
Received 26 June 2022, accepted 10 August 2022, date of publication 17 August 2022, date of current version 29 August 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3199671

Accelerating NoC Verification Using a
Complete Model and Active Window
SURAJIT DAS 1, CHANDAN KARFA 2, (Senior Member, IEEE),
AND SANTOSH BISWAS 3, (Senior Member, IEEE)
1Department of Computer Science and Engineering, GITAM School of Technology, Bengaluru, Karnataka 561203, India
2Department of Computer Science and Engineering, IIT Guwahati, Guwahati, Assam 781039, India
3Department of Electrical Engineering and Computer Science, IIT Bhilai, Raipur, Chhattisgarh 492015, India

Corresponding author: Surajit Das (surajitdas3020@gmail.com)

ABSTRACT This work presents formal modeling of Network-on-Chip (NoC) considering detailed func-
tional units of NoC. The intricate modeling of NoC router components like buffer, switch, and arbiter is
accomplished using Finite State Machine (FSM). As in the case of a real NoC, parallel execution of these
functional units is carried out by maintaining the synchronization between these functional units within a
router and between each of the adjacent routers in the presented formal model. Important properties for
the correctness of the proposed model are verified using a model checker. Implementing a detailed and
a complete NoC model is a memory extensive operation while verifying with a model checker. We have
introduced a concept of active windows to verify each router and its communication with the adjacent
routers. The correctness of the model is checked by verifying the synchronization between NoC functional
units and NoC routers, verifying progress in functional units, and verifying the successful transfer of
packets. Verification of starvation freedom in an NoC router is also performed for round-robin arbiter and
fixed-priority arbiter. Parallel threads are used in the experiments to reduce the verification time.

INDEX TERMS Network-on-chip, formal model, model checking, finite state machine, starvation.

I. INTRODUCTION
Modeling NoC components at the detail level are essential
for formal verification to ensure that an NoC works cor-
rectly after manufacturing the actual hardware. Modeling
NoC close to hardware functionality and scalability of the
verification method are two primary challenges in NoC ver-
ification. In most of the existing NoC verification works,
detailed modeling of the complete NoC system is missing [1],
[2], [3], [4], [5], [6], [7], [8]. We have considered NoC
functional units in a comprehensive way in this work. It is
convenient to implement an NoC model with Finite State
Machine (FSM) in a model checker like NuSMV [9]. There-
fore, we have chosen FSM for modeling NoC so that the
model can be easily encoded and various properties can be
checked using a state-of-the-art model checker.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yang Liu .

A. NoC ROUTER COMPONENTS
A 3 × 3 mesh NoC is shown in Fig. 1(a). R1, R2, R3,
etc., are the routers shown with square boxes. The brown
oval-shaped units represent the processors. Each router con-
stitutes of buffers for storing packets, switch for computing
the route for a packet and diverting it to the desired output
port, and an arbiter to control the transmission of packets via
an output port. We have considered NoC functional units or
NoC components like buffer, switch and arbiter for modeling
NoC. An NoCworks with the help of the collaborative efforts
between all these units. Buffers are present at the input ports
of a router. The five bidirectional ports in a router are shown
in Fig. 1(b). They are used as temporary storage for a packet
before being transmitted in the desired path. The routing
direction for a packet is computed by another functional unit
called switch. After the route computation is over, the packet
requests for the expected output port. There may be multiple
packets competing for the same output port simultaneously.
An arbiter is present at each output port and resolves the

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 88985

https://orcid.org/0000-0003-3397-7777
https://orcid.org/0000-0002-3835-4184
https://orcid.org/0000-0003-3020-4154
https://orcid.org/0000-0001-7300-9215


S. Das et al.: Accelerating NoC Verification Using a Complete Model and Active Window

FIGURE 1. A 3 × 3 Mesh NoC and five bidirectional ports in a router.

conflict by selecting one packet from the competing packets.
The packet selected by an arbiter is transmitted towards the
next router.

An output port and its connection to the adjacent router are
considered as a resource of conflict in anNoC.Whenmultiple
packets from different input ports continuously try to access
the same output port in a router, the competing packets from
all input ports should get a fair chance to be transmitted even-
tually. This is called starvation-freedom. Starvation-freedom
ensures fairness in selecting packets for transmission from all
the input ports.

B. CONTRIBUTIONS
This work is an extension to our prior work [10] where we
have presented modeling of an NoC using FSM and verifica-
tion of starvation considering each router at a time. In this
work, we have considered the synchronization between
routers as well while implementing our model using NuSMV
model checker. Since considering the complete NoC results
in state space explosion, we have introduced the concept of
active windows in this work. Besides verifying starvation
freedom with active windows, we have verified synchro-
nization between router components, progress in individ-
ual router components and transfer of packets between
routers in this work. We have encoded our FSM based NoC
models using NuSMV model checker [9]. Linear Tempo-
ral Logic (LTL) [11] is used to represent the specifica-
tions for progress, transfer of packet, synchronization, and
starvation-freedom for the verification purpose. Whether a
given property is satisfied or not, based on that, the model
checker reports True or False (with a debug trace). Specifi-
cally, the contributions of this work are as follows:

• Detailed modeling of NoC router functional units like
buffer, switch, arbiter and the synchronization between
these components using FSMs are presented.

• Communication of a router with its neighbouring routers
is implemented in NuSMV by introducing the active
window concept.

• Demonstrate the designing of fixed-priority arbiter and
round-robin arbiter using FSMs to select a packet from
more than one competing packet.

• For checking the correctness of the NoC model, ver-
ification of synchronization within a router, progress

betweenNoC components and loss-less transfer of pack-
ets are performed.

• As an application of our FSM based model, verifica-
tion of starvation-freedom on fixed-priority arbiter and
round-robin arbiter are demonstrated.

• The verification time is reduced significantly by using
parallel threads for individual routers.

The rest of this paper is organized as follows. A brief
description of FSM and the short form used for describing
the NoC model is presented in Section II. Detailed modeling
of NoC components is presented in Section III. Verifying the
correctness of the FSM model is described in Section IV.
Application of the FSM model and experimental results are
presented in Section V and Section VI, respectively. We con-
clude the work in Section VIII.

II. FINITE STATE MACHINE AND THE NAMING
CONVENTION
In this section, we briefly describe Finite State Machine
(FSM). The numbers of NoC routers and NoC components
vary depending upon the size of the NoC. We consider a
3 × 3 Mesh NoC as a reference NoC for the convenience of
presenting our FSM based NoC Model. The same procedure
is applied while modeling and implementing NoC of bigger
sizes.

A. FINITE STATE MACHINE
The Finite StateMachine (FSM) is being used by the research
community for modeling of transition systems in various
applications [12], [13], [14], [15], [16], [17], [18], [19]. Each
FSM has a finite number of states, and a transition takes place
from one state to another state based on predefined transition
rules. Deterministic Finite Automata (DFA) is a particular
class of FSM where each transition is a unique path from one
particular state to another particular state with respect to a
specific input or with respect to the truth value of a specific
condition. A formal definition of a DFA is given below [20].
Definition 1: A Deterministic Finite Automata is repre-

sented using a quintuple,
{Q, 6, δ, qo, F}.
Here, Q represents a finite set of states that constitute the

automata,
6 represents the input symbol that are used for state tran-

sition,
δ represents the transition function δ : Q × 6→ Q,
qo represents the initial state, qo ∈ Q,
F represents the set of final sets, F ⊆ Q.
In this work, corresponding to each NoC functional unit,

an FSM is modeled. An FSM state indicates the current status
of the corresponding NoC functional unit. Each FSM starts
from an initial or starting state qo, indicated with an incoming
arrow. The current state of an FMS keeps on changing with
respect to the movement of packet. Once the transmission of
a packet is over, the FSMs corresponding to that transmission
return to their initial states again. Therefore, we consider the

88986 VOLUME 10, 2022



S. Das et al.: Accelerating NoC Verification Using a Complete Model and Active Window

TABLE 1. Short forms for describing FSM transitions.

initial state as the final state as well, i.e., F = {q0} in our
FSM based NoC modeling. This process continues for the
transmission of other packets. This is a continuous process,
and the states of FSMs keep on changing.

There present a number of FSMs in a complete NoCmodel.
In an NoC, each of the functional units interacts with some
other NoC functional units for the proper functioning of
the system. In the same context, each of the FSM interacts
with other FSMs in the NoC model. All the transitions in
an FSM are controlled by the states of other FSMs with
whom the FSM interacts, and all transitions happen in a hand
checking fashion. Transitions for the FSMs are described as
δ : Q × 6 → Q. In the context of our FSM based NoC
model,Q represents the states in the FSMunder consideration
and6 represents the FSM states information for the complete
NoC model. Alternately,6 represents the global states infor-
mation of the complete NoC that are used for defining state
transitions δ in each individual FSM.

B. SHORT FORMS AND THE NAMING CONVENTION
We have used Fig. 1(a) as a reference while describing the
FSM model for different NoC components. We consider the
South port of router R2 in Fig. 1(a) while demonstrating
FSM models for buffer, switch, and arbiter. The five ports
present in a router are shown in Fig. 1(b). While describing
buffer and switch at the South port (router R2 in Fig. 1(a)),
we are considering themovement of packet towards router R2
from router R5. While describing the arbiter at the South port
(router R2 in Fig. 1(a)), we are considering the movement
of packets from router R2 toward router R5. Every time we
mention about a router in describing the FSM model, that
router corresponds to Fig. 1(a).

For accommodating space while describing the transitions
in an FSM diagram, we use the short form1 as shown in
Table 1. For a buffer we use ‘‘Bu’’, for an arbiter we use
‘‘Ar’’, for a switch we use ‘‘Sw’’, etc. in the FSM diagrams
in this work. Besides these short forms in Table 1, we use
L, E, W, N and S for the Local port, the East port, the West
port, the North port, and the South port, respectively. The
Name of an NoC component is associated with the router
name as a prefix and the port name as a postfix to the com-
ponent name. For example, R2BufferS indicates the buffer
associated with the S port of router R2, R5ArbiterN indicates

1Short form in Table. 1 are used only in FSM diagrams for representing
state transitions for clarity of the figures. We use full forms in other places
for better readability.

the arbiter present at the North port of router R5, etc. These
component names are used in short form in the FSM dia-
grams. For example, R2BufS is used for R2BufferS, R5ArN
is used for R5ArbiterN, and so on as per the Table 1. Thus, the
information about the associated router and associated port
of NoC components is self-explanatory by using the naming
convention for the NoC components.

III. FORMAL MODELING OF NoC USING FSM
In this section, we describe the FSM models of various
components of the NoC and their synchronization. We have
modeled buffer, switch and arbiter for an NoC router. Syn-
chronization between them is maintained with help of the
handshaking principle between a group of FSMs. Consider-
ing components from all NoC routers and maintaining the
synchronization between them give a complete model for the
NoC.

FIGURE 2. Packets moving from router R5 to R2 and synchronization is
maintained by return and Sync.

A. HIGH-LEVEL OVERVIEW OF THE MOVEMENT OF
PACKETS
We have shown the movement of packets from router R5 to
router R2 (of Fig. 1) in the Fig. 2. The possible paths for
the movement of packets are shown with solid blue arrows.
Movements of packets are shown from the North output port
of router R5 to the South input port of router R2. An arbiter
named R5ArbiterN is present at the North output port of
router R5, as shown in the Fig. 2. The packets from four input
ports, namely the Local, East, West and South, can transmit
packets via the North output port of router R5. If packets from
more than one input port have to compete for a single output
port at a time, the R5ArbiterN has to select only one packet
at a time based on the arbitration policy. The arbiter transmits
the selected packet to the router R2. The transmitted packet is
stored in the South input port buffer of router R2. This buffer
is named as R2BufferS as shown in Fig. 2. The route compu-
tation for the packet is performed at the R2SwitchS. As per
the position of router R2 in the reference Fig. 1, there are
three possible directions where the packet can move. These
directions are towards the East port or towards the West port
or towards the Local port. Based on the destination address
of the packet, R2SwitchS determines the output port and
requests the corresponding arbiter for transmission. If R2 is
the destination router for the packet, it has already reached the

VOLUME 10, 2022 88987



S. Das et al.: Accelerating NoC Verification Using a Complete Model and Active Window

destination router. In such a case, the packet would be directed
to the arbiter at the local port and eventually delivered to the
local core. If R2 is not the destination router, the packet will
move to the adjacent router in the East orWest direction based
on the routing decisions.

B. SYNCHRONIZATION BETWEEN NoC COMPONENTS
Current buffer storage in a router must be cleared after a
packet has moved to another adjacent router. The switch and
the arbiter also get ready for processing of a new packet only
after the transmission of the current packet is completed. For
the lossless packet transmission and correct functioning in
an NoC, it is essential to maintain synchronization within
a router between buffer, switch, arbiter and synchronization
between adjacent routers. In each of the input ports two FSMs
namely sync and return are used to maintain the synchroniza-
tion. The synchronization is maintained with the help of the
handshaking principle.

1) SYNCHRONIZATION BETWEEN TWO ROUTERS
The synchronization between two routers is controlled by
a sync FSM in our FSM based NoC model. A buffer that
presents at the input port of an NoC router, accepts packets
from an arbiter in the adjacent router. Before transmitting a
packet, the arbiter has to ensure that the buffer in the next
router is free. Moreover, the packet cannot be deleted from
the previous router until it is safely transferred to the next
router. The sync FSMmaintains the synchronization between
the arbiter and buffer between two routers as shown in Fig. 2.
The detail modeling of a sync FSM is described in the Sub-
section III-C. The high-level overview depicting the inter-
action of a sync FSM with other NoC functional units is
shown in Fig. 2. The dotted double-ended arrow connecting
R5ArbiterN and R2BufferS via R2SyncS indicates synchro-
nization between two routers.

2) SYNCHRONIZATION WITHIN ROUTER COMPONENTS
The synchronization between NoC components within a
router is maintained using a dedicated FSM named return in
our FSM based NoC model. After transmitting a packet from
a router, all FSMs in that router that are associated with that
transmission need to return to their respective initial states.
The detail model for a return FSM is described in the Subsec-
tion III-E. The high-level overview depicting the interaction
of a return FSM with other NoC functional units is shown
in Fig. 2. Here, the dotted double-ended arrows connecting
R2ReturnS with R2BufferS, R2SwitchS and all the arbiters in
router R2 represent the synchronization between components
in R2.

The paths for packet movements are shown with the solid
blue arrows in Fig. 2. In a five-port router, we have five such
synchronization FSMs corresponding to each port. In this
work, we present an input buffer router model. The design of
an output buffer router model is similar with minor changes
in synchronization.

C. MODELING BUFFER USING FSM
Buffer is present at the input port of a router for storing
an incoming packet until it is transmitted. Synchronization
between two routers must be taken care of before storing a
packet into the buffer. The sync FSM controls synchroniza-
tion between a buffer and its corresponding adjacent router,
which transmits a packet to that buffer. The basic idea here is
that the sync will read the current state of the buffer and the
arbiter in the adjacent router. It allows the transfer of packets
only if there is a slot free in the buffer and allows the buffer
to change its state. Thus, the flow control between routers is
taken care in ourmodel. For convenience, we present the FSM
model for sync and buffer together.

FIGURE 3. Buffer and sync: (a) Packets from R5 to R2, (b) R2SyncS:
Synchronizing between R2BufferS and R5ArbiterN, (c) R2BufferS: Buffer
at S input port of R2.

1) FSM MODEL OF SYNC
A sync FSM synchronized with the arbiter in the adjacent
router. The FSMmodel for sync is shown in Fig. 3(b).We con-
sider the sync FSM at the S input port of the R2 router, with
reference to the 3 × 3 Mesh NoC in Fig. 1(a), for explain-
ing the synchronization with buffer at the same input port.
Following the naming convention, we name this sync FSM
as R2SyncS. Here, R2 indicates the associated router name
and S indicates the associated port name. The FSM model
representing R2SyncS and its transitions are depicted in
Fig. 3(b).

If the current state of R2SyncS = 0/ 1/ 2, it indicates
that the R2BufferS stores zero/ one/ two packet(s). The states
R2SyncS = 01/ 02 are considered as intermediate transition
states that are used by the corresponding buffer to change its
state. Initially R2SyncS is in state 0. The condition for the
transition from (0→ 01) in Fig. 3(b) is C1 = (R2BuS = 0 ∧
R2ReS = 0 ∧ R5ArN 6= Start). Here, (R2BuS = 0) means
buffer is free as no packet is stored in R2BufferS. The second
condition (R5ArN! = Start) means the R5ArbiterN is ready
to transmit a packet. The third condition (R2ReS= 0) means
the South input port is ready to accept a packet and transmits
to the desired router if required. If all three conditions are sat-
isfied, the transition (0→ 01) takes place. The next transition
(01→ 1) in Fig. 3(b) takes place if the R5ArbiterN of router

88988 VOLUME 10, 2022



S. Das et al.: Accelerating NoC Verification Using a Complete Model and Active Window

R5 has returned to its initial state after transmitting the packet
and the R2BufferS also stored the packet and updated its state.
This is represented by the condition C2 = (R2BuS = 1 ∧
R5ArN= Start). Two transitions are possible from the state 1
as shown in Fig. 3(b). If the transmission for the packet is
over, i.e. C3 = (R2ReS 6= 0), the FSM returns to the initial
state (1 → 0). Here, (R2ReS 6= 0) means transmission of
a packet is completed. On the other hand, if another packet
has arrived before the transmission is completed, i.e., C4 =
(R2BuS= 1 ∧ R5ArN 6= Start ∧ R2ReS= 0), the FSM state
changes with the transition (1 → 02). Here, (R2BuS = 1)
indicates that one packet is stored in the buffer and it can
accommodate another packet.We consider a two slot buffer in
this example. In similar way, all other transitions in Fig. 3(b)
take place.

2) FSM MODEL OF BUFFER
We consider a buffer (R2BufferS) that has the capacity for
storing two packets in the presented model. All the transition
in a buffer are controlled by the status of the corresponding
Sync FSM. The transitions in R2BufferS is controlled by the
current state of R2SyncS. All transitions for R2BufferS are
shown with the FSM model in Fig. 3(c). Here, satisfying
a condition C7 = (R2SyS = 01) means that a packet is
transmitted from the adjacent router. R2BufferS stores that
packet and changes its state (0→ 1). The a condition C8 =
(R2SyS= 0) indicates that the transmission is over and buffer
has to return to initial state. The conditionC3= (R2SyncS=
02) indicates that another packet has arrived when the buffer
is already storing one packet. Therefore, the second packet
is accommodated, and the transition (1 → 2) takes place
Fig. 3(c). In this way, the state of a buffer is controlled by
a sync FSM.

D. FSM MODEL OF SWITCH
A switch considers the packet stored in the buffer and redi-
rects it to the proper output port for transmission into the
adjacent router.We consider the R2SwitchS at S port of router
R2 to explain the design. The FSM model is shown in Fig. 4.
The switch remains in the initial state Wt (Wait) if no packet
is stored in the buffer. If a packet is stored in the buffer and the
required condition C1 = (R2BuS 6= 0 ∧ R2ReS = 0) is also
satisfied, the state would be changed to C (Wait→ C). Here,
(R2BuS 6= 0) in C1 indicates the buffer is not empty. At least
one packet is stored in the buffer, which needs to be trans-
mitted toward its destination. The condition (R2ReS = 0) in
C1means the input port is ready to work on a new packet for
transmission. The state C stands for compute where routing
decision is taken.

All possible routing directions of a packet are considered.
One routing direction is selected based on the given routing
algorithm. At the state C, a variable (Route) is considered.
The Route variable takes any values from 0, 1 and 2, which
indicates the direction toward L, E and W ports, respec-
tively. We have not considered any specific routing algorithm
here. Considering a routing algorithm demands for packet

FIGURE 4. R2SwitchS: The switch at the South port of router R2.

FIGURE 5. R2ReturnS: Synchronization between S port Buffer, S port
Switch and Arbiters at L, E and W ports.

information as well. Instead, all possible paths would be
considered in the verification by taking one path at a time.
In the simulation approach, the routing direction for a packet
is determined by calling a routing algorithm. Since this work
does not intend to develop a simulation framework, a specific
routing algorithm is not considered. For implementing simu-
lation framework using the proposed FSM model, a routing
algorithm is needed to be invoked when the FSM reaches
the state C. This kind of approach in used in the work [21].
R2SwitchS reaches its appropriate state based on the deter-
mined routing direction. After the packet is transmitted, the
condition C5 or C6 or C7 becomes True, and the FSM transits
back to its initial stateWt. Here,C5=C6=C7= (R2ReS 6=
0). It means the packet is transmitted and all the respective
FSMs need to return to their respective initial states. Until
then R2ReturnS would not changes its state and the condition
(R2ReS 6= 0) remains True.

E. FSM MODEL OF RETURN
Once the transmission for a packet is over, the buffer, switch
and arbiter that are involved in that transmission return to
their respective initial states based on the status of the return
FSM. When the return FSM is in a state 6= 0, it means the
transmission for the packet is over. Therefore, all the asso-
ciated FSMs have to return to their initial states. The return
FSM transits to the initial state 0 only after all FSMs related

VOLUME 10, 2022 88989



S. Das et al.: Accelerating NoC Verification Using a Complete Model and Active Window

to that transmission return to their respective initial states. All
the transitions for the return FSM R2ReturnS is presented in
Fig. 5.

Initially, the R2ReturnS remains in the state 0. If the buffer
R2BufferS contains one packet and that packet is transmitted
via the E output port, and the condition C3 is satisfied, the
state of the R2ReturnS changes to 1E . Similarly, in case the
buffer contains two packets and one packet is transmitted
through the E output port and the condition C9 is satisfied, the
R2ReturnS changes its state to 2E . When C3 = ((R2BuS =
1) ∧ (R2SwS= East) ∧ (R2ArE= (1TS ∨ 2TS) ) is satisfied
the transition (0 → 1E) takes place. The meaning of C3 is
that the packet at R2BuS wants to move towards the East
output port and it has won the arbitration at R2ArE. Here,
(R2BuS= 1) indicates that one packet is stored in the buffer,
(R2SwS = East) indicates that the packet wants to move
toward the East output port, and (R2ArE = (1TS ∨ 2TS)
means the South input port packet has won the arbitration for
the East output port. If the condition C4 = ((R2BuS = 0) ∧
(R2SwS = Wait) ∧ (R2ArE = Start)) is satisfied the tran-
sition (1E→ 0) takes place. The meaning for (R2BuS = 0)
is the buffer return to initial state, (R2SwS = Wait) means
R2SwitchS return to its initial states and (R2ArE = Start)
means R2ArbiterE returns to its initial state. Therefore,
if C4 is satisfied the transition (1E → 0) takes place, i.e.,
R2ReturnS returns to initial state. The condition C4 is sat-
isfied only when all FSMs associated with this transmission
return to their initial states. After that R2ReturnS also transits
back to initial the state. For the conditionC9 buffer is consid-
ered as (R2BuS= 2). Other conditions are same as that of the
conditionC3. Similarly, for the conditionC10, the sate of the
buffer becomes (R2BuS = 1) from the state (R2BuS = 2).
Other conditions are same as that of the condition C4. In a
similar way, all other transitions for R2ReturnS take place,
as shown in Fig. 5.

F. APPROACH FOR DESIGNING VIRTUAL CHANNELS
Blocking problem of one packet by another packet is resolved
with the help of virtual channels (VCs) where a set of VCs
share the same physical channel [21], [22]. In VC, a buffer is
restructured into separate smaller buffers. Corresponding to
each VC there is a need for separate buffer (smaller buffers)
with corresponding sync, switch and return FSM. An arbiter
resolves conflict for a physical channel at an output port
which is shared by a set of VCs. If the number of VCs
increases, the states in an arbiter also increase. For the sake
of simplicity, in this work, we present arbiter with a single
VC only.

G. FSM MODEL OF AN ARBITER
Packets from more than one input port might compete for
a single output port at a time. These conflicts are resolved
by an arbiter with the help of an arbitration policy like
fixed-priority, round-robin, first-come-first-serve, weighted
round-robin, etc.. We have designed fixed-priority arbiter and
round-robin arbiter in this work.

FIGURE 6. Fixed-priority arbiter (R2ArbiterS) at the South port of R2
router.

1) FSM MODEL OF FIXED-PRIORITY ARBITER
The priorities in a fixed priority arbiter are predetermined
and we have considered > East > West > North > South
as the fixed priority order. It means, the L input port packets
have the highest priority and the S input port packets have the
lowest priority. A fixed-priority arbiter R2ArbiterS is shown
using FSM in Fig. 6. The arbiter transmits packets to the
buffer R5BufferN that is present in its adjacent router R5.
The initial state of R2ArbiterS is Start. A packet from the
L input port wins arbitration at R2ArbiterS if the adjacent
router buffer R5BufferN is empty and condition C1 is sat-
isfied. In that case, the arbiter state changes to 1TL from the
initial state Start. Similarly, if the adjacent buffer has already
stored one packet and the condition C7 is satisfied, then also
the L input port wins the arbitration. Here the conditionC1=
((R5BuN = 0) ∧ (R2ReL = 0) ∧ (R2SwL = S)). The condi-
tion (R2SwL = S) indicates a packet at the Local input port
needs to move towards the South output port. The condition
(R2ReL = 0) indicates the readiness of the Local input port
for new packet and the (R5BuN= 0) indicates the R5BufferN
is free to receive packets as it is not storing any packet. If
C1 is satisfied, the transition (Start → 1TL) takes place in
Fig. 6. It means that the R5BufferN in the next router is free,
and the Local input port wins the arbitration. After receiving
the packet by the R5BufferN and once the condition C2 is
satisfied, the R2ArbiterS transits to the initial state Start.
Here, the condition C2 = ((R2ReL 6= 0) ∧ (R5BuN = 1)).
The condition (R5BuN= 1) indicates the packet is transferred
to the next router R5. The condition (R2ReL 6= 0) indicates
that all the FSMs involved have to return to their respective
initial states as the transmission is over. The transitions due
to condition C7 and C8 takes place in a similar way. If one
packet is already stored in the buffer and another packet is
to be stored, in such cases, the transitions take place with the
help of the condition C7 and C8. All the other transitions for
R2ArbiterS are carried out in a similar way as shown in the
Fig. 6.

88990 VOLUME 10, 2022



S. Das et al.: Accelerating NoC Verification Using a Complete Model and Active Window

2) FSM MODEL OF ROUND-ROBIN ARBITER
The priorities in a round-robin arbiter are not fixed and they
are getting updated dynamically.When a packet is transferred
from an input port, the priority for that input port is set to be
the lowest so that other input port packets also get a chance for
transmission. To keep the design simple, we have designed
round-robin priority generator and round-robin arbiter in two
separate FSMs.

FIGURE 7. Round-robin priority generator (R2PriorityS) at the S output
port of router R2.

Round-robin priority generator: A round-robin priority
generator is shown in Fig. 7. Each state represents a priority
value. Initially, it is in the initial state 1. The priority value
1 indicates the next preferable port to win arbitration is L,
2 indicates the next preferable port is E and so on. If the
current state of R2PriorityS is 1 and a packet is destined
towards the S output port from the L input port, the state of the
priority generator changes to 11. The priority 11 indicates that
L input port packet gets selected for transmission. Similarly,
the priority values 22 or 33 indicate that the packet present at
the E or W input port, respectively, wins the arbitration. Let
the current state of R2PriorityS in Fig. 7 is 1 and no packet
is competing for the S output port from the L input port. If a
packet competes from the E input port and the C3 condition
becomes True then the East input port wins arbitration. In that
case the priority changes to state 22 from the previous state 1.
Here, the condition C3 = ((R2SwE = S) ∧ (R2ReE = 0) ∧
(R2SwL 6= S)). Here, (R2SwL 6= S) means that no packet is
competing from the L input port towards the S output port and
the (R2SwE = S) means that a packet from the E input port
wants to transmit via the S output port. The East input port
is also ready for a new packet if the condition (R2ReE = 0)
is True. If the overall C3 is satisfied, the transition (1 →
22) takes place. It means a packet wants to traverse from
the E input port to the S output port, and there is no com-
peting packet from the L input port to the same output port.
Therefore, priority changes to 22 in favour of the East port.
Similarly, if there are no packets from the Local and East
input ports towards the South output port and at the same
time, a packet is destined from theWest input port towards the
South output port, then the condition C4 is satisfied. In that
case, the priority would change to 33 in favour of the West

input port. The other transitions in the priority generator of
Fig. 7 can be explained in the similar fashion.

FIGURE 8. Round-robin arbiter R2ArbiterS at the South port of Router R2.

Round-robin Arbiter: The round-robin arbiter uses the pri-
ority set by the corresponding round-robin priority generator.
Fig. 8(b) shows the FSM representation of the round-robin
arbiter R2ArbiterS along with its transitions. In round-robin
arbiter, we use priority information generated by a priority
generator as shown in Fig. 7. The priority values (11, 22, 33)
indicate the packet from the input port that wins the arbitra-
tion. Therefore, the state of the switch FSMs are not explicitly
considered in the transitions for round-robin arbiter as they
are considered during determining the priority. The FSMs for
round-robin arbiter is similar with the FSM for fixed-priority
arbiter in the remaining other aspects. If the priority is set to
11, a packet from the Local input port would be transmitted
when buffer in the next router is free (condition C1 or C7 in
Fig. 8). The next state of the R2ArbiterS changes to 1TL or
2TL. Here, the condition C1 = ((R5BuN = 0) ∧ (R2ReL =
0) ∧ (R2PrS = 11)). The condition (R2PrS = 11) indicates
that the priority is set for the Local input port, (R2ReL =
0) means the Local input port is ready and (R5BuN = 0)
indicates that the corresponding buffer in the adjacent R5
router is free. Therefore, the transition (Start→ 1TL) takes
place with an indication that the Local input port wins the
arbitration. On satisfying the condition C2 = ((R5BuN =
1) ∧ (R2ReL 6= 0)), the transition (1TL→ Start) takes place.
It means the R2ArbiterS returns to its initial state once the
transmission from the Local port is over. Here, the condition
(R5BuN = 1) means that the buffer in the adjacent router R5
is updated from (R5BuN= 0) after receiving the packet. The
condition (R2ReL 6= 0) means all the FSMs corresponding
to this transmission has to return to their respective initial
states. The other condition regarding the transfer of packet
from the local port C7 = (R5BuN = 1 ∧ R2ReL = 0 ∧
R2PrS = 11) is similar to C1. The only difference is, in case
of C1 the adjacent router buffer was empty and in case of
C7 the adjacent router buffer has stored a packet and it has
the capacity to store another packet. On satisfying C7, the

VOLUME 10, 2022 88991



S. Das et al.: Accelerating NoC Verification Using a Complete Model and Active Window

transition (Start → 2TL) takes place. Here, the state 2TL
means R5BufferN is storing one packet and has capacity for
onemore packet. The state 1TLmeans R5BufferN is empty at
present. In similar way, all other transitions in the round-robin
arbiter in Fig. 8 are carried out.

IV. CORRECTNESS OF THE MODEL
We have verified progress and synchronization between func-
tional units for ensuring the correctness of our FSM based
NoC model. Progress in a communication network ensures
liveness of the system [3]. That means a system compo-
nent should not stuck in a state and each component of the
system is functioning. Satisfying progress in the proposed
NoC model implies that current state of an FSM does not
stuck permanently in a state, i.e., the state of an FSM keeps
on changing provided that there presents a packet as input
for transmission. In NoC context, simply satisfying progress
property locally does not guarantee deadlock freedom. Sat-
isfying progress ensures only the correctness of the system.
For deadlock-freedom, global deadlock needs to be avoided
in consideration with a specific routing algorithm.

A. PROGRESS IN ROUTER COMPONENTS
In this subsection we have presented the LTL specifications
for the progress in the router components: buffer, switch and
arbiter.

1) PROGRESS IN A BUFFER
The change of states in a buffer is controlled by the state of
the sync FSM. Initially both the buffer and sync FSMs are
at their initial state 0. If the sync FSM changes its state to
01 with the transition (0→ 01) in Fig. 3(b), the correspond-
ing buffer also needs to change its state with the transition
(0 → 1) in Fig. 3(c) in the next cycle. Formally this property
is written as, ‘‘If the current state of sync FSM is 01, the
next state of the corresponding buffer changes to 1 in the next
cycle’’. The Linear Temporal Logic (LTL) for this property is,
G((R2SyncS = 01) H⇒ X(R2BufferS = 1)).
Similarly, LTL specification for the progress property when
another packet is stored in the buffer is, G((R2SyncS =
02) H⇒ X(R2BufferS = 2)). Satisfying these
properties ensures the correctness of the buffer model.

2) PROGRESS IN A SWITCH
If there present at least one packet in a buffer, the corre-
sponding switch should compute the routing direction for
transmitting the packet. Formally this property is written
as, ‘‘If the input buffer is non-empty and the switch is cur-
rently in waiting(Wt) state, the switch state will eventu-
ally change to compute(C) state’’. The specification using
LTL for this property is, G(((R2BufferS ! = 0) ∧
(R2SwitchS = Wt) H⇒ F((R2SwitchS =
C)). Similarly, ‘‘If switch is currently in compute(C) state,
the switch state will eventually change to L or E or W
as per the routing decision’’. The LTL representation is,

G((R2SwitchS = C) H⇒ F(R2SwitchS = L
∨ R2SwitchS = E ∨ R2SwitchS = W)).

3) PROGRESS IN A FIXED-PRIORITY AND ROUND-ROBIN
ARBITERS
When packets from input ports intend to get transmit-
ted via a particular output port, the corresponding arbiter
in that output port must decide in favour of an input
port packet for transmission. Formally this property is
written as, ‘‘If an arbiter is in initial state (Start) and
there is at least one packet requesting that output port,
the state of the arbiter will eventually change’’. The
LTL representation is, G((R2ArbiterS = Start)
∧ ((R2SwitchL = S) ∨ (R2SwitchE = S) ∨
(R2SwitchW = S)) H⇒ F(R2ArbiterS ! =
Start)). In both the fixed-priority arbiter and round-robin
arbiter, the progress does not ensure the starvation freedom.
Since states are same for the fixed-priority arbiter in Fig. 6
and the round-robin arbiter in Fig. 8, same LTL specification
is used for both the arbiters.

B. SYNCHRONIZATION WITHIN A ROUTER
The synchronization within a router is controlled by a return
FSM present at each input port. Initial state of a return FSM
is 0. If (Return! = 0), it implies that a packet is chosen for
transmission and the corresponding FSMs associated with
that transmission have to return to their respective initial
states. Once these FSMs return to their initial states, the
state of return FSM too changes to (Return = 0). A new
transmission from that port starts only after that point. Correct
execution of these transitions in order indicates proper syn-
chronization inside a router. One synchronization property is,
‘‘When an input port packet is selected for transmission by an
arbiter, the state of the return FSM corresponding to that input
port changes from its initial state’’. Its LTL representation
is, G((R2ReturnE = 0) ∧ (R2BufferE = 1) ∧
(R2SwitchE = S) ∧ (R2ArbiterS = (1TE ∨
2TE)) H⇒ X(R2ReturnE = 1S)). Once the trans-
mission from the East input port via the South output port
in R2 router is over, the East input port is not ready for
another packet until the corresponding buffer, switch and
arbiter return to initial states. When these FSMs return to
initial states, the return FSM too returns back to initial state
(R2ReturnE = 0) (Fig. 5). Processing of new packets are
enabled only when (R2ReturnE = 0). This synchronization
property can be expressed as, ‘‘After the transmission of a
packet that is stored in an input port buffer if the corre-
sponding buffer sets its buffer slot as free, corresponding
switch and arbiter return to their initial states then the corre-
sponding return FSM too returns to its initial state’’. In LTL,
G(((R2ReturnE = 1S) ∧ (R2BufferE = 0) ∧
(R2SwitchE = Wt) ∧ (R2ArbiterS = Start)
H⇒ X((R2ReturnE = 0)). In similar way, synchro-
nization between FSMs within a router for all ports can be
represented using LTL properties for verification.

88992 VOLUME 10, 2022



S. Das et al.: Accelerating NoC Verification Using a Complete Model and Active Window

C. CORRECTNESS OF A PRIORITY GENERATOR
The priority generated by a priority generator for a
round-robin arbiter has to be checked if the priorities are gen-
erated correctly. Since no priority is used for the fixed-priority
arbiter we have not checked this for the fixed-priority arbiter.

For proper functioning of the round-robin arbiter, the pri-
ority needs to be set eventually for each input port by the
corresponding round-robin priority generator in Fig. 7. For
example, in router R2, packets from L input port (priority 1,
11), E input port (priority 2, 22) and W input port (priority 3,
33) compete for S output port. If current state of the priority
generator is 1 and a packet from the West input port com-
petes for the South output port, eventually the priority should
be set to 33 so that a packet from the West input port gets
preference for being transmitted. This is represented in LTL
as, G((R2PriorityS = 1) ∧ (R2SwitchW = S)
∧ (R2ReturnW = 0) H⇒ F(R2PriorityS =
33)). Satisfying this LTL specification indicates correct
functioning of the round-robin priority generator. Similarly,
in router R5, if a packet from the South input port competes
for the North output port, the priority for the South input
port must set to 44 eventually. To verify this, its LTL spec-
ification is represented as, G((R5PriorityN = 1 ) ∧
(R5SwitchS = N) ∧ (R5ReturnS = 0) H⇒

F(R5PriorityN = 44)). Verification results for all
such LTL specifications must be True for assuring the cor-
rectness in the design of round-robin priority generator.

V. APPLICATION OF THE MODEL
As applications of the presented FSM based NoC models,
verification of starvation-freedom and transfer of packets
across routers are presented in this section. We also discuss
the challenges of extensive state space in a complete NoC and
our approach to verify overall NoC considering the NoC in
part-by-part.

A. VERIFICATION OF STARVATION-FREEDOM
Starvation-freedom is defined as fairness in resource allo-
cation between competing agents. Starvation at an output
port of an NoC depends upon the underlying arbitration
logic, the fixed-priority and the round-robin arbiters for
this work. There may be more than one packet from other
input ports that all want to exit through the same output
port. If only one input port packet keeps on getting pref-
erence, the packets from other ports have to wait indefi-
nitely and they suffer from starvation. Starvation-freedom
in NoC context can be expressed as, ‘‘If a packet from an
input port competes for an output port, eventually the output
port arbiter has to select that input port for transmitting the
packet’’. For example, ‘‘If a packet from the West input
port intends to exit through the South output port in R2
router, the packet should get a chance to exit through the
South output port in future.’’ The LTL representation of the
same is, G((R2SwitchW = S) ∧ (R2ArbiterS =
start) H⇒ F((R2ArbiterS = 1TW) ∨
(R2ArbiterS = 2TW)). By satisfying this property,

it implies that every packets from the West input port intend-
ing for the South output port will be transmitted in future.
If this property becomes False, it implies that for some
possible scenarios, packets from the West input port to the
South output port never get a chance for the transmission.
The R1ArbiterE, in the R1 router of Fig. 1, accepts packets
from the Local and the South input ports. LTL representation
of starvation-freedom at the R1ArbiterE for the South input
port is, G(((R1SwitchS = E) ∧ (R1ArbiterE =
Start) ) H⇒ F((R1ArbiterE = 1TS) ∨
(R1ArbiterE = 2TS)). Meaning of this LTL is, glob-
ally if the current state of R1ArbiterE is Start and R1SwitchS
is E, eventually the R1ArbiterE would transit to 1TS or
2TS. Both states 1TS or 2TS in R1ArbiterE imply that a
packet from the South input port is selected by the arbiter.
If the mentioned LTL is satisfied, the starvation-freedom
for the South input port is ensured at the R1ArbiterE. Sim-
ilarly, the starvation-freedom specification for any input port
at a given output port is represented using LTL.

B. VERIFICATION FOR A TRANSFER OF PACKET
The correct synchronization between two routers implies
the transfer of packets between two routers in a proper
way. A desirable property for a buffer is, ‘‘If a buffer
is empty and the corresponding arbiter in the adjacent
router has selected a packet for transmission, the state of
the buffer changes eventually to store the packet’’. The
LTL specification for the same is, G((R5ArbiterN ! =
Start) ∧ (R2BufferS = 0) ∧ (R2ReturnS =
0) H⇒ F(R2BufferS = 1)). The same property
can be expressed as, ‘‘An arbiter is ready for transmitting a
packet and the connected buffer in the adjacent router is free
for accommodating a packet, eventually the packet is stored
in the next router buffer’’. Thus, the LTL representation for
transfer of packets between two routers are presented for each
pairs of connected routers in an NoC.

C. VERIFICATION OF OVERALL NoC
Considering all the routers in a complete NoC along with
the respective router components results in an extensive state
space. In this section, we discuss the state space for our FSM
basedNoCmodel by considering the number of FSMs needed
for the complete NoC model. We have also presented the
active window concept where a part of NoC is considered
instead of considering the complete NoC at a time.

1) NUMBER OF FSMs IN AN NoC
The number of active ports in an NoC router depends upon
its position. All ports may not be active in an NoC router.
Considering the 3×3MeshNoC in Fig. 1(a), for all the corner
routers namely R1, R3, R7 and R9 has three ports active. Two
ports connect its two neighbour and another port is for its
local core. There present 4 such corner routers in aMesh NoC
of any size. The router R2 in Fig. 1(a) has three neighbours.
Therefore, router R2 has total four active ports, three ports
connecting each neighbour and another port connecting the

VOLUME 10, 2022 88993



S. Das et al.: Accelerating NoC Verification Using a Complete Model and Active Window

TABLE 2. Number of FSMs in NoCs considering Fixed-priority (FP) and
Round-robin (RR) arbiter.

local core. We get (N-2)*4 such routers having four active
ports in an NxN Mesh NoC. The router R5 in Fig. 1(a) has
four neighbours. Therefore, all the five ports are active for
router R5. There are (N-2)*(N-2) such routers with five active
ports in an N*N Mesh NoC.

In our FSM model for a router with fixed-priority arbiter
we need 5 FSMs corresponding to each port of that router.
These five FSMs are namely switch, buffer, sync, return and
fixed-priority arbiter. If a router with fixed-priority arbiter
has three active port, we need 15 (3 ∗ 5 = 15) such FSMs
to model the router. Therefore, we consider FP3 = 15 in
Table 2. Similarly, for a router having fixed-priority arbiter
with 4 active ports, FP4 = 20 (4 ∗ 5) and with 5 active
ports, FP5 = 25 (5 ∗ 5). These values are used in Table 2
for calculating the number of FSMs in a Mesh NoC model.
If we consider round-robin arbiter in the router, one additional
FSM is needed for priority generation. Therefore, for a router
with round-robin arbiter we need 6 FSMs corresponding to
each port of that router. If a router with round-robin arbiter has
three active port, we need 18 (3∗6 = 18) such FSMs tomodel
the router. Therefore, we consider RR3 = 18 in Table 2.
Similarly, for a router having round-robin arbiter with 4 active
ports, RR4 = 24 (4 ∗ 6) and with 5 active ports, RR5 = 30
(5 ∗ 6). The total number of FSMs needed while designing
a complete NoC using fixed-priority arbiter and round-robin
arbiter is shown in Table 2. The number of FSMs needed
for modeling a 8 × 8 Mesh NoC is 1440 considering FP
arbiter. This number is even more while considering round-
robin arbiter. For 8× 8 Mesh NoC we need 1728 FSMs. The

number of states in each FSM is multiplied while a complete
NoC is encoded using a model checker. It gives the total state
space for a complete NoC. State space for a complete NoC
is a too high for achieving scalabilty using model checker.
State space for even for a 2 × 2 NoC is 2138.24 while using
fixed-priority arbiter and is 2169.2 while using round-robin
Arbiter. These numbers explode with the increase of NoC
sizes. Therefore, we have considered the active windows next
for each NoC router instead of considering a complete NoC
at a time.

FIGURE 9. Partitioning NoC: Active windows for the Router R5 and R9.

2) ACTIVE WINDOWS
Due to the state space explosion problem, a complete NoC
system along with its detailed components cannot be encoded
with a state-of-the-art model checker. Therefore, we partition
the NoC into active regions and perform verification for star-
vation and transfer of packets in each active region. Router
R9 interacts with its two neighbors R6 and R8. Therefore,
we consider router {R6, R8, R9} at a time as the active
window for R9, as shown in Fig. 9. Similarly, active window
for R5 is {R2, R4, R5, R6, R8} and for R8 is {R5, R7, R8,
R9} and so on. The communication between two routers are
present in an active window. Therefore, properties involving
two routers can be checked using active windows. All these
active windows can be executed using parallel threads to save
verification time. To verify global properties like deadlock
and livelock, we need to consider the complete NoC at a
time. Even active window would not be able to facilitate that.
Therefore, global properties like deadlock and livelock can
not be verified due to state space explosion even by using
active windows.

VI. EXPERIMENTAL RESULTS AND ANALYSIS
We have created all FSMmodels manually from 2×2 to 8×8
Mesh NoC. The FSM models are encoded in NuSMV [9] for
verification. Individually executing each router for verifica-
tion of progress, synchronization, proper priority generation
for round-robin arbiter, transfer of packets and starvation
are time consuming operations. In this section, experimen-
tal results with their analysis are presented for all the
experiments. In all the experiments, a machine having Intel
Xenon(R) 2.10GHz X 32 processors with 64 GB RAM is
used.

88994 VOLUME 10, 2022



S. Das et al.: Accelerating NoC Verification Using a Complete Model and Active Window

TABLE 3. Verification time (H:M:S) for verification of progress,
synchronization and priority considering fixed-priority (FP) arbiter (A) and
round-robin (RR) arbiter.

FIGURE 10. Speed up with the increase in the number of routers.

A. VERIFICATION OF PROGRESS, SYNCHRONIZATION
AND PRIORITY GENERATION WITHIN A ROUTER
In this experiment, we have used all routers in an NoC indi-
vidually and have executed them both serially and in parallel
threads. We have verified the progress in NoC router com-
ponents, synchronization within a router and correctness in
priority generation using the LTL specifications as described
in Section IV. Experimental results show that synchroniza-
tion properties within a router and progress within a router
are satisfied to be True for all routers. The LTL specification
for priority generation for a round-robin arbiter also satisfied
in all the experiments.

1) RUNTIME IMPROVEMENT WITH PARALLEL EXECUTION
CONSIDERING INDIVIDUAL ROUTER
The execution time for the experiments is shown in Table 3.
In comparison to fixed-priority arbiter, state-space increases
in round-robin arbiter due to the dynamic priority implemen-
tation. For that reason, verification time also increases signif-
icantly for NoC containing round-robin arbiter. Verification
time is shown in Table 3. The number of routers increases
for larger NoC. Therefore, as the NoC grid size increases,
verification time also increases. The verification time needed
for both the serial and parallel execution along with speed ups
are shown in Table 3. The ratio of serial execution time with
the parallel execution time is presented as the speed up in this
work. The experimental results show that parallel threads help
to speed up the verification process up to 18x times over the
equivalent serial execution in the case of larger NoCs.

We put the speed up trend for parallel execution of indi-
vidual router in Fig. 10. Though, theoretically we could
expect the speedup proportional to the router numbers i.e.,
n2 for an nxn NoC, practically we are getting lesser than
that. Even the speedup trend is not same for both the Fixed
Priority and Round Robin arbiter. Besides the number of
routers, other factors like thread overhead, operating system
details,and memory requirements for the verification also
affect the speed up. The speed up trend continues until the
memory is not saturated.

B. VERIFICATION OF TRANSFER OF PACKETS AND
STARVATION FREEDOM CONSIDERING ACTIVE WINDOWS
For verifying the transfer of packets, we need to consider an
arbiter and the corresponding buffer in the adjacent router,
i.e., the connected port of adjacent router. Similarly, for verifi-
cation of starvation, we need to consider the arbiter, that com-
municates with the buffer of adjacent router. For considering
the communication with an adjacent router, we have consid-
ered active windows in this experiment. Examples for active
windows are shown in Fig. 9. We have used active window
corresponding to each router in an NoC. All active windows
are executed using parallel threads to save the verification
time.

Successful transfer of packets indicates correct synchro-
nization between an arbiter and a buffer in the adjacent router
as well. The LTL specifications that are used for the verifi-
cation of the transfer of packets are presented in Section V.
All the specifications for transfer of packets corresponding
to each pair of arbiter and connected buffer are verified to
be True in all the experiments. We have verified starvation
freedom as well in this experiment. The verification results of
starvation-freedom for router R5 in a 3×3Mesh NoC (Fig. 1)
are shown in Table. 4. We get similar results for all the other
routers up to 8×8Mesh NoC. Some ports are inactive (W and
N ports in R1 of Fig. 1) and starvation-freedom specifications
are not applicable (NA) for some other ports. Such ports in
router R5with respect to different arbiters are denoted as ‘‘not
applicable (NA)’’ in Table. 4. In router R5 (Fig. 1), packets
stored in Local, West, North and South input ports compete
for the East output port (R5ArbiterE). The East input port
packets do not compete for the East output port. Therefore,
starvation-freedom at R5ArbiterE from the East input port is
not applicable and is denoted as NA in Table 4. For the Local,
West, North and South input ports, if starvation-freedom is
satisfied, it is denoted by T (True). Otherwise, it is denoted
by F (False).

1) ANALYSIS OF THE FINDINGS ON STARVATION FREEDOM
For fixed-priority arbiter, it seems starvation-freedom is sat-
isfied only for the highest priority port. Whereas, experi-
mentally it is found that starvation-freedom specification is
satisfied for both the highest and the second highest priority
ports. We consider Local > East > West > North > South
as the priority order in this work. Here, Local input port has
the highest priority and the South input port has the lowest

VOLUME 10, 2022 88995



S. Das et al.: Accelerating NoC Verification Using a Complete Model and Active Window

TABLE 4. Starvation-freedom: Fixed-priority (FP) arbiter and round-robin
(RR) arbiter.

priority. Experimental results are shown in Table. 4. At the
North output port of R5 router (R5ArbiterN), the West and
the South input ports suffer from starvation. Both the Local
and the East input ports are found to be starvation free. The
reason behind these findings is analysed from the the debug
trace. Debug trace shows that packets from the Local, East,
West and South input ports keeps on trying continuously to
access the North output port (R5ArbiterN). A packet from the
highest priority port i.e., the Local input port is transmitted to
the adjacent router. There present other consecutive packets
from the Local port. When transmission of a packet is over,
there entails some delay in maintaining synchronization with
the buffer (clearing of the buffer without data loss) and the
switch using the return FSM. On the other hand, the packet
from the next highest priority port, i.e., the East input port,
is ready and keeps onwaiting for the sameR5ArbiterN (North
output port). Therefore, a packet from the East input port get
the next chance for transmission. The synchronization latency
in the highest priority port is the reason for satisfaction of
starvation-freedom property for the the second-highest pri-
ority input port as well in fixed-priority arbiter. If synchro-
nization latency can be nullified in a model, packets only
from the highest priority port, i.e., the Local port in this
case, get a chance for transmission. We believe that such
delay would present in the actual hardware as well unless
it is nullified using extra resources like extra buffers. When
the transmission of the packet from the East input is over,
in the meantime, the synchronization at the Local input port
is completed. In the next transmission, the local input port get
the preference for transmission again. This process continues.
Only the Local and East input port packets get the chance for
transmission alternatively. Packets competing from the West
and the South input ports might have to wait indefinitely.
Starvation-freedom can not be guaranteed for them. On the
other hand, round-robin arbiter is a dynamic arbitration pol-
icy. The priority FSM in Fig. 7 changes the priority in round-
robin fashion. Therefore, starvation-freedom is ensured for all
the input ports. Experimental results are shown in Table. 4.

2) RUNTIME IMPROVEMENT WITH PARALLEL EXECUTION
FOR THE ACTIVE WINDOWS
The execution time for transfer of packets and starvation ver-
ification using active window is shown in Table. 5. Similar to

TABLE 5. Verification time (H:M:S) for transfer of packets and starvation
freedom considering Fixed-priority arbiter (FP A.) and round-robin arbiter
(RR A.) with active windows.

the previous experiments considering individual routers, NoC
with a round-robin arbitration policy takes longer time than
NoC considering a fixed-priority arbiter. Experimental results
are shown in Table 5. Verification time increases for larger
NoC. The number of routers is less in smaller NoC. More-
over, corner routers and boundary routers have less number
of active ports. For example, the router R1 in Fig. 1 has three
active ports (Local, East and South). But for the intermediate
router like R5, all five ports are active. Larger NoC has more
number of such routers where all ports are active. For this
reason, more time is utilised for the verification of larger
NoC. The parallelization of starvation verification is found
to be very effective as the parallel execution helps in saving
the execution time significantly. As shown in Table 5, exe-
cuting starvation verification for fixed-priority arbiter with
parallel threads helps to speed up the verification process
up to 13.4x times over the equivalent serial execution. This
runtime improvement for round-robin arbiter using paral-
lel thread is 5.8x times over serial execution. The improve-
ment is not significant for round-robin arbiter after a 5 × 5
NoC because the round-robin arbiter demands more state
space.

VII. RELATED WORK
In this section, we have presented existing works on formal
modeling of NoC using different formalisms. Due to the enor-
mous benefits of the formal models [11], there have been
efforts on formal verification of NoC using bothmodel check-
ing and theorem proving. D. Borrione et al. target validation
of the communication infrastructure of NoC [1]. Generic NoC
is based on an abstract view of the communications network
of NoC is presented in this work. This work has not con-
sidered router components in detail. The generic NoC model
is modeled as the composition of key components like rout-
ing, scheduling and interfaces. This model includes topolo-
gies, routing algorithms and scheduling policies. A finite
number of routers are connected to generic NoC commu-
nication architecture. A generic formal model for NoC is
implemented using ACL2 theorem prover and simulator.
ACL2 provides two functionalities, as a theorem prover and

88996 VOLUME 10, 2022



S. Das et al.: Accelerating NoC Verification Using a Complete Model and Active Window

as an execution engine in the same modeling environment.
Timing information is not considered in that work, which
is incorporated in their next work [2]. This work describes
an extension work on generic model for NoC [1]. It is
implemented in ACL2 theorem prover, which contains the
executable logic as well. This model is useful for serving
as a formal reference for the validation and simulation of
NoC at the initial design phase. The work demonstrated
the transmission of messages on generic communication
architecture, with an arbitrary network topology and node
interfaces, routing algorithm and switching technique. The
model considers its main input, as a list of messages that
can be injected in the network. Before injecting in the
network, these messages are first encoded. Properties like
deadlocks and starvation are not considered in this work
and it considers only high-level descriptions of NoC while
modeling.

Palaniveloo et al. present a new formal model for the
existing Hermes NoC architecture along with the commu-
nication scheme [6]. They propose Heterogeneous Proto-
col Automata (HPA) as a language for modeling Hermes
NoC as an event based transition system. This work ver-
ifies reachability of flits using Spin model checker [23].
At the input port of the Hermes Router [24] it models five
bi-directional ports and the bounded buffers. It also includes
the XY-routing algorithm, wormhole switching, arbitration
logic with priority, and a handshake protocol of the com-
munication scheme. With help of PROMELA, the automata
model is mapped manually. PROMELA is specification lan-
guage for the SPINmodel checker [25]. It models XY-routing
algorithm by writing codes in PROMELA. This work mod-
els NoC components like switch, arbitration by defining
Heterogeneous Protocol Automata. It verifies reachability
of a flit using SPIN model checker. This work has not
checked critical issues like starvation, deadlock, livelock
etc.

Lan et al. [26] proposes a bidirectional channel Network-
on-Chip architecture to enhance the performance of on-
chip communication. It allows each communication channel
between two routers to be dynamically self configured to
transmit flits in either direction. Chen et al. present a verifica-
tion approach on bidirectional NoC in [7]. They have verified
mutual exclusion and starvation freedom. Formal Modeling
of NoC presented in this work considering the proposed Bidi-
rectional NoC design [26]. A channel has three states: free,
idle and waits. One end of a channel is configured as a free
state, and data are transmitted from that end. Receiving end
of a channel is in idle state. To change a state from idle to
free, it goes through the intermediate state called wait state.
BiNoC design is converted into Extended Time Automata
for verification. State Graph Manipulator (SGM) [27] is used
as model checking tool in all the experiments. Due to state
space explosion, the work can not verify deadlock freedom.
The model used in this work considers only one router and
has not considered detailed model of the NoC components.
The approach may not scale for a complete NoC. In a Ph.D.

dissertation on formal verification of fault tolerant NoC [28],
process-algebra is used for modeling. For all the experiments
in this work a 2 × 2 NoC model is considered. Scalability is
not achieved in this work. Deadlock verification fails due to
state space explosion problem.

There is another approach of modeling interconnection
network using executable micro architectural specification
(xMAS) [29], [30]. A richer set of micro architectural primi-
tives are identified that allow describing the complete system
by composition methods. They are useful as a modeling
framework for validating existing micro architecture. These
are recent works that usages xMAS as modeling frame-
work in their works [3], [4], [31], [32], [33], [34], [35],
[36]. Some existing verification works on communication
network [3], [4], [37] use xMAS for modeling the system.
Ray et al. present progress verification on a communica-
tion fabric by breaking end-to-end progress property of a
virtual channel into localized progress property [3]. This
paper considers a virtual channel which is designed using
xMAS [3]. This work focuses on progress property. Progress
means whenever there is a packet trying to enter the virtual
channel, it will pass through the channel. In this work [3],
end-to-end progress property is broken down into local-
ized progress properties. Localized progress are more easily
provable, and leads to a formal proof of overall progress.
The authors conclude that some more studies are needed
to apply the same approach for progress verification in
NoC.

In [5], we verify progress property on a xMAS based NoC
model using NuSMV [9]. Buffer is not considered in that
work. Considering buffer, verification of this model using
NuSMV does not scale even upto 2 × 2 NoC. Using this
approach, deadlock verification of NoC is found to be infea-
sible due to state space exposition problem.

Finite State Machine (FSM) is a popular modeling for-
malism suitable to use with model checker. NuSMV inter-
nally composes all the FSMs present in the system model
and verifies the truth value for any given specification with
respect to that composed model [11]. In verification process,
state space increases exponentially in case of a huge system
like NoC. This is called state space explosion problem [38].
Besides formal verification purpose, FSM are being used for
various other applications by the research community [12],
[13], [14], [15], [16], [17], [18], [19]. In this paper, we have
modeled the NoC using FSM first to check locally depen-
dent properties like starvation. We have modeled NoC con-
sidering detail components. Synchronization between NoC
components is essential for proper functioning. For maintain-
ing synchronization between NoC components we have used
handshaking principle between FSMs in our FSM based NoC
model.

VIII. CONCLUSION
This work presents formal modeling of NoC using FSM
by considering NoC components in detail. Synchronization
between different NoC router components is maintained for

VOLUME 10, 2022 88997



S. Das et al.: Accelerating NoC Verification Using a Complete Model and Active Window

error-free functioning of a complete NoC system. We have
verified the correctness of the model by verifying progress
property and synchronization between NoC components.
The transfer of packets between routers is also verified.
Verification of starvation-freedom considering fixed-priority
policy and round-robin policy are presented. Due to the
state space explosion problem, verifying globally dependent
properties like deadlock is practically not feasible using an
intricate NoC model with the help of a model checker. The
properties internal to a router are verified considering the
individual router. Active windows are introduced to verify
properties that involve communication between two routers
as encoding numbers of NoC routers with detailed model
results in the state space explosion. As the formal verification
process is very time expensive, we have used thread level
parallelism in our experiments to verify routers individually
and active windows corresponding to each router in an NoC.
Experimental results significantly improve verification time
considering thread level parallelism over its equivalent serial
execution.

REFERENCES
[1] D. Borrione, A. Helmy, L. Pierre, and J. Schmaltz, ‘‘A generic model for

formally verifying NoC communication architectures: A case study,’’ in
Proc. NOCS, May 2007, pp. 127–136.

[2] D. Borrione, A. Helmy, L. Pierre, and J. Schmaltz, ‘‘Executable for-
mal specification and validation of NoC communication infrastruc-
tures,’’ in Proc. 21st Annu. Symp. Integr. Circuits Syst. Design, 2008,
pp. 176–181.

[3] S. Ray and R. K. Brayton, ‘‘Scalable progress verification in credit-based
flow-control systems,’’ in Proc. Design, Automat. Test Eur. Conf. Exhib.
(DATE), Mar. 2012, pp. 905–910.

[4] D. E. Holcomb, A. Gotmanov,M. Kishinevsky, and S. A. Seshia, ‘‘Compo-
sitional performance verification of NoC designs,’’ in Proc. MEMCODE,
Jul. 2012, pp. 1–10.

[5] S. Das, C. Karfa, and S. Biswas, ‘‘xMAS based accurate modeling and
progress verification of NoCs,’’ in Proc. 21st Int. Symp. VLSI Design Test
(VDAT), Jun. 2017, pp. 792–804.

[6] V. A. Palaniveloo and A. Sowmya, ‘‘Application of formal methods for
system-level verification of network on chip,’’ in Proc. ISVLSI, Jul. 2011,
pp. 162–169.

[7] Y. Chen, W. Su, P. Hsiung, Y. Lan, Y. Hu, and S. Chen, ‘‘Formal modeling
and verification for network-on-chip,’’ in Proc. Int. Conf. Green Circuits
Syst., Jun. 2010, pp. 299–304.

[8] S. El-Ashry, M. Khamis, H. Ibrahim, A. Shalaby, M. Abdelsalam,
and M. W. El-Kharashi, ‘‘On error injection for NoC platforms: A
UVM-based generic verification environment,’’ IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol. 39, no. 5, pp. 1137–1150,
May 2020.

[9] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri, ‘‘NuSMV: A new
symbolic model verifier,’’ in Proc. Int. Conf. Comput. Aided Verification.
London, U.K.: Springer, 1999, pp. 495–499.

[10] S. Das and C. Karfa, Formal Modeling and Verification of Starvation-
Freedom in NoCs. Singapore: Springer, Jan. 2022, pp. 101–114.

[11] C. Baier and J. Katoen, Principles of Model Checking (Representation and
Mind Series). Cambridge, MA, USA: MIT Press, 2008.

[12] S.-F. Kuo and C.-W. Wu, ‘‘Symbiotic controller design using a memory-
based FSM model,’’ in Proc. IEEE 27th Int. Symp. Ind. Electron. (ISIE),
Jun. 2018, pp. 874–879.

[13] X. Wan and G. Liu, ‘‘Complexity of constructing FSM model of artifact
lifecycle,’’ in Proc. 10th Int. Conf. Semantics, Knowl. Grids, Aug. 2014,
pp. 29–32.

[14] M. Miroschnyk, A. Shkil, D. Rakhlis, E. Kulak, I. Filippenko, and
M. Malakhov, ‘‘Hardware implementation of timed logical control FSM,’’
in Proc. IEEE East-West Design Test Symp. (EWDTS), Sep. 2020,
pp. 1–6.

[15] I. Zuzak, I. Budiselic, and G. Delac, ‘‘Formal modeling of restful systems
using finite-state machines,’’ in Web Engineering (Lecture Notes in Com-
puter Science), S. Auer, O. Díaz, and G. A. Papadopoulos, Eds. Berlin,
Germany: Springer, 2011, pp. 346–360.

[16] T. He and H. Miao, ‘‘Modeling and composition of web application com-
ponents using extended FSM,’’ in Proc. 4th Int. Conf. Natural Comput.,
2008, pp. 363–368.

[17] S. Lee, S. Yoo, and K. Choi, ‘‘An intra-task dynamic voltage scal-
ing method for SoC design with hierarchical FSM and synchronous
dataflow model,’’ in Proc. Int. Symp. Low Power Electron. Design, 2002,
pp. 84–87.

[18] H. Mohanty, J. Mulchandani, D. Chenthati, and R. K. Shyamasundar,
‘‘Modeling web services with FSM modules,’’ in Proc. 1st Asia Int. Conf.
Model. Simul. (AMS), Mar. 2007, pp. 100–105.

[19] D. Kim and S. Ha, ‘‘Asynchronous interaction between FSM and dataflow
models,’’ in Proc. 6th Int. Conf. VLSI CAD, 1999, pp. 103–106.

[20] P. Linz, An Introduction to Formal Language and Automata, 5th ed.
Burlington, MA, USA: Jones Bartlett Learning, 2012.

[21] S. Das, C. Karfa, and S. Biswas, ‘‘Formal modeling of network-on-chip
using CFSM and its application in detecting deadlock,’’ IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 28, no. 4, pp. 1016–1029, Apr. 2020.

[22] W. J. Dally and B. Towles, Principles and Practices of Interconnection
Networks, 1st ed. Burlington, MA, USA: Morgan Kaufmann, 2003.

[23] G. J. Holzmann, ‘‘The model checker SPIN,’’ IEEE Trans. Softw. Eng.,
vol. 23, no. 5, pp. 279–295, May 1997.

[24] F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost, ‘‘HERMES:
An infrastructure for low area overhead packet-switching networks on
chip,’’ Integration, vol. 38, no. 1, pp. 69–93, Oct. 2004.

[25] S. N. Huda, ‘‘Semantic on PROMELA dynamic process creation in con-
current systems,’’ in Proc. Int. Conf. Instrum., Control Autom. (ICA),
Aug. 2016, pp. 44–47.

[26] Y.-C. Lan, S.-H. Lo, Y.-C. Lin, Y.-H. Hu, and S.-J. Chen, ‘‘BiNoC: A bidi-
rectional NoC architecture with dynamic self-reconfigurable channel,’’ in
Proc. 3rd ACM/IEEE Int. Symp. Netw.-Chip, May 2009, pp. 266–275.

[27] P.-A. Hsiung and F. Wang, ‘‘A state graph manipulator tool for real-time
system specification and verification,’’ in Proc. 5th Int. Conf. Real-Time
Comput. Syst. Appl., 1998, pp. 181–188.

[28] Z. Zhang, ‘‘Verification methodologies for fault-tolerant network-on-chip
systems,’’ Ph.D. dissertation, Dept. Elect. Comput. Eng., Univ. Utah,
Salt Lake, UT, USA, 2016.

[29] S. Chatterjee, M. Kishinevsky, and U. Y. Ogras, ‘‘xMAS: Quick formal
modeling of communication fabrics to enable verification,’’ IEEEDes. Test
Comput., vol. 29, no. 3, pp. 80–88, Jun. 2012.

[30] S. Chatterjee, M. Kishinevsky, and U. Y. Ogras, ‘‘Quick formal modeling
of communication fabrics to enable verification,’’ in Proc. IEEE Int. High
Level Design Validation Test Workshop (HLDVT), Jun. 2010, pp. 42–49.

[31] A. Gotmanov, S. Chatterjee, and M. Kishinevsky, ‘‘Verifying deadlock-
freedom of communication fabrics,’’ in Proc. 12th Int. Conf. Verifica-
tion, Model Checking, Abstract Interpretation. Berlin, Germany: Springer,
2011, pp. 214–231.

[32] F. Verbeek, P. M. Yaghini, A. Eghbal, and N. Bagherzadeh, ‘‘ADVOCAT:
Automated deadlock verification for on-chip cache coherence and inter-
connects,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), 2016,
pp. 1640–1645.

[33] S. J. C. Joosten and J. Schmaltz, ‘‘Automatic extraction of micro-
architectural models of communication fabrics from register transfer level
designs,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), 2015,
pp. 1413–1418.

[34] S. J. C. Joosten and J. Schmaltz, ‘‘Scalable liveness verification for
communication fabrics,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib.
(DATE), 2014, pp. 1–6.

[35] F. Burns, D. Sokolov, and A. Yakovlev, ‘‘GALS synthesis and verification
for xMASmodels,’’ inProc. Design, Autom. Test Eur. Conf. Exhib. (DATE),
2015, pp. 1419–1424.

[36] F. Verbeek and J. Schmaltz, ‘‘Towards the formal verification of cache
coherency at the architectural level,’’ ACM Trans. Des. Autom. Electron.
Syst., vol. 17, no. 3, pp. 1–16, Jul. 2012.

[37] P. van Wesel and J. Schmaltz, ‘‘Formal micro-architectural analysis of on-
chip ring networks,’’ in Proc. 55th Annu. Design Autom. Conf., Jun. 2018,
p. 94.

[38] G. Di Guglielmo, F. Fummi, G. Pravadelli, S. Soffia, and M. Roveri,
‘‘Semi-formal functional verification by EFSM traversing via NuSMV,’’
in Proc. IEEE Int. High Level Design Validation Test Workshop (HLDVT),
Jun. 2010, pp. 58–65.

88998 VOLUME 10, 2022



S. Das et al.: Accelerating NoC Verification Using a Complete Model and Active Window

SURAJIT DAS received the B.E. degree in
computer science and engineering from Jorhat
Engineering College (JEC), Assam, India, the
M.Tech. degree in computer engineering from
the Malaviya National Institute of Technology
(MNIT), Rajasthan, India, and the Ph.D. degree
from the IIT Guwahati, Assam. He has four years
of experience in the software industry. Currently,
he is an Assistant Professor with the Department
of Computer Science and Engineering, GITAM

School of Technology, Bengaluru, India. He has developed a formal sim-
ulator for the detection of application specific deadlock with reporting of
deadlock scenarios in NoC. He has published his research works in reputed
journals. His research interests include computer architecture, formal verifi-
cation, and machine learning based techniques.

CHANDAN KARFA (Senior Member, IEEE)
received the M.S. and Ph.D. degrees in com-
puter science and engineering from IIT Kharag-
pur. He was a Senior Research and Development
Engineer at Synopsys (India) Pvt. Ltd., for five
years. He is currently an Associate Professor with
the Department of Computer Science and Engi-
neering, IIT Guwahati. He has published more
than 50 research papers in reputed international
journals and conferences. His research interests

include formal verification, high-level synthesis, hardware security, and for-
mal methods. He has received the Qualcomm Faculty Award from Qual-
comm in 2021, the Technoinventor Award by the India Electronics and
Semiconductor Association in 2014, the Innovative Student Projects Award
from the Indian National Academy of Engineers in 2008 and 2013, the Best
Paper Awards in ADCOMConference in 2007 and in I-CARE conference in
2013, and the Microsoft Research India Ph.D. Fellowship in 2008.

SANTOSH BISWAS (Senior Member, IEEE)
received the B.E. degree in computer science and
engineering from NIT Durgapur, in 2001, and
the M.S. degree in electrical engineering and the
Ph.D. degree in computer science and engineering
from IIT Kharagpur, in 2004 and 2008, respec-
tively. He is currently a Professor and the Head of
The Department with the Department of Electri-
cal Engineering and Computer Science, IIT Bhilai.
He has been involved in several research projects

sponsored by industry and Government agencies. He is engaged with aca-
demic as well as industry sponsored research related to VLSI testing and
design for testability. He has published about 170 research articles. His
research interests include VLSI testing, fault tolerance, network security,
discrete-event systems, and embedded systems.

VOLUME 10, 2022 88999


