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ABSTRACT The physics-informed neural network (PINN) has drawn much attention as it can reduce
training data size and eliminate the need for physics equation identification. This paper presents the
implementation of a PINNwith adaptive normalization in the loss function to predict lithium-ion battery cell
temperature. In particular, the PINN was trained with the actual battery test data, and a lumped capacitance
lithium-ion battery thermal relationship was applied to the loss function with the addition of a pre-layer and
connection layer to the neural network architecture. The PINN architecture shows the most accurate battery
temperature prediction compared with the fully connected neural network (FCN) and its variants evaluated
in this study. The proposed PINN architecture has a mean square prediction error of 0.05 ◦C with a limited
number of training data and without battery thermal model identification.

INDEX TERMS Physics-informed neural network, lithium-ion battery, battery temperature.

I. INTRODUCTION
As mitigation of global warming has become one of the
critical social agendas and because transportation accounts
for 14% of global carbon emissions, the electrification of
motor vehicles has accelerated [1]. In recent vehicle elec-
trification, vehicle manufacturers have selected lithium-ion
batteries as a primary energy storage system to power vehi-
cles for their higher energy density, safer and easier use, and
lower cost than other energy storage and conversion devices
such as supercapacitors and fuel cells. However, a poorly
managed and operated lithium-ion battery has potential per-
formance and safety risks that could cause early life degra-
dation and hazardous events such as thermal runaway. Due
to these characteristics of the lithium-ion battery, it requires
fine controls during operation and storage. Recent studies
on the battery management system (BMS) have proposed
methods to improve the control of the lithium-ion battery by
estimating the battery behavior and states such as state of
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charge (SOC) [2], [3] and state of health (SOH) [4], [5] to
operate the battery within a safe and efficient range.

In addition to the SOC and SOH, battery temperature
is one of the significant factors influencing the safety and
performance of the lithium-ion battery. For most lithium-ion
batteries, the best performance in terms of efficiency and
safety can be achieved in the temperature range between 20◦C
and 40◦C [6]. Any battery operation at a low temperature will
result in performance degradation due to its high resistance,
and an extremely high temperature may potentially induce
hazardous events such as thermal runaway [7]. The BMS
monitors and controls the battery temperature to reduce the
risk of operating the lithium-ion battery at an undesired tem-
perature. However, due to physical space constraints and cost-
effectiveness, the number of temperature sensor locations in a
battery pack is often limited. Therefore, developing a method
to predict the temperature evolution of lithium-ion batteries
is necessary to control the battery usage and to design the
battery pack structure and cooling systems.

With the recent advances in data-driven methods, high-
lighted by deep learning, many works in the literature
have proposed data-driven methods to solve the technical
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challenges related to lithium-ion battery technology. In the
literature, neural networks have been used in SOC predic-
tion [8], [9], [10], [11], [12], [13], SOH prediction [14],
[15], [16], [17], [18], [19], [20], [21], [22], [23], model
parameter identification [24], [25], [26], [27], [28], abnormal-
ity diagnosis [29], and voltage estimation [30]. For battery
temperature prediction, a combined fully connected neural
network (FCN) and long short-term memory (LSTM) was
implemented to estimate the battery surface temperature [31].
Also, GRU alone was applied to estimate the core bat-
tery temperature [32]. The data-driven methods presented in
the literature showed high prediction accuracy and reduced
computation power during the prediction compared to other
numerical methods. Furthermore, the data-driven method is
free from the system identification that the model-based
method requires.
TABLE 1. Model-based method vs. data-driven method vs. PINN
method [33].

However, the aforementioned data-driven methods rely
solely on battery tests or simulation data to learn the battery
behaviors. The drawbacks of this method involve the time
and cost of acquiring and generating data and the reduction
of the prediction accuracy when training data scarcity causes
extrapolation during the prediction. Also, it is sometimes
not practically feasible to obtain the test data due to test
setup limitations. To overcome these drawbacks, a physics-
informed neural network (PINN) has recently been intro-
duced [33]. This method incorporates data and physics laws

to learn the machine learning problem by applying learning
bias to the loss functions, constraints, or inference algorithms.
Table 1 compares the characteristics of the model-based
methods based on physics or first principles, the conventional
data-driven methods based solely on the data, and the PINN
that bridges the two conventional prediction methods. In the
literature, applications of the PINN have already been pub-
lished in fluid dynamics [34], [35], [36], [37], [38], solid
mechanics [39], optics [40], metallurgy [41], and earth sys-
tem science [42] with successful predictions.

This study proposes a novel PINN model to predict
lithium-ion battery cell temperatures. This work further
develops the PINN developed in [44] to predict the battery
cell temperature. In the PINN proposed in [44], no heat gen-
eration is considered for engineering manufacturing applica-
tions. However, in battery temperature prediction, the heat
generation during battery operation is a significant factor.
In the PINN, the lumped capacitance lithium-ion battery
thermal model is incorporated in the loss function with the
adaptive coefficient, pre-layer, and connection layer in the
neural network architecture. This PINN model is beneficial
for the following reasons:

1. Accurate prediction with data scarcity
2. Improved prediction accuracy with simple physics
3. No need for the model identification
The rest of the paper is organized as follows. Background

information regarding the battery thermal model and its
PINN is provided in Section II and Section III, respectively.
Section IV includes the methodology of the study, includ-
ing the battery test and neural network training. Section V
provides a comparison study between PINN and FCN. Also,
in the second half of this section, the activation function of
the pre-layer in the PINN architecture is further optimized to
improve the lithium-ion battery cell temperature prediction.
Lastly, the conclusion of the paper is presented in Section VI.

II. BATTERY THERMAL MODEL
This study implements a lumped capacitance thermal model
in a PINN to predict the battery cell temperature during
the battery cell test. This thermal model assumes the uni-
form temperature distribution of the thermal object. During
a low-rate charge and discharge, battery operation and air
cooling were applied so that the temperature distribution of
the battery cell was maintained without a large temperature
gradient. With this assumption, the energy balance equation
around the entire body of the lithium-ion battery cell during
the battery cell test is provided as follows:

mCp
dT
dt
= Q̇+ hA(Tamb − T ) (1)

In (1), m is the mass of the lithium-ion battery cell, Cp is
the heat capacity of the battery cell, T is the battery cell
temperature, t is time, Q̇ is the heat generation during the
battery operation, h is the convectional heat coefficient, A is
the surface area, and Tamb is the ambient temperature inside
the climate chamber.
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For the heat generation term in the energy equation, only
the irreversible heating of the battery cell is considered as
the primary heating source. Although other forms of minor
battery heat source elements such as reversible heating are
not included in the thermal equation, causing incompleteness
in the physics model, the PINN still learns the effects of other
minor heat sources from the battery test data. The irreversible
heat of the battery cell is formulated as follows:

Q̇ = (V − Vocv) I (2)

In (2), V is the battery voltage, Vocv is the open-circuit volt-
age, and I is the current applied to the battery cell during the
battery cell test.

For implementation in the physics-informed neural net-
work, (1) and (2) are combined and rearranged as follows:

f =
dT
dt
+ λ1 (V − Vocv) I + λ2 (Tamb − T ) = 0 (3)

In (3), f is the final physics equation applied to the PINN, T is
the battery cell temperature, t is time, V is the battery voltage,
Vocv is the open-circuit voltage, I is the current applied to the
battery cell during the battery operation, Tamb is the ambient
temperature inside the climate chamber, and λ1and λ2 are the
coefficients after combining the two equations.

III. PHYSICS-INFORMED NEURAL NETWORK
In this paper, three approaches are considered to construct
physics-informed neural networks. Those approaches are a
loss function containing physics equations, an adaptive nor-
malization factor usage in the loss function, and a PINN archi-
tecture derived from the analytical solution of the physics law.

A. LOSS FUNCTION WITH PHYSICS INFORMATION
To promote bias learning in the solution of the lumped capac-
itance thermal model, the loss function used in the neural net-
work training requires the inclusion of the energy equation.
Therefore, in physics-informed neural networks, multiple
loss functions are present to minimize the residual between
the predictions and true values and the estimation error of the
lumped capacitance thermal model. For the first loss function
related to the residual between the neural network predictions
and the true values, the mean square error is selected as the
loss as in other regression neural network cases. This loss
function is presented as follows:

Lossr =
1
N

∑N

i=1

∣∣∣T ipre − Ti∣∣∣2 (4)

In (4),N is the number of training data, T ipre is the temperature
predicted by the neural network, and Ti is the true temperature
from the battery cell test data.

For the second loss function related to minimizing the
estimation error of the lumped capacitance thermal model,
f in (3) is applied to the loss function as follows:

Lossf =
1
N

∑N

i=1
|f |2 (5)

In (5), N is the number of training data and f is defined in (3).

In addition to these two loss functions, this study also
includes one additional loss function that is related to the
initial condition in which the current is not applied to the
battery cell and the temperature of the battery is equal to
the ambient temperature. This loss function is formulated as
follows:

Lossinitial = |f (t = 0)− Tamb|2 (6)

In (6), f (t = 0) is the initial value of f , which is defined
in (3). Tamb is the ambient temperature inside the climate
chamber.

In sum, the loss function to minimize the PINN com-
bines (4), (5), and (6). The combined loss function is formu-
lated as follows:

Losstotal = Lossr + αLossf + βLossinitial (7)

In (7), α and β are the scaling factors applied to normalize
the loss terms in the loss function. The following section will
discuss the method to estimate the scaling factors.

B. ADAPTIVE NORMALIZATION FACTOR
Unlike the loss function with a single loss term found in
most neural network methods, the loss function of the PINN
consists of more than two loss terms. One is the residual
loss, and another loss is related to the physics and boundary
conditions. In this study, the learning rate annealing algorithm
proposed in [43] was implemented to estimate the scaling
factor.

In the first step of the learning rate annealing algorithm,
the instant scaling factor is calculated by computing the ratio
between the maximum backpropagation gradient of the resid-
ual loss and the mean backpropagation gradient of other loss
terms. In this study, the instant scaling factors α̂ and β̂ are
computed as follows:

α̂ =
max{|∇Lossr (T )|}∣∣∇Lossf (T )∣∣ (8)

β̂ =
max{|∇Lossr (T )|}∣∣∇Lossinitial (T )∣∣ (9)

In (8) and (9), α̂ and β̂ are the instant scaling factors. ∇Loss
is the backpropagation gradient of the loss terms concerning
the change in the weight in the neural network layers. In the
second step of the algorithm, the scaling factors are computed
from themoving average between the previous scaling factors
and the instant scaling factors as follows:

α = (1− γ )αprevious + γ α̂previous (10)

β = (1− γ )βprevious + γ β̂previous (11)

In (10) and (11), γ is a tunable hyperparameter, which is rec-
ommended to be 0.9 in the study conducted by in [43]. This
recommended value is implemented in this study because it
produced the convergence and reduction of the loss function
as expected. After computing the scaling factor, a gradient
descent method is used to update the neural network weight
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and bias during the training process. In the training process,
the recommended learning rate is 0.001.

C. PHYSICS INFORMED NEURAL NETWORK
ARCHITECTURE
In addition to the loss function modification and adaptive
normalization factor implementation, the architecture of the
PINN is another way to improve the prediction accuracy of
the network. For instance, in the research work published in
[44]., the 1D thermal heat transfer equation was solved by
PINN. In [44], the authors alter the architecture of the FCN
with a pre-layer structure based on the analytical solution
of the 1D thermal heat transfer equations to improve the
prediction accuracy. However, in [44], the thermal model
does not contain the heat generation term. In this paper,
various neural network architectures, including various forms
of the pre-layers, are evaluated to find the neural network
architecture with the most accurate prediction in which the
thermal model contains the heat generation term due to the
battery heating during the operation. Table 2 lists all neural
network architectures reviewed in this study. Figure 1 shows
a visual presentation of various neural network architectures.

TABLE 2. List of the neural network architectures (FCN: fully connected
neural network).

IV. METHODOLOGY
This study obtained the training data from the battery cell
test. In this section, the description of the battery cell test is
provided. Then the data preprocessing and hyperparameters
used in the training process follow. This section will be
concluded with the prediction evaluation.

A. LITHIUM-ION BATTERY CELL TEST
In this study, battery test data such as battery voltage, battery
current, battery temperature, and chamber temperature were
collected and applied to the PINN as the inputs and output.
Open circuit voltage (OCV), another input in this study, was
estimated from an open-circuit voltage and state-of-charge
table provided by the battery cell manufacturer. In the bat-
tery test, a prismatic lithium-ion battery cell was discharged
and charged with 5A current pulses with 20 minutes of rest
time at 25◦C. The details of the battery cell are provided
in Table 3. The test specimen was placed in the climate
chamber in the battery test setup as presented in Figure 2.
The thermocouples, voltage sensors, and power lines were
connected to the battery cycler and data acquisition system
in the test setup. Figure 4 shows the charge and discharge
cycles performed during the battery test. 35% of this battery
cycle test was allocated for training the physics-informed
neural network.

FIGURE 1. Visual presentations of various neural network architectures:
(a) FCN, (b) FCN+pre-layer1, (c) FCN+pre-layer2.

B. TRAINING
After the test data were collected in the battery cycle test,
the data were preprocessed before being fed to the neural
network for training. The normalization conducted in the
preprocessing was performed with the equation provided as
follows:

x́ =
x − xmin

xmax − xmin
(12)

In (12), x́ is the scaled data, x is the data, xmin is the minimum
of the data, and xmax is the maximum of the data. After
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TABLE 3. Details of the battery test sample.

FIGURE 2. Battery test setup (Tcell: battery cell temperature, Tchamber:
chamber temperature).

the preprocessing of the data, the first 35% of the data was
reserved for training the neural networks. This training data
size was selected to cause a limited training data size. Details
of the data scarcity will be revisited in a later section of this
paper.

For the hyperparameter tuning, this paper refers to another
research paper that implemented PINNs in a thermal applica-
tion [44]. For the hyperparameters for which there are no ref-
erences available, such as training iteration, hidden layer, and
pre-layer, the design of experiment was conducted to find the
best combination of the hyperparameters. In the results and
discussion section, the activation functions in the pre-layer
are tuned with the full factorial design of the experiment.
Table 4 provides the list of the hyperparameters selected in
this study.

C. PREDICTION EVALUATION
After the training of the neural networks, the entire dataset
from the battery cycle test data was fed into the neural net-
work to evaluate the prediction accuracy of the neural net-
work. For this, mean absolute error (Max AE) and maximum
absolute error (MAE) are applied in this study, and they are
formulated as follows:

MAE =

∑n
i=1 |yi − xi|

n
(13)

MaxAE = Max(|yi − xi|) (14)

In (13) and (14), MAE is mean absolute error, Max AE is
maximum absolute error, n is total number of data points, yi
is prediction, and xi is true value.

V. RESULTS AND DISCUSSION
In this section of the paper, the comparison study between
PINN and FCN is presented to show the benefits of the PINN

FIGURE 3. Location of the thermocouple (t-type) on the battery cell
(located left side of the battery cell sample).

FIGURE 4. The current profile of the charge and discharge cycles.

over the conventional neural network method, FCN. Also,
PINNs with various pre-layer and connection layer designs
are reviewed in order to propose the neural network topology
that enhances the prediction outcome.

A. PINN VS. FCN
To review the effectiveness of the PINN, a comparison study
was conducted to evaluate the prediction accuracy between
PINN and FCN with a limited training data size. FCN is a
conventional neural network method with the loss function
containing only the mean square error between the prediction
and the actual data with a hidden layer structure located
between the input (time, current, voltage and OCV) and
output (battery cell temperature) layers. The proposed PINN
in this study has three aspects of improvement over the FCN.
First, the loss function of PINNhas additional terms involving
physics laws. Second, the loss function of PINN has the
adaptive coefficient. Third, pre-layer and connection layer
structures are added to the neural network architecture. In the
evaluation, five cases are reviewed to conduct the comparison
study and analyze the significance of implementing the three
PINN aspects. Table 5 includes a list of all five study cases.

For assessing the prediction performance, the prediction
evaluation techniques discussed in the previous section are
applied with a qualitative observation of the prediction accu-
racy at the peaks of the battery temperature profile. The peaks
are the areas with abrupt slope changes, and FCN requires
dense training data to make a high-quality prediction [44],
[45]. This characteristic of the FCN limits its prediction abil-
ity with the training data scarcity. In this study, the training
data scarcity is prepared by using only 35% of the entire data
for the training. One prominent peak and two small peaks
are in the training data. Three prominent peaks and four
small peaks are placed in the test data. FCN and PINN are
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TABLE 4. List of the hyperparameters.

TABLE 5. Prediction accuracy of FCN, FCN variants, and PINNs.

challenged to make predictions with the small training data
at these peaks.

In the test results of the FCN case, Figure 5(a), FCN
has a limited prediction accuracy that is the second-worst
prediction of all five cases. In the prediction, no peak location
is correctly predicted. This imprecision is due to the lack of
training in the peak area, which demands a rich amount of
data [44], [45]. In the results of the FCNwith the loss function
containing physics law-based loss terms with unit coeffi-
cients, Figure 5(b), a similar prediction inaccuracy as the FCN
case is observed. No peak location is identified. In the results
of the FCN with the loss function with adaptive coefficients,
Figure 5(c), some prediction improvements in the small peak
locations are observed, but the prediction error is still high
due to the prediction divergence at the large peak areas. The
results of the two cases with the loss function modification,
which is the most popular aspect of PINN, show that incor-
porating the physics laws into the loss function is not enough
to develop an accurate PINN. This outcome is also presented
in another study of the thermal application of the PINN [44].
In the test results of the PINN cases, Figures 5(d) and 5(e),
both prediction accuracy and peak location identification are
better than in the previous cases with FCN and its variants.
The case of the PINN with the concatenated connection layer
has the best prediction accuracy among all five cases. It also
correctly identifies all peaks in the test data. In the case
of the PINN with the multiply connection layer, it is less
accurate than the former case and the temperature prediction
deviates from the true temperature profile at the prominent
peak. However, the prediction accuracy is considered to be
at an acceptable level because the mean absolute error and

TABLE 6. Pre-layer architectures evaluated in this study (voltage column
includes the information for both voltage and open-circuit voltage inputs).

maximum absolute error are less than 0.5 ◦C, which is the
measurement tolerance of the thermocouple. Table 5 contains
the mean absolute error and maximum absolute error of all
five cases considered in this study.

In summary, the test results in this section demonstrate the
benefits of PINN over FCNwhen a limited amount of training
data is available. This study also indicates that all three PINN
aspects should be presented together to enhance the predic-
tion accuracy. However, the PINN architecture developed in
this section still needs to be optimized since the test results
show some areas requiring accuracy improvement. To address
this concern, this paper conducts another study to find the
optimum pre-layer combination for the PINN architecture.

B. EFFECT OF PRE-LAYER
As discussed in the previous section, the proposed PINN
architectures still show inaccuracy during the tests. In this
section, a new full factorial design of experiment study is
conducted to find the optimum pre-layer and connection layer
combination. In [44], the sine and exponential activation
functions in the pre-layers are recommended based on the
analytical solution of the thermal equation. The design of
experiment theory outlines sixteen possible experiment com-
binations with the two possible connection layer structures,
as shown in Table 6.

In the test results for the cases with the pre-layers con-
nected to the multiply layer in PINN, the predictions made
by most of the architectures are not converged and show
significant prediction errors. However, for cases 6 and 8,
the prediction errors are within the reasonable mean square
prediction error size, which is less than 0.5 ◦C. In case 6,
however, the temperature prediction diverges from the true
value with a different profile trend from the true values.
Case 8 shows a not-well-trained portion at the vertices of the
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FIGURE 5. Temperature predictions of various neural network approach: (a) FCN, (b) FCN with loss function with unit coefficients,
(c) FCN with loss function with adaptive coefficients, (d) PINN with concatenated pre-layer, (e) PINN with multiply layer.

FIGURE 6. Temperature predictions with the PINNs containing pre-layers connected by the multiply layer.

profile, which leads to inaccurate prediction during the test.
Table 7 shows themean absolute error andmaximum absolute
error of the first eight cases in Table 7 when the multiply layer

is implemented to connect the hidden layer in PINN. The
battery temperature profile and predicted battery temperature
profiles are presented in Figure 6.
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FIGURE 7. Temperature predictions with the PINNs containing pre-layers connected by the concatenate layer.

TABLE 7. Prediction accuracy of various neural network approaches.

In the test results for the cases with the pre-layers con-
nected to the concatenate layer in PINN, case numbers 10,
12, 13, 14, 15, and 16 have a prediction error of less than
0.5 ◦C.Among them, cases 14 and 16 show good convergence
to the true value with low mean and maximum absolute
errors. Among all cases studied in this section, the pre-layer
architecture presented in case 14 (bolded in Table 8) has the
most accurate battery temperature prediction with the lowest
absolute prediction errors. Table 8 shows the mean absolute
error and maximum absolute error of the last eight cases in
Table 6. The battery temperature profile and predicted battery
temperature profiles are presented in Figure 7.

TABLE 8. Prediction accuracy of various neural network approaches.

Based on the test results and evaluation of the battery
temperature prediction accuracy, this study proposes a PINN
architecture with the pre-layers containing exponential acti-
vation functions for the time, battery voltage, and open-circuit
voltage and containing sine activation functions for the cur-
rent input (case 14), with the concatenated layer as the con-
nection layer for battery temperature prediction in the case of
applying the lumped capacitance thermal model to the PINN.

VI. CONCLUSION
This study proposes a PINN to predict lithium-ion battery
cell temperature, which is a piece of essential information
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for safe and robust lithium-ion battery operation. The main
contributions of this paper are summarized as follows: (1) we
developed a PINN by inserting the energy balance law into
the loss function, implementing adaptive normalization to the
loss function, and improving the neural network architecture
with the pre-layer and connection layer; (2) we conducted
a comparative study between PINN and FCN, which is the
conventional neural network method, to prove that PINN is
superior to FCN in predicting the battery temperature with
limited data size and unidentified physics equations; and (3)
we further investigated various pre-layer and connection layer
architectures to find the PINN architecture with the highest
battery temperature prediction accuracy. The results show
that a PINN architecture with pre-layers containing expo-
nential activation functions for the time, battery voltage, and
open-circuit voltage and containing sine activation functions
for the current input (case 14) and with a concatenated layer
outperforms other architectures for battery temperature pre-
diction with the highest prediction accuracy of 0.05 ◦C.

VII. FUTURE WORK
In future work, a PINN study with the actual vehicle driving
profiles with various chamber temperatures will be analyzed
with a battery pack. This future study will analyze the effect
of the driving profile, chamber temperature, and more signif-
icant battery pack size on PINN implementation.
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