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ABSTRACT Skin cancer is one of the most threatening cancers, which spreads to the other parts of the
body if not caught and treated early. During the last few years, the integration of deep learning into skin
cancer has been a milestone in health care, and dermoscopic images are right at the center of this revolution.
This review study focuses on the state-of-the-art automatic diagnosis of skin cancer from dermoscopic
images based on deep learning. This work thoroughly explores the existing deep learning and its application
in diagnosing dermoscopic images. This study aims to present and summarize the latest methodology in
melanoma classification and the techniques to improve this. We discuss advancements in deep learning-based
solutions to diagnose skin cancer, along with some challenges and future opportunities to strengthen these
automatic systems to support dermatologists and enhance their ability to diagnose skin cancer.

INDEX TERMS Skin cancer, dermoscopy images, deep learning, classification, literature review.

I. INTRODUCTION
A. BACKGROUND
Melanoma of the skin is the 19th most commonly occurring
cancer in men and women [1]. Skin cancer, and melanoma
specifically, is a complex disease. One type of malignant
melanoma accounts for about 1 % of all skin cancers, but

the vast majority of skin cancer deaths. The most affected
regions are Europe, North America, and Oceania [2]. Figure 1
presents a heat map of estimated national, age-standardized
melanoma incidence rates in 185 countries in 2020. The coun-
tries with the 20 highest rates of skin melanoma in 2020 are
given in Figure 2 [2]. Invasive melanoma incidence has been
increasing rapidly since the mid-1970s. From 2008 to 2017,
the rate increased by about 2 % per year [3]. According to
the American Cancer Organization, 106,110 new cases of
melanoma of the skin were diagnosed in the U.S. in 2021,
while in the same year, 7,180 people died from the disease [3].
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FIGURE 1. Global heat map showing estimated age-standardized
incidence rates, in 2020, of melanoma of the skin in all sexes, all ages.
The map shows melanoma incidence in all parts of the world, except
Greenland in the Arctic Circle. The regions most affected by skin
melanoma globally are Europe, the United States, Canada, and
Australia [2].

Although the 5-year survival for melanoma of the skin is high,
at 93%, early detection of the disease is critically important
to reduce melanoma-related mortality [4].
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FIGURE 2. The age-standardized rate of skin melanoma per 100,000 in
the 20 countries with the highest rates, 2020.

Dermatologists use the two most popular non-invasive
techniques, macroscopic (clinical) and dermoscopic, to
acquire color images of skin lesions. Dermoscopy is a
microscopy-based tool to improve non-invasive diagnostic
discrimination of skin lesions based on color and structure
analysis [5]. This paper focuses on dermoscopy images.
Because dermoscopic structures have direct histopathologic
correlates, dermoscopic images help the dermatologist select
management and treatment options for particular types of
skin cancers [6]. In addition, dermoscopy can be useful for
helpful in detecting thinner and smaller cancers and gain-
ing more precision. Pattern analysis, the dermoscopic inter-
pretation method preferred by pigmented lesion specialists,
requires assessing numerous lesion patterns simultaneously
depending on the location of the body [7]. Some traditional
dermoscopic algorithms have been further developed to focus
on the most common features of melanoma to aid practi-
tioners with the interpretation of dermoscopy findings: the
7-point checklist (1998), the Menzies method (1996), the
asymmetry, border, color, and differential structures (ABCD)
rule (1994), the triage amalgamated dermoscopic algo-
rithm (TADA) method (2016), and the color, architecture,
symmetry, and homogeneity (CASH) (2006) algorithm [5].
However, the skin melanoma recognition accuracy is not ideal
because of the similarity between different skin melanoma
and the limited number of dermatologists with professional
knowledge. The identification of skin melanoma has become
a serious scientific challenge.

More recently, with the rapid development of artificial
intelligence (AI) technology, deep learning (DL) has quickly
been applied in diagnosis of skin lesions diagnosis. As a
result, the medical image processing of skin disease has
become an essential component and has received significant
attention in the cross-field of image processing, machine
science, and intelligent medicine. As a result, many experts
and scholars have been engaged in the image recognition of
skin disease.

Other survey papers in the field focus either on mature
technologies using deep neural networks [8], or they focus
on more traditional machine learning [9]. This survey paper
instead summarizes in part the improvement of classifica-
tion results but also innovative technologies for enhanc-
ing the CNN frameworks commonly used in skin disease

VOLUME 10, 2022

classification and proposes some directions for current
research status and future research.

B. CHALLENGES

The so-called skin lesion classification is that there is a fixed
set of classification labels. For each input image, a classi-
fication label is found from the classification label set, and
classification label is assigned to the input image. Although
the classification task seems simple, this is one of the core
problems in the field of computer vision. Many seemingly
different problems in the field of computer vision (such as
object detection and segmentation) can be attributed to image
classification problems. The difficulties and challenges of
skin disease classification and detection are summarized in
three levels in this article: the instance level, the category
level, and the semantic level, as outlined below.

1) INSTANCE LEVEL

For a single instance of skin cancer, the size change caused by
the difference in the image acquisition process, the lighting
conditions, and the shooting angle of view, as well as the
distance, the non-rigid body deformation of the object itself,
and the partial occlusion of other objects, usually make the
apparent characteristics of the object instance.

2) CATEGORY LEVEL

Difficulties and challenges usually come from two directions.
Firstly, there is a large intra-class difference when the appar-
ent characteristics of objects belonging to the same class are
quite different. The reasons are the changes in the various
instance levels mentioned above. Secondly, the difference
between different instances in the class has to do with inter-
ference from the background: In the actual scene, the object
might not appear against a spotless background - in fact, often
the background may be very complicated and interfere with
the object of interest. This greatly dramatically increases the
difficulty of identifying the skin lesion.

3) SEMANTIC LEVEL

Difficulties and challenges are related to the visual semantics
of images. Difficulties at this level are often very tough
to deal with. Especially for the current level of computer
vision theory, a typical problem is what is called “multiple
stability”’. Having the same image but different interpreta-
tions are related not only to the physical conditions such
as the person’s viewing angle and focus, but also to the
personality and experience of the person, and this is precisely
the part that the visual recognition system finds difficult
to handle.

It is a significant challenge for researchers aiming for
an accurate diagnosis to tackle these kinds of distortion
for precise diagnoses such as: skin hairs, gel bubbles, dark
corners, ruler markings, color charts, ink marks, low con-
trast, incomplete photos and other distortions, as shown in
Figure 3.
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FIGURE 3. The challenges of reaching a diagnosis based on dermoscopic images (the above images were selected from the

International Skin Imaging Collaboration (ISIC) archive).
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FIGURE 4. Distribution of selected papers, by year of publication.

C. RESEARCH METHOD

This review is mainly based on a literature search on Al and
DL in dermatology, performed in Web of Science databases of
artificial intelligence and DL in dermatology. The investiga-
tion was conducted in November 2021. Most articles from the
last 5 years (2017 - 2021) were included to focus on emerg-
ing methods. The following primary keywords were used:
“deep learning”, and ‘“melanoma.” Our literature search
yielded a total of 441 articles, including 279 journal articles,
19 reviews, 15 meeting abstracts, ten early access articles, and
118 conference papers. Our search showed that research on
this aspect of skin diseases is rapidly increasing, as shown
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in Figure 4. We have ranked the countries according to the
number of articles: see Figure 5 for the eleven countries with
the most significant number of articles.
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FIGURE 5. Distribution of selected papers on articifial intelligence (Al)
and deep learning (DL) in dermatology, by country, 2017-2021.

This study investigates the research status regarding the
topic, and diagnosis of a skin lesion in recent years, and
summarizes the datasets used by researchers, as well as anal-
yses of image preprocessing, data augmentation, DL models,
and framework performance indicators. We aim to provide a
reference for DL methods for dermatologists. In addition, the
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aim is to enable researchers to quickly and accurately retrieve
the literature related to dermatological image recognition.
The study’s foundation is the rapidly developing Al-based
diagnosis technology in the increasing medical Al field.

This study paper is organized as follows. Section I intro-
duces the background, challenges and our research methods
of skin lesion. Section II discusses DL and its application in
dermoscopic images, while Section III provides some essen-
tial techniques utilized to improve melanoma classification
in the literature. An overview of classification performance
and a discussion are presented in the Sections IV, and V.
Section VI concludes the paper.

Il. DEEP LEARNING AND ITS APPLICATION IN
DERMOSCOPIC IMAGES RECOGNITION

In the following, the basic technical components (frame-
works, datasets, and metrics) typically adopted for devel-
oping and testing automatic classification systems based on
DL are detailed, together with the most current strategies
proposed for improving performance in diagnosis of skin
cancer.

A. FRAMEWORKS AND BACKBONES
1) DEEP LEARNING FRAMEWORKS
Deep learning frameworks include interfaces, libraries, and
tools that allow programmers to develop deep and machine
learning models more efficiently than is the case with cod-
ing them from scratch. In addition, they provide concise
ways for defining models using prebuilt and optimized func-
tions. In addition to speeding up the process of creating
machine or DL algorithms, the frameworks offer accurate
and research-backed ways to do it, making the end product
far more accurate than would be achieved if the entirety
of the model was built from scratch. More than two dozen
DL libraries developed by tech giants, tech foundations, and
academic institutions are available to the public. While each
framework has its advantage in a particular subdiscipline of
DL, many of them are not currently being maintained by
their designers. Therefore, we can talk about only a hand-
ful of active and reliable DL frameworks. In this paper,
we will discuss three DL frameworks: TensorFlow (TF) [10],
Keras [11], and PyTorch [12], which are the most important
DL frameworks today (2021). The three are shown detailed in
Table 1. The Table also includes some other DL frameworks
that have been mentioned in the literature in recent years,
namely MatConvNet [13], Caffe [14], and Theano [15].

Excelling in TF with Keras application programming
interface (API) is the soundest option. TensorFlow is an
open-source machine learning platform focusing on neural
networks, which was developed by the Google Brain team.
The main reason for choosing TF over other DL frameworks
is its popularity. TensorFlow is mighty and easy to use and
has excellent community support.

Keras was designed by Google to enable fast experimen-
tation with neural networks. It is very user-friendly, modular,
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and extensible. Keras also has the advantage of being simple,
flexible, and powerful. Because of these features, Keras is
viewed by newcomers as the go-to DL framework. Since
PyTorch was developed by Facebook and offers an easy-
to-use interface, its popularity has gained momentum, par-
ticularly in academia. PyTorch is the main competitor of TF.

MatConvNet is a toolkit based on CNN for Matlab, sup-
porting both CPU and GPU. In fact, this toolkit not only
supports CNN, but also supports some other networks such as
RNN, LSTM, etc. Caffe is an early DL framework made with
expression, speed, and modularity. It is ideal for feedforward
neural networks and image processing tasks. Theano is based
on python whose development started in 2007. This library
is good at dealing with multidimensional arrays. With the
strong rise of Tensorflow, Keras and Pytorch, MatConvNet,
Caffe, Theano are declining day by day, and fewer and fewer
researchers use them.

2) CONVOLUTIONAL NEURAL NETWORKS BACKBONES FOR
IMAGE CLASSIFICATION

A convolutional neural network (CNN), also known as “‘Con-
vNet”, is a specific type of feed-forward neural network with
a stack of convolutional layers, each followed by pooling lay-
ers in order to extract features from the input data and produce
a set of high level feature maps at each level of convolution.
The feature maps information is summarized using pooling
layers in order to reduce the number of parameters and uses a
fully connected layer to produce the final classification [16].

The CNN structure evolution summarized in this arti-
cle started with the neurocognitive machine model. At the
same time, the convolutional structure has appeared. The
LeNet [17] CNN structure became available in 1998.
However, the CNN’s edge began to be overshadowed by
hand-designed features such as support vector machine
(SVM). With the introduction of rectified linear unit (ReLU)
and Dropout, as well as the historic opportunities brought by
graphics processing units (GPUs) and big data, CNN ushered
in a landmark breakthrough in 2012 - AlexNet [16]. Figure 6
presents the evolution of the CNN structure.

Today, researchers rarely build models from start to finish.
Common features of classic models have been encapsulated
in DL frameworks (such as TF or PyTorch). Researchers
only make some modifications on this basis. All the liter-
ature collected in this study is based on the CNN model.
Compared with traditional machine learning, the CNN model
has excellent feature representation (automatically learned
from raw data). Currently, the primary method of skin dis-
ease image recognition is to use a CNN in DL, and then
to use pooling for image recognition. The research work
collected in this study adopted famous CNN architecture,
such as AlexNet [16], VGG (short for *“Visual Geometry
Group”) [18], Inception [19], ResNet (short for ‘“‘residual
neural network’) [20], DensenNet [21], EfficientNet [22],
and so on. Figure 7 plots the state-of-art models’ per-
formances in dataset ImageNet [23] from 2011 to 2021.
Some researchers [24], [25], [26], [27], [28], [29], [30] have
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preferred to use multiple models to conduct experiments
because they allow the opportunity to compare the perfor-
mance of different models.

B. STANDARD SKIN LESION DERMOSCOPIC IMAGES
DATASETS

There are many datasets available for skin lesion classifi-
cation. Some are publicly available and some are licensed.
Deep learning requires a large amount of data to extract
features during training. However, large-scale image data
of skin lesion are challenging to obtain because images of
skin lesions involve patients’ privacy; also, there are vari-
ous skin diseases, and some are rare diseases. Skin lesion
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images need to be labeled by experts with appropriate med-
ical knowledge due to the similarity of lesion manifestations
between various skin diseases. Currently, the acquisition of
skin disease datasets is mainly divided into self-collected
and public datasets. Self-collected datasets are usually not
publicly available. Most published dermatological datasets
are image data obtained by using dermoscopic imaging and
collected from dermatological image databases. Universities,
in collaboration with renowned hospitals, also collect some
datasets.

Regarding public datasets for studying melanoma, the most
extensive collection of datasets can be found in the Interna-
tional Skin Imaging Collaboration (ISIC) repository, which
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TABLE 1. The most important deep learning (DL) frameworks that were used in study papers and their features.

References

[31]-[44]

Framework  Year Features

TensorFlow 2015

Developed by Google;

The two programming languages with stable and
official TensorFlow APIs are Python and C;
Specifically optimized for the training and infer-
ence of neural networks;

Supports these large numerical computations.

Keras 2015  Acquired by Google; [26], [31], [32], [42]-
Very user-friendly, modular, and extensible; [52]
Acts as an interface for the TensorFlow library;

Is viewed by newcomers as the go-to DL library.

PyTorch 2016 Developed and maintained by Facebook; [44], [52]-[62]
Offers an easy-to-use interface;

Tensor computing with strong acceleration via

GPU and deep neural networks built on top of a

tape-based automatic differentiation system;

Includes the Optim and Neural network (nn) mod-

ule

An implementation of CNNs for MATLAB;
Toolbox is designed with an emphasis on simplic-
ity and flexibility;

Exposes the building blocks of CNNs as easy-
to-use MATLAB functions, providing routines for
computing linear convolutions with filter banks,
feature pooling, and many more features [13].

MatConvNet 2014 [30], [44], [50], [52],

[63]-[76], [76]-[84]

Caffe 2013 A DL framework characterized by its speed, scala-  [84]-[90]

bility, and modularity.

Theano 2009 A Python library that allows to define, optimize, [51], [91], [92]

and evaluate mathematical expressions involving

multi-dimensional arrays efficiently [15].

comprises images labeled by expert dermatologists. Human
Against Machine with 10000 training images (HAM10000),
Memorial Sloan-Kettering (MSK) and UDA [108] datasets,
for example, are held in this repository. Furthermore, this
repository provides the different datasets presented in the
annual ISIC challenges, commonly used as benchmarks by
the researchers. In 2016 [108], the ISIC hosted the Interna-
tional Symposium on Biomedical Imaging (ISBI), and named
its 2016 dataset after the ISBI. The ISIC have released five
challenging datasets so far: ISBI 2016 [110], ISIC 2017(also
known as “ISBI 2017”"), ISIC 2018 [103], ISIC 2019 [95]
and ISIC 2020 [93]. The first challenge, ISBI 2016 consisted
of two classes with 1,279 images. In the second challenge,
ISIC 2017, the number of images and classes increased to
2,000 images while the number of classes increased to three.
Thereafter, ISIC 2018 contained 12,500 images, divided into
seven classes of skin lesions. The next challenge, ISIC 2019,
contained 25,331 images divided into eight classes. The most
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recent challenging dataset, ISIC 2020, contains 33,126 differ-
ent images gathered from more than 2,000 patients at multiple
medical centers on three continents, including the Melanoma
Institute Australia, the Sydney Melanoma Diagnostic Centre,
and the Medical University of Vienna. Each image’s metadata
included the patient’s approximate age at the time of image
capture, gender, general anatomic location of the lesion,
patient identification number (patient ID), benign/malignant
type, and the precise diagnosis (if available). There are 9 sub-
categories of ISIC 2020. It is indeed an extremely unbal-
anced database. Moreover, the data can be downloaded in two
different formats, Joint Photographic Experts Group (JPEG)
or TFRecord. The ISIC Archive contains over 150,000 total
images, of which approximately 70,000 have been made
public [114] (as of November 12th 2021).

The HAM10000 collected over a period of 20 years from
the Department of Dermatology at the Medical University
of Vienna, Austria, and the skin cancer practice of Cliff
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TABLE 2. The most popular skin lesion datasets.

Name Number  Type Disease P/N  Reference
of images classes
ISIC 2020 [93] 33,126 D 9 P [27], [94]
ISIC 2019 [95] 25,331 D 9 P [56], [69], [70], [96]-[102]
ISIC 2018 [103] 12,500 D 7 P [24], [29], [48], [58], [59], [104]-[107]
ISIC 2017 [108] ~2,000 D 3 P [46], [85], [104], [109]
ISBI2016 [110] 1,279 D 2 P [28], [76], [77], [90], [101], [111]-
[113]
ISIC Archive(2018) [114] 23,665 D 7 P [44], [49], [63], [115]-[119]
HAM 10000 [120] 10,015 D 7 P [87], [121]-[130]
PH2 [131] 200 D 2 P [26], [72]-[74], [79], [81], [101]
Atlas [132] 2,022 D& C 2 P [43], [104]
Dermofit [133] 1,300 D 10 N [41], [68], [104], [134]
Dermnet NZ [135] 23,000 D&C&H 23 P [115], [136], [137]
MED-NODE [138] 170 D 2 P [89], [139]-[141]

!' D: dermoscopic images; C: clinical images; H: histological images
2 P/N: public available or not

3 ISIC: International Skin Imaging Collaboration

4 HAM10000: Human Against Machine with 10000 training images
5 PH2: A dermoscopic image database

6 Dermnet NZ: DermNet New Zealand

7" Atlas: Interactive atlas of dermoscopy

Rosendahl in Queensland, Australia. It consists of 10,015
dermoscopic dermatoscopic images which are released as a
training set for academic machine learning purposes and are
publicly available through the ISIC archive [120]. A dermo-
scopic image database (PH2) dataset was built up through
a joint research collaboration between the Universidade do
Porto, Tecnico Lisboa, and the Dermatology Service of Hos-
pital Pedro Hispano in Matosinhos, Portugal [131]. It has
overall 200 melanocytic lesion images.

The interactive atlas of dermoscopy [132] (Atlas) dataset
has 1,011 dermoscopic images (252 melanoma and 759 nevi
cases), with 7-point checklist criteria. There are also 1,011
clinical color images corresponding to dermoscopic images.
The Dermofit Image Library [133] consists of 1,300 high-
resolution images with ten classes of skin lesions; use is
subject to a licensing agreement, with a one-off license fee of
75 (an academic license is available). DermNet New Zealand
(Dermnet NZ) [135] has one of the largest and most diverse
collections of clinical, dermoscopic, and histological images
of various skin diseases. These images can be used for aca-
demic research purposes. Additional high-resolution images
are available for purchase. The MED-NODE dataset, created
by the Department of Dermatology of the University Medical
Center Groningen (UMCG) in the Netherlands, was initially
used to train the MED-NODE computer-assisted melanoma
detection system [138]. There are 170 non-dermoscopic
images in this dataset, 70 of which are melanoma and
100 which are nevi in this dataset.

A summary of the abovementioned skin lesion datasets,
including the total number of images, total number of disease
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classes, whether the dataset is publicly available (and free to
use), and the papers using different datasets, are presented in
Table 2.

C. METRICS
Standard metrics are needed to assess the performance of
different models. Melanoma diagnosis models are assessed
according to a variety of metrics based on the number of true
positives (TPs), true negatives (TNs), false positives (FPs),
and false negatives (FNs) from a DL prediction.These metrics
include accuracy(ACC), precision (PREC), sensitivity (SE)
and specificity (SP). The ACC metric measures how close
the predicted value is to the actual data values. The PREC
metric tests the ability of the classifier to reject irrelevant
samples. Sensitivity and Specificity are important metrics
used in medical diagnosis. The higher the value, the lower
the probability of a missed diagnosis. The Sensitivity metric
measures the proportion of the correctly detected, relevant
samples, which is also known as recall or the ““true positive
rate (TPR)”. Specificity is also called the “true negative rate
(TNR)”’, and the higher the value is, the higher the probability
of diagnosis. SP describes the ability of the classifier to detect
the TNR.

The F-score is a trade-off between PREC and recall also
known as the “F-measure’. The formula is expressed as:

Precision - Recall

Fg = (1 2.
p=U+5 (B2 - Precision) + Recall

ey

where 8 is used to reconcile the importance of PREC and
recall. When B8 = 1, they are equally important and this is
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called “F1-score”. The F1-score (or ‘“‘dice coefficient (DC)’*)
can be obtained by the weighted average of SE (recall) and
PREC, where the relative contribution of both recall and
PREC to the Fl-score is equal. The Matthews correlation
coefficient (MCC) is a correlation coefficient that yields a
value between —1 and +1 for actual and estimated binary
classifications. A coefficient of +1 shows ideal prediction,
0 shows random prediction, and -1 indicates complete dis-
agreement between predictions and the ground truth. It is gen-
erally considered that this indicator is a relatively balanced
indicator, and it can be applied even when the sample content
of the two categories differs significantly.

The receiver operating characteristic (ROC) curve is plot-
ted with a TP fraction (SE) versus FP fraction (1-SP) by
varying the threshold on the probability map. The Area Under
the Receiver Operating Characteristics (AUC or AUROC)
measures the area under the ROC curve. The term AUC curve
refers to the probability that the classifier outputs positive
and negative samples, and the likelihood that the classifier
outputs a positive sample is greater than of it outputting a neg-
ative sample. It represents the complete two-dimensional area
within the entire ROC curve from origin (0,0) to point (1,1).
The AUC is the measure of the ability of a classifier to
distinguish between classes and is used as a summary of the
ROC curve.

ROC curves make it easy to identify the best threshold
when making a decision. AUC helps to decide which model is
better. Furthermore, AUC is not affected by the class imbal-
ance problem, and different sample ratios will not affect the
evaluation results of AUC.

In the AUC calculation formula, the predicted probability
is sorted from high to low, and then a rank value is set for
each probability value. The rank represents the number of
samples that the predicted probability exceeds. To find that
the predicted probability value of the positive sample in the
combination is greater than that of the negative sample, if the
score value of all the positive samples is greater than that of
the negative sample, then the first and any combination of
the predicted probability value must be larger. Its rank value
is n, but M-1 in n-1 is a combination of positive samples and
positive samples, which is not within the statistical scope, so it
must be subtracted, and so on. Finally, divide by M x N.

These are the most popular measurements typically used
for classification evaluation. The specific performance indi-
cators are presented in Table 3.

In addition, for multi-class problems, micro-average and
macro-average are used. (1) To calculate the micro-average,
the total precision and recall of all categories are calcu-
lated and then combined. The calculated average value is
the micro-average score. A usage scenario might be that the
number of each category is considered in the calculation
formula, so it is suitable for data distribution in an unbalanced
situation. At the same time, because of the amount of data
taken into account, when the data is extremely unbalanced,
a larger number of classes will greatly affect the value of
average. (2) For the macro-average, the calculation method
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is as follows: For all the categories, average the precision and
recall, and then calculate the average value as macro-average.
A usage scenario might be the following: The amount of data
is not considered, so each category will be treated equally
(because the precision and recall of each category are between
0 and 1), and will be relatively highly affected by PREC and
high recall classes.

Generally speaking, a macro-average will compute the
metric independently for each class and then take the average
(hence treating all classes equally), whereas a micro-average
will aggregate the contributions of all classes to compute the
average metric. In a multi-class classification setup, micro-
average is preferable if you suspect there might be class
imbalance.

Top-N accuracy is another metric, which indicates the
capability of a classifier to predict correct class in first N
attempts. This metric gives a deeper insight into the classi-
fier’s learning and discriminating ability.

A much better way to evaluate the performance of a classi-
fier is to look at the confusion matrix. The general idea is to
count the number of times instances of class A are classified
as class B. The number of correct and incorrect predictions
are summarized with count values and broken down by each
class [142].

D. DERMOSCOPIC APPLICATION OF DEEP LEARNING
Because of the similarity in color, texture, edge contour,
and other features between different skin lesions, and the
difference in pathological tissues between different patients,
it is a big challenge to classify skin cancer. Deep convolu-
tional neural networks have been used for general and highly
variable tasks across many studies [117], [139], [140], [143],
[144], [145], [146], [147], [148], [149], [150].

They can be used to classify skin lesions in two fundamen-
tally different ways.

In the first, a CNN pretrained on another large dataset, such
as ImageNet, can be applied as a feature extractor. In this case,
classification is performed by another classifier, such as the
k-nearest neighbors (kNN) algorithm, SVM, or artificial neu-
ral networks (ANNs). In the second way, a CNN can directly
learn the relationship between the raw pixel data and the class
labels through end-to-end learning. In contrast to the clas-
sic workflow typically applied in machine learning, feature
extraction becomes an integral part of classification and is
no longer considered a separate, independent processing step.
If the CNN is trained with end-to-end learning, the research
can be divided into two different approaches: learning the
model from scratch, and transfer learning.

The landmark publication by Esteva ef al. [41] belongs
to the latter approach and is further discussed below. The
proposed CNN model adopts the GoogLeNet Inception v3
model pre-trained with the extensive image database Ima-
geNet and then fine-tuned to classify skin lesions using trans-
fer learning involving more than 120,000 clinical images.
The model achieved a value equal to 0.94 for the AUC
of the corresponding ROC curves for skin lesions classified
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exclusively with dermoscopic images. The very similar
approach presented in Haenssle et al. [140] (where the
modified version of the GoogleNet Inception CNN archi-
tecture was additionally trained with more than 100,000
digital images) showed significantly lower diagnostic accu-
racy (0.86, achieved as AUC for the classification task of
melanomas versus benign nevi). In that study, the diagnostic
performance of CNN model was compared to that of a group
of dermatologists based on a collection of 100 dermoscopic
images representing the spectrum of melanocytic lesions typ-
ically encountered in daily clinical routine [140].

Regarding the former approach (i.e., learning the model
from scratch), the most recent works and meta-analyses car-
ried out by experts in both computer science and dermatology
highlight the exploitation of the CNN. Feature extraction
can lead to satisfying diagnostic performance (similar to the
performance of physicians with long clinical experience) also
when DL is applied to small proprietary datasets (typically
including < 2,000 dermoscopic images and the correspond-
ing expert annotations and biopsy results) that are often avail-
able from the involved clinical institution.

However, in Brinker et al. [117], a CNN trained with
open-source images was exclusively capable of outperform-
ing dermatologists of all levels hierarchical categories of
experience (from junior to chief physicians) in dermoscopic
melanoma image classification. The CNN had a more minor
variance of results indicating a higher computer vision
robustness than human assessment for dermatologic image
classification tasks [139]. Maron et al. [145] showed that the
automated binary classification of dermoscopic melanoma
and nevus images can be extended to a multi-class classi-
fication problem, thus better reflecting clinical differential
diagnoses, while still outperforming dermatologists at a sig-
nificant level.

lIl. TECHNIQUES TO IMPROVE CONVOLUTIONAL
NEURAL NETWORKS FOR MELANOMA DIAGNOSIS

A. THE BASIC PROCESS OF SKIN CANCER
CLASSIFICATION

The skin cancer image classification method based on DL
can learn hierarchical feature descriptions in a supervised or
unsupervised manner, thus replacing the manual design or
selection of image features. The CNN DL model has in recent
years achieved impressive results in the image field. Convo-
lutional neural networks directly use image pixel information
as input, retaining all the information of the input image to
a great extent, through convolution. The operation performs
feature extraction and high level abstraction, and the model
output is the direct result of image recognition. This direct
end-to-end, “input—output” learning method has achieved
outstanding results and is widely used.

Figure 8 illustrates the flow of melanoma classifica-
tion which includes: Data preparation (the preprocessing
techniques also include methods such as contrast enhance-
ment and intensity adjustment, space correction, binarization,
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morphological operations, gray-scaling, and noise reduction.
At this stage, noise and other artifacts are removed from
images. Fekri-Ershad et al. [157] applied a color based image
retrieval method to perform melanoma detection); model
structure (which involves defining data input and dimen-
sions, as well as network core modules, classifiers, and loss
function and network output); training the model (which
involves choosing backbone, defining parameters, and con-
structing and performing training); and testing and applying
the model. We can also roughly divide the process into four
parts: Input, network, training, and output. When we try to
improve the effect of model training, we can optimize these
four aspects. The traditional melanoma image classification
method consists of multiple stages, and the framework is
more complicated. The end-to-end CNN model structure can
be put in place in one step, and the classification accuracy is
greatly improved.

In the past few years, there has been an increasing ten-
dency, not only to develop and use different modern CNN
backbones to solve complex real-world problems, but also
to apply advanced techniques for achieving better training of
these models. Examples include using generative adversarial
network (GAN) models, and focusing on focal loss [28],
[36], [52], [158], [159], transfer learning techniques, data
augmentation methods, and the development of ensembles of
CNNEs.

This study summarizes several basic guidelines regarding
factors that influence model performance, as described by
Ng [160]: (1) The expressive ability of the model (depth and
width); (2) the learning rate; (3) the optimizer; (4) the learn-
ing rate adjustment strategy. In DL, model overfitting often
occurs, and methods to reduce the impact of model overfitting
usually include data augmentation (data enhancement can
increase the data size) and regularization.

B. TRANSFER LEARNING

Transfer learning is a new task that improves learning by
transferring knowledge from related tasks that have been
learned. For example, there are three tasks: task A, B, and C.
They use the same network structure. For a deep neural
network, the weights of the CNN layers in the front layer are
very close. Here the process of extracting an object features in
a CNN model, the first three layers may first extract vertical
edges, and then extract horizontal Edge, then extract the
round area. So the previous CNN weights do not need to
be trained. In order to avoid similar repeating tasks, task C
can then use the training results of task A or B to continue
training, which can reduce the number of parameters and
training time.

Migration ability is the criterion we need to consider when
deciding which task model to use. The larger the amount
of data in the original model, the stronger the migration
capability; and the more similar the problem scenarios of
the original model and the new problem, the stronger the
migration ability. The stronger the migration ability, the lower
the number of layers that need to be frozen, and vice versa.
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FIGURE 8. Flow chart of melanoma diagnosis based on a general convolutional neural
networks (CNN) model in a general way. Image processing is divided into image
acquisition, image prepossessing, and dataset division. Image prepossessing includes
image size adjustment, normalization, and noise removal. Melanoma image recognition
mainly includes image feature extraction and classification models to classify the

extracted features and output the results.

For example, task A is trained with more pictures, but task B
is a closer training task, so the selection will be contradictory.

Today, with DL being popular, the training of neural net-
works is becoming more and more time-consuming. The
main reason that needs transfer learning is because malignant
and benign lesions have high similarity, so it takes a long time
to identify and classify them. Moreover, transfer learning is
more efficient in classifying between similar lesions, making
it a first choice [161]. These papers used transfer learning in
the literature we surveyed [25], [26], [28], [30], [33], [34],
[35], [36], [37], [38], [39], [41], [42], [46], [52], [58], [61],
[62], [64], [66], [67], [68], [701, [71], [72], [73], [75], [76],
[76], [771, [85], [86], [87], [92], [102], [112], [113], [122],
[124], [126], [127], [129], [141], [151], [152], [158], [159],
[162], [163], [164], [165], [166], [167], [168], [169], [170],
[171], [172], [173], [174], [175], [176], [177], [178], [179].
Transfer learning can transfer the parameters of the trained
model (pre-training model) to the new model to help the
new model training. Here are three benefits of transfer learn-
ing: firstly, before fine-tuning, the initial performance of the
model is higher; secondly, during the training process, the rate
of model improvement is faster; thirdly, after the training, the
obtained model converges better. Therefore, it is becoming
more and more common to use trained neural networks for
other tasks such as transfer learning [32].

By using pre-trained models which have been previously
trained on large datasets, we can directly use the weights and
architecture obtained and apply the learning to our problem
statement. This is known as transfer learning. We ‘‘transfer
the learning” of the pre-trained model to our specific prob-
lem statement. You should be very careful while choosing
what pre-trained model you should use in your case. If the
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problem statement we have at hand is very different from
the one on which the pre-trained model was trained — the
prediction we would get could be very wildly inaccurate. For
example, a model previously trained for speech recognition
would most likely be very inaccurate if we try to use it to
identify objects. Imagenet data set has been widely used to
build various architectures since it is large enough (1.2M
images) [23] to create a generalized model. These pre-trained
networks demonstrate a strong solid ability to generalize
to images outside the ImageNet dataset via transfer learn-
ing. There are three ways to fine-tune the model: (1) use a
pre-trained model as feature extraction and remove the out
layer; (2) use the architecture of the model while we initial-
ize all the weights randomly and train the model according
to our dataset again; (3) train some layers while freezing
others. AlexNet, SqueezeNet, MobileNet, Google Inception,
ResNet, Xception, VGGNet, DenseNet are examples of com-
monly used pre-trained CNNs [25].

C. DATA AUGMENTATION

Deep learning models show remarkable results in automated
skin lesion analysis. However, these models require consid-
erable amounts of data, while the availability of annotated
skin lesion images is often limited. Data augmentation is
a way to expand the training dataset by transforming input
images without having to collect new datasets for model
training, thus avoiding the overfitting issue that might occur
during the training process when a small amount of train-
ing data is used. These papers use data augmentation for
performance enhancement: [25], [26], [34], [35], [36], [40],
[41], [46], [46], [47], [49], [501, [52], [56], [58], [60], [60],
[61], [64], [67], [68], [85], [88], [90], [91], [98], [105], [107],
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[109], [115], [116], [122], [124], [125], [126], [127], [130],
[151], [152], [154], [155], [158], [159], [162], [163], [164],
[165], [166], [168], [169], [170], [180], [181], [182], [183],
[184], [185], [186]. The literature includes several works on
data augmentation. Perez et al. [187], describe the impact of
13 data augmentation scenarios for melanoma classification
trained on three different CNNs, such as contrast, flips, ran-
dom crops, scaling. Kato et al. [188] used data augmentation
to demonstrate how the system improves diagnostic perfor-
mance by executing vertical or horizontal inversion (or both)
to the original single-wavelength images, thus increasing the
training dataset fourfold. Zhao et al. [56] applied flip vertical
and flip horizontal resizing and rotation on ISIC2019 to
perform skin lesion image classification. In the following,
we summarize several commonly used data augmentation
strategies:

1) GEOMETRICAL TRANSFORMATION

Geometrical transformation methods include random reflec-
tion, rotation, translation, shearing, minimizing, zooming,
and scaling [25], [34], [36], [164], [172], [189].

2) COLOUR JITTER

Common color jitter methods are adjustments of bright-
ness, contrast, saturation, and HVS (hue, value, and satu-
ration). They change the ratio between each color channel,
or values of the multiplication factor or different magnitudes.
Oukil et al. [190] applied color features in dermoscopic
images and achieved good results.

3) NOISE ADDITION

Noise addition consists of addition of a random value
drawn from different noise distributions while preserving
the important features of the images. Gaussian noise, Pois-
son noise, and Salt & Pepper noise are common types.
When the neural network is trying to learn high-frequency
features that may be useless, adding a moderate amount
of noise can avoid overfitting. Noise addition is usually
used with GAN algorithms. The use of informative noise
allows the GAN to avoid mode collapse and creates faster
convergence [191].

4) MULTISAMPLE TECHNIQUE

Synthetic Minority Over-sampling Technique (SMOTE)
[192], based on interpolation method, can synthesize new
samples for small sample classes. It is used to deal with
the sample imbalance problem by artificially synthesizing
new samples, thereby improving the performance of the
classifier. Sample pairing [193]is another way to enhance
the training data. In this technique, two images are ran-
domly selected from the training set and processed by basic
data enhancement operations (such as random flip); there-
after, the pixels are superimposed to create a new sample
in the form of averaging, and the label is one of the origi-
nal sample labels. The third technique is mixup [194]. Lee
and Chin [195] applied vertical half mixing, horizontal half
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mixing, diagonal-quadrant mixing, four-quadrant mixing,
four-column mixing, and region of interest (ROI) mix-
ing to augment data. All these techniques aim to aug-
ment the discrete sample points to fit the true sample
distribution.

5) GENERATIVE ADVERSARIAL NETWORKS

Generative adversarial networks (GANs) [196] provide a
path for sophisticated domain-specific data augmentation and
a solution to problems that require a generative solution.
They are based on a game theoretic scenario in which the
generator network must compete against an adversary. The
generator network directly produces samples. During the past
few years, GANs develop rapidly. These [56], [62], [109],
[124], [158], [169] applied GANs algorithm to skin lesion
classification.

Abdelhalim et al. [124] used GANs to generate fine-
grained 256 x 256 skin lesion images for CNN-based
melanoma detection, which led to significant improvements
with sensitivity increased by 5.6 % over non-augmented
counterparts. Zhao et al. [56] proposed a skin lesion image
classification approach based on a skin lesion augmen-
tation according to style-based GAN and DenseNet201.
This method generated high quality skin lesion images
and performed well on the ISIC 2019 dataset(its balanced
multiclass accuracy achieved 93.64%). Qin et al. [169] also
applied style-based GANs data augmentation technology to
improve the skin lesion classification performance. While a
cycle consistent adversarial networks (cycle-GAN) for skin
lesion image synthesizing was adopted by Gu et al. [62].
Pollastri ef al. [109] proved that a Laplacian Generative
Adversarial Network (LAPGAN) can be employed to obtain
an accuracy boost equivalent to 138% more real annotated
images when the dataset is over 500 images.

6) AUTOAUGMENT
The basic idea of Autoaugment [197] is to use reinforcement
learning to find the best image transformation strategy from
the data itself, and learn different augmentation methods for
different tasks.

The latter two methods are often used for unsupervised data
augmentation.

D. ENSEMBLE LEARNING

The classification of skin lesions has in recent years relied
on the ensemble method to achieve highly accurate perfor-
mance [29], [30], [31], [32], [38], [69], [72], [76], [80], [81],
[82], [85], [87], [96], [105], [105], [111], [121], [129], [177],
[182], [198], [199], [200], [201], [202], [203]. Generally, cur-
rent researchers applying ensemble methods follow a similar
workflow. First, several multiclass CNNs that are trained for
a specific task, and then their outputs are merged using an
aggregation approach. An overview of related works applying
ensemble methods is provided in Table 4. The most used
aggregation methods are:
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1) WEIGHTED MAJORITY VOTING STRATEGY

Weighted majority vote strategy is used in popular ensemble
learning algorithms, which tends to select among high proba-
bility values of the class that has received the highest number
of votes [204].

2) MODEL AVERAGING STRATEGY
The ensemble prediction is calculated as the average of the
member predictions [205]. There is a requirement that all
ensemble members have skill as compared to random chance,
although some models are known to perform much better,
or much worse, than other models.

3) WEIGHTED AVERAGE STRATEGY

The weighted ensemble is an extension of a model averaging
ensemble where the contribution of each member to the final
prediction is weighted by the performance of the model [206].
The model weights are small positive values and the sum
of all weights equals 1, allowing the weights to indicate
the percentage of trust or expected performance from each
model.

4) DECISION DIRECTED ACYCLIC GRAPH STRATEGY

The decision directed acyclic graph (DDAG) is a graph whose
edges have an orientation and no cycles. The DDAG ensem-
ble method is a decision tree that combines a set of binary
classifiers into a multiclass classifier [105].

5) GEOMETRIC AVERAGING STRATEGY

The geometric averaging method (also called ‘“‘geometric
mean method”) aims to find diverse networks with relatively
small steps in the weight space, without leaving a region that
corresponds to low test error [207].

IV. OVERVIEW OF CLASSIFICATION PERFORMANCE
The publication by Esteva et al. [41] was important because,
although not strictly focused on dermoscopic images,
it clearly showed the potential of DL techniques when applied
to the domain of cutaneous oncology. In the years following
their study, great research efforts were invested in introducing
new DL solutions to solve the problems arising from the
application to dermoscopy, first of all represented by the
availability of small datasets (when compared to clinical
image sets). Very important were the ISIC challenges which
provided the opportunity to compare original proposals from
many international research groups. For example, the new
ResNet models [24] were introduced and emerged as a valid
technique that was able to guarantee better results (with
respect to the performance exhibited by traditional models
such as AlexNet, GoogleNet, and VGG models) for both
skin lesion segmentation and the melanoma classification
problems. Table 5 presents the performance of the top five
research groups on ISIC challenges of 2016-2019.

Better results are also reported in a comparative study of
DL architecture on melanoma detection using dermoscopic
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images [208]. Preprocessing methods such as illumination
correction, contrast enhancement, and artefact removal are
suggested to improve image quality and obtain a better gen-
eralization ability. Due to the imbalanced class distributions
of skin lesions, various augmentation approaches are adopted
in these methods. Various standard evaluation metrics, such
as SP, SE, ACC, and F-measure, are employed to evaluate
the obtained results. Finally, experiments show that ResNet50
outperforms its counterparts AlexNet, Xception, VGGNet16,
and VGGNet19 architecture, with a classification ACC as
high as 92.08% and an F-score equal to 92.74%.

A very interesting meta-analysis including more than
200 studies on the research emanating from the field of
computer science is reported by Dick et al. [208]. Combin-
ing all the results for automated systems gave a melanoma
SE of 0.74 (95% CI 0.66-0.80) and an SP of 0.84
(95% CI 0.79-0.88). Although the SE was lower in studies
that used independent test sets than in those that did not, the
SP was similar. Moreover, in comparison with dermatolo-
gists’ diagnoses, computer-aided diagnoses showed similar
SEs and a 10 percentage point lower SP, but the differ-
ence was not statistically significant. As main conclusion of
the meta-analysis, the ACC of computer-aided diagnosis for
melanoma detection may be considered comparable to that
of experts; nevertheless, the real-world applicability of these
systems is as yet unknown and potentially limited owing to
overfitting and the risk of bias of the available studies.

Responses to the main doubts arising from this type
of analysis may be found in studies carried out mainly
by physicians and focused on the well-recognized DL
CNN models. Among them, interesting results are reported
by Brinker et al. [150] who compared Al algorithms
to classifications made by 157 German dermatologists.
Haenssle et al. [149] report results where, under less arti-
ficial conditions and in a broader spectrum of diagnoses,
the CNN and most dermatologists performed on the same
level; they [140] also compared the diagnostic performance
of a CNN with that of a large international group of 58 der-
matologists from 17 countries, including 30 experts with
more than 5 years of dermoscopic experience. Their data
clearly show that a CNN algorithm may be a suitable tool
to aid physicians in melanoma detection, irrespective of their
level of experience and training. An adequately trained DL
CNN can provide a highly accurate diagnostic classification
of dermoscopic images of melanocytic origin. Therefore,
physicians of all levels of training and experience may benefit
from assistance in the form of a CNN image classifica-
tion. In a study by Brinker ez al. [117], a CNN trained with
open-source images was exclusively capable of outperform-
ing dermatologists of all levels of experience in dermoscopic
melanoma image classification. The CNN had lower vari-
ance of results, indicating a higher robustness of computer
vision, compared to human assessment, for dermatologic
image classification tasks [139]. Maron et al. [145] showed
that the automated binary classification of dermoscopic
melanoma and nevus images can be extended to a multiclass
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TABLE 4. Overview of the related studies using ensemble methods with convolutional neural networks (CNNs) for skin disease diagnosis.

Paper CNN models Aggregation methods Year
[198] 10 CNN models Geometric averaging 2017
[111] 10 U-Nets Model averaging 2017

[82] GoogleNet, AlexNet, ResNet50, and VGGNet16 Weighted majority voting 2018
[199] ResNet and Inception Model averaging 2018
[200] 13 CNN models Model averaging 2019
[201] AlexNet, VGG16, and ResNet18 Model averaging 2019

[31] VGG16, VGG19, ResNet50, InceptionV3, Xception, and DenseNet121 Model averaging 2019

[32] EfficientNetBO0, EfficientNetB1 and SeReNeXt-50 Model averaging 2020

[96] EN B0-B6, ResNeXt, and SENet154 Model averaging 2020
[105] VGG16, VGG19 and ResNet50 DDAG 2021
[202] InceptionV4, ResNet, DenseNet121, and DenseNet145 Weighted average 2021
[203] EfficientNetB0, Xception, and DenseNet121 Model averaging 2021

! CNN: convolutional neural network
2 DDAG: the decision directed acyclic graph

classification problem, thus better reflecting clinical differ-
ential diagnoses, while still outperforming dermatologists at
a significant level.

The promising results in a clinical setting have further
led to testing the combination of human and Al. Regarding
the multiclass task, the combination of ‘““man and machine”
reported by Hekler et al. [147] achieved an ACC of 82.95%.
This was 1.36% higher than the best of the two individual
classifiers (e.g., 81.59% achieved by the CNN). Owing to
the class imbalance in the binary problem, SE, but not ACC,
was examined and demonstrated to be superior (§89%) to the
best individual classifier (CNN, with 86.1%). The SP in the
combined classifier decreased from 89.2% to 84%. However,
at an equal SE of 89%, the CNN achieved a SP of only 81.5%.
Therefore, the findings clearly indicate that the combination
of human and Al classification achieves superior results over
the independent results of either of these classifiers.

V. DISCUSSION

Most experiments are conducted on a GPU to speed up the
training and deployment process. We have mentioned that,
to enhance the quality of images, some employ different
preprocessing steps. Data augmentation, transfer learning,
and ensemble techniques all address the class ACC prob-
lem. In this section, we will discuss some salient aspects of
melanoma classification and the outlook for the future.

A. THE HAIR REMOVAL

Hair should preferably be removed in dermoscopy appli-
cations because it causes undesired effects such as occlu-
sions in lesion areas. Kim and Hong [27] used a CycleGAN
to remove hair in melanoma classification. Their results in
ISIC 2020 verify that applying the proposed hair elimina-
tion algorithm significantly enhances the performance of
the melanoma classification, outperforming the benchmarks.
Zhao et al. [56] applied inpainting algorithms to replace the
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pixel values and used a black top-hat filter with a grayscale
image. Attia et al. [79] performed a survey on hair detection
and also conducted experiments with hybrid CNNs. Since
DL uses a set of cascaded, sequential layers that operate on
the input data, each layer performs a non-linear processing
operation to extract a hierarchical representation (achieved
by extraction of feature maps) of the input pixels based on
the neighborhood. As the activation maps have higher values
at the “hair” or “ruler marking” pixels, this achieves the
purpose of detecting hair. After removal of the hair, the skin
lesion becomes clearer; removing hair can help the classi-
fication model to better identify the lesion location in the
skin lesion image and improve the ACC of classification
results [56].

B. DATA BALANCE

Imbalanced classification is the problem of classification
when there is an unequal distribution of classes in the training
dataset. The imbalance in the class distribution may vary, but
a severe imbalance is more challenging to model and may
require specialized techniques. Zhao ef al. [5S6] propose a
skin lesion augmentation style-based GAN to address insuffi-
cient data samples, unbalanced data, and missing labels data.
They also introduced the use of A-SoftMax and focal loss
to solve the imbalance problems of ISIC 2019. Vasconcelos
and Vasconcelos [112] used data augmentation to deal with
small and unbalanced ISBI 2016 datasets. Pham et al. [126]
used a combination of balanced mini-batch logic and real-
time image augmentation, which is effective in training the
networks with imbalanced skin datasets. Dong et al. [210]
addressed the class imbalance in large-scale image classifi-
cation with a novel loss function and hard sample mining.
Johnson and Khoshgoftaar [211] have made a summary of DL
class imbalance methods and hybrid methods, detailing meth-
ods that can be classified as data level-based, and as algo-
rithm level-based. To alleviate the data imbalance problem,
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TABLE 5. The top five dermatological classifications and their performance in the annual International Skin Imaging Collaboration (ISIC) challenges
from 2016 to 2019 [209].

Dataset Approach name AUC Average PREC ACC SE SP Fl-score PPV NPV

CUMED 0.804 0.640 0.855 0.507 0.941 0.580 0.679 0.885
GTDL 0.802 0.622 0.813 0.573 0.872 0.548 0.524 0.892
ISIC 2016 BF_TB 0.826 0.601 0.834 0.320 0.961 0.432 0.667 0.851
ThrunLab-Mjolnir 0.796 0.567 0.786 0.667 0.816 0.552 0.472 0.908
Jordan Yap 0.775 0.563 0.844 0.240 0.993 0.379 0.900 0.841
ResNet ensemble 0.911 0.750 0.816 0.856 0.812 0.612 0.488 0.962
with normalized
image
ISIC2017 "EeN + modified  0.910 0.748 0.849 0.140 0998 0242 0932 0.847
ResNet-50
VGG + U-shape 0.908 0.754 0.883 0.451 0.970 0.564 0.796 0.897
EResNet 0.896 0.733 0.888 0.508 0.970 0.612 0.775 0.902
Multi-task deep 0.886 0.667 0.873 0.568 0.940 0.608 0.659 0.909
learning model
Ensembling CNNs +  0.983 0917 0.958 0.833 0.986 0.823 0.826 0.952
5-fold
ISIC 2018 Le'lrge ensembl'e 0.987 0.931 0972 0.809 0.984 0.841 0.888 0.972
with heavy multi-
cropping and loss
weighting
Ensemble Oof 00978 0.891 0.968 0.804 0.980 0.830 0.861 0.970
SENET and
PNANET with
Data augmentation
Densenet 0.980 0.892 0.969 0.789 0.976 0.828 0.875 0.975
Approach 3: average  0.960 0.833 0.939 0.758 0.964 0.750 0.763  0.949
of approach 1 and 2
Ensemble of Multi- 0.923 0.569 0.926 0.507 0977 0.515 0.597 0.940
Res EfficientNets +
SEN154 2
ISIC2019 " g/ cemble of  0.780 0.364 0917 0607 0952 0532 0507 0.952
EfficienetB3-
B4-Seresnext101
Ensemble 0.886 0.560 0.924 0.540 0.963 0.520 0.584 0.950
13 models + hierar- 0.892 0.550 0.919 0.507 0.965 0.502 0.560 0.943
chical approach
Densenet-161 with  0.870 0.489 0.910 0.473 0.967 0.432 0.450 0.933
heavy use of random
crops

I CNN = convolutional neural network; ACC = accuracy; AUC = area under the curve; NPV = negative predictive value; PREC = precision; PPV =
positive predictive value; SE = sensitivity; SP = specificity
2 So far, ISIC 2020 is still in competition, with 3308 teams and $30,000 prize money(Dec. 3rd, 2021)
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Sayed et al. [25] used a random oversampling method fol-
lowed by data augmentation. When the dataset is imbalanced,
using only ACC for evaluation of results is not enough;
a confusion matrix, and PREC, recall and the F1-score also
need to be applied. Imbalanced data is one of the potential
problems in the field of DL for skin cancer classification.
This problem can be approached by properly analyzing the
melanoma data.

C. THE IMPACT OF SEGMENTATION

Recent advances in CNN architectural models with the ability
of semantic segmentation have been utilized by academics to
segment skin lesion images [152]. Skin lesion segmentation
plays a vital role in the proper classification of skin cancer
using computer-based models. Khouloud ef al. [212] used
W-net and inception residual network and report best perfor-
mance with an ACC of 97.39% and a dice coefficient of 93%
for the segmentation process on the ISIC 2018 dataset. A fully
convolutional neural network (FCN) [213], and U-Net [214],
SegNet [215], and DeepLab [216] are the classic semantic
segmentation networks in DL. More and more researchers
[28], [36], [46], [48], [60], [67], [68], [91], [109], [123], [164]
have worked on skin lesion segmentation in recent studies.

D. METADATA INFORMATION

Metadata consists of data on lesion location, lesion size,
lesion anatomy site, and history of psoriasis, along with the
age and gender of the patient. Pacheco and Krohling [217]
present an improvement of approximately 7% in balanced
ACC when applying metadata information on DL models.
Ningrum et al. [49] used a CNN model, with only image
input information, yielding an AUROC of 82.40%. For com-
parison, using of the CNN + ANN model with a combi-
nation of image and patient metadata yields an AUROC of
97.10% [49]. Liu et al. [34] report that in their study, the type
of self-reported skin problem (e.g., acne, hair loss, or rash)
and history of psoriasis had the greatest impact on ACC.
Overall, the impact of metadata on the performance of models
is significant and shows the importance of including these
features in automated skin cancer detection.

E. CLINICAL AND HISTOPATHOLOGICAL IMAGES

In the clinical setting, diagnosis of skin cancer is conducted
by inspecting the skin lesion with or without dermoscopy, fol-
lowed by confirmatory biopsy and pathological examination.
Dermoscopic images alone cannot provide all the skin lesion
information. Pacheco & Krohling [217] have demonstrated
the importance of clinical features in skin cancer detection
and confirm the hypothesis that patient clinical information is
important for skin lesion classification. The Atlas dataset pro-
vides clinical and dermoscopy images. Wang et al. [163] pro-
pose using two stream CNN processing based on this dataset
in clinical and dermoscopy images. Still, these dermoscopic
and clinical skin lesion datasets do not have correspond-
ing pathological classification labels to develop a complete
diagnosis pipeline for the computer-aided systems in current
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publicly available skin lesion datasets. Moreover, most of the
classification labels for dermoscopic skin lesion images are
determined by pathological examination. Hekler et al. [218]
illustrate the potential of DL to assist human assessment for
a histopathologic melanoma diagnosis.

F. SMARTPHONE APPLICATIONS

Smartphone applications (apps) provide users with an instant
assessment of skin cancer risk and offer the potential for ear-
lier detection and treatment, which could improve the survival
of patients. Against the background of the high burden of
skin cancer in the world and limited access to dermatolog-
ical care, particularly in remote areas, Al diagnostic tools
provide the possibility to improve triage and reduce the time
to excision for correctly diagnosed melanomas. If the mobile
device is used properly, this could also reduce morbidity
resulting from unnecessary biopsies. In a review paper [219],
Freeman et al. show currently available apps, such as skin-
Scan, SkinVision, and TeleSkin. There is no skin cancer risk
stratification smartphone app that has received U.S. Food and
Drug Administration (FDA) approval to date [219]. A com-
bined reference standard comprising histology and clinical
follow-up of benign lesions would provide more reliable and
generalizable results. Smartphone algorithm-based apps for
skin cancer all include disclaimers that the results should
only be used as a guide and cannot replace health care
advice [219].

G. LIGHT AND SOUND INFORMATION FOR SKIN LESION
DIAGNOSIS

In recent years, some researches have emerged that use wave-
length or polarization of light and combine sound information
with skin lesion image information. In the field of biomedical
imaging and diagnostics, polarization speckle is a growing
fast. Wang ef al. [162] used DL to extract skin lesion infor-
mation from polarization speckle, and improved the per-
formance in classifying benign and malignant skin lesions
by 20%. Polonen et al. [220] showed that use of the spectral
and spatial domain will increase classification performance
of CNNs. Dascalu et al. [221] acquired dermoscopy images
by skin magnifier with polarized light with DL algorithm
and sonified in the first phase; in the second phase, they did
further analysis with a different DL. Whether it is spectral
information or sound information, it has opened up a new way
of thinking for skin lesion diagnosis. However, the existing
public datasets hardly provide skin lesion data with light or
sound information. So this is a challenge for most researchers.

H. FUTURE PROSPECTS

Deep learning shows great potential in the image-based diag-
nosis of skin cancer. However, there is still a significant
discrepancy between expectations and true relevance of DL
in current dermatological practice based on dermoscopy.
In numerous studies we have cited, e.g. [27], [33], [56],
[63], [105], [116], [123], [151], [163], [164], [202]. In this
study, computer algorithms were able to detect pigmented
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and non-pigmented neoplasms of the skin with high preci-
sion, comparable to dermatologists. The combination of the
physician’s assessment and Al has shown the best results.

Computer-based diagnostic systems are widely accepted
among patients and physicians. Nevertheless, they are still
not applicable in daily practice, as they have been tested
chiefly in experimental environments. Some cases involv-
ing less artificial conditions and a broader spectrum of
diagnoses have been reported where the CNN and most
dermatologists performed on the same level [149]; how-
ever, many digital diagnostic criteria that help Al to clas-
sify skin lesions remain unclear. This lack of transparency
still needs to be addressed. On the other hand, dermatol-
ogists are trained to integrate information from a range of
sources, rendering comparative studies that are solely based
on one single case image inadequate. Therefore, further
and different clinical studies on the use of Al-based assis-
tance systems are needed to prove the applicability of Al in
daily dermatologic practice. Indeed, the different CNN-based
approaches proposed in the literature should be revised and
compared, not only regarding ACC, but also considering
real possibilities to: create algorithms representing diverse
patient populations; ensure that algorithm output is ultimately
interpretable; prospectively validate algorithm performance;
preserve human—patient interaction where necessary, and
demonstrate validity in the eyes of regulatory bodies. In other
words, future research on the development of DL techniques
for dermoscopic application should take better account of the
main deontological, legislative, and economic requirements
involved in the complex clinical process of the skin cancer
diagnosis.

Indeed, the dermoscope to catch ELM images is classified
as a Medical Device whose commercialization and adoption
in European market should be in accordance with the Euro-
pean Union Medical Device Regulation (EU MDR) [222].
In detail, the dermoscope may be purchased only by medical
personnel and/or adopted by institution and enterprise for
research purpose. Thus, the adoption of dermatoscope by
the patients jointly with smartphone applications for instant
assessment of the skin cancer risk is actually and will con-
tinue to be allowed only in research projects and setting, but
not as a routine clinical scenario.

Moreover, according to EU MDR, the application software
itself for processing the dermoscopic images and evaluating
the skin cancer risk should be classified as Class II or III
Medical Device (because of the important consequences and
danger on the patient health status in the case of erroneous
diagnostic indications provided). Thus, the whole life-cycle
of the DL-based software system for dermoscopic analysis
and classification (also including the development, the clin-
ical validation and post-market surveillance) should address
the stringent requirements of extensive normative (such as the
Standard EN 62304:2006 about the software design, the ISO
Standard 14971:2019 for Medical Device Risk management,
the ISO Standard 13485:2016 about the Medical Device
Quality Management systems, the MDCG 2019-9 Guide
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for safety and clinical performance concerning the clinical
investigation) and evaluated by the Certification Body during
the CE mark certification process. The normative frame-
work seems to limit the actual possibility by Small Medium
Enterprises to introduce smartphone applications, whereas
the corresponding market may be more easily approached by
large companies already qualified as Medical Device Manu-
facturers for other SW systems and/or equipment.

On the basis of the legislative framework, according to the
authors’opinion, the future research efforts should be better
focused on the adoption of the DL-based software system
only by dermatologist, thus matching also the following
deontological features involved with the diagnosis of skin
cancers:

i. promotion of periodic visiting by the specialist whose
attention may be captured by skin lesions that do not appear
as suspicious for the unexpert patient and will not be ever
examined through smartphone application;

ii. improvements of psychological behavior against the
pathology by the patient affected by melanoma that may be
addressed on the correct diagnostic and successfully thera-
peutic pattern rather than be abruptly informed by an app on
the high oncological risk of the self-examined lesion.

According to the presented perspective, the main research
topic should be the development of DL-based systems able
to improve the diagnostic expertise of the dermatologist (not
only to provide support and second opinion for the examina-
tion of the single suspicious nevus). For the user the software
system should not appear as a black-box; rather, the classi-
fication results should be easily related to well-knowledge
diagnostic methods (such as ABCDE rules, 7-Point Check
List, and Menzie’score). As an example, the approach of the
Semantic Segmentation [223] based on DL (already success-
fully experimented in other applications such as the real-time
segmentation of road traffic video for the autonomous driv-
ing) could be investigated to provide an automatic system
able to recognize the atypical features within the dermo-
scopic images of suspicious lesions. Moreover, the metrics
themselves adopted to analyze the performance of the pro-
posed software systems should be revised for better show
the efficacy in the clinical setting end the new intended
aims. In detail, the differentiation among suspicious lesions
to be excided and other types of classified nevi should be
emphasized when the ROC curve is analyzed for the opti-
mal tuning of DL-software systems.Finally, the economic
impact supported by the clinical organizations in terms of
the savings for the number of excisions as well as the costs
associated with the erroneous diagnosis should be taken into
account during the performance evaluation of the developed
or systems.

VI. CONCLUSION

New techniques in machine learning, also known as ‘““deep
learning (DL),” were introduced around 2010. However,
if we consider the full future potential of automating repeti-
tive tasks; optimizing time-consuming tasks; augmenting
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limited medical resources; improving interobserver reliability
issues; and expanding the diagnostic toolbox of physicians,
then we can say that Al in dermatological health care is yet
in its infancy. Indeed, specific task-driven algorithms are only
beginning to be introduced. Compared to the predecessor
forms of computing, these new methods are dynamically
changing systems that improve with continuous data expo-
sure, and therefore performance is dependent on the quality
and generalizability of the training datasets.

Artificial intelligence in dermoscopy is not replacing spe-
cialists or placing decision making into the hands of non-
experts. Developments shortly will follow what is already
happening in radiology, where Al is proving to be useful for
triaging and improving workflow efficiency by helping to
prioritize tasks, which is the current direction for the most
significant research efforts.

We project that in the next 5 years, clinicians will become
increasingly involved in training and testing large-scale val-
idation as well as monitoring narrow Al in clinical trials.
At this point, CNNs have shown in very few cases that they
make physicians better at diagnosing skin cancer with respect
to available real-world clinical data. Only in the future, when
large, standardized training datasets and, above all, validation
with prospective clinical trials will be completed, will DL
truly improve dermatological workflow, for example by pro-
viding computer-aided triage (e.g., through scanning which
pigmented lesion might need prompt evaluation by a derma-
tologist) and supporting young professionals in classification
tasks.

APPENDIX

A supplementary appendix presents a list of review papers
with impact factors over 2, (see table 6, S is segmentation,
C is classification).
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