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ABSTRACT Cellular operators deploy 4G License Assisted Access (LAA) and 5GNR-U base stations in the
unlicensed spectrum to enhance overall network capacity. This work highlights a unique phenomenon related
to Physical Cell Id (PCI) that is observed in public LAA operator deployments. Notably, the licensed and
unlicensed carriers of a device may have the same PCI or different PCIs. The phenomenon is triggered by the
combined effect of unlicensed deployment architectures and cell selection mechanisms. Consequently, the
phenomenon will intensify in the 5G NR-U, whose public deployment will soon begin. Unfortunately,
the impact of this phenomenon on coexistence network performance is unexplored. It is also desirable to
accurately identify the PCI scenarios at the device for improved cell selection and network performance.
However, the data imbalance makes the classification problem challenging. This work addresses these
problems through the following approach. Operator data from three LAA cellular providers is gathered
and analyzed using machine learning algorithms. The impact of the phenomenon on LTE, LAA, and Wi-Fi
components is demonstrated in three steps: First, the variation in network performance prediction accuracy in
the PCI scenarios is examined. Second, the efficacy of numerosity reduction techniques used in data-driven
cell selection is evaluated in both PCI scenarios. The third step entails a comparison of operator data analysis
with network measurements. On-site experiments are conducted at the same PCI and different PCI sites to
study differences in real-time network performance. A controlled LTE-WiFi coexistence environment is
created and multiple traffic categories are considered. Finally, a class-weight-based solution is proposed for
PCI scenario identification. F-score of 0.75 and AUC-ROC of 0.84 is achieved for LAA, with a minimalist
feature set consisting of SINR and Throughput.

INDEX TERMS Unlicensed networks, cell selection, machine learning, imbalanced classification, LAA,
NR-U, data analysis, network measurements.

I. INTRODUCTION
The increasing demand for mobile data has led to the uti-
lization of unlicensed spectrum and the adoption of new
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cellular technologies for fair coexistence with Wi-Fi. Almost
500 MHz spectrum [1] is now available in the 5 GHz band for
unlicensed operation. There has also been a rapid standardiza-
tion of unlicensed coexistence cellular standards. A success-
ful example is the Long Term Evolution-Licensed Assisted
Access (LTE-LAA), prescribed in the 3GPP release 13 as
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an enhancement of LTE, to facilitate cellular operation in
the 5GHz band. As defined by 3GPP, ‘‘Carrier aggregation
with at least one Secondary Cell (Scell) operating in the unli-
censed spectrum is referred to as Licensed-Assisted Access
(LAA)’’ [2].

LTE-LAA deployments proliferated rapidly around the
world, with 38 operators offering or planning to deploy
LAA services in 21 countries [3]. Buoyed by the quick
adoption and success of LAA coexistence deployments, 5G
New Radio Unlicensed (NR-U) has been introduced as an
evolutionary enhancement of LTE-LAA, under the 3GPP
release 16 specifications. Furthermore, the Federal Commu-
nications Commission and the European Commission have
both proposed rules for unlicensed coexistence in the 6 GHz
(5925 MHz-7125 MHz) band for NR-U operation [4], [5].

The improved network performance offered by LTE-LAA
depends on efficient cell selection by its Licensed and
Unlicensed carrier components. Being a novel coexistence
framework, LTE-LAA is characteristically different from tra-
ditional LTE heterogeneous networks (HetNets) in terms of
deployment architecture, backhaul connectivity, and impact
of external co-channel interference from Wi-Fi transmis-
sions [6], [7]. Therefore, the cell selection mechanisms
employed by cellular operators in LTE HetNets based on
the signal-to-interference plus noise ratio (SINR) and trans-
mission power are not suitable for LTE-LAA deployments.
Although solutions for LTE HetNets/LTE-LAA cell asso-
ciation have been proposed, they are based on simulation
or validated on network prototypes [8], [9]. More recently,
a comprehensive analysis of the impact of cell selection on the
performance of the LTE-LAA network and its Licensed and
Unlicensed components has been performed using real-world
LAA operator data [10], [11]. In addition, cell quality metrics
derived from operator data have been proposed to improve the
existing LAA cell selection mechanisms [10], [11].

FIGURE 1. Coexistence PCI scenarios - A new phenomenon.

Despite the attention that LTE-LAA has received from
industry and academia, a peculiar aspect of the current LAA
deployment architecture is overlooked in the LAA literature.
Cellular providers aim to minimize feedback delay from user
equipment (UE) and carrier aggregation (dual connectivity),

while planning coexistence deployments. Hence, macro and
small cells are usually placed in close proximity, and may
often be co-located on the same physical structure, such as
a street-lamp/electricity pole. Thus, the LTE (Licensed) and
LAA (Unlicensed) components of the network may share
the same Physical Cell ID (PCI). But operator data reveals
that the Licensed and Unlicensed carries of a UE may also
be camped on different cells or cells with different physical
locations. This creates a different PCI scenario, as shown in
Figure 1. The existence of these PCI scenarios, viz., ‘‘Same
PCI’’ and ‘‘Different PCI,’’ is a novel phenomenon that is
unique to LTE-WiFi coexistence environment.

The two PCI scenarios differ in several respects, espe-
cially network performance. While LAA supports only Car-
rier Aggregation, NR-U will also support Dual Connectivity
and Standalone unlicensed modes. Thus, this phenomenon
is bound to intensify in NR-U deployments with respect to
the frequency of occurrence and the multitude of PCI scenar-
ios. Moreover, the amount of spectrum available at 6 GHz
is higher compared to 5 GHz, and a higher rate of carrier
aggregation per UE is possible in the 5G NR-U system. Con-
sequently, the impact of unlicensed PCI scenarios in 5G NR-
U will also be much greater than in LAA. Thus, their analysis
is important not only from the perspective of optimizing
existing LAA performance but also for the upcoming NR-U
deployments.

II. CHALLENGES AND CONTRIBUTIONS
From aRadio ResourceManagement (RRM) perspective, it is
pertinent to study how the performance of the coexistence
system varies when the Licensed and Unlicensed network
components are attached to same or different PCIs.

A. RESEARCH PROBLEMS IN CELL SELECTION
Thus, cellular operator data needs to be analyzed to study the
frequency of occurrence of the two scenarios and the distri-
bution of important network variables in them. Data analysis
is necessary to understand how the relationships between
network variables differ in the two scenarios. More impor-
tantly, the variation in network performance and the ability
to accurately predict expected capacity is of great interest.
These tasks can typically be performed through machine
learning (ML) algorithms. The PCI scenarios should also
be investigated for other aspects of difference they cause in
the network environment. The performance of data reduction
mechanisms that are often used to help expedite data-driven
cell selection by the cellular operator is one such example.

Additionally, differences in network performance should
also be investigated through on-site measurements, i.e.,
by monitoring the LTE, LAA, and Wi-Fi networks in the two
scenarios. Network performance may also vary depending
on the type of traffic requested by the UE, QoS constraints,
and interference from coexisting Wi-Fi access points (APs)
in the unlicensed spectrum. The effect of PCI scenarios on
network performance ought to be validated through real-time
experiments, on both the cellular (Licensed and Unlicensed)
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FIGURE 2. PCI allocation and cell selection process in LTE-A/LAA.

and Wi-Fi side. It is relevant to see how Wi-Fi performance
varies when coexisting with same PCI and different PCI
LAA configurations. Moreover, on-site experiments should
ideally consider multiple types of traffic for a comprehensive
evaluation.

Equally important is the awareness of the PCI scenarios
at the UE, as they are intricately associated with the cell
selection decisions of the Licensed and Unlicensed compo-
nents. Having an awareness of the PCI scenario will help an
end-user device make informed cell selection decisions. The
first step in that direction would be to accurately identify and
differentiate between the two coexistence scenarios with a
minimal feature vector. This is a challenging problem, given
the inherent imbalance in the occurrence of the two scenarios
in current LAA deployments.

These challenges must be addressed, as LAA deployments
serve as a precursor to future NR-U deployments, where a
lot more complex configurations are possible. For example,
it is possible that NR-Licensed, NR-U, LTE, and LAA small
cells are located on adjacent poles, leading to far more com-
plex PCI scenarios. Thus, cell selection decisions resulting
from awareness of PCI scenarios will ensure better network
performance for the end-user.

However, to the best of our knowledge, no major study
has investigated the current LAA deployments for the phe-
nomenon of coexistence PCI scenarios and the challenges
they present.

B. RESEARCH CONTRIBUTIONS
The proposed work analyzes LTE-LAA deployments
through field experiments, measurements, and machine
learning-based operator data modeling, with the vision to
find solutions for upcoming NR-U deployments. The major
research contributions are elucidated below.

• Operator Data gathering and extraction: To study the
variation in the prediction of network performance in the
two PCI scenarios, LTE-LAA operator data is gathered
from the deployments of three cellular operators active
in downtown Chicago, i.e., AT&T, T-Mobile, and Ver-
izon. Using computer vision and deep learning-based

tesseract engine, network data is extracted from video
logs to generate a data set of over 7000 data points.

• Impact Assessment of PCI Scenarios A PCI sce-
nario specific distribution analysis of important net-
work variables such as Throughput and SINR is
performed. Further, the effect of PCI scenarios on
network performance prediction and data reduction
techniques in Licensed and Unlicensed components
is explored and insightful inferences are drawn. This
is done by analyzing the SINR-Capacity relationship
through eight regression and supervised machine learn-
ing algorithms, and two popular numerosity reduction
algorithms.

• On-site Experiments: Operator sites with Same and
Different PCI configurations are identified using the
Network Signal Guru (NSG) tool. Then, on-site exper-
iments are conducted using multiple coexisting Wi-Fi
hotspots. Variation in network performance is observed
for both PCI scenarios by varying the type of traffic,
the number of interfering Wi-Fi hotspots, the distance
etc. Further, role of QoS constraints in LTE-LAA per-
formance is explored through delay critical data traffic.
Metrics such as Throughput, Signal Strength, Resource
Block allocation, and Latency are measured. Experi-
ments are conducted for both cellular (LTE/LAA) and
Wi-Fi sub-systems.

• Predicting PCI Scenarios A binary classification
model is designed that predicts the PCI scenario with
high accuracy, in both Licensed and Unlicensed com-
ponent. The proposed classification model requires a
minimalist two-variable feature set and overcomes the
challenge of data imbalance between the two scenarios.

Finally, open research problems related to the PCI scenar-
ios in the unlicensed coexistence networks are identified and
outlined.

III. CHALLENGES IN THE UNLICENSED BAND
This section briefly discusses the PCI allocation process and
the challenges in unlicensed cell selection, followed by the
unique PCI scenarios observed in LAA deployments.
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FIGURE 3. PCI allocation and challenges.

A. ROLE OF PCI IN CELL SELECTION
With the adoption and proliferation of new cellular standards,
a wide variety of base stations, fromMacro cells to low-power
Femto cells, are being deployed. The consequent increase
in network complexity presents new challenges in the plan-
ning, management, and maintenance of cellular networks.
Efficient operation of cellular networks, especially LAA/
5G-NRU deployments, requires reliable mechanisms for net-
work configuration and reconfiguration with minimal human
intervention. This served as motivation for the paradigm of
Self-Organizing Networks (SON), where seamless and unin-
terrupted service is provided to the end-user through small
cells capable of self-configuration [12].

The first and most important step in a cellular SON is cell
identification, without which optimal cell selection and han-
dover to user equipment (UE) is not possible. At the physical
layer, the identification of a cell/eNB is done with the help
of Physical Cell Id (PCI) in LTE-A/LTE-LAA and 5G NR-U.
PCI allocated to a cell/eNB (Figure 2(a)) is used to discover
and identify the cell/eNB when a cellular device initiates the
association process, or during a handover [13]. The high-level
cell selection process in LTE, LTE-A, and LTE-LAA is pre-
sented in Figure 2(b). In these cellular standards, the PCI of
a cell is generated using the Primary Synchronization Sig-
nal (PSS) and the Secondary Synchronization Signal (SSS),
using the expression (PCI = 3× SSS + PSS), where PSS ∈
{0, 1, 2}, and SSS ∈ {0, . . . , 167}. Therefore, a typical PCI
in LTE-LAA is always in the range of [0,503]. While PCIs in
5G NR/NR-U are generated in a similar fashion, 1008 unique
PCIs are available, as SSS ∈ {0, . . . , 335}.

B. NEW CHALLENGES IN THE UNLICENSED BAND
Traditional LTE/LTE-A cell selection process is generally
dependent on parameters such as RSRP, RSRQ, SINR and
transmission power received at the UE. Although there is
ample research to suggest that parameters associated with
traffic QoS (e.g., Guaranteed Bit Rate), traffic-load, and
power/energy consumption at the UE ought to be considered,
operators prefer practical cell selection and handover mecha-
nisms that are SINR driven [14]. The simple approach works
for cellular operators viz., AT&T, T-Mobile, and Sprint as

LTE/LTE-AHetNets do not suffer the adverse impact of inter-
ference from external sources [15]. LTE/LTE-A networks
operate in dedicated bands of the Licensed spectrum that are
exclusive to specific cellular operators. Further, the co-tier
and cross-tier interference experienced within the network
is usually mitigated and managed through centralized and
distributed resource allocation solutions [16].

In sharp contrast, unlicensed cellular networks have to
contend with transmission conflicts from coexisting Wi-Fi
APs on the same channel, which can drastically degrade the
SINR. Furthermore, interference from rogue mobile hotspots
and other sources, hidden node problems, and dense Wi-Fi
(802.11n/ac/ax) network deployments adversely affect SINR
in an unlicensed coexistence system such as LAA. This is par-
ticularly true in dense scenarios, where radio resources may
not always be allocated to LAA. SINR-based cell selection is
also less suitable in LAA due to interference from external
Wi-Fi transmissions, which typically causes fluctuation in
SINR received at the LAA UE. As a result, cell selection
and handover decisions made at the UE trigger frequent
disconnections and re-attachments, degrading LAA perfor-
mance. Thus, for efficient cell selection and radio resource
allocation in LAA, additional information about the small cell
is necessary to determine cell quality [10], [17].

Case in point, when LTE and LAA share a PCI, it implies
that they share the same LTE backhaul, i.e., LTE Evolved
Packet Core (EPC) with MME, P-GW, S-GW, HLR, etc.,
which ensures efficient splitting of resources. Additional sig-
naling is required at the LAA secondary cell (Scell) for the
UE to recognize that the component carrier belongs to the
same LAA provider as the primary cell (Pcell), which in
turn provides the Licensed carrier to the UE. In the Licensed
band, PCI is sufficient for cell identification, since multiple
operators share a carrier only if the operators: (a) provide cov-
erage to spatially/geographically separated areas, or, (b) share
the network. Despite these provisions, two major PCI related
problems are encountered, which are illustrated in Figure 3(a)
and briefly described below:

1) PCI collision: Neighboring cells are assigned identical
PCI, which poses a challenge during UE attachment
and handovers.
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2) PCI confusion: Two different small cells within the
same macro Base Station (BS) are assigned identical
PCI, which poses a challenge, especially during han-
dovers.

Since LTE-A/LAA has only 504 unique PCI values, strate-
gic reuse and network planning provide reliable identification
of cells/eNBs. However, with increasing network density and
low-power cell deployment, as shown in Figure 3(b), an LAA
cell has to compete with other small cells and macro cells for
a limited number of PCIs, leading to a higher frequency of
PCI collisions and PCI confusions [12]. An important reason
is that cells/eNBs of different operators belonging to different
Public LandMobile Network (PLMNN)may assign the same
PCI to their respective eNBs [2], [18]. These challenges were
adequately addressed in LTE/LTE-A networks through smart
PCI allocation using mechanisms such as graph coloring,
clustering, and network-initiated SI reading, since operators
controlled the Licensed bands allocated to them [12], [19].
However, the solutions prescribed for the unlicensed band,
viz., increasing the range of PCIs, broadcasting partly unique
cell identities, and interoperator coordination are difficult
to implement in a shared spectrum [18]. Furthermore, the
complexity of these challenges will increase as cellular oper-
ators and enterprise network providers deploy more Citizens
Broadband Radio Service (CBRS) small cells operating on
the LTE protocol stack [20]. The upcoming small cell deploy-
ments in the C-band spectrum are also likely to intensify the
contention in PCI ID allocation.

Finally, 3GPP release 15 may also prescribe additional
specifications for LAA processes [2]. For example, an LAA
handover process entails the following specific steps. First,
the eNB/small cell configures the UE with one Discovery
Signal Measurement Timing Configuration window on one
frequency for the serving cell and for each available neigh-
boring cell. Second, the UE utilizes the allocated window
to identify and measure Discovery Reference Signals from
the neighboring cells. Further, to overcome the challenges of
hidden-nodes (unlike LTE/LTE-A), the UE may measure the
Received Signal Strength Indicator (RSSI) during an RSSI
measurement timing configuration window and share the
average RSSI and channel occupancy with the serving cell
in the next reporting interval [2].

Solutions to the problems anticipated in LAA networks
have been prescribed in 3GPP release 15, in 3GPP min-
utes of meetings, and in recent research work [2], [6], [18].
Prior to the proliferation of public LAA deployments, the
analysis and solutions for LAA were validated primarily
through theoretical modeling, simulations, and experimental
testbeds [21], [22], [23], [24]. After several cellular operators
began offering LAA services globally, some studies have
sought to conduct performance analysis of these networks
through on-site measurements [6], [10], [25].

However, the new phenomenon observed in unlicensed
deployments, which is presented in the next section, is not
yet identified, nor has its impact been analyzed using ML
modeling and operator data analysis.

FIGURE 4. PCI scenarios in unlicensed networks.

IV. UNIQUE PCI PHENOMENON IN LAA DEPLOYMENTS
In the current coexistence deployments, the uplink transmis-
sions are generally performed on the licensed spectrum and
downlink transmissions on the LAA unlicensed spectrum.
The strategy is designed to meet QoS requirements, reduce
delay in ACK packets, and maximize power and spectral
efficiency. In contrast, if the client is LTE-only, both uplink
and downlink occur on the licensed LTE BS. However, cell
selection in LTE-LAA coexistence networks involves addi-
tional technical nuances due to the system architecture.

A. THE TWO PCI SCENARIOS
Data collected from coexistence deployments of the three
operators in Chicago, viz., AT&T, Verizon, and T-Mobile
reveals that a typical LTE-LAA coexistence deployment may
be broadly categorized into two PCI scenarios, depicted in
Figure 4. ‘‘Same PCI’’ represents the coexistence network
architecture with Licensed (LTE) and Unlicensed (LAA)
clients camped on the same cell, while ‘‘Different PCI’’
depicts the case when they are latched on to different cells
with different PCIs. An architectural representation of the two
scenarios is shown in Figure 4. Same PCI is the dominant
scenario and is observed in over 80% of the sample space.
It also seems to be the preferred scenario formaximal network
throughput, which is why cell selection solutions often focus
on it [10], [11]. However, the occurrence of Different PCI
scenarios in LAA operator data is significant (18%) and
cannot be overlooked [11]. Further, to the best of our knowl-
edge, this is a hitherto unobserved phenomenon and unique
to the coexistence paradigm.With the commencement of 5G-
NRU operation in the 5GHz and 6GHz spectrum, taking the
PCI scenarios into consideration will enhance coexistence
network performance [6], [9].

These scenarios are the result of three network design fac-
tors, viz., availability of space/structures for cell installation,
availability of fiber optic-equipped backhaul connectivity,
and operator deployment strategy. The LTE-LAA coexistence
networks in the Chicago region have been deployed in both
semi-indoor and outdoor environments. The operator data we
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TABLE 1. Channel access priority class in LAA downlink.

have gathered is for an outdoor setting, where the LTE-LAA
cells have been installed on the street lights/electricity poles.
The deployment plan is shaped not only by the availability
of these poles but also by their type. Only some of these
poles are structurally capable of providing a high-speed fiber
optic connection to the backhaul. From the network planning
perspective, this is an important consideration, because the
Unlicensed carrier bandwidth is 3X that of the Licensed
carrier, and the next-generation millimeter-wave networks
offer up to 400 MHz bandwidth, which is 10X that of the
current 5 GHz unlicensed bands [6]. Such speeds can only
be serviced by a fiber optic connection to the backhaul.
CapEx-QoS trade-off is another major consideration, as fiber
optic cabling is expensive and is set to cost the 5G industry
over $130 Billion in installation. These factors, coupled with
market penetration of LAA equipped devices and subscriber
density, determine operator deployment strategy and create
the two PCI scenarios.

Preliminary on-site measurements indicated that LAA per-
formance in the two scenarios is likely to be different. When
LTE and LAA have the same PCI, they share the back-
haul, which facilitates efficient resource splitting and packet
aggregation. Consequently, the LTE-LAA network perfor-
mance analysis is usually limited to the Same PCI scenario
[10], [11]. However, the two PCI scenarios may impact LAA
and Wi-Fi network performance differently.

Furthermore, the performance of the LAA uplink (UL) and
the LAA downlink (DL) is likely to differ. This becomes
important due to LAAmechanisms such as subframe and car-
rier (pool-based) resource allocation schemes and group UL
grant. The two PCI scenarios may influence the use of Group
ID or PCI for multiplexed transmissions on the subframe
[2], [18]. Thus, Same PCI and Different PCI configurations
will affect LAA UL and DL mechanisms as well. Simi-
larly, these PCI scenarios will affect the network throughput,
resource allocation, and latency for different types of data
traffic depending on the respective Channel Access Priority
Class. Equally importantly, the impact of LAA on the perfor-
mance of coexisting Wi-Fi networks will also vary depend-
ing on the type of coexistence PCI scenario. In this work,
we explore these aspects through a PCI scenario-specific
analysis of LAA deployment data.

B. RELEVANCE TO 5G NR-U
LAA is the evolutionary antecedent of NR-U, and the first
commercially successful cellular-WiFi coexistence standard.

TABLE 2. Access categories in 802.11ac.

As such, the unresolved challenges encountered in LAA will
assume a different dimension and scale in NR-U. This is
especially true for the phenomenon of PCI scenarios that has
come to attention only through the analysis of LAA operator
data.

NR-U deployments will support three modes, viz., Carrier
Aggregation, Dual Connectivity, and Standalone [26]. Apart
from the fully unlicensed Standalone operation, the other
two modes will operate in the 5GHz spectrum. This implies
that the following can be present/co-located on a physical
installation such as a pole or a lamppost:
• NR-U and NR Licensed
• NR-U alone in Standalone mode
• NR Licensed and LAA Unlicensed
• NR Licensed, NR-U and LAA
• LTE Licensed, NR Licensed, NR-U and LAA
Compared to the LAA deployment scenarios shown

in Figure 4, the above small cell combinations present
in physical installations close to each other can lead to
more complex PCI scenarios than LAA. Thus, analy-
sis and solutions presented in this work will certainly
guide solutions for cell-selection and network optimization
in NR-U.

V. UNLICENSED COEXISTENCE: RELEVANT ASPECTS
This section discusses the aspects of coexistence in the unli-
censed band that are relevant to the experiments and analysis
presented in this work. These include the bands and channels
on which LAA/NR-U and Wi-Fi operate, the feasibility of
bandwidth combinations, channel access mechanisms, and
Channel Access Priority Class (CAPC).

A. THE 5 GHz UNLICENSED BAND
The 5 GHz Unlicensed National Information Infrastruc-
ture bands (U-NII bands) range from 5.15 to 5.85 GHz.
Recently, a U-NII-4 band with 4 channels spanning
5.85 Ghz–5.925 GHz, has been notified by the Federal
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Communications Commission through a Notice of Proposed
Rulemaking [4]. Thus, a total of eight U-NII ranges have
been prescribed by FCC, of which 1 to 4 lie in the 5 Ghz
range and 5 to 8 are for 6 GHz. LAA coexists with IEEE
802.11a and higher Wi-Fi standards in the 5 Ghz spec-
trum. Each U-NII band is governed by certain guidelines
and restrictions with respect to usage and operation. For
example, U-NII 1 (5.150–5.250 GHz) is a low power band,
which has no restrictions apart from being limited to indoor
use with 50 mW of maximum transmission power. U-NII-2
is assigned mainly to radar systems. Therefore, unlicensed
devices communicating in the band have to necessarily imple-
ment Dynamic Frequency Selection (DFS), giving priority
to the radar signals. As a result, this band is seldom utilized
by LAA and Wi-Fi. Therefore, although a substantial block
of 560 MHz of spectrum seems available, a much smaller
fraction of about 160MHz belonging to U-NII-1 and U-NII-3
bands is fully harnessed. It is noteworthy that Wi-Fi channels
are 20/40/80 MHz wide, while 3GPP has specified 20 Mhz
channels for LAA, with the possibility of aggregating up
to 3 LAA channels.

B. CHANNEL ACCESS PRIORITY CLASSES
An operator uses Channel Access Priority Classes (CAPCs)
for specific types of traffic when UEs transmit data on the
uplink (UL) and downlink (DL) over an LAA carrier. Four
CAPCs are specified for LAA in 3GPP Release 15 [2].
Table 1 presents the details of the LAA DL CAPC classes
along with specific values for each class for parameters
viz., QoS Class Identifier (QCI), Clear Channel Assess-
ment (CCA) duration, maximum and minimum contention
windows (CWMax , CWMin), and Transmission Opportunity
(TXOP) duration. A data traffic category is assigned a spe-
cific TXOP duration based on its CAPC. For example, video
and voice data have TXOPs of 3 ms and 2 ms, respectively,
to meet end-user QoS guarantees. Given the low latency
requirements of these data flows, small data packets are used.
In contrast, for traffic categories such as data download in
the background and best-effort, LAA employs large packets
to optimize network throughput with a maximum TXOP
of 8 ms. To meet QoS guarantees, 3GPP prescribes that
operators use CAPCs according to the standardized QCI to
which the data traffic belongs. However, operators are free
to employ their own non-standardized QCIs so long as a
suitable CAPC is used for data traffic. In uplink transmission,
LAA eNB determines the CAPC of the traffic by consid-
ering the QCI with the least priority in a Logical Channel
Group.

Similarly to LAA, Wi-Fi classifies traffic into Access Cat-
egories (ACs) depending on the type of traffic and priority.
Wi-Fi (802.11ac) ACs for various types of traffic viz., video,
voice, background data, and best-effort data, with the corre-
sponding values for parameters viz., Arbitration Inter-frame
Spacing (AIFS), CWMax , CWMin, and TXOP are presented in
Table 2.

C. CHANNEL ACCESS MECHANISMS
LTE-LAA employs a Listen-Before-Talk (LBT) mechanism
to access the unlicensed channel. The mechanism resembles
the Carrier-sense Multiple Access with Collision Avoidance
(CSMA/CD)MAC protocol ofWi-Fi. LBT facilitates a better
coexistence of LAA with Wi-Fi than LTE-Unlicensed (LTE-
U), which has a duty-cycle mechanism [27]. LAA eNB and
UEs sense the channel prior to transmitting on the LAA
SCell. The LAA eNB/UE LAA will defer for an initial CCA
duration depending on the CAPC of the traffic. Subsequently,
LBT triggers a random back-off period in the range of (0,
CWsize), where CWsize is assigned a value between CWMin
and CWMax according to channel conditions. If the back-off
is successful, the LAA eNB/UE starts transmitting.

Wi-Fi makes use of the CSMA/CD mechanism, which
ensures that an AP/device transmits only when the channel
is idle and the station has not finished a successful transmis-
sion immediately prior to sensing the channel. The device
waits for an initial sensing period of Distributed Coordination
Function Inter-frame Space (DIFS) for IEEE 802.11n and
below, or AIFS for amendment 11ac and above. If the Wi-Fi
node is contending for access immediately after a successful
transmission, it continues to sense the channel for an initial
length of DIFS/AIFS, until the channel is idle again. If the
channel is detected to be busy, a random back-off period in
the range of (0, CWsize) is selected.
LAA’s LBT is compatible with CSMA/CD ofWi-Fi, which

reduces collisions during transmissions and leads to fair coex-
istence and enhanced network performance [28]. Further-
more, Wi-Fi has an energy threshold of −62 dBm and a
preamble detection threshold of −82 dBm. Since the LAA
LBT has an energy threshold of−72 dBm, its vulnerability to
interference fromWi-Fi APs is reduced, which also facilitates
fewer fluctuations in signal strength at the LAA UE. Finally,
upon getting access to the channel, an LAA eNB/UE can
transmit data for a TXOP length of up to 10 ms if it has
prior information that a Wi-Fi device does not coexist in the
unlicensed band. However, onsite measurements reveal that
for most types of traffic (e.g., data, data plus video/streaming,
etc.) LAA LBT generally allows for a maximum TXOP of
8 ms to the UE for transmission.

VI. DATA GATHERING AND EXPLORATORY ANALYSIS
Having discussed the new-found phenomenon and the tech-
nical aspects relevant to the analysis, this section describes
the data gathering exercise, followed by data distribution
analysis.

A. OPERATOR DATA COLLECTION AND EXTRACTION
Real-time LAA network data for three operators, viz., AT&T,
T-Mobile, and Verizon is gathered from downtown Chicago,
as depicted in Figure 5(a), through the Network Signal Guru
(NSG) app [29]. NSG is a subscription-based application
developed and released by Qtrun Technologies. It offers
detailed and precise information on network parameters such
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FIGURE 5. LAA deployment sites and challenges in data extraction from NSG app.

FIGURE 6. Sample sizes for the same PCI and different PCI scenarios.

as bandwidth, signal strength, throughput, resource alloca-
tion, block error rate, channel frequency, modulation coding
scheme, and several others. A section of NSG’s user interface
is shown in Figure 5(b). It supports a wide variety of cellular
standards (e.g., LTE, LAA, 5G, etc.) and provides more accu-
rate and detailed information than other applications such
as SigCap or FCC Speed Test. Unfortunately, NSG only
permits monitoring the data and does not allow extraction
for analysis in a suitable format such as ‘‘.CSV’’ or ‘‘.txt’’.
Thus, operator data extraction involved a complex process
that required screen-capturing NSG interface into a video
and then processing it through computer vision techniques
followed by a deep-learning-based OCR engine.

The video-to-text extraction process presented several
challenges, some of which are shown in Figure 5(b), with the
aid of numbered labels. First, the screen refreshes at intervals
that are hard to predict, and the interface scrolls back to the
top. This makes screen-capturing specific fields with perfect
alignment for the computer vision (CV) and OCR pipeline
extremely tedious. Second, values of the same metric (e.g.,
Throughput) are in different colors and need to be processed
through different CV and OCR techniques for high accuracy.
Third, elements in the UI mask portions of the values to
be extracted, adversely impacting text recognition accuracy.

Fourth, some fields/parameters have a compact placement,
requiring additional steps in the image processing pipeline.
Fifth, not all the fields are populated, which makes mapping
of corresponding fields (e.g., Throughput with SINR) a non-
trivial task. Finally, varying colors and extent of the back-
grounds of fields (e.g., SINR) degrades recognition accuracy
especially when dealing with negative values and, therefore,
need a specially designed image processing pipeline. Our
engineering solution solved these problems and close to
7500 samples were successfully extracted and analyzed in
this work.

B. EXPLORATORY DATA ANALYSIS
1) SAMPLE SIZE DISTRIBUTION
The PCI-specific distribution1 of extracted samples in the
Same PCI and Different PCI scenarios, for Licensed and
Unlicensed components is presented in Figure 6. As dis-
cussed earlier, Same PCI has a much higher proportion of
samples in both LTE and LAA components. However, there
is another dimension to this imbalance. Since the Differ-
ent PCI LAA sites are less in number, the probability of

1Due to a large number of PCIs, only those with significant sample-sizes
are displayed here.
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FIGURE 7. Distribution of network variables in the two PCI scenarios.

encountering them also reduces. Consequently, the samples
are also concentrated within a few small cells, leading to an
internal pattern imbalance in the feature set of the Different
PCI sample space. These challenges add complexity to the
intended objective of accurately identifying PCI scenarios,
through imbalanced classification with a small feature set.

2) DENSITY DISTRIBUTION
The cumulative distribution plots of Throughput and
SINR values in the operator data are presented in
Figures 7(a) & 7(b), respectively. Both distributions exhibit
the impact of the coexistence component and the PCI scenario
within the component.

Beginning with component-specific analysis, for more
than 85% Different PCI Throughput samples, the Unli-
censed component has a lower magnitude, but this trend
reverses for the last 15% samples. Consequently, 80% users
in the Unlicensed Different PCI environment are likely to
receive 10Mbps less Throughout than LicensedDifferent PCI
users. In contrast, Licensed Same PCI performs worse than
Unlicensed Different PCI, for 80% users, but the performance
of both is comparable for 20% users in the Throughput range
of 45 Mbps–63 Mbps. The SINR trend for Licensed and
Unlicensed Different PCI conforms to the Throughput trend.
However, the SINR trend for the Same PCI does not corre-
spond to the Throughput trend in entirety, and Unlicensed
performance remains better than Licensed throughout. This
shows a clear impact of PCI configurations on the perfor-
mance of unlicensed network components. The allocation
of radio resources and their availability play a key role in
network performance. There seems to be better resource allo-
cation in Licensed Same PCI that enables it to match up to
Unlicensed Same PCI, despite lower SINR.

A PCI scenario-specific analysis also highlights a differ-
ence in resource allocation in the two scenarios. For example,
Licensed Same PCI performs better than Licensed Differ-
ent PCI in terms of Throughput, in 50% samples where
Throughput is higher than 35 Mbps. However, the cumula-
tive Licensed Same PCI SINR distribution remains consis-
tently higher than the Licensed Different PCI SINR. This

indicates that the variation in Throughput is a result of other
network-related factors that differ in the two scenarios. In the
Unlicensed component, the Same PCI Throughput is always
better than the Different PCI Throughput. This is despite the
fact that the cumulative distribution of Unlicensed SINR is
not always better in Same PCI, and Different PCI performs
better at higher SINRs (& 21.5 dBm).

Overall, both Licensed and Unlicensed Same PCI network
capacity seems to be better than the corresponding Different
PCI. This could be attributed to more efficient cell selection
and backhaul.

VII. NETWORK PERFORMANCE ANALYSIS
The objective of the analysis presented in this section is to
infer how network performance in the Licensed and Unli-
censed components of the coexistence system varies in each
PCI scenario. The discussion seeks to (a) highlight the rele-
vance of PCI scenario-specific network analysis, (b) investi-
gate the impact of PCI scenarios on the network performance
in Licensed and Unlicensed components, and (c) examine the
performance of data reduction techniques in both scenarios.

A. METHODOLOGY AND TECHNIQUES
1) METHODOLOGY
To study the variation in network performance in the two
PCI scenarios, a data-driven approach leveraging machine
learning algorithms is ideal [30], [31]. Thus, the prediction
of network performance is done using feature relationship
modeling. Operator data is subjected to eight supervised
machine learning algorithms to determine the relationship
between network feature points of primary importance, viz.,
Signal and Interference plus Noise Ratio (SINR), network
throughput (Capacity), and cell-allocation (PCI). It is a good
practice to employ a broad set of machine learning algorithms
consisting of different types e.g., deterministic and stochas-
tic, to ensure a robust coexistence performance prediction
and feature relationship analysis through cross-verification
of results. Further, for both PCI scenarios, i.e., Same PCI and
Different PCI, a fine-grained SINR-Capacity feature relation-
ship analysis is presented by comparing models that consider
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PCI as a categorical parameter (With PCI) with models that
do not consider PCI as a categorical parameter (Without
PCI). Since the analysis of the combined coexistence network
data is shown to obfuscate the findings [10], [11], operator
data is segregated into its Licensed and Unlicensed compo-
nents. Finally, the R-sq of a model reflects the strength of
the relationship between the network feature points. In this
work, a multivariate relationship analysis is performed to
determine the explanability of network throughput. Thus,
the model R-sq is denoted as ‘‘ThroughputExp’’ in this
work. ThroughputExp serves as a metric for a comparative
analysis of network performance prediction and feature rela-
tionship strength. A higher ThroughputExp implies a strong
feature relationship and consequently a greater confidence
in the model to predict the response variable, i.e., network
throughput.

2) MACHINE LEARNING ALGORITHMS
Let N be the number of training points and D be the dimen-
sionality of the feature vector. Then the LTE-LAA network
data can be represented as {xi, yi}Ni=1, where xi ∈ RD is
the feature vector and yi ∈ R is the ground truth value for
the ith training point. The objective is to learn a mapping
f : xi → yi where xi is the feature vector constructed
using Signal & Interference plus Noise Ratio (SINR) and
cell-allocation (PCI) and yi is the target value, i.e., network
throughput (Capacity). A diverse set of regression algorithms
are considered, which are discussed below:

(i) Linear Regression: This family of algorithms [32] aims
to learn a linear mapping by solving,
argminw,b

∑N
i=1 ||(w

>xi+b)−yi||22+αw
>w. Here,w ∈ RD

is the weight vector and b ∈ R is the bias term.Moreover, α is
a hyperparameter used to control the importance/weightage
of the l2-regularization term. α is set as zero in the case of
Ordinary Least Squares Linear Regression (OLS), whereas it
is set via k-fold cross-validation (kCV) in the case of Ridge
Regression (RR).

(ii) Kernel Regression: Kernel Ridge Regression algo-
rithms [32] learn a non-linear mapping through a kernel func-
tionK (a, b). The goal is to solve argminw,b

∑N
i=1 ||K (w, xi)+

b − yi||22 + αw
>w. Here, w ∈ RD is the weight vector,

b ∈ R is the bias term, and α is a hyperparameter as defined
earlier. Varying the kernel function as Radial Basic Function
and Polynomial leads to Kernel RBF Regression (RBF) and
Multi-variate Polynomial Regression (MPR), respectively.
We considered 2–4 degree polynomials in MPR and the
optimal degree was chosen based on the value of R-sq via
kCV.

(iii) Neural networks (NN): This family of algorithms
learns a non-linear mapping via a sequence of feed-forward
layers in contrast to hand-crafted kernel functions used by
Kernel Ridge Regression [32]. A wide range of neural net-
works were considered with 1–2 hidden layers, 5–50 neurons
per hidden layer, and ReLU, logistic & Tanh activation func-
tions. The optimal configuration and hyperparameters were
chosen on the basis of the R-sq metric via kCV.

(iv) Decision Tree Regressor: Decision Trees (DT) recur-
sively partition the data points to minimize the mean squared
error at each node [32]. We experimented with trees of
depth 5–20 and the optimal depth was determined via kCV.
TheMinimal Cost-Complexity Pruning algorithmwas imple-
mented to prune the learned tree and avoid overfitting [32].
Ensembles with 3–100 base learners were considered, and
the optimal number was determined by kCV. In particular,
an ensemble of 25 decision tree regressors yielded the best
R-sq value for both Random Forest Regressor (RF) and Gra-
dient Boosting (GB) in the experiments.

B. PCI SCENARIOS AND LTE-LAA PERFORMANCE
SINR-Capacity feature relationship analysis is performed
on LTE-LAA operator data. It is worth mentioning that
for Licensed and Unlicensed, 18.61% and 16.04% data
belongs to the Same PCI scenario, respectively. The rest
falls under the Different PCI scenario. Linear algorithms
(Linear and Ridge Regression), generate models with lower
ThroughputExp than non-linear algorithms (remaining six
algorithms). The latter seem to be more suited to fit the
SINR-Capacity (and PCI) data which is also considered to
be non-linear [10], [11]. However, the trend of predictive
performance is fairly consistent across all algorithms. Hence,
the discussion ahead focuses on network feature relationship
patterns as a whole and not on the results of individual
algorithms.
The results of data analysis are distilled in the form of

inferences presented below along with the explanations.
(i) Component and PCI scenario specific data segre-

gation seems to be a pre-condition for accurate coexis-
tence network performance prediction. Although the need
for component-specific data segregation has been highlighted
earlier [10], [11], for reliable modeling of feature relation-
ships, component-specific data segregation alone is not suf-
ficient. Figure 8(a), presents the relationship analysis for
data segregated based on LTE-LAA network components,
with and without PCI as categorical parameter. It shows that
the SINR-Capacity ThroughputExp for Licensed data models
is always lower than the corresponding Unlicensed models.
However, it will be demonstrated ahead that this is not the
case. Similarly, segregating data based on PCI scenario alone
does not yield an accurate network performance prediction.
For example, Figure 8(b), shows that the ThroughputExp of
Same PCI models is invariably lower than that of the different
PCI models. Again, we now know that this is not true.

Thus, for reliable network prediction models, coexis-
tence network data should be segregated based on both net-
work component (Licensed/Unlicensed) and PCI scenario
(Same/Different).

(ii) Current LAA deployment architecture may not facili-
tate efficient Licensed operation in both PCI scenarios. It is
evident from Figure 9(a), that Licensed Same PCI model
ThroughputExp is significantly higher than the correspond-
ing Different PCI model ThroughputExp. This implies that
predicting network performance (e.g., network capacity) is
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FIGURE 8. Data segregation for performance prediction through feature relationship analysis.

FIGURE 9. LAA PCI scenarios and network performance prediction.

more reliable in the former case. The trend holds for all
regression and learning algorithms, regardless of whether
PCI is considered a categorical parameter. However, with-
out PCI as a categorical parameter, the difference in the
model ThroughputExp for the two scenarios is exaggerated
(109.72% on average) compared to when PCI is a categor-
ical parameter (65.52% on average). Thus, the ‘‘Without
PCI’’ modeling should be avoided for a reliable repre-
sentation of the feature relationships. The more important
inference is that for the Licensed component, feature rela-
tionships are rather poor in the Different PCI scenario. This
implies that network performance cannot be predicted with
confidence.

Thus, the current coexistence deployment architecture
appears to be creating performance bottlenecks in the Differ-
ent PCI configuration and may not facilitate optimal network
performance in the Licensed component.

(iii) Current LAA deployment architecture favors Unli-
censed operation. ThroughputExp of Unlicensed models
demonstrates a trend exactly opposite to that observed in
the Licensed component. Different PCI scenario models,

across all machine learning algorithms, perform better than
Same PCI scenarios. Further, there are three more points
of difference when compared to the Licensed performance
prediction patterns. First, the difference in ThroughputExp for
the two Unlicensed PCI scenarios is not as pronounced as
it was in the Licensed (only 14.68% on average for ‘‘With
PCI’’). Second, the absolute magnitude of ThroughputExp
for Unlicensed models, for both Same and Different PCI
scenarios, is much higher than that of Licensed models. For
example, the average Different PCI ThroughputExp for ‘‘With
PCI’’ models is 37.39 for Licensed and 93.31 for Unlicensed.
Third, not using PCI as a categorical parameter does not
affect the relative difference in model ThroughputExp for
the two PCI scenarios unlike Licensed models, although the
absolute values decrease as expected in the case of ‘‘Without
PCI’’ [10], [11].

Themain takeaway is that the network feature relationships
and performance prediction in the Unlicensed component are
largely consistent in both PCI scenarios. This implies that the
LTE-LAA site architecture leads to a relatively more efficient
Unlicensed operation.
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FIGURE 10. Impact of PCI architecture on numerosity reduction.

FIGURE 11. Cell-specific numerosity reduction for unlicensed PCIs.

C. PCI SCENARIOS AND NUMEROSITY REDUCTION
Numerosity reduction is a crucial tool for reducing the com-
putational overhead of network data-driven cell selection
and handover [33]. Sampling and clustering are two popu-
lar approaches to numerosity reduction [31]. The efficiency
of these techniques depends on the selection of a smaller
sample that resembles the characteristics and distribution of
the original dataset. However, the nature and distribution of
the data may vary in the two PCI scenarios, thus affecting
the performance of the numerosity reduction techniques.

This problem is investigated by observing the perfor-
mance of two nonparametric techniques viz., Random Sam-
pling and k-mediods Clustering, validated through kCV, for
k=5 [31], [33].

1) MACRO LEVEL ANALYSIS
It can be discerned from Figures 10 (a) & 10 (b), that for
both Licensed and Unlicensed, for all subsets of the original
dataset, the ThroughputExp trends are as observed earlier.
Further, Random Sampling seems to be a better numerosity
reduction technique than k-mediods Clustering, for both PCI
scenarios in both the coexistence components. Two differ-
ences are evident between the PCI scenarios. First, the Dif-
ferent PCI dataset is less than one-fourth of the Same PCI,
which implies that as the reduced dataset gets smaller, the
ability to predict the response variable will decrease at a faster
rate in the Different PCImodels than in the Same PCImodels.
For example, consider the average decrease in ThroughputExp
for randomly sampled models in the Unlicensed component,
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for both scenarios. In the Same PCI scenario, for data subsets
ranging from 30% to 10% size of the original, the average
decrease is six times that of subsets ranging from 100% to
30% of the original. In Different PCI, a similar comparison
yields an 18-fold gap. Thus, for the Different PCI scenario,
numerosity reduction techniques should be applied only if
the original dataset has a large number of sample points. Sec-
ond, PCI scenarios respond differently to the data reduction
algorithms. The performance of both sampling and clustering
on Same PCI data is consistent up to a 10% fraction of the
original dataset for both Licensed and Unlicensed. However,
for the Different PCI scenario, k-mediods Clustering does
not seem to be a good choice. For Licensed, the Different
PCI clustering models show negative ThroughputExp 60%
fraction onward, while for Unlicensed, the ThroughputExp
is negative after the 25% fraction. This occurrence cannot
be attributed to a smaller sample space of Different PCI
data as Random Sampling performs significantly better for
subsets of identical sizes, and the model ThroughputExp is
never negative even in the 10% subset.

2) PCI LEVEL MICRO ANALYSIS
At the level of individual PCIs, the impact of numerosity
reduction techniques becomes more visible. Data from three
different cells, with a low, medium, and large number of
samples, is subjected to Clustering and Random Sampling.
The results are presented in Figures 11(a), (b) and (c) for the
Same PCI cells, and Figures 11(d), (e) and (f) for the Different
PCI cells. Random Sampling seems to perform better, since at
each stage the selected samples are more evenly distributed.
When the data distribution is dispersed, as in Same PCI 038,
Figure 11(a), both the algorithms yield similar results after
distribution. Else, Clustering tends to capture only a subset
of the overall distribution, especially for Different PCI. This
changes the characteristics of the reduced sample vis-à-vis
the baseline sample, leading to poor prediction performance.

Therefore, it is safe to conclude that k-mediods Clustering
should be avoided in the Different PCI scenario. This is an
interesting finding, as clustering algorithms are often used
during the preprocessing phase of cell allocation and cate-
gorization [31]. It is worth noting that while the Same PCI
scenario seems unaffected by the choice of data reduction
approach, our evaluation is limited to two popular techniques,
and a wider set of algorithms may yield a different view.
More sophisticated algorithms including local density-based
instance selection (LDIS) [34] can also be implemented.
However, random sampling and k-mediods Clustering were
chosen because an instance pruning algorithm should have
a minimal computational footprint to ensure optimal per-
formance in the downstream task (e.g., learning a mapping
between SINR and Throughput). A detailed discussion and
analysis of popular instance pruning algorithms can be found
in [35] and [34].

Nevertheless, it can be inferred from the findings that the
PCI scenario influences the choice of numerosity reduction
technique.

FIGURE 12. Illustration of the on-site experiment setup.

VIII. ON-SITE EXPERIMENTS, RESULTS, AND ANALYSIS
Next, a measurement-based analysis of real-time network
performance is carried out for the two PCI scenarios. The
onsite experiments and measurements involve several chal-
lenges, such as the identification of the two PCI sce-
narios in operator deployments, and creating a controlled
LTE-WiFi coexistence environment. Where applicable, infer-
ences drawn from operator data analysis are compared with
measurement-based observations.

A. EXPERIMENT SETUP AND SITE SELECTION
An increasingly large number of Release 13 compliant LAA
Base Stations (BS) are being deployed in downtown Chicago.
Further, up to three Wi-Fi channels can be aggregated by an
LAA BS in the U-NII 1 band (Channels 36, 40, & 44) or
the U-NII 3 band (Channels 149, 153, & 157). It is capable
of 2×2 MIMO transmissions with a maximum modulation
coding scheme (MCS) of 256 QAM. Consequently, PCI
scenario-specific site determination is a challenging task. The
first step involves identifying the sites where the LAA& LTE
BS are mounted on the same pole (Same PCI) and where the
LAA & LTE BS are mounted on different poles (Different
PCI), as shown in Figure 12. This is done using the NSG
app, by monitoring the PCI assigned to the LTE and LAA
components. Thereafter, the signal strengths (e.g., SINR and
RSRP) are monitored and compared to verify the sources.

B. METHODOLOGY
The variation in real-time network performance in the two
PCI scenarios is observed and compared to the findings of the
data analysis. The traffic type and the LTE-WiFi coexistence
environment are varied for a comprehensive evaluation of
the impact on network performance. NSG app, with root
permission, was used to observe performance metrics such
as SINR, Throughput, Resource Block (RB) allocation for
each channel, TXOP, etc. The observations were made at
15 minute intervals (on ground, not point-to-point) up to a
distance of 150m from the LAA small cell.
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FIGURE 13. Unlicensed on-site measurements.

1) TRAFFIC TYPES AND QUALITY OF SERVICE
Several realistic traffic scenarios are considered, as LAA
categorizes different types of data traffic into different access
classes. Further, the Listen Before Talk (LBT) mechanism
prescribes different duration of transmission opportunity
(TXOP) to different traffic access classes, presented in
Table 1. For example, background data (Access Class= 4) is
offered a TXOP of 8ms, the maximum for any type of traffic,
to maximize network capacity. Likewise, Wi-Fi defines spe-
cific access categories for different types of traffic, presented
in Table 2. The Wi-Fi TXOP duration is smaller (2.528ms
for background data), which implies that LAA can occupy
the transmission channel for a longer duration on average.
Most importantly, categorizing traffic is vital to meet QoS
guarantees and is done through a QoS Class Identifier (QCI)
which assigns amaximumpacket delay threshold to each traf-
fic class. The permitted delay determines which component
(Licensed or Unlicensed) the traffic pipeline will be assigned
to. The traffic types considered in the evaluation are:

• Data download: A fully bufferable large (>10 GB) YUV
datafile from Derf Test Media Collection [36].

• Video: A 1920×1080 resolution Youtube video with
a 12 Mbps bit-rate.

• Live Streaming: A 1280×720 resolution, 7.5 Mbps
bitrate live stream on Youtube.

• Data & Video, Data & Streaming traffic combinations.

2) CONTROLLED COEXISTENCE ENVIRONMENT
LTE-LAA sites were identified where no interfering Wi-Fi
signals were detected at the time of conducting the exper-
iments. It was also verified (using NSG) that more than

95% of the available LAA RBs were allocated to the LAA
client device. This can be attributed to fewer active users
due to COVID-19, and availability of a limited number of
LAA devices in the market which are also quite expensive.
These factors helped us create a controlled coexistence envi-
ronment. Measurements for Same PCI and Different PCI
scenarios in Licensed and Unlicensed components were done
with one active Wi-Fi hotspot to ensure true LTE-WiFi coex-
istence. Thereafter, different coexistence scenarios were cre-
ated by incrementally introducing up to five mobile Wi-Fi
hotspots. All Wi-Fi hotspots were operational on the same
channel as LAA. Ten mobile devices including Google Pixel
(2, 3, & 5), Motorola Edge+, and Samsung Galaxy S9 were
used; five to create Wi-Fi hotspots and the remaining five to
act as clients. AGoogle Pixel 5 served as the LTE-LAA client.
For maximal impact, a dense network scenario was created
with all Wi-Fi hotspots within a 10m range of each other and
the target UE.

C. RESULTS AND ANALYSIS
1) UNLICENSED COMPONENT
The variation in Throughput with distance for five types
of traffic and one coexisting Wi-Fi hotspot is shown in
Figures 13(a) & 13(b). It is evident that the network perfor-
mance in the Same PCI scenario far exceeds that in the Dif-
ferent PCI scenario (by 76.93% on average for background
data). As expected, the Throughput for all types of traffic
decreases with distance, due to the corresponding decrease
in SINR. Likewise, with the incremental introduction of
Wi-Fi hotspots (i.e., Co-channel interference), the network
Throughput consistently decreases, which is evident from
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FIGURE 14. Licensed on-site experiments.

Figures 13(c) & 13(d). This can be attributed to the combined
decrease in SINR and RB allocation, which will be discussed
later. The following findings are noteworthy.
• Correlating ThroughputExp with network performance:
Although the ThroughputExp of SINR-Capacity model
for the Different PCI scenarios are higher than those
of the Same PCI, the reverse is true for performance
in terms of actual network Throughput. This cannot be
attributed to a variation in SINR, which is comparable
for both scenarios. From a network monitoring stand-
point, it can be discerned from Figure 13(e) that RB
allocation for data download and video streaming in
Same PCI is higher than the correspondingDifferent PCI
functions by 65.19% and 98.63%, respectively. With
similar levels of SINR, a higher RB allocation explains
the greater Throughput in Same PCI despite low model
ThroughputExp. However, from a data analysis perspec-
tive, the opposing trends imply that in Same PCI sce-
narios network variables other than SINR, Capacity, and
PCI (e.g., RB allocated, QCI, etc.) play a more signif-
icant role in network model. Including these variables
in the prediction of network performance may offer
trends consistent with measurement analysis [10], [11].
They may also yield more robust network models with
higher ThroughputExp and reliable feature relationship
equations for use in network optimization [10], [37].
However, adding more network features will increase
the computational overhead of training ML models.

• Impact of coexisting Wi-Fi APs: Figure 13(f) shows that
increasing the coexistingWi-Fi hotspots from one to five
not only degrades the SINR due to increased interfer-
ence, but also reduces the RB allocation due to increased
contention for channel access.

2) LICENSED COMPONENT
Throughput and RB allocation results for the Licensed on-site
experiments are presented in Figures 14(a) & 14(b), respec-
tively. The Same PCI and Different PCI performance trends
in the Licensed component are similar for both operator data

analysis and network experiments. The Same PCI scenario
outperforms the Different PCI, in terms of network perfor-
mance prediction, network throughput, and RB allocation,
for comparable levels of SINR. Compared to the Same PCI
scenarios, the network performance drop (e.g., Throughput
& RB) in Different PCI conforms to the significantly lower
model ThroughputExp. As inferred earlier from the data anal-
ysis, Licensed operation in the current LTE-LAA deploy-
ments is not efficient in the Different PCI scenario.

3) PCI SCENARIOS AND QoS
An insightful observation on the LTE-LAA operation can be
made by monitoring network performance metrics when Live
Stream traffic is active. It can be discerned fromFigure 13 that
the Unlicensed component does not register any Throughput
for Live Stream, in both Same PCI and Different PCI sce-
narios. Likewise, in both the Unlicensed scenarios, no RB is
allocated to Live Stream.

Live Stream falls in QCI class 7, along with other delay
critical and data-intensive services as online interactive gam-
ing. The maximum permitted Packet Delay and Packet Loss
Rate for QCI 7 are 100ms and 10−3, respectively. Live
stream traffic is not assigned to the LAA component despite
high RB availability and little contention from coexisting
Wi-Fi APs, as the cellular operator cannot guarantee the
QoS requirements in the Unlicensed spectrum. Consequently,
as illustrated in Figure 14, the Licensed LTE component
carries Live Stream traffic, for both Same PCI and different
PCI scenarios. Thus, with respect to QoS guarantees, PCI
Scenarios do not seem to have any bearing on the operator
decision of assigning particular traffic pipelines to LTE or
LAA interfaces.

4) RESOURCE BLOCKS AND LTE-LAA PERFORMANCE
A detailed comparison of Licensed and Unlicensed feature
relationships is presented in [10] and [11]. However, the
feature combination is limited to SINR, Capacity, and PCI.
Measurement results reveal that RB allocation may signifi-
cantly influence feature relationships and enhance network
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FIGURE 15. Wi-Fi on-site measurements.

performance prediction. In general, the Same PCI RB alloca-
tion is higher than Different PCI. However, this difference is
more pronounced in the Licensed spectrum as compared to
the Unlicensed. Further, despite the factors of resource shar-
ing, contention, and back-off mechanisms in the Unlicensed
spectrum, the observed RB allocation is much higher than the
Licensed. This is because three 20MHz channels are available
in the Unlicensed spectrum, leading up to a maximal RB
allocation of 300. However, as user density increases, high
availability of resource blocks may not be possible. Finally,
Figure 13(e) shows that the RB allocation in the Unlicensed
spectrum is adversely affected by distance, while there seems
to be no evident pattern in the Licensed spectrum, as seen in
Figure 14(b). However, the existence of a correlation can only
be ascertained through feature relationship analysis.

5) IMPACT ON WI-FI PERFORMANCE
In this experiment, Wi-Fi AP 802.11 ac is made to coexist
with LAA BS for the five different traffic flows. The closed
authenticationmethod is used so that outsideWi-Fi clients are
not connected to the AP. The Wi-Fi performance is measured
using Wireshark, which runs on a laptop in monitor mode so
that it can capture all packets in the air corresponding to the
locked channel. The Throughput and Latency for Wi-Fi base-
line and coexistence scenarios is computed, and the results
are presented in Figures 15(a) & 15(b). Wi-Fi performance is
better for both scenarios when there is no LAA transmission.
Upon activating LAA clients and initiating data traffic, it was
observed that there is an immense adverse impact on Wi-Fi
performance. While Throughput drops to half as compared to
the baseline scenario, Latency increases by as much as four
times for most traffic flows. Between Same PCI and Different
PCI, the latter seems to coexist better with Wi-Fi, offering
relatively better performance than the Same PCI scenario.
This conforms to the LAA-side observations, as a better
performance of Same PCI LAA, leads to greater contention
with Wi-Fi, degrading Throughput, and increasing Latency,
more than the Different PCI LAA.

The on-site experiments at LAA sites demonstrate the
impact of coexistence PCI scenarios on both LAA and Wi-Fi
sub-systems. The next section attempts to solve the important
problem of recognizing the PCI scenario by analyzing the
operator data.

IX. PREDICTIVE MODELING OF PCI SCENARIOS
Unlicensed network performance is influenced by the PCI
scenario to which a UE belongs. Thus, awareness of PCI
scenarios at the UE will be instrumental in implementing
UE-initiated cellular operations such as cell selection, han-
dover, broadcasts, etc. [38], [39]. A reliable solution will
also be beneficial during vertical handovers in emerging 5G
heterogeneous networks [40]. Thus, identification of the PCI
Scenario at the UE will further improve its decision making
process while performing these operations for enhanced end-
user QoS.

However, there are two factors that make this task
extremely challenging. First, there is the problem of power
costs in UE-driven procedures, because battery drain is a
major constraint in mobile devices. UE-driven cell selec-
tion and handover mechanisms must be light-weight with
low power costs to avoid battery drain [38]. Traditionally,
advanced power saving mechanisms, such as ‘‘sleep modes’’
are implemented to reduce battery drain [39]. Since the
PCI Scenario identification requires ML based classifica-
tion models that are inherently computationally expensive,
the simplest feature vector conceivable in a wireless net-
work comprising only SINR and throughput is considered
in the proposed solution. The rationale being that cell selec-
tion mechanisms in LTE/LTE-A/LAA rely heavily on some
measure of signal strength such as SINR or RSRP [15].
Furthermore, from the perspective of QoS guarantees, net-
work throughput is the metric of primary interest. Learning
the PCI scenario from a simple two-variable feature vec-
tor is particularly useful as it minimizes the energy budget
of the computational requirements for classification, espe-
cially if it is being performed on a mobile device. How-
ever, it significantly increases the difficulty in achieving high
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FIGURE 16. Decision boundaries.

prediction accuracy, an obstacle that the proposed solution
overcomes.

Second, the inherent imbalance in the PCI scenario dis-
tribution (>80% LAA sites are Same PCI), is reflected in
the network data, rendering the minority class to be a mere
16% in our data set. Together, the minimalist feature vector
and extreme data imbalance make PCI scenario detection a
difficult problem to solve.

A. PROBLEM SETUP
The identification of two PCI scenarios, i.e., Same or Differ-
ent can be posed as a binary classification problem. In partic-
ular, the task is to learn a mapping h : xi −→ ti, where xi is
the feature vector with attributes SINR (dBm) & Throughput
(Mbps). Further, ti is 1 when the data point belongs to the
Same PCI scenario and 0, otherwise.

B. LEARNING THE DECISION FUNCTION (H)
The Support Vector Machine (SVM) algorithm was deployed
to learn h. In principle, other machine learning algorithms,
including logistic regression, neural networks, and decision
trees, can also be used with varying trade-offs in accuracy
and compute time. Suppose that the data set has N training
points, i.e., {(xi, ti)}Ni=1, then the SVMalgorithm aims to solve
the following optimization problem:

argminw,b
1
2
w>w+ C

N∑
i=1

ζi

s.t. ti(w>φ(xi)+ b) ≥ 1− ζi,∀i

ζi ≥ 0,∀i (1)

where w and b are the weight vector and bias, respectively.
C is a hyperparameter that is set through cross-validation.

Moreover, φ is a function that allows us to learn non-linear
boundaries. Figure 16 indicates that the data is not linearly
separable. Thus, a non-linear decision function could help
us make more accurate predictions as compared to a linear
decision function. In Figure 16, the decision boundaries for
both Unlicensed and Licensed data are presented. In the
figure, ‘orange’ points refer to points belonging to the Same
PCI scenario, whereas ‘navy’ points signify the Different PCI
scenario. The SVM algorithm was used with the RBF kernel
to learn the decision boundaries.

The variation of Macro f-scores for the task of PCI sce-
nario classifications with different kernel functions used by
the SVM algorithm is presented in Table 3. The scores are
computed via k-fold cross validation, where k = 5. The
Radial Basis Function (RBF) yields the best accuracy in both
settings.

C. DATA IMBALANCE
Data analysis reveals that the data is imbalanced in favor
of the Same PCI scenario – 83.51% data points are from
the Same PCI scenario, whereas 16.49% data points are
from different PCI. It is important that a classification model
performs well on both classes and not just on the majority
class. If this is not ensured, the Same PCI scenario will be
detected with high accuracy, but a Different PCI sample may
also be misjudged as Same PCI. From the perspective of UE
initiated cell selection or handover, when a UE wishes to
camp on a small cell with Different PCI architecture (e.g.,
to experience better Wi-Fi performance), it is very likely to
erroneously camp on the Same PCI cell. Figure 17 shows
that the standard classifier performs well only on the majority
class. Therefore, it becomes crucial to explicitly handle the
issue of data imbalance. Popular approaches handle data
imbalance by introducing class weights or by down-sampling
the majority class [41]. In particular, we used the inverse fre-
quency as the class weight for both Unlicenced and Licenced
data. In practice, class weights can be readily incorporated in
to eq. 1. The class-imbalance requires us to adapt the evalu-
ation metric in addition to the training pipeline as discussed
below.

D. RESULTS AND ANALYSIS
A trivial algorithm that always predicts the majority class
can lead to 83.51% accuracy on the classification task. Note
that, the accuracy is defined as the percentage of points
that were correctly classified by the model. However, such
a model would be clearly undesirable, as it does well only
on the majority class. Hence, it becomes important to look
at f-score, confusion matrix, and receiver operating char-
acteristic (ROC) curve for an exhaustive evaluation of the
classification model.

The confusion matrices in Figure 17 demonstrate that
class weights allow for more balanced predictions on both
classes, compared to the standard classifier. Learning a
classifier with class weights (second row) leads to accu-
rate predictions on both classes, whereas the standard
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FIGURE 17. Confusion matrix.

TABLE 3. Macro f-scores of PCI scenario classification.

FIGURE 18. ROC curve for PCI scenario classification.

classifier (first row) performs well only on one class. In par-
ticular, the unweighted predictor yields 100% and 96%
accuracy for the same PCI class for Licenced and Unli-
cenced data, respectively. However, the accuracy drops down
to 0% and 50% on the Different PCI class for Licenced
and Unlicenced data, respectively. On the other hand, the
weighted predictor yields 82% and 74% accuracies on
the Different PCI class for Licenced and Unlicenced data,
respectively

Moreover, the ROC curve in Fig. 18 presents the relation-
ship between True Positive Rate (TPR) and False Positive
Rate (FPR). Getting high TPR might be more important
for certain applications, whereas a low FPR might be more
important for others. So, the end-user may choose the con-
figuration depending on the application based on the ROC
curve. For example, when a user is mobile and needs higher
performance in the Unlicensed spectrum by camping on a
Same PCI cell, it is highly desirable to have a high TPR.
Likewise, in an indoor setting, where the user needs higher
Wi-Fi bandwidth for traffic such as Live-streams, it may be
important to ensure a low FPR, for reliable identification of
Different PCI Scenario. At times ensuring both high TPR
and low FPR may also be necessary for latency-critical
services such as augmented reality applications on the
Licensed/Unlicensed component or live-streams on the
Licensed
component.

The proposed PCI scenario classification solution is
highly suitable for UE-driven procedures, especially in Unli-
censed networks where its prediction performance is high
(AUC=0.84). It is worth noting that the high accuracy is
despite the use of aminimal feature set comprising only SINR
and Throughput. Thus, the proposed solution offers strong
prediction of the PCI scenario while ensuring energy savings
at the UE, which is a prerequisite for UE-initiated handovers
and cell attachments [39].

We would also like to add that for UE-driven cell selection,
the distinction in the performance of Same PCI and Different
PCI scenarios, will raise the questions of fairness in resource
allocation. In recent past, game theory approaches have been
shown to be particularly useful in solving problems of fair
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coexistence [42]. Thus, to decide when a UE can attach to the
Same PCI or Different PCI cell, a solution from game theory
may be quite effective.

X. CONCLUSION AND WAY FORWARD
Unlicensed coexistence deployments are currently in a
nascent stage and the two important factors that determine
network characteristics and performance are deployment
architecture and fiber optic backhaul availability. From the
observations made at the LAA sites and the analysis of
the dataset gathered from three major LTE-LAA coexis-
tence service providers, we put forward some explanations
and discuss a few open challenges with regard to the PCI
Scenarios. First, the Same PCI for LTE and LAA compo-
nents implies that the deployment has a common backhaul
connectivity, which facilitates efficient splitting of Licensed
and Unlicensed data. In this scenario, packet aggregation
is likely to be more seamless and efficient. Consequently,
the performance at the transport layer will improve, offering
improved QoS to the end-user. Second, the impact of PCI
as a categorical parameter when LTE and LAA components
are camped on different cells is different from the Same PCI
scenario. Third, resource block allocation not only differs in
the Licensed and Unlicensed spectrum, but is also different
for the two PCI scenarios within the same LTE-LAA com-
ponent. Finally, successfully solving the PCI scenario iden-
tification problem with the minimal feature set will facilitate
greater choice in the UE during the cell selection or handover
process. These findings are extremely important in light of
the upcoming 5G-NR Unlicensed coexistence deployments
and the allocation of additional 1200MHz of Unlicensed
spectrum in the 6 GHz band by the Federal Communications
Commission.

Network performance measurements indicate that RB
allocation is an important network feature point and con-
sidering it in the feature combination may explain the con-
trasting findings in the Unlicensed component. It may also
improve the network performance modeling in both scenar-
ios. We intend to extract RB data and pursue this aspect in the
future.
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