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ABSTRACT Accurate drug-target interactions (DTIs) prediction can significantly speed up the process of
new drug design and development. Recently, many matrix factorization methods have been used to predict
DTIs. However, most of them use heuristic and iterative strategies, and their convergence and performance
can not be guaranteed. In order to accurately predict DTIs, we propose a new algorithm, NNDSVD-GRMF,
our method is based on graph dual regularization non-negative matrix factorization (GDNMF) and non-
negative double singular value decomposition (NNDSVD), which considers both the initialization stage
of the non-negative matrix factorization and the structural information of the data and features. At the
same time, in order to improve the adaptability of the algorithm, the extension of the NNDSVD-GRMF
(NNDSVD-WGRMF) is also proposed. Extensive experimental results show that our methods have better
performance than other state-of-the-art methods. In the case studies, among the 10 highest-scoring drugs
predicted to interact with androgen receptor, 9 drugs have been validated, and among the 10 highest-scoring
target proteins predicted to be targeted by the drug nicotine bitartrate, 9 targets have been validated.

INDEX TERMS Drug, graph dual regularization, non-negative double singular value decomposition, target.

I. INTRODUCTION
Drug-target interaction (DTI) identification plays important
role in the process of new drug discovery and development.
However, all wet experiments to identify DTIs require expen-
sive equipments and costly chemical reagents, and their pro-
cess is time consuming [1]. With the rapid accumulation of
related information of drugs, target proteins and validated
DTIs, more and more computational methods have been pro-
posed to predict new DTIs. Based on 3D structures of pro-
teins (targets), Cheng et al. [2] used docking simulations to
predict compound-protein interactions. Campillos et al. [3]
introduced a method using drug side-effect similarity to infer
the possibility that a drug interacts with a target. The above
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two methods only apply to drugs with known side-effects
or proteins with known 3D structure, and could not perform
large scale screening of potential DTIs.

Recently a variety of approaches have been proposed based
on the known DTI network, drug (or compound) chemi-
cal structures, and target protein sequences. For example,
Yamanishi et al. [4] used a DTI bipartite graph to represent
the known DTI network, and proposed a bipartite graph
learning method to predict DTIs. They constructed a simi-
larity matrix according to the shortest distances between all
drugs and targets in the the DTI bipartite graph, and used
the eigenvalue decomposition of the matrix to embed all
drugs and targets into a unified feature space. Two kernel
regression models were learned to map drugs and targets to
the unified space from their chemical structure space and
their sequence space, respectively. The inner product of the
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feature vectors in the unified space of a drug and a target was
used to measure their interaction possibility. Based on the
same data, Bleakley and Yamanishi [5] used bipartite local
models (BLM) to predict target proteins for a given drug, and
the drugs targeting a given protein. Therefore they obtained
two predictions for each drug-protein pair, which were then
combined into a prediction score.

Using the interaction profiles of targets (and drugs) from
the known DTI network, Laarhoven et al. [6] introduced
a method called the Gaussian Interaction Profile (GIP) ker-
nel to calculate the similarities between targets (and drugs),
and used Regularized Least Squares (RLS) to predict DTIs.
Perlman et al. [7] integrated multiple types of information
including the chemical structures, side effects, ATC codes
and related gene expression profiles of drugs, and the
sequences and PPI network of targets, then used logistic
regression to score DTIs. Mei et al. [8] integrated neighbor-
based interaction-profile inferring into BLM and proposed a
method BLM-NII to make DTI predictions. Based on GIP,
Laarhoven and Marchiori [9] proposed a weighted nearest
neighbor method to predict DTIs. With the rapid devel-
opment of machine learning, machine learning based DTI
prediction methods have also been proposed. For example,
Wang and Zeng [10] used restricted Boltzmann machine to
model multiple types of DTIs. Lan et al. [11] set unknown
interactions as unlabeled samples, and used Random walk
with restarts, K nearest neighbor and heat kernel diffu-
sion to divide them into reliable negative samples(RN) and
likely negative samples(LN). Based on the positive samples
(known DTIs), RN and LN, a weighted support vec-
tor machine was chosen as classifier to predict DTIs.
Rifaioglu et al. proposed DEEPScreen [12], which used a
deep convolutional neural network to learn drug features from
their 2-D structural images and to predict large-scale DTIs.

In bioinformatics, matrix factorization method has a wide
range of applications, such as clustering and feature selec-
tion [13], lncRNA-disease associations prediction [14], tumor
classification [15] and marker extraction [16]. In DTI pre-
diction, the known DTI network is usually represented by
a matrix. In most matrix factorization based methods, the
interaction matrix is decomposed into two matrices of low
ranks which represent the interaction between a drug and
a target as the inner product of their feature vectors. For
example, Gönen [17] proposed a kernelized Bayesian matrix
factorization method to predict DTIs. Zheng et al. [18] pro-
posed a DTI prediction model named Multiple Similarities
CollaborativeMatrix Factorization (MSCMF), which used an
alternating least squares algorithm to decompose the inter-
action matrix into two low-rank feature factor matrices that
are consistent with the similarity matrices of drugs and tar-
gets. Liu et al. [19] combined logistic matrix decomposition
with neighborhood regularization to predict DTIs. Bolgár and
Antal [20] proposed a variational Bayesian multiple kernel
logistic matrix factorization method using Laplacian regular-
ization, multiple kernel learning, and a variational Bayesian
inference process to infer drug-target interaction possibilties.

Ezzat et al. [21] used graph regularization into matrix fac-
torization to learn drug-target interaction models. Based on
L2,1 norm graph regularization, Cui et al. [22] used matrix
factorization to predict DTIs. Liu et al. [23] used a graph
convolutional network (GCN) followed by a random walk
with restart (RWR) to obtain features of the drugs and targets
from the related heterozygous data, and a matrix factorization
model (DistMult) to predict DTIs. Gao et al. [24] proposed a
collaborative matrix factorization method with soft regular-
ization to predict DTIs. Although many methods have been
proposed for DTIs prediction, the prediction performances
are far from satisfactory. The key issue of DTIs prediction is
how to efficiently use the existing validated DTIs and exploit
the useful information hidden among drugs or targets.

Being simple and practical, the singular value decompo-
sition (SVD) algorithm is usually used to provide an ini-
tial solution to matrix factorization, however the negative
values in the component matrices make the results hard to
explain. To provide better and explainable initial component
matrices for matrix factorization, Boutsidis and Gallopou-
los [25] proposed an algorithm non-negative double singu-
lar value decomposition (NNDSVD), which can enhance
the initialization stage of nonnegative matrix factorization.
In DTI prediction, the high-dimensional data are in fact sam-
pled from a nonlinear low-dimensional manifold embedded
in the high-dimensional space, and according to [26], the
model learning performance can be greatly improved if the
intrinsic geometrical structure of the manifold have been
taken into account. To capture the structural information
from both data and the features, Shang et al. [27] proposed
a graph dual regularization non-negative matrix factoriza-
tion method (GDMF) for clustering, and their experimental
results showed GDMF had better clustering performance and
more discriminating power than the general non-negative
matrix factorization and graph regularization non-negative
matrix factorization. In the paper, we propose a DTI pre-
diction method called NNDSVD-GRMF based on the graph
dual regularized non-negative matrix factorization and the
non-negative double singular value decomposition. At first
a DTI matrix, a drug similarity matrix and a target similarity
matrix are constructed based on known DTIs, drug chemical
structures and target sequences. Then DTI prediction is trans-
formed into non-negative factorization of the DTImatrix with
graph dual regularization terms. The graph dual regulariza-
tion terms are used to integrate the information from the drug
similarity matrix and the target similarity matrix, in order
to take the intrinsic geometrical structures of the related
manifolds into account. NNDSVD-GRMF can be used to
predict novel drug-target interactions for drugs without any
known targeted proteins and for proteins without any known
drugs targeting them. To improve the adaptability, a weighted
extension (i.e. NNDSVD-WGRMF) of theNNDSVD-GRMF
is also proposed. Experimental results show that our methods
have better performance than other state-of-the-art methods
on four datasets under two different experimental scenarios.
In case studies involving the target androgen receptor and
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TABLE 1. The information of the gold standard datasets.

the drug nicotine bitartrate, among the 10 highest-scoring
drugs predicted to interact with androgen receptor, 9 drugs
have been validated by wet experiments, and among the
10 highest-scoring target proteins predicted to be targeted by
the drug nicotine bitartrate, 9 targets have been validated by
wet experiments.

II. MATERIALS
We used the same data as in [4]. The known DTI data, the
amino acid sequences of protein targets and the chemical
structure data of drugs were downloaded from KEGG [28].
Protein targets include the following four classes: nuclear
receptor (NR), G protein-coupled receptor (GPCR), ion chan-
nel (IC) and enzyme (E). The validated DTIs were con-
sidered the gold standard data. We used the same known
DTI data as in [4], which have 4 datasets whose names are
NR, GPCR, IC and E according to their target classes. The
information of the 4 datasets are shown in Table 1. In the NR
dataset, there are 90 known interactions between 54 drugs
and 26 nuclear receptors; in the GPCR dataset, there are
635 known interactions between 223 drugs and 95 G protein-
coupled receptors; in the IC dataset, there are 1476 known
interactions between 210 drugs and 204 ion channels; and
in the E dataset, there are 2926 known interactions between
445 drugs and 664 enzymes. The known DTIs were denoted
as a n×mmatrix X , where n and m are the numbers of drugs
and targets, respectively. If the ith drug is validated to interact
with the jth target, Xij = 1; otherwise, Xij = 0.

The structural similarities between drugs were calculated
from the chemical structure data using SIMCOMP [29]
according to the size of the common substructures between
two drugs. The similarities between drugs were represented
by a n× n matrix Sd . The sequence similarities between two
target proteins were computed from the sequence data using
the normalized Smith-Waterman alignment score [30]. Let
SW (p1, p2) be the original Smith-Waterman alignment score
of p1 and p2. The similarity between p1 and p2 s(p1, p2) =

SW (p1,p2)√
SW (p1,p1)

√
SW (p2,p2)

. The similarities between targets were
represented by a m× m matrix S t .

III. METHODS
A. NON-NEGATIVE MATRIX FACTORIZATION
For a n × m non-negative matrix X ∈ Rn×m

+ , the general
form of the non-negative matrix factorization (NMF) of X is
to decompose X into two low rank nonnegative component
matrices, say A ∈ Rn×k

+ and B ∈ Rm×k
+ , such that their

product well approximates X , i.e. X ≈ ABT . The component
matrices A and B are also called the latent feature matrices of
X . When the square of the Frobenius norm of the difference
between X and ABT is used as the cost function, NMF of X

is to solve the following optimization problem:

min
∥∥∥Xn×m − An×kBTm×k∥∥∥2F s.t. A,B ≥ 0. (1)

The most commonly used method to obtain a local optimal
solution to the problem is the iterative process proposed
by Lee and Seung [31] which uses the following update
formulas:

Aij ← Aij
(XB)ij

(ABTB)ij
,

Bij ← Bij
(XTA)ij
(BATA)ij

. (2)

To avoid overfitting, the L2 regular term (||A||2F + ||B||
2
F )

is added into the cost function of NMF, and we get the L2
regularized NMF:

min
∥∥∥X − ABT∥∥∥2

F
+ λl(‖A‖2F + ‖B‖

2
F )

s.t. A,B ≥ 0. (3)

B. GRAPH REGULARIZED NON-NEGATIVE MATRIX
FACTORIZATION
Each column of X can be considered as a data point in a
n dimension space. In real applications, k is usually much
smaller than n and m, and the NMF of X tries to find a low
dimension space such that the data points in X could be well
represented as linear combinations of k base vectors. Based
on the assumption that the two data points close in the latent
geometry space will be close in the low dimension spaces,
Cai et. al. [32] proposed a graph regularized non-negative
matrix factorization (GRMF) by adding a graph regularized
term. The cost function of GRMF is as follows:

Ogr =
∥∥∥X − ABT∥∥∥2

F
+ λTr(BT (D−W )B)

s.t. A,B ≥ 0, (4)

where Tr(. ) is the trace of a matrix, W is the weight matrix
representing a neighbor graph on the data points, and D is
a diagonal matrix that Djj =

∑
l Wlj. The matrix D−W

is called graph Laplacian and denoted by L in the follow-
ing. Furthermore, by adding another graph regularizer of
the feature space, Shang et. al. [27] proposed a graph dual
regularization non-negative matrix factorization (GDNMF),
whose cost function is:

Ogd =
∥∥∥X − ABT∥∥∥2

F
+ λb Tr(BTLbB)+ λa Tr(ATLaA)

s.t. A,B ≥ 0. (5)

C. DRUG-TARGET INTERACTION MATRIX GRAPH
REGULARIZED FACTORIZATION
For each drug i, we can select p most similar drugs out from
other n− 1 drugs as its p-nearest neighbors according to the
similarity matrix Sd . The p-nearest neighbor set of drug i
is denoted by N d

p (i). Similarly, we can obtain the p-nearest

neighbor set N t
p(j) of target j according to the similarity
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matrix S t . We construct a p-nearest neighbor drug graph
whose adjacent matrix N d is defined as follows.

N d
ij =


1, j ∈ N d

p (i) and i ∈ N d
p (j),

0, j /∈ N d
p (i) and i /∈ N d

p (j),
0.5, otherwise.

(6)

N d is used to make the similarity matrix Sd sparse by using
Equation (7).

Ŝdij = N d
ij S

d
ij ,∀i, j. (7)

The graph Laplacian of Ŝd is defined asLd = Dd−Ŝd , where
Dd is a diagonal matrix whose diagonal elementDdii =

∑
r
Ŝdir .

Similarly, we construct a p-nearest neighbor target graph
whose adjacent matrix is N t according to Equation (8).

N t
ij =


1, j ∈ N t

p(i) and i ∈ N t
p(j),

0, j /∈ N t
p(i) and i /∈ N t

p(j),
0.5, otherwise.

(8)

Using N t , we make a sparse target similarity matrix Ŝ t from
S t according to Equation (9).

Ŝ tij = N t
ijS

t
ij,∀i, j. (9)

The graph Laplacian of Ŝ t is Lt = Dt − Ŝ t , where Dt is a
diagonal matrix whose diagonal element Dtjj =

∑
q
Ŝ tjq.

By adding the L2 regular term (||A||2F + ||B||
2
F ) and

two graph regular terms Tr(ATLdA) and Tr(BTLtB), the
non-negative matrix factorization of the drug-target interac-
tion matrix X is formulated as the optimization problem in
Equation (10).

min
∥∥∥X − ABT∥∥∥2

F
+ λl(‖A‖2F + ‖B‖

2
F )

+ λd Tr(ATLdA)+ λt Tr(BTLtB),
s.t. A,B ≥ 0. (10)

Since the normalized graph Laplacian performs better in
many actual applications, we furthermore normalize Ld and
Lt as Equations (11) and (12), respectively.

L̃d = (Dd )−1/2Ld (Dd )−1/2, (11)

L̃t = (Dt )−1/2Ld (Dt )−1/2. (12)

Finally, the drug-target interaction prediction problem is
transformed into the non-negative matrix factorization of X
with the L2 regular term and the dual normalized graph
regularization terms, which is formulated as Equation (13).
The inner product of the ith row of A and the jth row of B is
used to predict the interaction between the ith drug and the
jth target.

min
∥∥∥X − ABT∥∥∥2

F
+ λl(‖A‖2F + ‖B‖

2
F )

+ λd Tr(AT L̃dA)+ λt Tr(BT L̃tB),
s.t. A,B ≥ 0. (13)

TABLE 2. NNDSVD.

D. ALGORITHM
To solve the problem in Equation (13), we design
an algorithm NNDSVD-GRMF. NNDSVD-GRMF uses
NNDSVD [25] to get the initial values of A and B, and uses
an iterative process to update A and B until they converge.
The iterative process uses Equation (14) and Equation (15) to
update A and B.

A = (XB− λd L̃dA)(BTB+ λlIk )−1, (14)

B = (XTA− λt L̃tB)(ATA+ λlIk )−1. (15)

Since the iterative process can only reach a local opti-
mal solution, choosing good initial values for A and B will
enhance the possibility that the process reach a global optimal
solution. We use NNDSVD to calculate the initial values of
A and B, which could lead to rapid convergence of many
NMF algorithms [25]. NNDSVD is based on the SVD of
X : X = U6V T , where 6 is a diagonal matrix whose
diagonal entry at the ith row and the ith column is the ith
largest singular value σi of X , and the ith columns ui and
vi of U and V are the left and right singular vectors cor-
responding to σi, respectively. For a n × m matrix X with
rank k , according to the property of SVD, X equals to the
sum of k leading singular factors, i.e. X =

∑
i=1,..,k σiuiv

T
i .

Let Ci = σiuivTi , C
+

i and C−i be the nonnegative part and
negative part of Ci, respectively. Ci = C+i − C−i , and
C+i = σi(u

+

i v
+

i + u−i v
−

i ). If ||u
+

i ||||v
+

i || > ||u
−

i ||||v
−

i ||, the

normalized item
√
σi||u

+

i ||||v
+

i ||(u
+

i /||u
+

i ||) is used to initial

the i column of A,
√
σi||u

+

i ||||v
+

i ||(v
+

i /||v
+

i ||) is used to initial

the i column of B. Otherwise
√
σi||u

−

i ||||v
−

i ||(u
−

i /||u
−

i ||) and√
σi||u

−

i ||||v
−

i ||(v
−

i /||v
−

i ||) are used. Please see Table 2 for the

details.

E. WEIGHTED GRAPH-REGULARIZED MATRIX
FACTORIZATION
In order to get some latent features of A and B, weight
matrix W is added to the graph regularization matrix
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FIGURE 1. A schematic of NNDSVD-GRMF. (a) NNDSVD-GRMF uses
known drug-target interaction information to construct adjacency matrix
X ; (b) Graph regularized terms are constructed according to similarity
matrices of drugs and targets; (c) Matrix X is factorized into matrices A
and B using NNDSVD and alternating least squares; (d) NNDSVD-GRMF
obtains interaction scores between drugs and targets.

factorization. The form is

min
∥∥∥W � (X − ABT )

∥∥∥2
F
+ λl(‖A‖2F + ‖B‖

2
F )

+ λdTr(AT L̃dA)+ λtTr(BT L̃tB),
(16)

where � represents Hadamard product. Weight matrix W ∈
Rn×m
+ , if X has a known drug-target interaction Wij = 1,

otherwise, Wij = 0, (i = 1, · · · , n, j = 1, · · · ,m). Using
alternating least squares as with NNDSVD-GRMF, the solu-
tion is obtained as

Aik =
(diag(W )XB+ λd L̃dA)ik
(diag(W )BTB+ λlIk )kk

, (17)

Bjk =
(diag(W )XTA+ λt L̃tB)jk
(diag(W )ATA+ λlIk )kk

, (18)

where I is identity matrix and diag is diagonal matrix.
A schematic of NNDSVD-GRMF is shown in Fig. 1.

IV. RESULTS
In this section, we analyze the performance of NNDSVD-
GRMF and NNDSVD-WGRMF in the following three
aspects. First, we analyze the performance of NNDSVD-
GRMF and NNDSVD-WGRMF under the two important
evaluation indicators through 10-fold cross-validation. Sec-
ond, we compare the performance of NNDSVD-GRMF and
NNDSVD-WGRMF in the case of parameter changes. Third,
we evaluate the reliability of NNDSVD-GRMF using case
studies.

A. CROSS VALIDATION EXPERIMENTS
To evaluate the performance of DTI prediction methods,
5 repetitions of 10-fold cross-validation is performed in the
experiment. In each repetition of 10-fold cross-validation, the
dataset is divided into ten parts, 1 part is used for validation,
and the remaining 9 parts are used for training, and this
procedure is repeated 10 times. The final result is obtained by
averaging the 5 repetitions of 10-fold cross-validation results.
In order to evaluate the quality of the prediction results, the
area under the receiver operating characteristic curve (AUC)
and area under the precision-recall curve (AUPR) are used
as the main evaluation indicators. In the table, the best AUC
and AUPR under each data set are bolded and the standard
deviation derived from the experiment is shown in parenthe-
ses. At the same time, receiver operating characteristic (ROC)

curve and precision recall (PR) curve for each method are
plotted.

To fully test the validity of the method, the cross-validation
experiments are conducted under the following two scenar-
ios [33].

1) CVd: the complete rows in the DTI matrix X are left
out for the testing set. It tests the ability to predict
interactions for new drugs,

2) CVt: the complete columns in the DTI matrix X are
left out for the testing set. It tests the ability to predict
interactions for new targets.

B. COMPARISONS WITH THE STATE-OF-THE-ART
METHODS
To demonstrate the effectiveness of NNDSVD-GRMF
and NNDSVD-WGRMF in predicting DTIs, we com-
pare NNDSVD-GRMF and NNDSVD-WGRMF with the
following the seven methods, namely BLM-NII [8],
WKNKN [9], RLS-WNN [6], GRMF [21], WGRMF,
CMF [18], SRCMF [24], where WGRMF is the weighted
form of GRMF. In fact, BlM-NII, WKNKN and RLS-WNN
use the neighborhood interactions for the prediction of DTIs,
while the rest of the methods are constructed based on matrix
factorization.

1) PARAMETER SETTINGS
In terms of parameter settings, we refer to the original
literature of GRMF, WGRMF, CMF and SRCMF, some
parameters are automated chosen using grid search [34]
based on the AUPR value. The best parameters under each
fold are usually different. Based on previous research [21],
for GRMF, WGRMF, CMF, SRCMF, NNDSVD-GRMF
and NNDSVD-WGRMF, the regularization parameters
λl was selected from {2−2, 2−1, 20, 21}. For GRMF,
WGRMF, NNDSVD-GRMF and NNDSVD-WGRMF, λd
and λt were selected from {0, 10−4, 10−3, 10−2, 10−1}.
For CMF, SRCMF, λd and λt were selected from
{2−3, 10−2, 2−1, 20, 21, 21, 22, 23, 24, 25}. For NNDSVD-
GRMF andNNDSVD-WGRMF, the ranks k ofmatrices were
26 and 49 under the NR and GPCR datasets, respectively.
In IC and E datasets, k was selected from {50, 100}. For
GRMF, WGRMF, CMF and SRCMF, the parameter k was
selected from {50, 100}. In BLM-NII, the parameter α was
set to 0.5. In the WKNKN, the parameters K = 5, η = 0.7.

2) PREDICTION RESULTS UNDER CVd
Table 3 and Table 4 list the AUC and AUPR values of
each algorithm in the CVd scenario, respectively. On the
NR dataset, the NNDSVD-WGRMF method has better per-
formance other state-of-the-art methods. On the IC dataset,
the AUPR value of NNDSVD-WGRMF has better perfor-
mance other methods. Importantly, it can be found that the
prediction performance is improved with the addition of the
weight W . Fig. 2 and Fig. 4 show the histograms of AUC
and AUPR with error bars for each algorithm under the CVd
scenario, respectively. Fig. 3 and Fig. 5 show ROC curves and
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FIGURE 2. In the CVd scenario, the comparison of the AUC values of
different methods in the four datasets.

PR curves of different algorithms on the four datasets under
CVt, respectively.

3) PREDICTION RESULTS UNDER CVt
The AUC and AUPR values for each algorithm in the CVt
scenario are given in Table 5 and Table 6, respectively. From
Table 5, it can be found that the AUC of our method has bet-
ter performance than other state-of-the-art methods on NR,
GPCR, IC datasets. From Table 6, we can find that the AUPR
values of NNDSVD-WGRMF outperform the other methods
on NR and IC datasets. Fig. 6 and Fig. 8 show the histograms
of AUC and AUPR with error bars for each algorithm under
the CVt scenario, respectively. Fig. 7 and Fig. 9 show ROC
curves and PR curves of different algorithms on the four
datasets under CVt, respectively.

FIGURE 3. ROC curves for different methods are plotted together under
CVd on NR dataset, GPCR dataset, IC dataset, E dataset, respectively.

C. SENSITIVITY ANALYSIS
The values of the parameters λd , λt and λl are obtained using
grid search. In cross-validation, the training set for each fold
is different, which complicates the sensitivity analysis of the
parameters.

To investigate the effect of changes in parameters λd , λt
and λl on the prediction results, we set λd = 0, λt = 0

FIGURE 4. In the CVd scenario, the comparison of the AUPR values of
different methods in the four datasets.

FIGURE 5. PR curves for different methods are plotted together under
CVd on NR dataset, GPCR dataset, IC dataset, E dataset, respectively.

FIGURE 6. In the CVt scenario, the comparison of the AUC values of
different methods in the four datasets.

and λl = 0 under CVd and CVt, respectively. The resu-
lts are shown in Table 7-10. The results show that
NNDSVD-GRMF performs best when λd , λt , and λl are
not 0. In the CVd scenario, compared to the change of λt = 0,
the change of λd = 0 and λl = 0 has a greater impact on
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TABLE 3. AUC values of different algorithms in CVd scenario.

TABLE 4. AUPR values of different algorithms in CVd scenario.

TABLE 5. AUC values of different algorithms in CVt scenario.

FIGURE 7. ROC curves for different methods are plotted together under
CVt on NR dataset, GPCR dataset, IC dataset, E dataset, respectively.

the AUC and AUPR values. In the CVt scenario, compared
to the change of λd = 0, the change of λt = 0 and
λl = 0 has a greater impact on the AUC and AUPR values.
When λd , λt , λl is other parameters, the performance of
NNDSVD-GRMF are shown in Fig. 10 and Fig. 11 under
CVd and CVt, respectively. Therefore, we can conclude that
graph dual regularization and L2 regularization can improve

FIGURE 8. In the CVt scenario, the comparison of the AUPR values of
different methods in the four datasets.

the learning ability of the model, capture more structural
information of the graph, and improve the prediction effect.

D. CASE STUDIES
To further demonstrate the effectiveness of NNDSVD-GRMF
for predicting DTI, we perform two different types of
case studies. In the first case study, we select the target
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TABLE 6. AUPR values of different algorithms in CVt scenario.

FIGURE 9. PR curves for different methods are plotted together under CVt
on NR dataset, GPCR dataset, IC dataset, E dataset, respectively.

TABLE 7. AUC results for NNDSVD-GRMF variants under CVd.

TABLE 8. AUPR results for NNDSVD-GRMF variants under CVd.

TABLE 9. AUC results for NNDSVD-GRMF variants under CVt.

(Androgen receptor) in the NR dataset as the object of the
case study. The androgen receptor, as a steroid receptor,
not only achieves hormonal regulation of target cells, but it
has also been shown to play a role in the proliferation of
androgen-refractory cells and in androgen-refractory prostate
cancer [35]. For androgen receptors in the NR dataset, andro-
gen receptor interactions with drugs on the NR dataset are

FIGURE 10. Under CVd, (a), (b) and (c) are the changes of AUC of different
parameters λd , λt and λl , respectively; (d), (e) and (f) are the changes of
AUPR of different parameter λd , λt and λl , respectively.

TABLE 10. AUPR results for NNDSVD-GRMF variants under CVt.

used as the training dataset for NNDSVD-GRMF, and can-
didate drugs are ranked according to the prediction scores
of NNDSVD-GRMF. Then, we select drugs with the top 10
scores and validate them. It can be found that 9 drugs are
accurately predicted. The detailed results of the predictions
are shown in Table 11.

In the second type of case study, we aim to assess whether
NNDSVD-GRMF could be applied to drugs without known
interaction targets. We select drug (Nicotine bitartrate) from
the IC dataset as the subject of the case study. Nicotine
bitartrate, a drug that acts on nicotinic receptors, has been
shown to reduce falls in Parkinson’s patients [36]. In the case
study, the interactions of nicotine bitartrate with the target
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FIGURE 11. Under CVt, (a), (b) and (c) are the changes of AUC of different
parameters λd , λt and λl , respectively; (d), (e) and (f) are the changes of
AUPR of different parameter λd , λt and λl , respectively.

TABLE 11. Predicted drugs for Androgen receptor in the NR dataset.

TABLE 12. Predicted targets for Nicotine bitartrate in the IC dataset.

obtained from the IC dataset are used as a training dataset for
NNDSVD-GRMF, and candidate targets are ranked accord-
ing to prediction scores. Then, we select targets with the
top 10 scores and validate them. It can be found that 9 targets
are accurately predicted. The detailed results of the predic-
tions are shown in Table 12.

V. CONCLUSION
In order to accurately predict DTIs, we proposed new
methods NNDSVD-GRMF based on graph dual regular-
ized matrix factorization. This method can accurately obtain
the structural information on the drug and target manifold.
In the process of solving the objective function, we use non-
negative double singular value decomposition to enhance the
initial stage of non-negative matrix factorization. In order to
improve adaptability, theweighted form ofNNDSVD-GRMF
(i.e. NNDSVD-WGRMF) has also been proposed. In the
experiment, our method has better performance compared
with other state-of-the-art methods. At the same time, our
method also has a better performance for certain specific
targets and drug predictions.

The better performance of our method may be attributed to
the following factors. First of all, NNDSVD-GRMF not only
adds graph dual regularization, but also considers the initial
stage of matrix factorization. The graph dual regularization
enables the model to obtain more information about the
data structure. The use of non-negative double singular value
decomposition in the initial stage of matrix factorization not
only affects the convergence of matrix factorization, but also
improves the quality of the solution. Second, as a weighted
extension of NNDSVD-GRMF, NNDSVD-WGRMF has bet-
ter adaptability to datasets. Third, our method may be more
suitable for solving the problem of DTIs prediction.

As future work, other multi-manifold regularization meth-
ods and network embedding technologies may be used to
further improve the prediction performance. For example,
in multi-manifold regularization [37], the manifold and coef-
ficient matrix can be combined with multi-manifold regular-
ization to maintain the local geometry of drug and target.
When we reduce the dimensionality, the network embedding
can preserve the structure of the network [38].
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