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ABSTRACT Skin cancer is one of the most threatening cancers, which spreads to the other parts of the
body if not caught and treated early. During the last few years, the integration of deep learning into skin
cancer has been a milestone in health care, and dermoscopic images are right at the center of this revolution.
This review study focuses on the state-of-the-art automatic diagnosis of skin cancer from dermoscopic
images based on deep learning. This work thoroughly explores the existing deep learning and its application
in diagnosing dermoscopic images. This study aims to present and summarize the latest methodology in
melanoma classification and the techniques to improve this.We discuss advancements in deep learning-based
solutions to diagnose skin cancer, along with some challenges and future opportunities to strengthen these
automatic systems to support dermatologists and enhance their ability to diagnose skin cancer.

10 INDEX TERMS Skin cancer, dermoscopy images, deep learning, classification, literature review.

I. INTRODUCTION11

A. BACKGROUND12

Melanoma of the skin is the 19th most commonly occurring13

cancer in men and women [1]. Skin cancer, and melanoma14

specifically, is a complex disease. One type of malignant15

melanoma accounts for about 1 % of all skin cancers, but16

the vast majority of skin cancer deaths. The most affected17

regions are Europe, North America, and Oceania [2]. Figure 118

presents a heat map of estimated national, age-standardized19

melanoma incidence rates in 185 countries in 2020. The coun-20

tries with the 20 highest rates of skin melanoma in 2020 are21

given in Figure 2 [2]. Invasive melanoma incidence has been22

increasing rapidly since the mid-1970s. From 2008 to 2017,23

the rate increased by about 2 % per year [3]. According to24

the American Cancer Organization, 106,110 new cases of25

melanoma of the skin were diagnosed in the U.S. in 2021,26

while in the same year, 7,180 people died from the disease [3].27

The associate editor coordinating the review of this manuscript and

approving it for publication was Humaira Nisar .

FIGURE 1. Global heat map showing estimated age-standardized
incidence rates, in 2020, of melanoma of the skin in all sexes, all ages.
The map shows melanoma incidence in all parts of the world, except
Greenland in the Arctic Circle. The regions most affected by skin
melanoma globally are Europe, the United States, Canada, and
Australia [2].

Although the 5-year survival formelanoma of the skin is high, 28

at 93%, early detection of the disease is critically important 29

to reduce melanoma-related mortality [4]. 30
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FIGURE 2. The age-standardized rate of skin melanoma per 100,000 in
the 20 countries with the highest rates, 2020.

Dermatologists use the two most popular non-invasive31

techniques, macroscopic (clinical) and dermoscopic, to32

acquire color images of skin lesions. Dermoscopy is a33

microscopy-based tool to improve non-invasive diagnostic34

discrimination of skin lesions based on color and structure35

analysis [5]. This paper focuses on dermoscopy images.36

Because dermoscopic structures have direct histopathologic37

correlates, dermoscopic images help the dermatologist select38

management and treatment options for particular types of39

skin cancers [6]. In addition, dermoscopy can be useful for40

helpful in detecting thinner and smaller cancers and gain-41

ing more precision. Pattern analysis, the dermoscopic inter-42

pretation method preferred by pigmented lesion specialists,43

requires assessing numerous lesion patterns simultaneously44

depending on the location of the body [7]. Some traditional45

dermoscopic algorithms have been further developed to focus46

on the most common features of melanoma to aid practi-47

tioners with the interpretation of dermoscopy findings: the48

7-point checklist (1998), the Menzies method (1996), the49

asymmetry, border, color, and differential structures (ABCD)50

rule (1994), the triage amalgamated dermoscopic algo-51

rithm (TADA) method (2016), and the color, architecture,52

symmetry, and homogeneity (CASH) (2006) algorithm [5].53

However, the skinmelanoma recognition accuracy is not ideal54

because of the similarity between different skin melanoma55

and the limited number of dermatologists with professional56

knowledge. The identification of skin melanoma has become57

a serious scientific challenge.58

More recently, with the rapid development of artificial59

intelligence (AI) technology, deep learning (DL) has quickly60

been applied in diagnosis of skin lesions diagnosis. As a61

result, the medical image processing of skin disease has62

become an essential component and has received significant63

attention in the cross-field of image processing, machine64

science, and intelligent medicine. As a result, many experts65

and scholars have been engaged in the image recognition of66

skin disease.67

Other survey papers in the field focus either on mature68

technologies using deep neural networks [8], or they focus69

on more traditional machine learning [9]. This survey paper70

instead summarizes in part the improvement of classifica-71

tion results but also innovative technologies for enhanc-72

ing the CNN frameworks commonly used in skin disease73

classification and proposes some directions for current 74

research status and future research. 75

B. CHALLENGES 76

The so-called skin lesion classification is that there is a fixed 77

set of classification labels. For each input image, a classi- 78

fication label is found from the classification label set, and 79

classification label is assigned to the input image. Although 80

the classification task seems simple, this is one of the core 81

problems in the field of computer vision. Many seemingly 82

different problems in the field of computer vision (such as 83

object detection and segmentation) can be attributed to image 84

classification problems. The difficulties and challenges of 85

skin disease classification and detection are summarized in 86

three levels in this article: the instance level, the category 87

level, and the semantic level, as outlined below. 88

1) INSTANCE LEVEL 89

For a single instance of skin cancer, the size change caused by 90

the difference in the image acquisition process, the lighting 91

conditions, and the shooting angle of view, as well as the 92

distance, the non-rigid body deformation of the object itself, 93

and the partial occlusion of other objects, usually make the 94

apparent characteristics of the object instance. 95

2) CATEGORY LEVEL 96

Difficulties and challenges usually come from two directions. 97

Firstly, there is a large intra-class difference when the appar- 98

ent characteristics of objects belonging to the same class are 99

quite different. The reasons are the changes in the various 100

instance levels mentioned above. Secondly, the difference 101

between different instances in the class has to do with inter- 102

ference from the background: In the actual scene, the object 103

might not appear against a spotless background - in fact, often 104

the background may be very complicated and interfere with 105

the object of interest. This greatly dramatically increases the 106

difficulty of identifying the skin lesion. 107

3) SEMANTIC LEVEL 108

Difficulties and challenges are related to the visual semantics 109

of images. Difficulties at this level are often very tough 110

to deal with. Especially for the current level of computer 111

vision theory, a typical problem is what is called ‘‘multiple 112

stability’’. Having the same image but different interpreta- 113

tions are related not only to the physical conditions such 114

as the person’s viewing angle and focus, but also to the 115

personality and experience of the person, and this is precisely 116

the part that the visual recognition system finds difficult 117

to handle. 118

It is a significant challenge for researchers aiming for 119

an accurate diagnosis to tackle these kinds of distortion 120

for precise diagnoses such as: skin hairs, gel bubbles, dark 121

corners, ruler markings, color charts, ink marks, low con- 122

trast, incomplete photos and other distortions, as shown in 123

Figure 3. 124
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FIGURE 3. The challenges of reaching a diagnosis based on dermoscopic images (the above images were selected from the
International Skin Imaging Collaboration (ISIC) archive).

FIGURE 4. Distribution of selected papers, by year of publication.

C. RESEARCH METHOD125

This review is mainly based on a literature search on AI and126

DL in dermatology, performed inWeb of Science databases of127

artificial intelligence and DL in dermatology. The investiga-128

tion was conducted in November 2021.Most articles from the129

last 5 years (2017 - 2021) were included to focus on emerg-130

ing methods. The following primary keywords were used:131

‘‘deep learning’’, and ‘‘melanoma.’’ Our literature search132

yielded a total of 441 articles, including 279 journal articles,133

19 reviews, 15meeting abstracts, ten early access articles, and134

118 conference papers. Our search showed that research on135

this aspect of skin diseases is rapidly increasing, as shown136

in Figure 4. We have ranked the countries according to the 137

number of articles: see Figure 5 for the eleven countries with 138

the most significant number of articles. 139

FIGURE 5. Distribution of selected papers on articifial intelligence (AI)
and deep learning (DL) in dermatology, by country, 2017–2021.

This study investigates the research status regarding the 140

topic, and diagnosis of a skin lesion in recent years, and 141

summarizes the datasets used by researchers, as well as anal- 142

yses of image preprocessing, data augmentation, DL models, 143

and framework performance indicators. We aim to provide a 144

reference for DL methods for dermatologists. In addition, the 145
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aim is to enable researchers to quickly and accurately retrieve146

the literature related to dermatological image recognition.147

The study’s foundation is the rapidly developing AI-based148

diagnosis technology in the increasing medical AI field.149

This study paper is organized as follows. Section I intro-150

duces the background, challenges and our research methods151

of skin lesion. Section II discusses DL and its application in152

dermoscopic images, while Section III provides some essen-153

tial techniques utilized to improve melanoma classification154

in the literature. An overview of classification performance155

and a discussion are presented in the Sections IV, and V.156

Section VI concludes the paper.157

II. DEEP LEARNING AND ITS APPLICATION IN158

DERMOSCOPIC IMAGES RECOGNITION159

In the following, the basic technical components (frame-160

works, datasets, and metrics) typically adopted for devel-161

oping and testing automatic classification systems based on162

DL are detailed, together with the most current strategies163

proposed for improving performance in diagnosis of skin164

cancer.165

A. FRAMEWORKS AND BACKBONES166

1) DEEP LEARNING FRAMEWORKS167

Deep learning frameworks include interfaces, libraries, and168

tools that allow programmers to develop deep and machine169

learning models more efficiently than is the case with cod-170

ing them from scratch. In addition, they provide concise171

ways for defining models using prebuilt and optimized func-172

tions. In addition to speeding up the process of creating173

machine or DL algorithms, the frameworks offer accurate174

and research-backed ways to do it, making the end product175

far more accurate than would be achieved if the entirety176

of the model was built from scratch. More than two dozen177

DL libraries developed by tech giants, tech foundations, and178

academic institutions are available to the public. While each179

framework has its advantage in a particular subdiscipline of180

DL, many of them are not currently being maintained by181

their designers. Therefore, we can talk about only a hand-182

ful of active and reliable DL frameworks. In this paper,183

we will discuss three DL frameworks: TensorFlow (TF) [10],184

Keras [11], and PyTorch [12], which are the most important185

DL frameworks today (2021). The three are shown detailed in186

Table 1. The Table also includes some other DL frameworks187

that have been mentioned in the literature in recent years,188

namely MatConvNet [13], Caffe [14], and Theano [15].189

Excelling in TF with Keras application programming190

interface (API) is the soundest option. TensorFlow is an191

open-source machine learning platform focusing on neural192

networks, which was developed by the Google Brain team.193

The main reason for choosing TF over other DL frameworks194

is its popularity. TensorFlow is mighty and easy to use and195

has excellent community support.196

Keras was designed by Google to enable fast experimen-197

tation with neural networks. It is very user-friendly, modular,198

and extensible. Keras also has the advantage of being simple, 199

flexible, and powerful. Because of these features, Keras is 200

viewed by newcomers as the go-to DL framework. Since 201

PyTorch was developed by Facebook and offers an easy- 202

to-use interface, its popularity has gained momentum, par- 203

ticularly in academia. PyTorch is the main competitor of TF. 204

MatConvNet is a toolkit based on CNN for Matlab, sup- 205

porting both CPU and GPU. In fact, this toolkit not only 206

supports CNN, but also supports some other networks such as 207

RNN, LSTM, etc. Caffe is an early DL framework made with 208

expression, speed, and modularity. It is ideal for feedforward 209

neural networks and image processing tasks. Theano is based 210

on python whose development started in 2007. This library 211

is good at dealing with multidimensional arrays. With the 212

strong rise of Tensorflow, Keras and Pytorch, MatConvNet, 213

Caffe, Theano are declining day by day, and fewer and fewer 214

researchers use them. 215

2) CONVOLUTIONAL NEURAL NETWORKS BACKBONES FOR 216

IMAGE CLASSIFICATION 217

A convolutional neural network (CNN), also known as ‘‘Con- 218

vNet’’, is a specific type of feed-forward neural network with 219

a stack of convolutional layers, each followed by pooling lay- 220

ers in order to extract features from the input data and produce 221

a set of high level feature maps at each level of convolution. 222

The feature maps information is summarized using pooling 223

layers in order to reduce the number of parameters and uses a 224

fully connected layer to produce the final classification [16]. 225

The CNN structure evolution summarized in this arti- 226

cle started with the neurocognitive machine model. At the 227

same time, the convolutional structure has appeared. The 228

LeNet [17] CNN structure became available in 1998. 229

However, the CNN’s edge began to be overshadowed by 230

hand-designed features such as support vector machine 231

(SVM). With the introduction of rectified linear unit (ReLU) 232

and Dropout, as well as the historic opportunities brought by 233

graphics processing units (GPUs) and big data, CNN ushered 234

in a landmark breakthrough in 2012 - AlexNet [16]. Figure 6 235

presents the evolution of the CNN structure. 236

Today, researchers rarely build models from start to finish. 237

Common features of classic models have been encapsulated 238

in DL frameworks (such as TF or PyTorch). Researchers 239

only make some modifications on this basis. All the liter- 240

ature collected in this study is based on the CNN model. 241

Compared with traditional machine learning, the CNNmodel 242

has excellent feature representation (automatically learned 243

from raw data). Currently, the primary method of skin dis- 244

ease image recognition is to use a CNN in DL, and then 245

to use pooling for image recognition. The research work 246

collected in this study adopted famous CNN architecture, 247

such as AlexNet [16], VGG (short for ‘‘Visual Geometry 248

Group’’) [18], Inception [19], ResNet (short for ‘‘residual 249

neural network’’) [20], DensenNet [21], EfficientNet [22], 250

and so on. Figure 7 plots the state-of-art models’ per- 251

formances in dataset ImageNet [23] from 2011 to 2021. 252

Some researchers [24], [25], [26], [27], [28], [29], [30] have 253
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FIGURE 6. The historical evolution of CNN structure has changed from an early attempt to a historic breakthrough, and then to the
current prosperity.

FIGURE 7. The state-of-the-art model in each year from 2011 to 2021. The horizontal axis represents the top-1 accuracy in
ImageNet.

preferred to use multiple models to conduct experiments254

because they allow the opportunity to compare the perfor-255

mance of different models.256

B. STANDARD SKIN LESION DERMOSCOPIC IMAGES257

DATASETS258

There are many datasets available for skin lesion classifi-259

cation. Some are publicly available and some are licensed.260

Deep learning requires a large amount of data to extract261

features during training. However, large-scale image data262

of skin lesion are challenging to obtain because images of263

skin lesions involve patients’ privacy; also, there are vari-264

ous skin diseases, and some are rare diseases. Skin lesion265

images need to be labeled by experts with appropriate med- 266

ical knowledge due to the similarity of lesion manifestations 267

between various skin diseases. Currently, the acquisition of 268

skin disease datasets is mainly divided into self-collected 269

and public datasets. Self-collected datasets are usually not 270

publicly available. Most published dermatological datasets 271

are image data obtained by using dermoscopic imaging and 272

collected from dermatological image databases. Universities, 273

in collaboration with renowned hospitals, also collect some 274

datasets. 275

Regarding public datasets for studyingmelanoma, themost 276

extensive collection of datasets can be found in the Interna- 277

tional Skin Imaging Collaboration (ISIC) repository, which 278
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TABLE 1. The most important deep learning (DL) frameworks that were used in study papers and their features.

comprises images labeled by expert dermatologists. Human279

Against Machine with 10000 training images (HAM10000),280

Memorial Sloan-Kettering (MSK) and UDA [108] datasets,281

for example, are held in this repository. Furthermore, this282

repository provides the different datasets presented in the283

annual ISIC challenges, commonly used as benchmarks by284

the researchers. In 2016 [108], the ISIC hosted the Interna-285

tional Symposium on Biomedical Imaging (ISBI), and named286

its 2016 dataset after the ISBI. The ISIC have released five287

challenging datasets so far: ISBI 2016 [110], ISIC 2017(also288

known as ‘‘ISBI 2017’’), ISIC 2018 [103], ISIC 2019 [95]289

and ISIC 2020 [93]. The first challenge, ISBI 2016 consisted290

of two classes with 1,279 images. In the second challenge,291

ISIC 2017, the number of images and classes increased to292

2,000 images while the number of classes increased to three.293

Thereafter, ISIC 2018 contained 12,500 images, divided into294

seven classes of skin lesions. The next challenge, ISIC 2019,295

contained 25,331 images divided into eight classes. The most296

recent challenging dataset, ISIC 2020, contains 33,126 differ- 297

ent images gathered frommore than 2,000 patients at multiple 298

medical centers on three continents, including the Melanoma 299

Institute Australia, the Sydney Melanoma Diagnostic Centre, 300

and theMedical University of Vienna. Each image’s metadata 301

included the patient’s approximate age at the time of image 302

capture, gender, general anatomic location of the lesion, 303

patient identification number (patient ID), benign/malignant 304

type, and the precise diagnosis (if available). There are 9 sub- 305

categories of ISIC 2020. It is indeed an extremely unbal- 306

anced database. Moreover, the data can be downloaded in two 307

different formats, Joint Photographic Experts Group (JPEG) 308

or TFRecord. The ISIC Archive contains over 150,000 total 309

images, of which approximately 70,000 have been made 310

public [114] (as of November 12th 2021). 311

The HAM10000 collected over a period of 20 years from 312

the Department of Dermatology at the Medical University 313

of Vienna, Austria, and the skin cancer practice of Cliff 314
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TABLE 2. The most popular skin lesion datasets.

Rosendahl in Queensland, Australia. It consists of 10,015315

dermoscopic dermatoscopic images which are released as a316

training set for academic machine learning purposes and are317

publicly available through the ISIC archive [120]. A dermo-318

scopic image database (PH2) dataset was built up through319

a joint research collaboration between the Universidade do320

Porto, Tecnico Lisboa, and the Dermatology Service of Hos-321

pital Pedro Hispano in Matosinhos, Portugal [131]. It has322

overall 200 melanocytic lesion images.323

The interactive atlas of dermoscopy [132] (Atlas) dataset324

has 1,011 dermoscopic images (252 melanoma and 759 nevi325

cases), with 7-point checklist criteria. There are also 1,011326

clinical color images corresponding to dermoscopic images.327

The Dermofit Image Library [133] consists of 1,300 high-328

resolution images with ten classes of skin lesions; use is329

subject to a licensing agreement, with a one-off license fee of330

75 (an academic license is available). DermNet New Zealand331

(Dermnet NZ) [135] has one of the largest and most diverse332

collections of clinical, dermoscopic, and histological images333

of various skin diseases. These images can be used for aca-334

demic research purposes. Additional high-resolution images335

are available for purchase. The MED-NODE dataset, created336

by the Department of Dermatology of the University Medical337

Center Groningen (UMCG) in the Netherlands, was initially338

used to train the MED-NODE computer-assisted melanoma339

detection system [138]. There are 170 non-dermoscopic340

images in this dataset, 70 of which are melanoma and341

100 which are nevi in this dataset.342

A summary of the abovementioned skin lesion datasets,343

including the total number of images, total number of disease344

classes, whether the dataset is publicly available (and free to 345

use), and the papers using different datasets, are presented in 346

Table 2. 347

C. METRICS 348

Standard metrics are needed to assess the performance of 349

different models. Melanoma diagnosis models are assessed 350

according to a variety of metrics based on the number of true 351

positives (TPs), true negatives (TNs), false positives (FPs), 352

and false negatives (FNs) from aDL prediction.These metrics 353

include accuracy(ACC), precision (PREC), sensitivity (SE) 354

and specificity (SP). The ACC metric measures how close 355

the predicted value is to the actual data values. The PREC 356

metric tests the ability of the classifier to reject irrelevant 357

samples. Sensitivity and Specificity are important metrics 358

used in medical diagnosis. The higher the value, the lower 359

the probability of a missed diagnosis. The Sensitivity metric 360

measures the proportion of the correctly detected, relevant 361

samples, which is also known as recall or the ‘‘true positive 362

rate (TPR)’’. Specificity is also called the ‘‘true negative rate 363

(TNR)’’, and the higher the value is, the higher the probability 364

of diagnosis. SP describes the ability of the classifier to detect 365

the TNR. 366

The F-score is a trade-off between PREC and recall also 367

known as the ‘‘F-measure’’. The formula is expressed as: 368

Fβ = (1+ β2) ·
Precision · Recall

(β2 · Precision)+ Recall
(1) 369

where β is used to reconcile the importance of PREC and 370

recall. When β = 1, they are equally important and this is 371
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called ‘‘F1-score’’. The F1-score (or ‘‘dice coefficient (DC)’’)372

can be obtained by the weighted average of SE (recall) and373

PREC, where the relative contribution of both recall and374

PREC to the F1-score is equal. The Matthews correlation375

coefficient (MCC) is a correlation coefficient that yields a376

value between −1 and +1 for actual and estimated binary377

classifications. A coefficient of +1 shows ideal prediction,378

0 shows random prediction, and -1 indicates complete dis-379

agreement between predictions and the ground truth. It is gen-380

erally considered that this indicator is a relatively balanced381

indicator, and it can be applied even when the sample content382

of the two categories differs significantly.383

The receiver operating characteristic (ROC) curve is plot-384

ted with a TP fraction (SE) versus FP fraction (1-SP) by385

varying the threshold on the probability map. The Area Under386

the Receiver Operating Characteristics (AUC or AUROC)387

measures the area under the ROC curve. The term AUC curve388

refers to the probability that the classifier outputs positive389

and negative samples, and the likelihood that the classifier390

outputs a positive sample is greater than of it outputting a neg-391

ative sample. It represents the complete two-dimensional area392

within the entire ROC curve from origin (0,0) to point (1,1).393

The AUC is the measure of the ability of a classifier to394

distinguish between classes and is used as a summary of the395

ROC curve.396

ROC curves make it easy to identify the best threshold397

whenmaking a decision. AUC helps to decide whichmodel is398

better. Furthermore, AUC is not affected by the class imbal-399

ance problem, and different sample ratios will not affect the400

evaluation results of AUC.401

In the AUC calculation formula, the predicted probability402

is sorted from high to low, and then a rank value is set for403

each probability value. The rank represents the number of404

samples that the predicted probability exceeds. To find that405

the predicted probability value of the positive sample in the406

combination is greater than that of the negative sample, if the407

score value of all the positive samples is greater than that of408

the negative sample, then the first and any combination of409

the predicted probability value must be larger. Its rank value410

is n, but M-1 in n-1 is a combination of positive samples and411

positive samples, which is not within the statistical scope, so it412

must be subtracted, and so on. Finally, divide by M × N.413

These are the most popular measurements typically used414

for classification evaluation. The specific performance indi-415

cators are presented in Table 3.416

In addition, for multi-class problems, micro-average and417

macro-average are used. (1) To calculate the micro-average,418

the total precision and recall of all categories are calcu-419

lated and then combined. The calculated average value is420

the micro-average score. A usage scenario might be that the421

number of each category is considered in the calculation422

formula, so it is suitable for data distribution in an unbalanced423

situation. At the same time, because of the amount of data424

taken into account, when the data is extremely unbalanced,425

a larger number of classes will greatly affect the value of426

average. (2) For the macro-average, the calculation method427

is as follows: For all the categories, average the precision and 428

recall, and then calculate the average value as macro-average. 429

A usage scenario might be the following: The amount of data 430

is not considered, so each category will be treated equally 431

(because the precision and recall of each category are between 432

0 and 1), and will be relatively highly affected by PREC and 433

high recall classes. 434

Generally speaking, a macro-average will compute the 435

metric independently for each class and then take the average 436

(hence treating all classes equally), whereas a micro-average 437

will aggregate the contributions of all classes to compute the 438

average metric. In a multi-class classification setup, micro- 439

average is preferable if you suspect there might be class 440

imbalance. 441

Top-N accuracy is another metric, which indicates the 442

capability of a classifier to predict correct class in first N 443

attempts. This metric gives a deeper insight into the classi- 444

fier’s learning and discriminating ability. 445

Amuch better way to evaluate the performance of a classi- 446

fier is to look at the confusion matrix. The general idea is to 447

count the number of times instances of class A are classified 448

as class B. The number of correct and incorrect predictions 449

are summarized with count values and broken down by each 450

class [142]. 451

D. DERMOSCOPIC APPLICATION OF DEEP LEARNING 452

Because of the similarity in color, texture, edge contour, 453

and other features between different skin lesions, and the 454

difference in pathological tissues between different patients, 455

it is a big challenge to classify skin cancer. Deep convolu- 456

tional neural networks have been used for general and highly 457

variable tasks across many studies [117], [139], [140], [143], 458

[144], [145], [146], [147], [148], [149], [150]. 459

They can be used to classify skin lesions in two fundamen- 460

tally different ways. 461

In the first, a CNN pretrained on another large dataset, such 462

as ImageNet, can be applied as a feature extractor. In this case, 463

classification is performed by another classifier, such as the 464

k-nearest neighbors (kNN) algorithm, SVM, or artificial neu- 465

ral networks (ANNs). In the second way, a CNN can directly 466

learn the relationship between the raw pixel data and the class 467

labels through end-to-end learning. In contrast to the clas- 468

sic workflow typically applied in machine learning, feature 469

extraction becomes an integral part of classification and is 470

no longer considered a separate, independent processing step. 471

If the CNN is trained with end-to-end learning, the research 472

can be divided into two different approaches: learning the 473

model from scratch, and transfer learning. 474

The landmark publication by Esteva et al. [41] belongs 475

to the latter approach and is further discussed below. The 476

proposed CNN model adopts the GoogLeNet Inception v3 477

model pre-trained with the extensive image database Ima- 478

geNet and then fine-tuned to classify skin lesions using trans- 479

fer learning involving more than 120,000 clinical images. 480

The model achieved a value equal to 0.94 for the AUC 481

of the corresponding ROC curves for skin lesions classified 482
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exclusively with dermoscopic images. The very similar483

approach presented in Haenssle et al. [140] (where the484

modified version of the GoogleNet Inception CNN archi-485

tecture was additionally trained with more than 100,000486

digital images) showed significantly lower diagnostic accu-487

racy (0.86, achieved as AUC for the classification task of488

melanomas versus benign nevi). In that study, the diagnostic489

performance of CNN model was compared to that of a group490

of dermatologists based on a collection of 100 dermoscopic491

images representing the spectrum of melanocytic lesions typ-492

ically encountered in daily clinical routine [140].493

Regarding the former approach (i.e., learning the model494

from scratch), the most recent works and meta-analyses car-495

ried out by experts in both computer science and dermatology496

highlight the exploitation of the CNN. Feature extraction497

can lead to satisfying diagnostic performance (similar to the498

performance of physicians with long clinical experience) also499

when DL is applied to small proprietary datasets (typically500

including < 2,000 dermoscopic images and the correspond-501

ing expert annotations and biopsy results) that are often avail-502

able from the involved clinical institution.503

However, in Brinker et al. [117], a CNN trained with504

open-source images was exclusively capable of outperform-505

ing dermatologists of all levels hierarchical categories of506

experience (from junior to chief physicians) in dermoscopic507

melanoma image classification. The CNN had a more minor508

variance of results indicating a higher computer vision509

robustness than human assessment for dermatologic image510

classification tasks [139]. Maron et al. [145] showed that the511

automated binary classification of dermoscopic melanoma512

and nevus images can be extended to a multi-class classi-513

fication problem, thus better reflecting clinical differential514

diagnoses, while still outperforming dermatologists at a sig-515

nificant level.516

III. TECHNIQUES TO IMPROVE CONVOLUTIONAL517

NEURAL NETWORKS FOR MELANOMA DIAGNOSIS518

A. THE BASIC PROCESS OF SKIN CANCER519

CLASSIFICATION520

The skin cancer image classification method based on DL521

can learn hierarchical feature descriptions in a supervised or522

unsupervised manner, thus replacing the manual design or523

selection of image features. The CNNDLmodel has in recent524

years achieved impressive results in the image field. Convo-525

lutional neural networks directly use image pixel information526

as input, retaining all the information of the input image to527

a great extent, through convolution. The operation performs528

feature extraction and high level abstraction, and the model529

output is the direct result of image recognition. This direct530

end-to-end, ‘‘input–output’’ learning method has achieved531

outstanding results and is widely used.532

Figure 8 illustrates the flow of melanoma classifica-533

tion which includes: Data preparation (the preprocessing534

techniques also include methods such as contrast enhance-535

ment and intensity adjustment, space correction, binarization,536

morphological operations, gray-scaling, and noise reduction. 537

At this stage, noise and other artifacts are removed from 538

images. Fekri-Ershad et al. [157] applied a color based image 539

retrieval method to perform melanoma detection); model 540

structure (which involves defining data input and dimen- 541

sions, as well as network core modules, classifiers, and loss 542

function and network output); training the model (which 543

involves choosing backbone, defining parameters, and con- 544

structing and performing training); and testing and applying 545

the model. We can also roughly divide the process into four 546

parts: Input, network, training, and output. When we try to 547

improve the effect of model training, we can optimize these 548

four aspects. The traditional melanoma image classification 549

method consists of multiple stages, and the framework is 550

more complicated. The end-to-end CNN model structure can 551

be put in place in one step, and the classification accuracy is 552

greatly improved. 553

In the past few years, there has been an increasing ten- 554

dency, not only to develop and use different modern CNN 555

backbones to solve complex real-world problems, but also 556

to apply advanced techniques for achieving better training of 557

these models. Examples include using generative adversarial 558

network (GAN) models, and focusing on focal loss [28], 559

[36], [52], [158], [159], transfer learning techniques, data 560

augmentation methods, and the development of ensembles of 561

CNNs. 562

This study summarizes several basic guidelines regarding 563

factors that influence model performance, as described by 564

Ng [160]: (1) The expressive ability of the model (depth and 565

width); (2) the learning rate; (3) the optimizer; (4) the learn- 566

ing rate adjustment strategy. In DL, model overfitting often 567

occurs, andmethods to reduce the impact of model overfitting 568

usually include data augmentation (data enhancement can 569

increase the data size) and regularization. 570

B. TRANSFER LEARNING 571

Transfer learning is a new task that improves learning by 572

transferring knowledge from related tasks that have been 573

learned. For example, there are three tasks: task A, B, and C. 574

They use the same network structure. For a deep neural 575

network, the weights of the CNN layers in the front layer are 576

very close. Here the process of extracting an object features in 577

a CNN model, the first three layers may first extract vertical 578

edges, and then extract horizontal Edge, then extract the 579

round area. So the previous CNN weights do not need to 580

be trained. In order to avoid similar repeating tasks, task C 581

can then use the training results of task A or B to continue 582

training, which can reduce the number of parameters and 583

training time. 584

Migration ability is the criterion we need to consider when 585

deciding which task model to use. The larger the amount 586

of data in the original model, the stronger the migration 587

capability; and the more similar the problem scenarios of 588

the original model and the new problem, the stronger the 589

migration ability. The stronger themigration ability, the lower 590

the number of layers that need to be frozen, and vice versa. 591
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FIGURE 8. Flow chart of melanoma diagnosis based on a general convolutional neural
networks (CNN) model in a general way. Image processing is divided into image
acquisition, image prepossessing, and dataset division. Image prepossessing includes
image size adjustment, normalization, and noise removal. Melanoma image recognition
mainly includes image feature extraction and classification models to classify the
extracted features and output the results.

For example, task A is trained with more pictures, but task B592

is a closer training task, so the selection will be contradictory.593

Today, with DL being popular, the training of neural net-594

works is becoming more and more time-consuming. The595

main reason that needs transfer learning is because malignant596

and benign lesions have high similarity, so it takes a long time597

to identify and classify them. Moreover, transfer learning is598

more efficient in classifying between similar lesions, making599

it a first choice [161]. These papers used transfer learning in600

the literature we surveyed [25], [26], [28], [30], [33], [34],601

[35], [36], [37], [38], [39], [41], [42], [46], [52], [58], [61],602

[62], [64], [66], [67], [68], [70], [71], [72], [73], [75], [76],603

[76], [77], [85], [86], [87], [92], [102], [112], [113], [122],604

[124], [126], [127], [129], [141], [151], [152], [158], [159],605

[162], [163], [164], [165], [166], [167], [168], [169], [170],606

[171], [172], [173], [174], [175], [176], [177], [178], [179].607

Transfer learning can transfer the parameters of the trained608

model (pre-training model) to the new model to help the609

new model training. Here are three benefits of transfer learn-610

ing: firstly, before fine-tuning, the initial performance of the611

model is higher; secondly, during the training process, the rate612

of model improvement is faster; thirdly, after the training, the613

obtained model converges better. Therefore, it is becoming614

more and more common to use trained neural networks for615

other tasks such as transfer learning [32].616

By using pre-trained models which have been previously617

trained on large datasets, we can directly use the weights and618

architecture obtained and apply the learning to our problem619

statement. This is known as transfer learning. We ‘‘transfer620

the learning’’ of the pre-trained model to our specific prob-621

lem statement. You should be very careful while choosing622

what pre-trained model you should use in your case. If the623

problem statement we have at hand is very different from 624

the one on which the pre-trained model was trained – the 625

prediction we would get could be very wildly inaccurate. For 626

example, a model previously trained for speech recognition 627

would most likely be very inaccurate if we try to use it to 628

identify objects. Imagenet data set has been widely used to 629

build various architectures since it is large enough (1.2M 630

images) [23] to create a generalized model. These pre-trained 631

networks demonstrate a strong solid ability to generalize 632

to images outside the ImageNet dataset via transfer learn- 633

ing. There are three ways to fine-tune the model: (1) use a 634

pre-trained model as feature extraction and remove the out 635

layer; (2) use the architecture of the model while we initial- 636

ize all the weights randomly and train the model according 637

to our dataset again; (3) train some layers while freezing 638

others. AlexNet, SqueezeNet, MobileNet, Google Inception, 639

ResNet, Xception, VGGNet, DenseNet are examples of com- 640

monly used pre-trained CNNs [25]. 641

C. DATA AUGMENTATION 642

Deep learning models show remarkable results in automated 643

skin lesion analysis. However, these models require consid- 644

erable amounts of data, while the availability of annotated 645

skin lesion images is often limited. Data augmentation is 646

a way to expand the training dataset by transforming input 647

images without having to collect new datasets for model 648

training, thus avoiding the overfitting issue that might occur 649

during the training process when a small amount of train- 650

ing data is used. These papers use data augmentation for 651

performance enhancement: [25], [26], [34], [35], [36], [40], 652

[41], [46], [46], [47], [49], [50], [52], [56], [58], [60], [60], 653

[61], [64], [67], [68], [85], [88], [90], [91], [98], [105], [107], 654
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[109], [115], [116], [122], [124], [125], [126], [127], [130],655

[151], [152], [154], [155], [158], [159], [162], [163], [164],656

[165], [166], [168], [169], [170], [180], [181], [182], [183],657

[184], [185], [186]. The literature includes several works on658

data augmentation. Perez et al. [187], describe the impact of659

13 data augmentation scenarios for melanoma classification660

trained on three different CNNs, such as contrast, flips, ran-661

dom crops, scaling. Kato et al. [188] used data augmentation662

to demonstrate how the system improves diagnostic perfor-663

mance by executing vertical or horizontal inversion (or both)664

to the original single-wavelength images, thus increasing the665

training dataset fourfold. Zhao et al. [56] applied flip vertical666

and flip horizontal resizing and rotation on ISIC2019 to667

perform skin lesion image classification. In the following,668

we summarize several commonly used data augmentation669

strategies:670

1) GEOMETRICAL TRANSFORMATION671

Geometrical transformation methods include random reflec-672

tion, rotation, translation, shearing, minimizing, zooming,673

and scaling [25], [34], [36], [164], [172], [189].674

2) COLOUR JITTER675

Common color jitter methods are adjustments of bright-676

ness, contrast, saturation, and HVS (hue, value, and satu-677

ration). They change the ratio between each color channel,678

or values of the multiplication factor or different magnitudes.679

Oukil et al. [190] applied color features in dermoscopic680

images and achieved good results.681

3) NOISE ADDITION682

Noise addition consists of addition of a random value683

drawn from different noise distributions while preserving684

the important features of the images. Gaussian noise, Pois-685

son noise, and Salt & Pepper noise are common types.686

When the neural network is trying to learn high-frequency687

features that may be useless, adding a moderate amount688

of noise can avoid overfitting. Noise addition is usually689

used with GAN algorithms. The use of informative noise690

allows the GAN to avoid mode collapse and creates faster691

convergence [191].692

4) MULTISAMPLE TECHNIQUE693

Synthetic Minority Over-sampling Technique (SMOTE)694

[192], based on interpolation method, can synthesize new695

samples for small sample classes. It is used to deal with696

the sample imbalance problem by artificially synthesizing697

new samples, thereby improving the performance of the698

classifier. Sample pairing [193]is another way to enhance699

the training data. In this technique, two images are ran-700

domly selected from the training set and processed by basic701

data enhancement operations (such as random flip); there-702

after, the pixels are superimposed to create a new sample703

in the form of averaging, and the label is one of the origi-704

nal sample labels. The third technique is mixup [194]. Lee705

and Chin [195] applied vertical half mixing, horizontal half706

mixing, diagonal–quadrant mixing, four-quadrant mixing, 707

four-column mixing, and region of interest (ROI) mix- 708

ing to augment data. All these techniques aim to aug- 709

ment the discrete sample points to fit the true sample 710

distribution. 711

5) GENERATIVE ADVERSARIAL NETWORKS 712

Generative adversarial networks (GANs) [196] provide a 713

path for sophisticated domain-specific data augmentation and 714

a solution to problems that require a generative solution. 715

They are based on a game theoretic scenario in which the 716

generator network must compete against an adversary. The 717

generator network directly produces samples. During the past 718

few years, GANs develop rapidly. These [56], [62], [109], 719

[124], [158], [169] applied GANs algorithm to skin lesion 720

classification. 721

Abdelhalim et al. [124] used GANs to generate fine- 722

grained 256 × 256 skin lesion images for CNN-based 723

melanoma detection, which led to significant improvements 724

with sensitivity increased by 5.6 % over non-augmented 725

counterparts. Zhao et al. [56] proposed a skin lesion image 726

classification approach based on a skin lesion augmen- 727

tation according to style-based GAN and DenseNet201. 728

This method generated high quality skin lesion images 729

and performed well on the ISIC 2019 dataset(its balanced 730

multiclass accuracy achieved 93.64%). Qin et al. [169] also 731

applied style-based GANs data augmentation technology to 732

improve the skin lesion classification performance. While a 733

cycle consistent adversarial networks (cycle-GAN) for skin 734

lesion image synthesizing was adopted by Gu et al. [62]. 735

Pollastri et al. [109] proved that a Laplacian Generative 736

Adversarial Network (LAPGAN) can be employed to obtain 737

an accuracy boost equivalent to 138% more real annotated 738

images when the dataset is over 500 images. 739

6) AUTOAUGMENT 740

The basic idea of Autoaugment [197] is to use reinforcement 741

learning to find the best image transformation strategy from 742

the data itself, and learn different augmentation methods for 743

different tasks. 744

The latter twomethods are often used for unsupervised data 745

augmentation. 746

D. ENSEMBLE LEARNING 747

The classification of skin lesions has in recent years relied 748

on the ensemble method to achieve highly accurate perfor- 749

mance [29], [30], [31], [32], [38], [69], [72], [76], [80], [81], 750

[82], [85], [87], [96], [105], [105], [111], [121], [129], [177], 751

[182], [198], [199], [200], [201], [202], [203]. Generally, cur- 752

rent researchers applying ensemble methods follow a similar 753

workflow. First, several multiclass CNNs that are trained for 754

a specific task, and then their outputs are merged using an 755

aggregation approach. An overview of relatedworks applying 756

ensemble methods is provided in Table 4. The most used 757

aggregation methods are: 758
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1) WEIGHTED MAJORITY VOTING STRATEGY759

Weighted majority vote strategy is used in popular ensemble760

learning algorithms, which tends to select among high proba-761

bility values of the class that has received the highest number762

of votes [204].763

2) MODEL AVERAGING STRATEGY764

The ensemble prediction is calculated as the average of the765

member predictions [205]. There is a requirement that all766

ensemble members have skill as compared to random chance,767

although some models are known to perform much better,768

or much worse, than other models.769

3) WEIGHTED AVERAGE STRATEGY770

The weighted ensemble is an extension of a model averaging771

ensemble where the contribution of each member to the final772

prediction is weighted by the performance of themodel [206].773

The model weights are small positive values and the sum774

of all weights equals 1, allowing the weights to indicate775

the percentage of trust or expected performance from each776

model.777

4) DECISION DIRECTED ACYCLIC GRAPH STRATEGY778

The decision directed acyclic graph (DDAG) is a graphwhose779

edges have an orientation and no cycles. The DDAG ensem-780

ble method is a decision tree that combines a set of binary781

classifiers into a multiclass classifier [105].782

5) GEOMETRIC AVERAGING STRATEGY783

The geometric averaging method (also called ‘‘geometric784

mean method’’) aims to find diverse networks with relatively785

small steps in the weight space, without leaving a region that786

corresponds to low test error [207].787

IV. OVERVIEW OF CLASSIFICATION PERFORMANCE788

The publication by Esteva et al. [41] was important because,789

although not strictly focused on dermoscopic images,790

it clearly showed the potential of DL techniques when applied791

to the domain of cutaneous oncology. In the years following792

their study, great research efforts were invested in introducing793

new DL solutions to solve the problems arising from the794

application to dermoscopy, first of all represented by the795

availability of small datasets (when compared to clinical796

image sets). Very important were the ISIC challenges which797

provided the opportunity to compare original proposals from798

many international research groups. For example, the new799

ResNet models [24] were introduced and emerged as a valid800

technique that was able to guarantee better results (with801

respect to the performance exhibited by traditional models802

such as AlexNet, GoogleNet, and VGG models) for both803

skin lesion segmentation and the melanoma classification804

problems. Table 5 presents the performance of the top five805

research groups on ISIC challenges of 2016–2019.806

Better results are also reported in a comparative study of807

DL architecture on melanoma detection using dermoscopic808

images [208]. Preprocessing methods such as illumination 809

correction, contrast enhancement, and artefact removal are 810

suggested to improve image quality and obtain a better gen- 811

eralization ability. Due to the imbalanced class distributions 812

of skin lesions, various augmentation approaches are adopted 813

in these methods. Various standard evaluation metrics, such 814

as SP, SE, ACC, and F-measure, are employed to evaluate 815

the obtained results. Finally, experiments show that ResNet50 816

outperforms its counterparts AlexNet, Xception, VGGNet16, 817

and VGGNet19 architecture, with a classification ACC as 818

high as 92.08% and an F-score equal to 92.74%. 819

A very interesting meta-analysis including more than 820

200 studies on the research emanating from the field of 821

computer science is reported by Dick et al. [208]. Combin- 822

ing all the results for automated systems gave a melanoma 823

SE of 0.74 (95% CI 0.66–0.80) and an SP of 0.84 824

(95% CI 0.79–0.88). Although the SE was lower in studies 825

that used independent test sets than in those that did not, the 826

SP was similar. Moreover, in comparison with dermatolo- 827

gists’ diagnoses, computer-aided diagnoses showed similar 828

SEs and a 10 percentage point lower SP, but the differ- 829

ence was not statistically significant. As main conclusion of 830

the meta-analysis, the ACC of computer-aided diagnosis for 831

melanoma detection may be considered comparable to that 832

of experts; nevertheless, the real-world applicability of these 833

systems is as yet unknown and potentially limited owing to 834

overfitting and the risk of bias of the available studies. 835

Responses to the main doubts arising from this type 836

of analysis may be found in studies carried out mainly 837

by physicians and focused on the well-recognized DL 838

CNN models. Among them, interesting results are reported 839

by Brinker et al. [150] who compared AI algorithms 840

to classifications made by 157 German dermatologists. 841

Haenssle et al. [149] report results where, under less arti- 842

ficial conditions and in a broader spectrum of diagnoses, 843

the CNN and most dermatologists performed on the same 844

level; they [140] also compared the diagnostic performance 845

of a CNN with that of a large international group of 58 der- 846

matologists from 17 countries, including 30 experts with 847

more than 5 years of dermoscopic experience. Their data 848

clearly show that a CNN algorithm may be a suitable tool 849

to aid physicians in melanoma detection, irrespective of their 850

level of experience and training. An adequately trained DL 851

CNN can provide a highly accurate diagnostic classification 852

of dermoscopic images of melanocytic origin. Therefore, 853

physicians of all levels of training and experience may benefit 854

from assistance in the form of a CNN image classifica- 855

tion. In a study by Brinker et al. [117], a CNN trained with 856

open-source images was exclusively capable of outperform- 857

ing dermatologists of all levels of experience in dermoscopic 858

melanoma image classification. The CNN had lower vari- 859

ance of results, indicating a higher robustness of computer 860

vision, compared to human assessment, for dermatologic 861

image classification tasks [139]. Maron et al. [145] showed 862

that the automated binary classification of dermoscopic 863

melanoma and nevus images can be extended to a multiclass 864
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TABLE 4. Overview of the related studies using ensemble methods with convolutional neural networks (CNNs) for skin disease diagnosis.

classification problem, thus better reflecting clinical differ-865

ential diagnoses, while still outperforming dermatologists at866

a significant level.867

The promising results in a clinical setting have further868

led to testing the combination of human and AI. Regarding869

the multiclass task, the combination of ‘‘man and machine’’870

reported by Hekler et al. [147] achieved an ACC of 82.95%.871

This was 1.36% higher than the best of the two individual872

classifiers (e.g., 81.59% achieved by the CNN). Owing to873

the class imbalance in the binary problem, SE, but not ACC,874

was examined and demonstrated to be superior (89%) to the875

best individual classifier (CNN, with 86.1%). The SP in the876

combined classifier decreased from 89.2% to 84%. However,877

at an equal SE of 89%, the CNN achieved a SP of only 81.5%.878

Therefore, the findings clearly indicate that the combination879

of human and AI classification achieves superior results over880

the independent results of either of these classifiers.881

V. DISCUSSION882

Most experiments are conducted on a GPU to speed up the883

training and deployment process. We have mentioned that,884

to enhance the quality of images, some employ different885

preprocessing steps. Data augmentation, transfer learning,886

and ensemble techniques all address the class ACC prob-887

lem. In this section, we will discuss some salient aspects of888

melanoma classification and the outlook for the future.889

A. THE HAIR REMOVAL890

Hair should preferably be removed in dermoscopy appli-891

cations because it causes undesired effects such as occlu-892

sions in lesion areas. Kim and Hong [27] used a CycleGAN893

to remove hair in melanoma classification. Their results in894

ISIC 2020 verify that applying the proposed hair elimina-895

tion algorithm significantly enhances the performance of896

the melanoma classification, outperforming the benchmarks.897

Zhao et al. [56] applied inpainting algorithms to replace the898

pixel values and used a black top-hat filter with a grayscale 899

image. Attia et al. [79] performed a survey on hair detection 900

and also conducted experiments with hybrid CNNs. Since 901

DL uses a set of cascaded, sequential layers that operate on 902

the input data, each layer performs a non-linear processing 903

operation to extract a hierarchical representation (achieved 904

by extraction of feature maps) of the input pixels based on 905

the neighborhood. As the activation maps have higher values 906

at the ‘‘hair’’ or ‘‘ruler marking’’ pixels, this achieves the 907

purpose of detecting hair. After removal of the hair, the skin 908

lesion becomes clearer; removing hair can help the classi- 909

fication model to better identify the lesion location in the 910

skin lesion image and improve the ACC of classification 911

results [56]. 912

B. DATA BALANCE 913

Imbalanced classification is the problem of classification 914

when there is an unequal distribution of classes in the training 915

dataset. The imbalance in the class distribution may vary, but 916

a severe imbalance is more challenging to model and may 917

require specialized techniques. Zhao et al. [56] propose a 918

skin lesion augmentation style-based GAN to address insuffi- 919

cient data samples, unbalanced data, and missing labels data. 920

They also introduced the use of A-SoftMax and focal loss 921

to solve the imbalance problems of ISIC 2019. Vasconcelos 922

and Vasconcelos [112] used data augmentation to deal with 923

small and unbalanced ISBI 2016 datasets. Pham et al. [126] 924

used a combination of balanced mini-batch logic and real- 925

time image augmentation, which is effective in training the 926

networks with imbalanced skin datasets. Dong et al. [210] 927

addressed the class imbalance in large-scale image classifi- 928

cation with a novel loss function and hard sample mining. 929

Johnson andKhoshgoftaar [211] havemade a summary ofDL 930

class imbalancemethods and hybridmethods, detailingmeth- 931

ods that can be classified as data level-based, and as algo- 932

rithm level-based. To alleviate the data imbalance problem, 933
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TABLE 5. The top five dermatological classifications and their performance in the annual International Skin Imaging Collaboration (ISIC) challenges
from 2016 to 2019 [209].
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Sayed et al. [25] used a random oversampling method fol-934

lowed by data augmentation.When the dataset is imbalanced,935

using only ACC for evaluation of results is not enough;936

a confusion matrix, and PREC, recall and the F1-score also937

need to be applied. Imbalanced data is one of the potential938

problems in the field of DL for skin cancer classification.939

This problem can be approached by properly analyzing the940

melanoma data.941

C. THE IMPACT OF SEGMENTATION942

Recent advances in CNN architectural models with the ability943

of semantic segmentation have been utilized by academics to944

segment skin lesion images [152]. Skin lesion segmentation945

plays a vital role in the proper classification of skin cancer946

using computer-based models. Khouloud et al. [212] used947

W-net and inception residual network and report best perfor-948

mance with an ACC of 97.39% and a dice coefficient of 93%949

for the segmentation process on the ISIC 2018 dataset. A fully950

convolutional neural network (FCN) [213], and U-Net [214],951

SegNet [215], and DeepLab [216] are the classic semantic952

segmentation networks in DL. More and more researchers953

[28], [36], [46], [48], [60], [67], [68], [91], [109], [123], [164]954

have worked on skin lesion segmentation in recent studies.955

D. METADATA INFORMATION956

Metadata consists of data on lesion location, lesion size,957

lesion anatomy site, and history of psoriasis, along with the958

age and gender of the patient. Pacheco and Krohling [217]959

present an improvement of approximately 7% in balanced960

ACC when applying metadata information on DL models.961

Ningrum et al. [49] used a CNN model, with only image962

input information, yielding an AUROC of 82.40%. For com-963

parison, using of the CNN + ANN model with a combi-964

nation of image and patient metadata yields an AUROC of965

97.10% [49]. Liu et al. [34] report that in their study, the type966

of self-reported skin problem (e.g., acne, hair loss, or rash)967

and history of psoriasis had the greatest impact on ACC.968

Overall, the impact of metadata on the performance ofmodels969

is significant and shows the importance of including these970

features in automated skin cancer detection.971

E. CLINICAL AND HISTOPATHOLOGICAL IMAGES972

In the clinical setting, diagnosis of skin cancer is conducted973

by inspecting the skin lesion with or without dermoscopy, fol-974

lowed by confirmatory biopsy and pathological examination.975

Dermoscopic images alone cannot provide all the skin lesion976

information. Pacheco & Krohling [217] have demonstrated977

the importance of clinical features in skin cancer detection978

and confirm the hypothesis that patient clinical information is979

important for skin lesion classification. The Atlas dataset pro-980

vides clinical and dermoscopy images.Wang et al. [163] pro-981

pose using two stream CNN processing based on this dataset982

in clinical and dermoscopy images. Still, these dermoscopic983

and clinical skin lesion datasets do not have correspond-984

ing pathological classification labels to develop a complete985

diagnosis pipeline for the computer-aided systems in current986

publicly available skin lesion datasets. Moreover, most of the 987

classification labels for dermoscopic skin lesion images are 988

determined by pathological examination. Hekler et al. [218] 989

illustrate the potential of DL to assist human assessment for 990

a histopathologic melanoma diagnosis. 991

F. SMARTPHONE APPLICATIONS 992

Smartphone applications (apps) provide users with an instant 993

assessment of skin cancer risk and offer the potential for ear- 994

lier detection and treatment, which could improve the survival 995

of patients. Against the background of the high burden of 996

skin cancer in the world and limited access to dermatolog- 997

ical care, particularly in remote areas, AI diagnostic tools 998

provide the possibility to improve triage and reduce the time 999

to excision for correctly diagnosed melanomas. If the mobile 1000

device is used properly, this could also reduce morbidity 1001

resulting from unnecessary biopsies. In a review paper [219], 1002

Freeman et al. show currently available apps, such as skin- 1003

Scan, SkinVision, and TeleSkin. There is no skin cancer risk 1004

stratification smartphone app that has received U.S. Food and 1005

Drug Administration (FDA) approval to date [219]. A com- 1006

bined reference standard comprising histology and clinical 1007

follow-up of benign lesions would provide more reliable and 1008

generalizable results. Smartphone algorithm-based apps for 1009

skin cancer all include disclaimers that the results should 1010

only be used as a guide and cannot replace health care 1011

advice [219]. 1012

G. LIGHT AND SOUND INFORMATION FOR SKIN LESION 1013

DIAGNOSIS 1014

In recent years, some researches have emerged that use wave- 1015

length or polarization of light and combine sound information 1016

with skin lesion image information. In the field of biomedical 1017

imaging and diagnostics, polarization speckle is a growing 1018

fast. Wang et al. [162] used DL to extract skin lesion infor- 1019

mation from polarization speckle, and improved the per- 1020

formance in classifying benign and malignant skin lesions 1021

by 20%. Pölönen et al. [220] showed that use of the spectral 1022

and spatial domain will increase classification performance 1023

of CNNs. Dascalu et al. [221] acquired dermoscopy images 1024

by skin magnifier with polarized light with DL algorithm 1025

and sonified in the first phase; in the second phase, they did 1026

further analysis with a different DL. Whether it is spectral 1027

information or sound information, it has opened up a newway 1028

of thinking for skin lesion diagnosis. However, the existing 1029

public datasets hardly provide skin lesion data with light or 1030

sound information. So this is a challenge formost researchers. 1031

H. FUTURE PROSPECTS 1032

Deep learning shows great potential in the image-based diag- 1033

nosis of skin cancer. However, there is still a significant 1034

discrepancy between expectations and true relevance of DL 1035

in current dermatological practice based on dermoscopy. 1036

In numerous studies we have cited, e.g. [27], [33], [56], 1037

[63], [105], [116], [123], [151], [163], [164], [202]. In this 1038

study, computer algorithms were able to detect pigmented 1039
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and non-pigmented neoplasms of the skin with high preci-1040

sion, comparable to dermatologists. The combination of the1041

physician’s assessment and AI has shown the best results.1042

Computer-based diagnostic systems are widely accepted1043

among patients and physicians. Nevertheless, they are still1044

not applicable in daily practice, as they have been tested1045

chiefly in experimental environments. Some cases involv-1046

ing less artificial conditions and a broader spectrum of1047

diagnoses have been reported where the CNN and most1048

dermatologists performed on the same level [149]; how-1049

ever, many digital diagnostic criteria that help AI to clas-1050

sify skin lesions remain unclear. This lack of transparency1051

still needs to be addressed. On the other hand, dermatol-1052

ogists are trained to integrate information from a range of1053

sources, rendering comparative studies that are solely based1054

on one single case image inadequate. Therefore, further1055

and different clinical studies on the use of AI-based assis-1056

tance systems are needed to prove the applicability of AI in1057

daily dermatologic practice. Indeed, the different CNN-based1058

approaches proposed in the literature should be revised and1059

compared, not only regarding ACC, but also considering1060

real possibilities to: create algorithms representing diverse1061

patient populations; ensure that algorithm output is ultimately1062

interpretable; prospectively validate algorithm performance;1063

preserve human–patient interaction where necessary, and1064

demonstrate validity in the eyes of regulatory bodies. In other1065

words, future research on the development of DL techniques1066

for dermoscopic application should take better account of the1067

main deontological, legislative, and economic requirements1068

involved in the complex clinical process of the skin cancer1069

diagnosis.1070

Indeed, the dermoscope to catch ELM images is classified1071

as a Medical Device whose commercialization and adoption1072

in European market should be in accordance with the Euro-1073

pean Union Medical Device Regulation (EU MDR) [222].1074

In detail, the dermoscope may be purchased only by medical1075

personnel and/or adopted by institution and enterprise for1076

research purpose. Thus, the adoption of dermatoscope by1077

the patients jointly with smartphone applications for instant1078

assessment of the skin cancer risk is actually and will con-1079

tinue to be allowed only in research projects and setting, but1080

not as a routine clinical scenario.1081

Moreover, according to EUMDR, the application software1082

itself for processing the dermoscopic images and evaluating1083

the skin cancer risk should be classified as Class II or III1084

Medical Device (because of the important consequences and1085

danger on the patient health status in the case of erroneous1086

diagnostic indications provided). Thus, the whole life-cycle1087

of the DL-based software system for dermoscopic analysis1088

and classification (also including the development, the clin-1089

ical validation and post-market surveillance) should address1090

the stringent requirements of extensive normative (such as the1091

Standard EN 62304:2006 about the software design, the ISO1092

Standard 14971:2019 for Medical Device Risk management,1093

the ISO Standard 13485:2016 about the Medical Device1094

Quality Management systems, the MDCG 2019-9 Guide1095

for safety and clinical performance concerning the clinical 1096

investigation) and evaluated by the Certification Body during 1097

the CE mark certification process. The normative frame- 1098

work seems to limit the actual possibility by Small Medium 1099

Enterprises to introduce smartphone applications, whereas 1100

the corresponding market may be more easily approached by 1101

large companies already qualified as Medical Device Manu- 1102

facturers for other SW systems and/or equipment. 1103

On the basis of the legislative framework, according to the 1104

authors’opinion, the future research efforts should be better 1105

focused on the adoption of the DL-based software system 1106

only by dermatologist, thus matching also the following 1107

deontological features involved with the diagnosis of skin 1108

cancers: 1109

i. promotion of periodic visiting by the specialist whose 1110

attention may be captured by skin lesions that do not appear 1111

as suspicious for the unexpert patient and will not be ever 1112

examined through smartphone application; 1113

ii. improvements of psychological behavior against the 1114

pathology by the patient affected by melanoma that may be 1115

addressed on the correct diagnostic and successfully thera- 1116

peutic pattern rather than be abruptly informed by an app on 1117

the high oncological risk of the self-examined lesion. 1118

According to the presented perspective, the main research 1119

topic should be the development of DL-based systems able 1120

to improve the diagnostic expertise of the dermatologist (not 1121

only to provide support and second opinion for the examina- 1122

tion of the single suspicious nevus). For the user the software 1123

system should not appear as a black-box; rather, the classi- 1124

fication results should be easily related to well-knowledge 1125

diagnostic methods (such as ABCDE rules, 7-Point Check 1126

List, and Menzie’score). As an example, the approach of the 1127

Semantic Segmentation [223] based on DL (already success- 1128

fully experimented in other applications such as the real-time 1129

segmentation of road traffic video for the autonomous driv- 1130

ing) could be investigated to provide an automatic system 1131

able to recognize the atypical features within the dermo- 1132

scopic images of suspicious lesions. Moreover, the metrics 1133

themselves adopted to analyze the performance of the pro- 1134

posed software systems should be revised for better show 1135

the efficacy in the clinical setting end the new intended 1136

aims. In detail, the differentiation among suspicious lesions 1137

to be excided and other types of classified nevi should be 1138

emphasized when the ROC curve is analyzed for the opti- 1139

mal tuning of DL-software systems.Finally, the economic 1140

impact supported by the clinical organizations in terms of 1141

the savings for the number of excisions as well as the costs 1142

associated with the erroneous diagnosis should be taken into 1143

account during the performance evaluation of the developed 1144

or systems. 1145

VI. CONCLUSION 1146

New techniques in machine learning, also known as ‘‘deep 1147

learning (DL),’’ were introduced around 2010. However, 1148

if we consider the full future potential of automating repeti- 1149

tive tasks; optimizing time-consuming tasks; augmenting 1150
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limitedmedical resources; improving interobserver reliability1151

issues; and expanding the diagnostic toolbox of physicians,1152

then we can say that AI in dermatological health care is yet1153

in its infancy. Indeed, specific task-driven algorithms are only1154

beginning to be introduced. Compared to the predecessor1155

forms of computing, these new methods are dynamically1156

changing systems that improve with continuous data expo-1157

sure, and therefore performance is dependent on the quality1158

and generalizability of the training datasets.1159

Artificial intelligence in dermoscopy is not replacing spe-1160

cialists or placing decision making into the hands of non-1161

experts. Developments shortly will follow what is already1162

happening in radiology, where AI is proving to be useful for1163

triaging and improving workflow efficiency by helping to1164

prioritize tasks, which is the current direction for the most1165

significant research efforts.1166

We project that in the next 5 years, clinicians will become1167

increasingly involved in training and testing large-scale val-1168

idation as well as monitoring narrow AI in clinical trials.1169

At this point, CNNs have shown in very few cases that they1170

make physicians better at diagnosing skin cancer with respect1171

to available real-world clinical data. Only in the future, when1172

large, standardized training datasets and, above all, validation1173

with prospective clinical trials will be completed, will DL1174

truly improve dermatological workflow, for example by pro-1175

viding computer-aided triage (e.g., through scanning which1176

pigmented lesion might need prompt evaluation by a derma-1177

tologist) and supporting young professionals in classification1178

tasks.1179

APPENDIX1180

A supplementary appendix presents a list of review papers1181

with impact factors over 2, (see table 6, S is segmentation,1182

C is classification).1183
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