
posing it with resonant controllers (not proportional-resonant
ones) tuned individually with a use of other techniques, for
example by the trial and error method. This is because the

required selectivity can be obtained for a PR controller and
consecutive resonant controllers if they are configured to
target different resonant frequencies, which is the case in any
P-MR controller. To the best of authors’ knowledge such an
incremental design procedure is very popular among prac-
titioners. Nevertheless, superposing individually designed
resonant controllers makes it hard (if not impossible) to
get a specified robustness. This is because even two ideal
(not damped) oscillatory terms set for two different resonant
frequencies still have overlapping amplitude spectra. This
motivated us to propose a novel optimization procedure for
a P-MR controller that produces systems with a guaranteed
level of robustness assessed by means of the disk margin
analysis.

VII. OPTIMIZATION WITH GUARANTEED ROBUSTNESS
BY MEANS OF DISK MARGIN ANALYSIS
Nowadays, engineers of all fields have a variety of global
optimization tools in their toolboxes. They help us to tackle
problems that we do not know how to solve analytically, i.e.
by means of manipulation of symbolic algebraic expressions.
Such solutions should not be regarded as less elegant – their
elegance is expressed in their practicality. Control engineer-
ing, especially controller tuning, is one of such fields where
analytical solutions are known only for a relatively narrow
set of problems. We are able to analytically derive gains
for relatively narrow combinations of plant types, controller
types and cost functions (i.e. performance indices). That is
why in real-life situations we often encounter the trial and
error method. It is worth noticing that the trial and error
method does not necessarily mean that the trial part is totally
randomized. It is an iterative process and the more guesses
we make, the more educated next iterations of guessing can
be. In fact, this is the main idea behind global optimization
tools – they automatize this educated guessing procedure.
An engineer can focus solely on problem definition, which
in our case involves building a mathematical model of the
physical system (here a grid connected converter), selecting
its parameters to be optimized (here controller gains) and
choosing a performance index to be minimized or maxi-
mized (here the objective is to draw sinusoidal currents).
The type of optimisation tool is of secondary importance as
long as it provides satisfactory exploration and exploitation
capabilities for the problem at hand. As numerous tools can
be used to solve a given optimization problem this choice
often reflects preferences of a particular engineer. For exam-
ple, we prefer particle swarm optimization (PSO) over other
search algorithms, e.g. genetic algorithms or ant colony opti-
mization. The PSO is a well-documented tool which is why
we refrain from describing it. Comprehensive documentation
can be found e.g. in MathWorks Help Center [33], whereas
practically countless implementations can be downloaded at
no charge from MathWorks File Exchange, from the very
basic code [34] to the code run using parallel comput-
ing [35] and a wide variety of tutorials, including video ones,
e.g. [36].
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A. THE CURRENT CONTROL SYSTEM
The optimizer uses a mathematical model of the current
control system to assess solutions. A schematic diagram of
the modelled control system is shown in Fig. 4.
The main features of the simplified model used during the

optimization are:
• a linear discrete time model of the plant (the zero-order
hold (ZOH) method);

• six discrete time resonant controllers, three per d and
q axis, (Tustin with pre-warping method) of PI-MR type
with the following resonant pulsatances:ω1 = 2ω,ω2 =

6ω, ω3 = 12ω;
• vdc = const and ω = const;
• ideal synchronisation with the grid voltage vector
(no PLL);

• a grid modelled using ideal voltage source;
• no pulse width modulator, lack of current ripples.
The goal of the simplified model is to accelerate the opti-

misation in terms of wall-clock time. Not modelling some
aspects, e.g. PWMs, significantly speeds up tests without
compromising the reliability of controller gain optimization.
This is because even in the target system with PWMs the con-
trollers work on signals averaged over the sampling period.

B. THE PLANT DESCRIPTION
For vdc = const and ω = const the plant state-space
model in the dq rotating reference frame is as follows (in the
continuous-time domain):

d
dt
x = Ax+ Bu+ Ev

y = x,
(31)

where

A =

−R
L ω

−ω −
R
L

 , x =
[
id
iq

]
,

B =

− 1
L

0

0 −
1
L

 , u =
[
ud
uq

]
,

E =

 1
L

0

0
1
L

 , v =
[
vd
vq

]
.

There are two state variables id and iq collected in the state
vector x, two control variables ud and uq collected in the
control vector u and two disturbance variables vd and vq
collected in the disturbance vector v. There are also three
matrices: A – the state matrix, B – the control matrix and
E – the disturbance matrix.

The continuous-time model (31) is discretized by using
a ZOH method implemented in the Matlab environment to
produce its equivalent discrete representation taking into
account the fact that the physical system performs ZOH
action within the modulator. It should be stressed that the

ZOH discretisation method is the only logical choice for this
part of the system and this choice has nothing to do with
the discretisation method chosen for the controller – it is
perfectly fine to choose a different one for the controller
itself to meet some specific design requirements such as res-
onant frequency matching by prewarping. The ZOH method,
as well as the ZOH element in the modulator, introduce a half
sample delay [6]. The obtained discrete-time model is{

x(k + 1) = Fx(k)+Gu(k)+ Zv(k)
y(k) = x(k),

(32)

where F, G, Z are the discrete-time system matrices.

C. THE PI-MR CURRENT CONTROLLER DESCRIPTION
The grid currents id and iq are controlled in the dq rotating
reference frame using two PI-MR controllers which can be
expressed in the Laplace domain:

GPI−MR(s) = kP +
kI
s︸ ︷︷ ︸

GPI(s)

+
sk1

s2 + ω2
1︸ ︷︷ ︸

GRω1 (s)

+
sk2

s2 + ω2
2︸ ︷︷ ︸

GRω2 (s)

+
sk3

s2 + ω2
3︸ ︷︷ ︸

GRω3 (s)

,

(33)

where kP, kI, k1, k2 and k3 are the decision variables (gains to
be tuned). In order to convert the controller model from the
continuous to the discrete time domain, Tustin approximation
with pre-warping is used. Therefore, as it has been shown in
Fig. 4, HPI(z), HRω1 (z), HRω2 (z), HRω3 (z) are discrete time
equivalents of GPI(s), GRω1 (s), GRω2 (s), GRω3 (s), respec-
tively. The other key parameters are compatible with the ones
given in Table 1.

D. THE COST FUNCTION
Taking into account that optimality does not imply robust-
ness, the main effort that differentiates successful robust
solutions from just optimal ones goes into designing a proper
cost functional. The trade-off between improving reference
tracking and disturbance rejection and keeping a required
robustness to plant uncertainty is fundamental for any control
system [37]. One of the common approaches to combining
conflicting objectives into a single objective function is the
weighted sum method with constant weights that have to be
selected by the designer prior to the optimization. For the
current controllers in the grid-tied converter the cost function
could be

J =

k=
tstop
Ts∑

k=1

(e2d (k)+ e
2
q(k)+ β((1ud (k))

2
+ (1uq(k))2)) ,

(34)

where ed and eq are current control errors, ud and uq rep-
resent control signals (reference voltages for the converter),
Ts is the sampling period and tstop denotes the end of the
interval over which the performance is assessed. The penalty
factor β is to enable the designer to control for the robust-
ness – the response slows down with an increasing penalty
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FIGURE 4. Control system integrated with PSO used in test cycle.

factor. Choosing a sufficiently high penalty for control signal
dynamics would produce practical controller gains, which is
demonstrated e.g. in [38]. However, the robustness of the
resulting system is not tested until the optimisation is com-
pleted – stability margins are not explicitly included in the
cost functional (34).

The originality of the present work is that the stability
margins are explicitly stipulated in the cost functional. First
of all, defining a way to measure stability margins for a
multiple-input multiple-output (MIMO) system, which is the
case here, is not a trivial task. Limitations of classical mar-
gins, as well as the proposed solution to overcome those
limitations by using disk margins, are presented in [39]. The
stability analysis using disk margins was recently included
in Robust Control Toolbox (Matlab) [40], significantly sim-
plifying its deployment in engineering practice. In the disk
margin analysis the size of the disk is the robustness measure
– it represents how far from becoming unstable the system
is. A disk-based uncertainty model can be applied at inputs
and/or outputs of the plant. It was tested that in order to get
practical tuning results for a grid-tied converter it is necessary
to compute the stability margins when considering variations
at both the plant inputs and plant outputs. This is because in
a physical application, there is uncertainty at both the inputs
and outputs of the plant, related to the control delay, param-
eter identification errors and measurement noise. In general,
calculating a disk margin for an input and output independent
concurrent uncertainty gives a more conservative result than
taking into account just the one at the input. Also, the loop-
at-a-time disk margin (employed for a grid-tied converter e.g.
in [41]) is less conservative than the multiloop disk margin.
The latter is able to capture maximum tolerable uncertainties

across all the feedback loops, which is a major advantage over
the classical margin analysis. In the discussed converter the
uncertainties may occur in all the loops simultaneously, there-
fore, the multiloop analysis is selected as a more practical
one. In this study unbiased margins are used (the skew is set
to zero fordiskmargin() [42]). The designer specifies the
required robustness by selecting the circular exclusion region
centred near the critical point, which in turn guarantees that
the open-loop response stays at a specified safe distance from
the critical point at all frequencies. In this study the disk size
of 0.35 is selected as a compromise between robustness on
one hand and reference tracking and disturbance rejection
capabilities on the other hand.

The goal for the optimizer is to find controller gains that
minimize

JSSE =

k=
tstop
Ts∑

k=1

((emd (k))
2
+ (emq (k))

2) , (35)

without compromising the disk size specified by the designer
(here αthreshold = 0.35). The variables emd (k) and e

m
q (k) are

computed as emd (k) = imd (k)−id (k) and e
m
d (k) = imd (k)−id (k),

where imd (k) and i
m
q (k) is the result of filtering the signal i

ref
d (k)

and irefq (k) by using low-pass filter (LPFref block) as shown
in Fig. 4.

The Greek letter α is selected to denote the disk size in
order to keep it consistent with the topical literature – not
to be confused with α present in the Naslin polynomial.
To get a solution with the guaranteed stability disk margin,
the cost function for the swarm should strongly penalize
solutions that cross αthreshold. The penalty should be high
enough to render cost function values for all the solution that
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cross αthreshold greater than for any solution that obeys the
constriction. This makes clear distinction between feasible
(αcandidate ≥ αthreshold) and infeasible (αcandidate < αthreshold)
solutions. The swarm itself is not limited to testing only
feasible solutions, but the region of infeasible solutions is
naturally left by the swarm as the search transitions from the
exploration stage to the exploitation stage. A function of the
form

JPSO

=

{
b+ (αthreshold − αcandidate)2 for αcandidate < αthreshold

JSSE otherwise,

(36)

where αcandidate is the disk size of the candidate solution and
b has to be set to a number beyond reach of JSSE, creates
a funnel-shaped area with all the feasible solutions at the
bottom of the funnel. The funnel guides particles towards
feasible solutions mainly during the exploration phase. At the
exploitation stage particles operate predominantly at the bot-
tom of the funnel and the resulting solution is found near the
wall created by b. One might conclude that this cost function
introduces one new parameter to be selected. However, the
solution is practically not sensitive to it as far as it conforms
to the following rule: b is greater than the biggest possible
JSSE for any feasible solution. The condition can be met
by assessing JSSE for any stable solution found by guessing
and checking and then setting b several orders of magnitude
greater to be on the safe side. A schematic diagram of the con-
trol system connected to the optimizer is depicted in Fig. 4.

VIII. RESULTS
PSO is run with the cost function (36) and the mathematical
model of the converter system (shown in Fig. 4). It should
be remembered that PSO is a stochastic search algorithm
and it may happen that some runs of even well-posed and
well-conditioned optimization rounds end up in a dead end.
One should run any optimizer of that kind several times to
assess the reproducibility of the final result. For well-posed
and well-conditioned problems unsuccessful runs are out-
numbered by the successful ones and this has been found to
be the case for the stated problem.

A. PARTICLE SWARM OPTIMIZATION
Solutions proposed by particles in each iteration are rated in
the control system stimulated by reference signals and distur-
bances shown in Fig. 5. These signals include: step changes
in reference currents irefd and irefq ; at 0.1 s grid voltage becomes
distorted (asymmetry of 3% and presence of 5th, 7th, 11th

and 13th harmonics); from 0.4 s to 0.55 s symmetrical voltage
sag of 10% during active power load; from 0.9 s to 1.05 s
symmetrical voltage sag of 10% during reactive power load;
at 1.3 s grid voltage is restored to sinusoidal. The optimization
problem is well-conditioned which is demonstrated in Fig. 6
showing four consecutive consistent optimization runs.

FIGURE 5. Test signals (reference signals and disturbances).

FIGURE 6. The evolution of the best solution for four optimization runs.

Evolution of the swarm is depicted in Fig. 7. The correspond-
ing evolution of the grid current shape is shown in Fig. 8.

B. SIMULATION VERIFICATION USING FULL MODEL
The main features of the full model used to verify the final
solution before implementing it in a physical converter:
• a full switching model (NPC three-level converter);
• the control system implemented in C-code including six
discrete time resonant controllers

• a PI type vdc controller with anti-windup
• PLL based on Delayed Signal Cancellation
• a grid modelled using voltage source with internal
impedance

• PWM with zero-sequence signal.
The controller settings found by the swarm using the sim-

plified model are then fully verified in the numerical model
that includes PWM, DSC-PLL, filters and dead-times. The
steady state under distorted grid voltages is shown in Fig. 9.

The response to the step load change is demonstrated in
Fig. 10. Loading the converter with reactive power is shown
in Fig. 11. Reaction to voltage sags of 10% and 20% are pre-
sented in Figs 12 and 13, respectively. The converter behaves
as expected.
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FIGURE 7. Swarm at the initial, 20-th and 100-th iteration.

FIGURE 8. The evolution of the grid current shape – response of the
converter at the initial, 20-th and 100-th iteration.

C. EXPERIMENTAL VERIFICATION
This paper is primarily theoretical, i.e. its goal is to show
fundamental flows in some attempts to use the Naslin poly-
nomial method reported in the literature in regard to mul-
tiresonant controller tuning – the attempts wrongly reported
as successful ones – and then to demonstrate the developed
method that provides required robustness of the solution and
does not abuse algebra. In order to demonstrate practicality
of the proposed method an experimental verification is also

FIGURE 9. Full model steady states.

FIGURE 10. Full model transients: load change (reference signal tracking).

provided. A physical grid-tied converter photographed in
Fig. 14 of the parameters assumed for the optimization stage
(see Table 1) is used. It should be stressed that no additional
fine tuning takes place after transferring all the gains into
the physical system. This is one of the features of a robust
tuning method – possible discrepancies between the math-
ematical model and the physical system do not render the
dynamic response of the two systems significantly different.
For comparison purposes the system is always first run with a
PI type current controllers for each reference and disturbance
test scenario. This is to justify the need of resonant controllers
for a given converter if sinusoidal symmetrical currents are
expected. The performance verification under nonsinusoidal
grid voltage conditions takes place at THD of grid voltage
equal to 11.6%. The response to a 10 kW load step change
is shown in Fig. 15. The resulting grid current at the steady
state is visibly nonsinusoidal and has THD of 23.7%. This
is expected as the structure of the controller does not follow
the internal model principle – it does not implement the
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FIGURE 11. Full model transients: loading the converter with reactive
power.

FIGURE 12. Full model transients: voltage sag of 10%.

model of the disturbance of any form, neither in the form of
a disturbance estimator nor in the form of an internal, i.e.
implemented inside the controller, model of a disturbance
signal.

Then the structure of the controller is changed to the
proportional-integral-multiresonant one and all its gains are
set exactly as obtained during the optimization procedure.
The distortion of the grid voltage in the experimental setup
is introduced with the help of a weak grid and additional
nonlinear loads. As a result, THD of the voltage depends also
on load conditions and for the PI-MR controllers amounts
to 15.4%. In comparison with the case in which PI controlled
converter is deployed, the voltage distortion increases, which
is to be expected. This in fact results from better conditions
introduced by the PI-MR controlled converter. The voltage

FIGURE 13. Full model transients: voltage sag of 20%.

FIGURE 14. Photo of the test bench.

FIGURE 15. Experiment results: step load under distorted voltage
condition – PI current controller.

is now higher for the nonlinear loads due to lack of voltage
drops from higher harmonics effectively suppressed on the
controlled rectifier side. Additional nonlinear loads draw now
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FIGURE 16. Experiment results: step load under distorted voltage
condition – PI-MR current controller.

FIGURE 17. Experiment results: transients for voltage dip with
unbalance – PI current controller.

higher currents, distorting the voltage even deeper. But even
for a higher distortion of the grid voltage the current distortion
drops significantly in comparison to the PI controlled system
and is equal to 9.1%. The relevant oscillographs are depicted
in Fig. 16. This steady-state behaviour is expected and rather
obvious in view of the internal model principle. What is
crucial here is that transient states are also of high quality and
that the controller is robust to inevitable identification errors
– there was no need to tinker with the gains after moving into
the physical power electronic converter.

Similarly, satisfactory results are obtained both for tran-
sient and steady-state behaviour under unbalanced grid volt-
ages. The asymmetry of voltages is 11.2% and 16.7%,
respectively. The root cause of that difference is exactly
the same as for the previous case scenario. The current
THD drops from 17.3% to 9.0%. The relevant oscillo-
graphs are shown in Figs. 17 and 18. Again, this is not
something surprising as we implemented an oscillatory term
specifically aimed at asymmetry of the disturbance. What is

FIGURE 18. Experiment results: transients for voltage dip with
unbalance – PI-MR current controller.

significant is that the transients are of high performance
system (see Fig. 18).

IX. DISCUSSION
Robustness of a control system is a fundamental require-
ment to make the system practical. Controller tuning methods
should explicitly address this issue to be regarded as good
candidates for actual real-life applications by the practition-
ers. Our results indicate that the disk-based stability margin
multiloop analysis is an absolutely complete theoretical tool
that is able to produce fully applicable controller settings.
Moreover, the design is straightforward and the required
expert knowledge to successfully deploy it is rather moderate.
A single value representing the disk size has to be chosen by
the user and the systemwith the requested robustness is found
bymeans of particle swarm optimisation. The effectiveness of
the method confirmed in the case of multiresonant controllers
for a grid-tied converters should encourage future research
within the context of other repetitive control systems in power
electronics and drives, including true/pure sine wave inverters
and repetitive motion control. The research could be poten-
tially expanded to cover not only multiresonant controllers
but also iterative learning controllers [38].

X. CONCLUSION
It has been demonstrated that several Naslin polynomial
based tuning methods reported in the literature for multireso-
nant controllers are in fact flawed and should not be regarded
as viable approaches. A novel tuning procedure has been
proposed. The resulting control system for a grid-tied con-
verter provides an explicitly stipulated stability margin. At no
stage of the design procedure this margin is compromised
and this is thanks to the cost function definition that rates
all solutions with smaller margins as infeasible. Guaranteed
robustness of the system as well as observed robustness of
the optimization process itself manifested in reproducibility
of found minima make the method a good candidate for
industrial grade products.
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