
Received 5 August 2022, accepted 12 August 2022, date of publication 17 August 2022, date of current version 23 August 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3199408

Secure UAV-Aided Mobile Edge Computing
for IoT: A Review
EMMANOUEL T. MICHAILIDIS 1,2, (Member, IEEE), KONSTANTINOS MALIATSOS2,
DIMITRIOS N. SKOUTAS 2, (Senior Member, IEEE),
DEMOSTHENES VOUYIOUKAS 2, (Senior Member, IEEE),
AND CHARALABOS SKIANIS2, (Senior Member, IEEE)
1Department of Electrical and Electronics Engineering, University of West Attica, 12241 Egaleo, Greece
2Department of Information and Communication Systems Engineering, School of Engineering, University of the Aegean, 83200 Samos, Greece

Corresponding author: Emmanouel T. Michailidis (emichail@uniwa.gr)

This work was funded by the Research e-Infrastructure [e-Aegean R&D Network] (Code Number MIS 5046494), which is implemented
within the framework of the ‘‘Regional Excellence’’ Action of the Operational Program ‘‘Competitiveness, Entrepreneurship and
Innovation’’. This action was co-funded by the European Regional Development Fund (ERDF) and the Greek State [Partnership and
Cooperation Agreement 2014-2020].

ABSTRACT As the Internet of Things (IoT) ecosystem evolves, innovative applications with stringent
demands with respect to latency will emerge. To handle computation-intensive tasks in a timely manner, data
offloading toMobile Edge Computing (MEC) servers has been suggested. On the other hand, prospective IoT
networks are expected to include Unmanned Aerial Vehicles (UAVs) to enhance coverage and connectivity,
while retaining reliable communication links with ground nodes in urban, suburban, and rural terrain. Never-
theless, the evolution of UAV-aidedMEC-enabled IoT presupposes the mitigation of security threats through
the implementation of efficient and robust countermeasures. As UAVs inherently have certain limitations in
terms of energy, computational, and memory resources, designing lightweight security solutions is required.
This paper provides an overview of the UAV-aided MEC-enabled IoT and a detailed presentation of use
cases and application scenarios, where security is of utmost importance. Subsequently, up-to-date research
works on security solutions for the UAV-aided MEC-enabled IoT are comprehensively presented. To this
end, the adoption of information-theoretic techniques that ensure adequate Physical-Layer Security (PLS) is
discussed along with sophisticated security approaches based on emerging technologies, such as Blockchain
and Machine Learning (ML). In addition, research studies on software- and hardware-based methods for
the identification and authentication of network nodes are presented. Finally, this paper provides future
perspectives in this research domain, stimulating further work.

INDEX TERMS Blockchain, Internet of Things (IoT), machine learning (ML), mobile edge computing
(MEC), physical-layer security (PLS), unmanned aerial vehicle (UAV).

ACRONYMS
Acronym Description
3-D Three-Dimensional
5G Fifth-Generation
AGMEN Air-Ground Integrated Mobile Edge Net-

work
ANN Artificial Neural Networks
AP Access Point
AR Augmented Reality
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AVISPA Automated Validation for Internet Security
Validation and Application

B5G Beyond Fifth-Generation
BCD Block Coordinate Descent
BF Bloom Filter
BS Base Station
C-RAN Cloud Radio Access Network
CA Certification Authority
CAP Computational Access Point
CK Canetti–Krawczyk
CL-BS Certificateless Blind Signature
CNN Convolutional Neural Network

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 86353

https://orcid.org/0000-0002-1077-0047
https://orcid.org/0000-0002-7953-7964
https://orcid.org/0000-0002-6649-6577


E. T. Michailidis et al.: Secure UAV-Aided Mobile Edge Computing for IoT: A Review

CPU Central Processing Unit
CSI Channel State Information
CSMA/CA Carrier SenseMultiple Access Protocol with

Collision Avoidance
DDPG Deep Deterministic Policy Gradient
DF Decode-and-Forward
DL Deep Learning
DNN Deep Neural Network
DoS Denial of Service
DP Differential Privacy
DQL Deep Q-Learning
DQN Deep Q-Network
DRL Deep Reinforcement Learning
DY Dolev and Yao
ECS Edge Computing Stations
ECC Elliptic-Curve Cryptography
eMBB enhanced Mobile Broadband
ETSI European Telecommunications Standards

Institute
FAA Federal Aviation Administration
FANET Flying Ad-hoc Network
FEEL Federated Edge Learning
FL Federated Learning
FLIR Forward-looking infrared
FM-JSFP Fading Memory Joint Strategy Fictitious

Play
GCS Ground Control Station
GPS Global Positioning System
GS Ground Station
GU Ground User
HECC Hyperelliptic Curve Cryptography
HSM Hardware Security Module
IC Integrated Circuit
IMU Inertial Measurement Unit
IoD Internet of Drones
IoFT Internet of Flying Things
IOS Intelligent Omni Surface
IoT Internet of Things
ISG Industry Specification Group
ITS Intelligent Transportation System
LAP Low-Altitude Platform
LDP Local Differential Privacy
LoS Line-of-Sight
M-UAV Monitoring UAV
M2M Machine-to-Machine
MCS Mobile Crowdsensing
MDP Markov Decision Process
ML Machine Learning
MEC Mobile Edge Computing
MEMS Micro Electromechanical Systems
MIMO Multiple-Input Multiple-Output
mMTC massive Machine Type Communications
MTD Machine-Type Device
NASA National Aeronautics and Space Adminis-

tration
NOMA Non-Orthogonal Multiple Access

PER Prioritized Experience Replay
PKI Public Key Infrastructure
PLS Physical-Layer Security
PUF Physically Unclonable Function
OAI OpenAirInterface
QoE Quality of Experience
QoLM Quality of Local Model Update
QoS Quality of Service
RA Radio Access
RF Radio Frequency
RL Reinforcement Learning
RMEC Raspberry Pi-Based Multi-Access Edge

Computing
RTCA Radio Technical Commission for Aeronau-

tics
RIS Reconfigurable Intelligent Surface
RSU Road-Side Units
SCA Successive Convex Approximation
SDN Software-Defined Networking
SEE Secrecy Energy Efficiency
SHA Secure Hash Algorithm
SI Self-Interference
SIC Successive Interference Cancellation
SLPAKA Secure Lightweight Proven Authenticated

Key Agreement
TA Trusted Authority
TAC Trusted Authority Center
TDMA Time-Division Multiple Access
TON Task Offloading Notices
TPM Trusted Platform Module
U2U UAV-to-UAV
UAS Unmanned Aerial System
UAV Unmanned Aerial Vehicle
UHD Ultra-High Definition
URLLC Ultra-Reliable Low Latency Communica-

tions
V2X Vehicle-to-Everything
VANET Vehicular Ad hoc Network
VR Virtual Reality
WPT Wireless Power Transfer
WSN Wireless Sensor Network
YOLO You only look once

I. INTRODUCTION
As the Internet of Things (IoT) and big data era emerge in
next-generation communication networks, a vast number of
interconnected nodes equipped with computation and com-
munication units will pave the way for novel services. Apart
from the ground terminals, aerial nodes based on Unmanned
Aerial Vehicles (UAVs) flying in three-dimensional (3-D)
space are expected to act as moving radio access (RA) nodes
[1] and provide flexibility, ubiquitous connectivity, and suffi-
cient radio coverage in the Internet of Drones (IoD) paradigm
[2]. However, the next wave of applications, including
Augmented/Virtual Reality (AR/VR), Ultra-High Definition
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(UHD) video streaming, and Tactile Internet, will reach the
limits of current technologies and pose strict requirements
in terms of computation, storage, latency, and throughput.
For locally processed computation tasks, a large amount of
energy is consumed, which in turn reduces the endurance of
energy-limited IoT nodes. In addition, it is often infeasible for
resource-constrained nodes to handle computation-intensive
tasks in a timely manner, whereas a massive number of these
nodes in large-scale IoT deployments usually makes the core
network congested.

To meet the critical latency requirements of modern data-
intensive applications, satisfy the demands of real-time data
processing, and provide exceptional Quality of Experience
(QoE), task offloading to Mobile Edge Computing (MEC)
servers has been suggested as an extension of centralized
cloud computing [3], [4]. The MEC servers are generally
located in close proximity to resource-limited nodes and
have powerful storage and processing capabilities. In [5],
the implementation challenges of UAV-aided MEC-enabled
networks were described, whereas an Air-Ground Integrated
Mobile Edge Network (AGMEN) with multiple flexibly
deployed drone cells was proposed in [6]. Based on AGMEN,
IoT application scenarios were envisioned with drones acting
either as edge network controllers or fog computing plat-
forms for IoT services. In [7], single- and multi-UAV aerial
computing architectures were proposed with UAVs acting as
MEC servers, users, or relays. Moreover, case study simula-
tions were performed to depict the benefits of MEC-enabled
networks with joint computation and communication design
over conventional infrastructure-based MEC-enabled net-
works. Most recent relevant research work has emphasized
on energy-aware techniques [8], optimization of resource
allocation [9], latency [10], and computation efficiency [11].
Furthermore, emerging communication and network tech-
nologies are envisioned to enhance the performance of Fifth
Generation (5G) IoT networks and the Quality of Ser-
vice (QoS), such as Wireless Power Transfer (WPT) [12],
Non-Orthogonal Multiple Access (NOMA) [12], Software-
Defined Networking (SDN) [13], Reconfigurable Intelligent
Surface (RIS) [14], massive Multiple-Input Multiple-Output
(MIMO) [15], and Machine Learning (ML) [16].

Nevertheless, there exist various challenges and barriers
to secure IoT network operation and task offloading [17],
due to the wide distribution of nodes in open and remote
environments, highly dynamic network topology, high pos-
sibility of short-distance Line-of-Sight (LoS) connections,
and unencrypted wireless links [18]. As node authentica-
tion is a prevalent requirement for security, efficient authen-
tication mechanisms should be also implemented. More
importantly, several security attacks [19] should be miti-
gated to avoid potential economic, societal, and environ-
mental impact. However, UAVs have intrinsic constraints in
terms of energy, computational, andmemory resources. Thus,
the design of robust security solutions is a non-trivial and
complicated process, whereas the application of upper-layer
cryptography-based schemes may be infeasible in practice.

In this respect, Physical-Layer Security (PLS) can be used
to obtain secure information-theoretic transmissions, while
maintaining low computational complexity [20]. In addi-
tion, ML [21] and Blockchain [22] have been recently rec-
ognized as key enabling technologies for precisely han-
dling the decision-making process and safeguarding security,
respectively.

A. CONTRIBUTION
Motivated by the aforementioned observations, this review
paper intends to shed light on a broad set of up-to-date,
state-of-the-art mechanisms for successfully realizing secure
UAV-aided MEC-enabled IoT. Recently, a plethora of review
and survey works focusing on IoT architectures, the deploy-
ment of UAVs as network nodes, the use of MEC technology,
and the development of security methods for next-generation
networks has been published. To the best of the authors’
knowledge, there are no review papers on secure UAV-aided
MEC-enabled IoT and the intersection of IoT, UAVs, MEC,
and security has not yet been adequately investigated.
Towards this end, the main contributions of this paper can
be summarized as follows:

• A brief overview of the background information on the
UAV-aided MEC-enabled IoT, PLS, and authentication
issues is provided. Also, the role ofML, Blockchain, and
their combination in strengthening the security aspects is
underlined.

• Indicative use cases concerning secure computation
offloading are discussed.

• An exhaustive overview of recent security solutions
from all possible categories ranging from PLS schemes
to emerging ML-inspired and Blockchain-based meth-
ods is comprehensively presented.

• Lightweight methods for the authentication of het-
erogeneous network nodes within the UAV-aided
MEC-enabled IoT are described.

• Current limitations and open issues are highlighted.

Fig. 1 classifies the security methods, which are comprehen-
sively reviewed in this paper.

B. STRUCTURE
The remainder of this paper is organized as follows. Section II
investigates relevant review and survey papers and indi-
cates their goals and shortcomings. Section III provides an
overview of the UAV-aided MEC-enabled IoT and exam-
ines several representative use cases in different appli-
cation domains. Section IV studies the role of PLS and
node authentication for secure operations and also pro-
vides insights into ML and Blockchain. Section V empha-
sizes the recently proposed PLS mechanisms and Section VI
presents ML-inspired and Blockchain-based techniques.
Software- and hardware-based authentication schemes are
outlined in Section VII. Section VIII identifies fertile areas
for future research. Finally, Section IX concludes this
paper.
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FIGURE 1. The major security approaches for the UAV-aided MEC-enabled
IoT.

II. PREVIOUS REVIEW AND SURVEY WORKS
Previously, a wide range of reviews, surveys, and tutorials
investigating IoT, MEC, UAVs, and security issues, as well
as their interplay, has been published. This section provides
a literature review concerning these works, which are also
synopsized in Table 1.

A. MEC-ENABLED IOT
In [23], the fundamental features of MEC technology were
underlined in a holistic manner, indicative use case sce-
narios were investigated, and both theoretical and exper-
imental research activities were analyzed. In this respect,
the integration and interaction of MEC with 5G enabling
technologies were considered and the role of NOMA, WPT,
energy harvesting, UAVs, IoT, heterogeneous Cloud Radio
Access Network (C-RAN), and ML was discussed. Insight
on potential MEC-enabled IoT applications and relevant
technical aspects (e.g., scalability, communication, com-
putation offloading, resource allocation, mobility manage-
ment, security, privacy, and trust management) was given
in [24]. However, the works in [23] and [24] partially
studied the security issues and the integration of UAVs in
MEC-enabled IoT scenarios. From a cyber-physical secu-
rity perspective, potential threats and vulnerabilities were
identified in [17]. These threats were classified based on
the intrusion target, that is the access network, mobile edge
network, and core network. Furthermore, state-of-the-art
mechanisms that can mitigate security threats and preserve
privacy were outlined. Nevertheless, the work in [17] did not
invoke UAVs as network nodes towards establish a secure
MEC-enabled IoT and did not include relevant research
activities.

B. UAV-AIDED NETWORKS
The concept of the Internet of Flying Things (IoFT) for
Beyond 5G (B5G) networks was introduced in [25] and
its major characteristics were discussed. In addition, certain
obstacles towards the realization of IoFT scenarios were des-
ignated, such as collision avoidance, interference mitigation,
path planning, energy consumption, security, privacy, and
control and management of the UAVs. To tackle the strict
requirements of enhanced Mobile Broadband (eMBB), Ultra
Reliable Low Latency Communications (URLLC), and mas-
sive Machine Type Communications (mMTC), the adoption
of advanced techniques (e.g., NOMA, massive MIMO, RIS,
short packet transmission, energy harvesting, radio-based
sensing, and ML) was considered in [26]. Although flying
edge-computing network architectures were envisioned in
[27] and [28], the MEC technology was not the main research
objective of these works, possible UAV-aided MEC-enabled
network schemes were partly investigated, and up-to-date
research works were not provided. The integration of UAVs
into cellular networks was also considered in [29] and the cor-
responding core technologies and challenges were surveyed
without taking into account computation offloading.

C. UAV-AIDED MEC-ENABLED NETWORKS
On the other hand, a wide variety of UAV-aidedMEC-enabled
network architectures and algorithms were comprehensively
reviewed, classified, and evaluated from a computation
offloading perspective in [30]. Additionally, issues related
to computation, security, cost, and mobility were discussed.
In this respect, both single-UAV and multi-UAV deployments
were considered and relevant applications and case studies
were underlined to emphasize the emergence of combining
UAVs and MEC. The survey paper in [31] investigated the
role of UAVs asMEC servers, users or relays in three different
MEC-enabled network architectures and described the recent
advances and the indicative scenarios, i.e., hotspots, remote
and complex terrains, battlefields, and areas suffering from
natural disasters. In this regard, the major implementation
challenges were underlined with respect to the operation
mode, the local computing techniques, the offloading tech-
niques, and the resource allocation. The benefits and draw-
backs of several research efforts in the field of UAV-aided
MEC-enabled networks were categorized in [32] and par-
ticular categories were identified, which are associated with
energy efficiency, resource allocation, security, architecture,
and latency. The integration of these networks into B5G
networks and Industry 5.0 was also discussed as an exten-
sion of cloud computing and edge computing, emerging use
cases were described, and future research perspectives were
identified to further enhance the QoE and QoS. In [33],
various AGMEN architectures were extensively reviewed
and the corresponding communication, computation, and
edge caching techniques were discussed. In this direction,
the characteristics and components of the Unmanned Aerial
Systems (UASs) were described and challenges regarding
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TABLE 1. Relevant review and survey papers.

channel modeling, mobility, trajectory planning, energy effi-
ciency, and harvesting were analyzed. In [34], ML and Deep
Learning (DL) were seen as cornerstones for implement-
ing intelligent UAV-aided MEC-enabled networks and rev-
olutionizing the decision-making process from massively

generated, collected, or exchanged data. As a substantial
amount of energy can be consumed during local computation
and data offloading, a wide range of energy-aware meth-
ods was recently proposed to keep the energy consumption
at a low level thus prolonging the battery life of ground
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terminals and increasing the endurance of resource-limited
UAVs. These methods were thoroughly reviewed in [35],
computation offloading access schemes were summarized,
and the underlying types of optimization problems that lead
to optimal, sub-optimal, near-optimal, or global optimal solu-
tions were studied. However, the works in [30], [31], [32],
[33], [34], and [35] did not focus on security-based mecha-
nisms.

D. SECURE UAV-AIDED NETWORKS
In recent years, the research area of security for UAV-based
deployments has received several contributions. A summary
of security issues and indicative use cases was provided in
[27]. However, security was not the main research objec-
tive of this work. Moreover, the UAV-aided networks were
exhaustively reviewed in [34], [35], and [36], and a dis-
cussion about vulnerabilities, threats, cyber-physical security
applications, and security protocols was included. The use of
drones as ‘‘flying’’ things was suggested in [37], the security
challenges were summarized, and a secure IoT architectural
framework was proposed. In [38], certain weaknesses of the
UAVs were underlined, the security issues were studied in the
context of the civilian and military domain, and an indicative
use case involving an attack life cycle was described. A high-
level insight on the network architecture of a communication
system that includes civilian drones was given in [39] and the
deployment and security issues were highlighted. As different
UAV-based network layers may be exposed to attacks in
military and disaster scenarios, the role of Blockchain, ML,
and watermarking was pointed out in [40], whereas relevant
application scenarios involving ML, Blockchain, SDN, and
edge computing were discussed in detail in [41]. A thorough
review of relevant research works for heterogeneous B5G
UAV-based networks was provided in [21] and emphasis on
ML-based methods was given to enhance the secrecy level
during data communication. The use of Artificial Neural
Networks (ANNs) as potential countermeasures against secu-
rity attacks at higher communication layers of UAV-based
delivery systems, Intelligent Transportation Systems (ITS),
and real-time multimedia streaming was suggested in [42].
The security and privacy challenges in UAV-aided networks
were surveyed in [22] and a Blockchain-based scheme was
presented. Nevertheless, this paper is currently outdated and
does not invoke recent research activities. Various security
solutions for SDN-enabled UAV networks were presented
in [43]. In [18], up-to-date research studies on authentica-
tion mechanisms for UAV-based networks were presented.
To this end, the adoption of conventional technologies and
methods, such as the widely used hash functions, Public
Key Infrastructure (PKI), and Elliptic-Curve Cryptography
(ECC), was discussed along with emerging technologies,
including MEC, ML, and Blockchain. Additionally, a review
of effective hardware-based solutions for the identification
and authentication of network nodes was provided and the
use of Trusted Platform Modules (TPMs), Hardware Secu-
rity Modules (HSMs), and Physically Unclonable Functions

(PUFs) as effective security solutions was indicated. Nev-
ertheless, the role of authentication was only studied in
[18], whereas the use of MEC was not considered in [21],
[22], [27], [34], [35], [36], [37], [38], [39], [40], [41], [42],
and [43].

To reconcile the shortcomings of the aforementioned
works and extensively study the ambiguous landscape con-
cerning the available security solutions for the UAV-aided
MEC-enabled IoT, contemporary review papers are requisite.
Therefore, this paper focuses on the investigation and com-
parison of a broad set of security solutions.

III. OVERVIEW OF MEC-ENABLED IOT AND UAV-AIDED
NETWORKS
The notion of MEC technology was initially introduced by
the European Telecommunications Standards Institute (ETSI)
Industry Specification Group (ISG) [44] as a key enabler for
the execution of computation-intensive and latency-sensitive
tasks at the edge of the networks, as well as for the storage of
a huge number of datasets. MEC stands for an extension of
cloud computing and intends to surpass network congestion
issues, enhance resource optimization, and bring benefits to
mobile operators, third parties, and end-consumers. As the
IoT applications evolve, the computing and storage require-
ments increase and there is a need for auxiliary computing
capacity. In this regard, centralized cloud computing cannot
meet the growing demands for ultra-low latency, mobility,
flexibility, scalability, and location awareness. Since a large
number of connected devices consecutively generate data,
the collaborative and complementary combination of MEC
and IoT is highly suggested to construct novel applications
in the civilian and military domains [3]. More importantly,
the use of MEC servers with sufficient computing capabil-
ities as integral elements of IoT is expected to fulfill the
requirements for computation and storage of massive data
by enabling efficient computation offloading and providing
a host of analytics applications, whereas IoT can provide a
wide range of heterogeneous smart objects and sensors. Apart
frommeeting the computation demands of static nodes, MEC
also intrinsically supports the mobility of moving IoT nodes
(e.g., vehicles and trains) across different cells. Moreover,
two operationmodes can be adopted for computation offload-
ing, the partial offloading mode and the binary computation
mode [28]. In the former, which ensures dynamic and flexible
task allocation based on the available resources, part of the
computation task is locally processed and the remaining part
is computed at the MEC server. On the contrary, the latter
is simpler and considers that the nodes perform only task
computation offloading or local computing, thus leading to
mediocre computation performance.

On the other hand, the Low-Altitude Platforms (LAPs)
operating at modest altitudes, in the troposphere, can act as
aerial Base Stations (BSs), relays, or Access Points (APs)
and enhance the coverage, the connectivity between data col-
lection points and sensors, and the reliability, in cases where
the links of the terrestrial communication infrastructure are
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severely attenuated or blocked [45]. The fixed-wing and
rotary-wing UAVs, commonly known as drones, constitute
the main representative type of LAPs and were initially intro-
duced into the national airspace system in 2016 by the Radio
Technical Commission for Aeronautics (RTCA) [46]. It is
noted that the integration of UAVs into the airspace system of
the United States was also suggested by the National Aero-
nautics and Space Administration (NASA) and Federal Avia-
tion Administration (FAA) [47]. Various UAV-based network
architectures have been previously proposed. Apart from typ-
ical single-UAV deployments, more sophisticated network
configurations have also been envisioned to provide extended
scalability, reliability, survivability, efficient task distribu-
tion, and coordination, such as the Flying Ad-hoc Networks
(FANETs) that involve interconnected drones configured in
groups [48] and the IoD paradigm that combines heteroge-
neous aerial and ground interconnected network segments
[18]. Among the main benefits of the UAVs are the flexibility,
the rapid deployment, and the movement on-demand.

However, the UAVs typically represent resource- con-
strained devices and usually have insufficient computation,
storage, and energy resources stemming from their restrained
battery capacity and stringent size limitations. These practical
constraints may discourage the use of the UAVs as MEC
servers, the application of powerful computation-intensive
security mechanisms, and the decision-making on the fly.
Hence, the implementation of low-complexity and energy-
efficient security solutions is necessary. On the other hand,
the UAVs can partly or fully perform task offloading to
ground MEC servers to keep their energy consumption at a
low level, prolong their flight time, and satisfy the latency
requirements. As the groundMEC servers are usually embed-
ded in fixed APs, BSs, or Road-Side Units (RSUs) in the case
of a Vehicular Ad hoc Network (VANET), the UAVs can be
also used for effective data collection and communication in
MEC-enabled IoT networks, especially in areas with obsta-
cles and dispersed and highly mobile nodes. Depending on
the application scenario, the UAVs can play the following
roles:
• UAVs asMEC servers: In this case, there are no ground
MEC servers in the vicinity of the nodes. Thus, theUAVs
operate as MEC servers and assist the Ground Users
(GUs) to accomplish task computation.

• UAVs as users: In this case, the UAVs offloads their
own computation tasks to MEC servers due to their
limitations in terms of energy and computation capacity.

• UAVs as relays: In this case, the UAVs guarantee reli-
able and secure offloading by acting as aerial relays
forwarding the computation tasks received from GUs to
ground MEC servers.

• UAVs as data collectors or dispatchers: In this case,
the UAVs gather tasks and aggregate data from GUs that
are eventually processed by MEC servers.

• UAVs as supporting entities: In this case, the
UAVs transmit artificial noise toward malicious
entities.

• UAVs as attackers: In this case, the UAVs may be
malicious entities (e.g., eavesdroppers).

Also, the GUs can have the following roles:
• Devices with limited or moderate computational capa-
bilities (e.g., remote IoT devices) that require MEC
assistance.

• Connected vehicles (ITS nodes) supported by UAVs.
• Supporting ground nodes transmitting artificial noise
towards malicious entities.

• Malicious entities (e.g., eavesdroppers).
Overall, the potential roles of the aerial and ground nodes are
shown in Fig. 2.

A. USE CASES FOR SECURE UAV-AIDED MEC-ENABLED
IOT
As the application domains of UAV-aided networks expand,
novel exciting use cases combining UAVswithMEC-enabled
IoT systems are predicted to emerge in the near future.
In particular, a variety of application scenarios have been
envisioned, where providing flexible and extended radio cov-
erage in dynamic propagation scenarios, as well as enhanced
computational resources at the network’s edge is of utmost
importance. In these scenarios, attaining security is cru-
cial but challenging, particularly for real-time applications,
where there is a clear trade-off between security and latency.
Because edge devices have limited resources, they may be
vulnerable to security attacks. Therefore, it is vital to employ
lightweight yet effective security solutions. In this section,
relevant use cases are described.

1) ENHANCED COVERAGE AND CONNECTIVITY
In current cellular networks, the integration of MEC with
the network’s edge nodes, i.e., the BSs, is already becoming
a reality to significantly reduce latency, especially in real-
time data streams, and enhance the end user’s QoS and QoE.
MEC enables the placement of multimedia content closer to
the user, while BSs with MEC capabilities can locally run
computationally intensive applications (e.g., intelligent video
analytics or augmented reality-based applications), thereby
relieving the strain on the core network. In this context,
a compelling use of UAVs as aerial BSs or aerial relays is
their ability to be flexibly deployed and operated to enhance
the edge network’s connectivity, caching, and computational
capabilities. This can be beneficial in scenarios such as the
following:
• Confrontation of significant and rapid fluctuations
in network traffic volume: Current and future mobile
networksmust deal with temporal and spatial fluctuation
in network traffic, which frequently results in local-
ized traffic load bursts. This condition is intensified in
hotspot areas and crowded venues (e.g., large athletic
events and music festivals), when the network infras-
tructure confronts substantial challenges due to intense
and concentrated network traffic. In this regard, UAVs
can form overlaying aerial networks that have a flexible
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FIGURE 2. The role of (a) aerial and (b) ground network nodes in security scenarios.

FIGURE 3. Indicative use cases of secure UAV-aided MEC-enabled IoT.

structure and can be strategically deployed wherever and
whenever needed to handle service requests of a massive
number of GUs [49]. Thus, by acting as aerial relays
UAVs should be able to guarantee reliable and secure
distribution of the traffic load from an overloaded cell
to the adjacent BSs with MEC capabilities, as shown
in Fig. 3(a). Furthermore, emerging 5G wireless net-
works should be able to offer real-time eMBB services,
such as live video and music streaming, and support the
resource-intensive processing and orchestration of high-
quality on-demand multimedia streams at the network’s
edge. Even more challenging can be the support of
services that require URLLC network connectivity, such
as AR/VR-based applications that can be used for both
entertainment and non-entertainment purposes, such as
online gaming, teaching, and training. The remote con-
trol of autonomous and semi-autonomous vehicles of

the near future can also be rather challenging due to the
requirements for ultra-low latency, high reliability, avail-
ability, and security. Consequently, the UAVs should
not only act as relays, but also have significant storage
and computational capabilities allowing them to locally
execute computation-intensive tasks or operate as MEC
nodes. Thus, they could reduce strain on the underly-
ing network infrastructure by providing additional data
caching, handling, and forwarding features. However,
wireless communication is vulnerable to security threats
that can compromise the overall network security. Var-
ious malicious actors can perform passive or active
attacks to get access to users’ private data or degrade net-
work performance. The primary targets of these attacks
are the GU-UAV and UAV-BS links, as well as the
UAVs themselves, as they are considered to be more
vulnerable than the BSs. These malicious actors can be
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either at both ground and aerial levels or they can also
utilize UAVs to gain greater flexibility. Thus, the most
important aspect of incorporating UAVs into 5G mobile
networks is that they can be part of a robust and security-
oriented communication system that ensures confiden-
tiality, data integrity, and availability [50].

• Extending cellular connectivity to disaster-affected
areas: Natural or man-made disasters (e.g., warfare,
water contamination, earthquakes, hurricanes, and flash
floods) pose a challenge to societies all over the globe.
In the aftermath of such horrific events, the terres-
trial communication infrastructure may be either totally
or partially damaged. In such a situation, the flexible
and rapid deployment of networks that exploit UAVs
as aerial BSs or relays to the remaining functional
MEC-enabled BSs could be a valuable solution for
ensuring a steady flow of information. This is criti-
cal in preventing human fatalities by properly directing
emergency vehicles (e.g., fire trucks, patrol cars, and
ambulances) and maintaining communication with res-
cue authorities [51]. Reliable and real-time transmission
of emergency data is crucial for keeping coordinators
informed and plays an important role in facilitating
effective and rapid decision-making. Thus, the network
must be able to support the real-time transmission of
commands, reports, and vital statistics, as well as real-
time video monitoring of disaster zones. Furthermore,
in special emergency situations, video conferencing
may also be utilized to provide remote medical assis-
tance. Evidently, an emergency communication network
should be both horizontally and vertically scalable,
secure, and employ adequate authentication and autho-
rization control techniques. Also, the confidentiality of
the transmitted data should be guaranteed, since an
external attacker might take advantage of the vulner-
abilities that could be revealed during an emergency
situation to gain access to confidential data, as depicted
in Fig. 3(b). Besides, terrorists may attempt to prevent
the first responders from controlling the disaster’s con-
sequences by getting access to critical information, such
as the location of the rescue units. Hence, it is crucial to
be able to defend the deployed emergency communica-
tion network, especially at the physical layer, against a
variety of threats (e.g., eavesdropping, traffic analysis,
tampering attack, forgery attack, and Denial of Service
(DoS)). Consequently, the employed UAVs should have
the adequate processing power to implement all nec-
essary preventative measures against both passive and
active attacks.

2) MONITORING AND AERIAL SURVEILLANCE IN REMOTE
AREAS
It is critical to ensure mobile coverage in difficult-to-reach
areas (e.g., remote historical sites, natural parks, or isolated
small and rural communities) not only for permanent resi-
dents who live in these areas, but also for tourists or scientists

who wish to access or visit these areas. In addition, because
of their valuable ecosystems that may include historical mon-
uments and artifacts, or critical infrastructure (e.g., dams
and bridges), several of these regions should be continuously
monitored and protected. Real-time monitoring, particularly
in the case of critical infrastructure failures, can aid in the
delivery of effective and timely response, which is crucial
given the propensity for these malfunctions to worsen rapidly
over time. However, monitoring exclusively via terrestrial
equipment is both cost-inefficient and limited in scope [52].
In this respect, UAVs could be used to monitor the aforemen-
tioned areas in a cost-efficient manner and provide extended
radio coverage, as illustrated in Fig. 3(c). Following the same
concept, UAVs could be used to provide radio coverage to
ships situated close to the shore, as well as surveillance
of maritime routes [53]. Additionally, real-time maritime
surveillance provides data to support human activity at sea
for a variety of operations, including maritime security, law
enforcement, and monitoring of sea borders. Consequently,
it enhances situational awareness, aids decision-making, and
reduces reaction times. Moreover, the UAVs may collect data
from wearable biomedical sensors that detect aberrant health
conditions, such as body temperature and heart rate, and thus
they can be utilized for monitoring epidemics or pandemics,
particularly in remote areas, as demonstrated by the recent
COVID-19 outbreak [54]. This concept can also be applied
to the real-time remote monitoring of patients with chronic
diseases (e.g., cardiovascular disease, epilepsy, or diabetes)
who are located far from healthcare facilities. In the event of
a medical emergency, such as a diabetic coma, cardiac arrest,
or epileptic seizure, the patient’s data can be transmitted to
a clinical center to initiate a prompt reaction. MEC is an
essential technology that should be implemented at the BSs
for the aforementioned use cases, particularly for real-time
IoT services that require low latency, such as surveillance
and long-distance medical monitoring. As far as difficult-
to-reach areas are concerned, UAVs, which are placed far
from the network’s cell edge, can act as relays and forward
computation-intensive tasks to MEC-enabled BSs. However,
it would be essential for these UAVs to have enhanced pro-
cessing capabilities to perform data caching, handling, and
forwarding operations. Moreover, it is also evident in this
scenario that the establishment of wireless communication
links over large distances could be a point of vulnerability
that poses a potential security risk. Therefore, it could be
easier for malicious actors to gain access to the deployed
UAVcommunication networks and conduct a variety of active
and passive attacks (e.g., data tampering, Global Positioning
System (GPS) spoofing, eavesdropping, data injection, DoS
and replay attacks, or even jamming attacks). To ensure that
data is delivered in a secure, timely, and confidential manner,
UAVs should be equipped with adequate computing capacity
to support sophisticated and computation-intensive security
mechanisms.

By leveraging UAVs as effective remote sensing technol-
ogy, the monitoring of crops and the management of the
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spatio-temporal variability within fields can be facilitated.
This can be beneficial in scenarios that necessitate the provi-
sion of enhanced connectivity and data gathering from remote
areas such as the following:
• Precision agriculture: Precision agriculture aims to
improve the quantity and quality of agricultural prod-
ucts, while also reducing production costs by integrat-
ing conventional agricultural methods with emerging
technologies. Localized microclimate data (e.g., rainfall
level, barometric pressure, temperature, and humidity)
can be acquired in real-time by employing IoT mon-
itoring devices. At the same time, UAVs can be uti-
lized in a range of crop management applications, either
autonomously by capturing high temporal and spa-
tial resolution images for disease identification, growth
monitoring, and yield estimation, or in cooperation with
the underlying IoT network by collecting data from
deployed monitoring devices in the field. As low-cost
IoT devices typically have limited computational capa-
bilities, they can take advantage of both ground MEC
servers, as well as UAVs operating as both communica-
tion and MEC nodes [55]. In this direction, the various
types of gathered data can be stored on an edge-based
node and then can be subsequently evaluated. Also,
an expert decision system can exploit big data and ML
techniques, assess the data, and then recommend neces-
sary agricultural procedures or automatically take action
by activating or deactivating the appropriate actuators
(e.g., irrigation system). Additionally, farmers can have
a complete and real-time view of their field’s data and
the ability to perform actions remotely, but most impor-
tantly, they can have a valuable tool at their disposal
that makes recommendations based on localized data
and enables the forecast and application of appropri-
ate inputs at an optimized time and scale. To illustrate
this point, the process of applying fertilizer to the field
is considered. Instead of distributing fertilizer evenly
throughout the entire field, farmers can apply it on
demand, resulting in lower costs, higher efficiency, and
reduced environmental pollution. Consequently, more
efficient use of input data can sustainably intensify food
production, increase yields, and decrease environmental
impact. Moreover, we should also consider emergency
situations in which real-time monitoring at a local scale
could provide valuable information and facilitate a rapid
and well-informed response to effectively manage a haz-
ard, such as nascent infestations of agricultural pests like
fruit flies and infection by plant diseases such as botry-
tis. However, agriculture is unavoidably susceptible to
various security threats, like any other technology-based
industry [56], [57], [58]. Firstly, the IoT devices in the
field are physically accessible, which poses a significant
risk, since anymalicious entitymay access them to cause
damage or glitch. As wireless networks are a prime
target for passive attacks (e.g., eavesdropping, traffic
analysis) and active attacks (e.g., message modification,

masquerading), the wireless data exchange can also be
a security concern, especially for resource-constrained
IoT devices, as shown in Fig. 3(d). In this regard, the use
of UAVs as intermediate nodes can lead to short-range
transmissions and limit the exposure of the IoT devices
to potential attackers. However, the UAVs should have
the required computational capabilities to be part of a
secure communication system. Overall, protecting data
privacy and ownership is a key security issue for the agri-
culture industry, since data breaches may cause serious
financial and personal implications. Also, intentional
data falsification might have a substantial impact on
the overall precision agricultural system, particularly in
terms of the decisions and recommendations provided
by ML and inference algorithms embedded in automa-
tion systems, leading to inferior products or even pro-
duction loss. Additionally, erroneous data may result
in harmful situations for both the environment and the
farmer’s and consumer’s health owing to the misuse of
farming inputs, such as fertilizers or pesticides.

IV. OVERVIEW OF SECURITY METHODS
A. THE ROLE OF PLS
Despite the promising capabilities of the UAV-aided MEC-
enabled IoT, critical issues exist regarding security and pri-
vacy that should be effectively handled in real-time. More
importantly, this type of network is inherently vulnerable
owing to the wide distribution of heterogeneous nodes in
challenging and harsh environments, whereas the network
topology dynamically changes and the communication chan-
nels are usually insecure and unencrypted. By taking advan-
tage of the significantly constrained resources of the UAVs,
several malicious entities may perform various invasive, non-
invasive, and semi-invasive attacks [35], [36], [37], [38],
[39], [40], [41], including active and passive eavesdropping,
hijacking, spoofing, impersonation/Sybil attacks, man-in-
the-middle attacks, replay attacks, DoS, and data tampering.
During the last few years, significant research effort has been
spent on the investigation of information-theoretic PLS in the
UAV-aided MEC-enabled IoT. Information-theoretic security
refers to the calculation of limits that verify the existence of
security measures against adversaries with unlimited comput-
ing resources and time, while PLS refers to the exploitation of
physical randomness and properties of the channel to obtain
secure communications and achieve the security goals [20].
When investigating PLS, the main quantity of interest is the
secrecy rate – or the maximum achievable rate, which is
called secrecy capacity. For the studies and use cases included
in this paper and since the communication objective concerns
the MEC principle, various ‘‘flavors’’ of secrecy rate can be
found, i.e., secure calculation rate, secure computation rate,
secure offloading rate, etc. The terms are used to express
the secrecy rate during the data offloading process, while
sometimes the local computations may also be included in
the calculation as secure computation bits. Other relevant
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FIGURE 4. Various types of attacks and PLS metrics.

security metrics are the leakage or eavesdropping rate, i.e.,
the average amount of information that can be extracted by a
malicious entity and the secrecy outage probability, i.e., the
probability that the achievable secrecy rate is less than a given
secrecy code rate. Fig. 4 shows the main security attacks and
security metrics for the UAV-aided MEC-enabled IoT.

Apart from including the aforementioned security metrics,
the notion of secure communications has been investigated
in conjunction with other metrics that are relevant to either
the UAV or the MEC operation. Specifically, multi-variate
optimization problems have been formulated, where some
quantities have been used to define the cost function, other
quantities have been set as variables and others have been
defined as constraints. The (non-exclusive) set of quanti-
ties/variables includes:

• The transmission power for offloading, relaying
• The transmission power for jamming
• The UAV position or trajectory definition
• The offloading ratio
• The task, power, and resource allocation
• The energy/power consumption or efficiency
• The beamformer configuration
• The latency
• The task processing or completion time
• The local and offloading computation capabilities
• The computation overhead

Besides the variety of quantities and metrics that compete
with each other, a large number of configurations and use
cases can be defined to implement the UAV-aided MEC-
enabled IoT paradigm. The configurations may include one
or multiple UAVs, dual configurations with UAV supporting
jammers, one or multiple UAVs acting as relays, multiple
ground or flying users requiring offloading, one or multiple
MECs at the legacy network edge, one or multiple ground
or flying malicious nodes, etc. Clearly, a huge number of
problem formulations is possible.

PLS relies on the intrinsic randomness of the wireless
channel to achieve secrecy, for example by concealing or
shielding transmissions, avoiding malicious nodes, and gen-
erating and distributing secret keys. The techniques employed
incur significantly lower latency, making PLS an ideal match
for real-time applications. Additionally, PLS implementation
has significantly lower complexity, which is extremely useful
for the IoT ecosystem and UAV-aided networks. On the other
hand, the provision of URLLC is defined as a key service
area for 5G and 5BG communications, and PLS seems to
be a perfect fit. Together with the use of UAVs for adhoc
and reliable connectivity in hostile environments, as well as
the utilization of MEC for computational offloading and fast
content delivery, PLS has the potential to serve as a secu-
rity enabler for URLLC and real-time applications, such as
vehicle-to-everything (V2X) communications, tactile inter-
net, and industrial IoT.

B. THE EMERGENCE OF ML AND BLOCKCHAIN
Although a wide range of conventional security approaches
for the UAV-aided MEC-enabled networks has been pro-
posed, there have also been recently various works relating
security and privacy with emerging technologies, such as ML
and Blockchain. By avoiding human intervention, ML has
been recognized as an effective method to contain security
flaws and confront possible security barriers in complex,
dynamic, and heterogeneous environments, as well as large-
scale network deployments with a massive number of devices
(e.g., IoT scenarios) by learning the behavior of network
entities and predicting cyber-threats [16], [21]. In this sense,
the ML-based methods have the potential to intelligently and
in real-time manage and analyze the data flow in an IoT
ecosystem. Generally, ML relies on a pattern recognition
framework, where the nonlinearities from massive datasets
can be characterized and the correlation among a set of data
and/or previous action sequences can be exploited. By sys-
tematically mining and analyzing collected information data
from different sources and setting these data as input of
ML-based methods, the networks can be optimally managed
and autonomously coordinated, whereas the latency and secu-
rity requirements can be simultaneously satisfied. In general,
ML can be categorized depending on the learning method
as [45]:

• Supervised Learning
• Semi-Supervised Learning
• Unsupervised Learning
• Reinforcement Learning (RL)

Besides, evolutionary and forceful types of ML are the DL
and the Deep RL (DRL). In DL, multiple layers are employed
to build multi-layered ANNs capable of making intelligent
decisions and adapting to undefined and unprecedented con-
ditions without guidance from external supervisors. Although
ML can revolutionize the decision-making process within
the IoT domain and increase the possibility of achieving
highly autonomous UAV operations, a centralized collection
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of raw datasets for training is usually required, which in
turn triggers security and privacy issues. As the resource-
constrained UAVs cannot usually perform heavy computa-
tions and process the collected data, the Federated Learning
(FL) paradigm has been introduced as an efficient means to
enable collaborative learning in a decentralized fashion with
local training [59]. On the other hand, the MEC can reduce
the training time required by ML algorithms and address
computation-intensive issues, as the computing requirements
for timely handling large datasets are significantly high.More
specifically, dedicated edge infrastructure can expedite the
process of large amounts of data, as UAVs have stringent
processing capabilities. However, this strategy should be
carefully considered, since it may lead to additional latency
and increased signaling overhead due to the data exchange
between the UAVs and the MEC servers in harsh propagation
environments.

Beyond centralized deployments of record-keeping,
Blockchain has also been recently proposed as an unchange-
able, tamper-resistant, and tamper-evident digital ledger
capable of ensuring secure and trustworthy transactions in a
decentralized and transparent manner [22].More importantly,
in Blockchain, only trusted data blocks with specific sizes
are recorded and verified and these valid sets of records
are immutable and form the Blockchain itself. To attain the
integrity of data in each block, unique hash values are used.
In this respect, the robust one-way cryptographic Secure
Hash Algorithm-256 (SHA-256) and SHA-512 are typically
employed to rapidly map message data of arbitrary sizes
to bit arrays of fixed, compressed sizes. Besides, the block
validity is confirmed using consensus algorithms, which
require consensus among the participants. Also, the proper
addition of blocks is controlled by the smart contract (i.e.,
a self-executing set of codes that runs on Blockchain). Based
on the ownership and the audience that is certified to verify
and add a block, the Blockchain systems can be classified
into three major types as follows [60]:
• The less-efficient but highly immutable Public
Blockchain, where the public has access to all the
records and participates in the consensus process.

• The highly efficient but easily tampered Private
Blockchain, where only specific nodes have access
to the network and participate in the consensus
process.

• The partially decentralized Consortium Blockchain,
where a small number of selected organizations can
participate in the consensus process.

However, the adoption of Blockchain technology in
UAV-aided MEC-enabled IoT is challenging, since there
are certain onboard energy, computation and data storage
resource constraints. This issue becomes more significant,
as the number of network nodes increases and massive
datasets are generated. To maintain an adequate Blockchain
operation, partial or full task offloading to MEC servers is
suggested [60]. On the other hand, integrating Blockchain in

UAV-based systems constitutes a complex task and requires
extended experimentation, testing, and verification, before
practical implementation.

Recently, the Blockchain and ML synergy was also envi-
sioned [61], [62], [63], where the Blockchain facilitates the
verification of the training processes of ML, while reducing
the risk of failures. Also, the Blockchain network can be used
to store the training data sets that are used by the learning
models to eliminate or minimize the data faults and errors.
By enhancing the capabilities of Blockchain and its decen-
tralized nature with the intelligence introduced by ML-based
methods, prescriptive and real-time predictive analytics can
be performed to large data volumes generated from sensors or
collected from IoT devices, leading to timely and precise data
classification and identification. In other words, combining
these two technologies (i.e., ML and Blockchain) can lead to
highly accurate outcomes.

In Fig. 5, a MEC-compliant network architecture with
trustful and secure computation offloading and seamless
coverage, where FL and Blockchain work cooperatively,
is demonstrated [61], [62], [63]. To maintain trustful, secure,
and transparent transactions of legitimate nodes, a Consor-
tium Blockchain is considered that exploits the features of
smart contracts, data consensus, and shared ledgers. The
underlying network consists of multiple resource-limited IoT
devices dispersed over a wide area that collect sensed data
from their local physical environment. Such data originating
from the IoT devices may need to be rapidly processed in
real-time or fully explored. The MEC servers ensure the
availability of powerful resources to timely handle the delay-
tolerant and computation-intensive tasks of the IoT devices.
However, it is considered that the direct communication of
these devices with the MEC servers is not always feasible
owing to blockage and/or fading effects in the propagation
environment. In this regard, the IoT devices can forward
their computation tasks to UAVs in their vicinity, which are
equipped with onboard computing processors. As the UAVs
have limited energy resources, they should determine the
portion of the offloaded tasks that can locally process and then
act as aerial relays to forward the remaining part of these tasks
to the ground MEC servers for computing. It is considered
that Blockchain interconnects the UAVs and theMEC servers
together in a decentralized manner with low-latency response
and a low possibility of errors. Besides, the MEC servers sup-
port data services, such as data mining and big data analytics,
whereas the UAVs not only support partial task execution, but
can also participate in the local training of the FL functions or
data mining. Towards this end, the MEC servers choose a set
of UAVs as learning clients to perform collaborative training
using their data. The UAVs upload the computed update to
the MEC servers for aggregation and global computation
in an iterative way without revealing sensitive information.
Besides, the MEC servers broadcast the global model to all
UAVs for the next round of training, until accurate results are
obtained.
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FIGURE 5. Simple representation of a prospective network architecture for the UAV-aided IoT with the
synergetic integration of MEC, FL, and Blockchain.

C. THE ROLE OF AUTHENTICATION
Apart from PLS, succesfully authenticating the network
nodes is also critical [18]. In such volatile and decentralized
network deployments, as those studied in this paper, the aerial
and ground nodes can dynamically join or leave the network.
As only authorized nodes should gain access to the network,
the authentication plays a crucial role in confirming the iden-
tity of these nodes and preventing malicious entities from
joining the network and using network resources. During the
authentication process multiple phases are invoked, where
cryptographic keys are exchanged between the network enti-
ties, as follows:

• Setup Phase: Initialization of the security parameters
• Registration Phase:Registration of the partially trusted
nodes

• Authentication Key Aggrement Phase: Mutual
authentication and key agreement among the nodes

• Update Phase:Authorization or revocation of nodes

Although node authentication stands for the main require-
ment for secure network operation, no unified security

standards for UAV-aided networks exist. Also, applying
sophisticated security methods is infeasible owing to the
computation and energy constraints of IoT devices and
UAVs. Thus, lightweight and efficient authentication mech-
anisms should be designed and MEC can provide additional
computation resources. Beyond software-based schemes that
depend onmathematical and algorithmicmethods, the robust-
ness and effectiveness of the authentication procedure can
be further expanded by using dedicated Integrated Circuits
(ICs) and computing devices, such as PUF chips [18].
In Fig. 6, potential lightweight authentication mechanisms
are presented.

V. REVIEW OF PLS SOLUTIONS
In this section, several research works are reviewed that
focus on information-theoretic security and take into account
metrics, such as secrecy capacity and secrecy rate for com-
munication and offloading in the UAV-aided MEC-enabled
IoT environment. Additionally, the use of PLS is investigated
through interference avoidance or artificial noise injection
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FIGURE 6. Software- and hardware-based authentication mechanisms.

techniques. In these works, the UAVs may facilitate MEC
operation by either hosting the MEC capabilities or playing
the role of a relay. Also, the UAVs themselves may be the
resource-limited nodes that require the offloading capabilities
of aMEC. The state-of-the-art analysis revealed that there are
several studies investigating UAVs acting as MEC servers in
conjunction with other interesting and challenging research
topics, including NOMA, RIS, and ITS. More specifically,
a multitude of complicated problems can be formulated –
usually leading to non-convexity, which consequently means
that special techniques should be applied to reach a solu-
tion. Fig. 7 presents different network configurations for the
UAV-aided MEC-enabled IoT, when PLS is concerned. Also,
Table 2 briefly summarizes the reviewed works.

A. UAVS AS MEC SERVERS
In [64], a UAV acted as a MEC server and its main task was
to support through computational offloading several GUs,
while sending jamming signals against potential eavesdrop-
pers to fulfill both qualitative and security requirements. The
eavesdropper was assumed to be located on the ground, while
the system was time-slotted and the UAV had full-duplex
capabilities. The objective function of the optimization prob-
lem aimed to maximize the secure computation efficiency,
which was defined as the ratio of the achievable secrecy rate
over a number of slots to the energy for communication and
computing assuming full offloading. To tackle the optimiza-
tion problem, two sub-problems were defined and iteratively
solved by adjusting the transmission power, the computation
capability, and the UAV’s trajectory, until the algorithm con-
verged. The algorithms, which were evaluated through sim-
ulations in MATLAB, showed superiority to other schemes
(i.e., non-jamming and ground relay) approaching the system
performance in the absence of a malicious party.

The collaboration of a UAVwith MEC functionalities with
Ground Stations (GSs) in the presence of multiple (down-to-
earth) eavesdroppers was studied in [65]. Partial offloading
was supported in a Time-Division Multiple Access (TDMA)
sharing scheme, and the exact location of the eavesdroppers

was considered known. The formulated optimization problem
had the objective to minimize the UAV energy consump-
tion using as optimization variables the transmit power of
GS, the UAV’s trajectory, and the task allocation. Also, the
secrecy rate of the offloading channel was used as a constraint
together with the transmit power and the trajectory bound-
aries. To tackle the non-convexity, the Successive Convex
Approximation (SCA) and Block Coordinate Descent (BCD)
were utilized by dividing the problem into three convex sub-
problems: task allocation for given transmit power and trajec-
tory; transmit power given task allocation and trajectory; and
trajectory given power and allocation. The CVX modeling
system for convex optimization was used [66] to tackle the
optimization problems in the numerical results. Then, the
scheme was compared to methods with less dimensionality,
but the security rate improvement was relatively small.

In [67], the role of theMECwas shared between aUAV and
a BS, i.e., the UAV was able to carry some of the offloading
efforts. The use case included several GSs and malicious,
eavesdropping UAVs. In this regard, a Decode-and-Forward
(DF) policy was used to transfer part of the offloading tasks
to the BS. Additionally, the legitimate UAV had full-duplex
capabilities and it was also capable of sending jamming sig-
nals to eavesdroppers. The formulated optimization problem
used the maximum secrecy capacity as the objective function,
whereas a two-stage partial computation offloading model
was investigated based onDF. The joint optimization problem
was complicated and non-convex; thus, it was separated into
four sub-problems and solved with SCA and branch-and-
boundmethods. Each sub-problemwas associated with: UAV
path/position, UAV transmit power, offloading ratio, and
computing scheduling among users. The provided simulation
results showed that the scheme could effectively obtain high
secrecy capacity.

A similar, but more generalized use case, was investigated
in [68], where a UAV was used to serve multiple GSs as
a MEC server, under the threat of multiple eavesdropping
UAVs. In a more realistic approach, the knowledge of the
location of the eavesdroppers was considered imperfect and
jamming signals were transmitted to increase secrecy from
the legitimate full-duplex UAV, as well as the non-offloading
GSs. In this direction, a max-min optimization problem was
formulated targeting the minimum secrecy capacity with
imposed constraints, like latency, total power consumption,
and minimum offloading. As variables of the problem, the
authors consider the legitimate UAV path/position, the GS
transmit power, the jamming power, the communication
capacity, the possible use of local computation resources
of GS (user association), and the offloading ratio, i.e., the
ratio of the offloaded processing to the overall data pro-
cessing. The results indicated that the joint optimization can
provide significant benefits when considering various loca-
tions, packet sizes and self-interference (SI) efficiencies of
the legitimate UAV. Additionally, these results confirmed the
existence of a fundamental tradeoff between secrecy and
latency.
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FIGURE 7. Potential PLS issues in various network configurations of the UAV-aided MEC-enabled IoT.

In [69], a use case was studied, where power-limited
IoT devices were served from UAVs with MEC capabilities
that also acted as data collectors due to assumed limited
coverage from the ground devices. The underlying system
was threatened by multiple eavesdroppers located also on
the ground. In this scenario, the IoT devices could be used
for regional situation awareness, which means that identity
and location information was critical. This work proposed
a method, where the IoT devices did not share identity or
location information that could then be estimated by using
beamforming, time-of-arrival, and deployment information at
the UAVs (multiple antennas at the UAV were required). The
UAVs forwarded data (e.g., to the BS) using the identity and
location information of multiple IoT devices as an encryption
key. Moreover, the trajectory of the UAVs was designed by

minimizing the power consumption among the UAV clusters,
while the secrecy capacity at each cluster was also maxi-
mized. To increase security, encryption through beam hop-
ping randomization per cluster was performed implementing
a space-time key structure. In addition, the use of satellites
was suggested for the transmission of the keys (identity,
location, beam hopping sequence) as a feedback channel.

A UAV acted as a MEC server in [70], while a second
UAV had the role of an eavesdropper attempting to inter-
cept offloading information. However, a GS was used as a
jammer, providing support and an advantage to the legiti-
mate UAV to achieve secure communication. It was assumed
that the MEC-enabled UAV was able to cancel the jam-
mer interference and increase the secrecy capacity under the
secure offloading rate measure and then increase the secure
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TABLE 2. Summary of recent research works on PLS solutions.
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TABLE 2. (Continued.) Summary of recent research works on PLS solutions.

calculation capacity. Assuming a TDMA scheme, an opti-
mization problem was formulated to maximize the minimum
secure calculation capacity. This was practically obtained
through the optimization of the resources and trajectory of the
legitimate UAV, while taking into account certain constraints
of the MEC/IoT environment (e.g., local computation, power
consumption, etc.). Due to problem non-convexity, optimiza-
tion was performed using the SCA and BCD techniques.

In [71], a network consisting of multiple UAV-based MEC
servers (called helpers), multiple GSs and a flying eaves-
dropper was proposed. Based on this network, an offloading
mechanism was presented that relies on the minimization of
energy consumption and the eavesdropping rate, which con-
stitutes a metric for PLS. The constraints involved the task’s
overall processing time and the local and offloading compu-
tation capabilities. As the optimization problem was proved
to be non-convex (distributed, mixed-integer non-linear pro-
gramming) a two-stage solution scheme was applied. The
first stage involved a reformulated convex sub-problem of the

task assignment process. Besides, the second stage included
a learning-based distributed algorithm for joint assignment
of computing and channel resources mainly based on the
Fading Memory Joint Strategy Fictitious Play (FM-JSFP)
with inertia. Extended simulations were carried out using
MATLAB. As verified through these simulations, the pro-
posed scheme outperformed local computation and random
offloading schemes.

The subject of security via trust was examined in [72].
A UAV could act either as a relay interconnecting resource-
limited IoT devices with an edge server or as a MEC node
itself. It was considered that multiple GSs that can be legit-
imate or malicious (the number of malicious nodes was
assumed smaller) were positioned in a large geographical area
and a trust-based active task offloading scheme was proposed
that identifies credible and suspicious areas in the network.
More importantly, the optimization problem aimed to maxi-
mize the task completion rate and also minimize the average
task completion time and the energy consumption of the UAV.
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To notify the UAV for task offloading requests, an IoT device
spread Task Offloading Notices (TONs) to adjacent devices.
However, malicious devices discarded the TONmessages and
degrade the system performance. The area was divided into a
grid and the ‘‘trust’’ was defined as the ratio of TONs from a
grid point with and without malicious entities. According to
the results, the proposed method outperformed other similar
techniques and had significant benefits in terms of the com-
pletion rate, service time, and flight path.

It is noted that the respective use cases described in [67],
[69], and [70] includedmultiple UAV setups, where the UAVs
could be either legitimate or malicious. However, two or
more UAVs can coordinate with each other to achieve their
objectives and increase secrecy. Towards this end, relevant
scenarios were studied in [73] and [74] and are analyzed in
Subsection C and Subsection D, respectively. More specifi-
cally, a UAVwithMEC capabilities was supported by another
UAV that transmitted artificial noise to eavesdroppers in [73],
while a similar setup was considered in [74] with the UAVs
equipped with advanced antennas.

B. UAVS AS USERS
Beyond network architectures with UAVs acting as MEC
servers, previous works investigated the role of the UAVs
as users with significantly limited resources that may need
a MEC server to perform computation offloading.

In [75], the limited computation capacity of a UAV was
mitigated through computational offloading to a MEC server
located at a terrestrial BS or AP. Also, an eavesdropper was
considered at the ground level. To cope with this eaves-
dropper, the ground BS was jammed with artificial noise
(assuming full-duplex wireless communication with no self-
interference issues). Then, energy efficiency in resource allo-
cation was studied with the formulation of two optimization
problems, assuming: (a) active eavesdropper (i.e., known
location and channel state information from the eavesdrop-
per) and (b) passive eavesdropper (i.e., only location infor-
mation is known). In both problems, the attempt was to
minimize the total power consumption (for local computa-
tion and offloading transmission), while latency, power, and
offloading data volume constraints were set. Additionally,
to ensure secrecy, in (a) the secrecy capacity was required
to be higher than the offloading rate, while in (b) since
the eavesdropper channel was unknown, the secrecy outage
probability was considered as a constraint and provided as
a function of offloading and jamming power. Also, fixed (for
(a) and (b)), and random (for (b)) location of the eavesdropper
was assumed. After some transformation, the problems were
proven convex and were successfully solved. An analysis
of zero, full and partial offloading, as well as overloaded
computation, was performed and the results were numerically
verified for various offloading strategies in terms of energy
and security.

A similar setup with a ground eavesdropper was also inves-
tigated in [76], where the UAV offloaded tasks at a MEC
located at the BS (or AP). Partial offloading was considered,

i.e., a portion of the computation task was locally executed,
while the complementary was offloaded to the MEC. Both
the UAV and the eavesdropper were assumed to have single
antennas, while the BS was equipped with multiple antennas
and was capable of performing jamming towards the mali-
cious party without self-interference. The formulated opti-
mization problem had the objective of energy consumption
minimization by properly performing computation and com-
munication resource allocation with constraints in the secrecy
(offloading) rate, the transmit power, the latency, and the
Central Processing Unit (CPU) capabilities of the UAV. After
manipulation, the problem was transformed into a convex
equivalent, and simulations were carried out to highlight the
benefits of the proposed scheme against other schemes (i.e.,
full-offloading, fixed UAV, no eavesdropper).

In [77], a UAV with moderate computational capabilities
was considered and energy harvesting was taken into account
with the assumption of full-duplex operation at both this UAV
and a BS. It is noted that the control instructions for the har-
vesting also played the role of artificial noise that could con-
fuse a potential eavesdropper. Moreover, the computational
and communication resource allocation (i.e., offloading data
size, offloading time duration, and transmitted power) were
optimizedwith respect to theminimization of theUAVenergy
consumption, including the harvested energy. Also, secrecy
was introduced as a constraint together with computation
latency. More specifically, the worst-case secrecy offload-
ing rate was used. The non-convex formulated optimization
problem was converted through transformations to a convex
one. Additionally, semi-closed expressions for the offloading
time, offloading data size, and transmit power were extracted.
The numerical results for various benchmarking configura-
tions (i.e., no offloading, full offloading, no eavesdropping)
validated the advantages of the proposed approach.

C. NOMA SCHEMES
In previous works, NOMA schemes were leveraged in the
context of the UAV-aided MEC-enabled IoT as key enablers
for simultaneously supporting the wireless connectivity of a
vast number of IoT nodes. More specifically, in NOMA, mul-
tiple nodes can utilize non-orthogonal resources concurrently
by yielding a high spectral efficiency, while allowing some
degree of multiple access interference.

In [73] a dual UAV-assisted MEC configuration was con-
sidered, where one UAV carried the MEC serving GSs and a
second one transmitted jamming signals to eavesdroppers on
the ground. The analyzed optimization problem maximized
the minimum secure computing capacity for both TDMA
and NOMA schemes (power multiplexing with Successive
Interference Cancellation (SIC)), where the average achiev-
able number of secure computing bits was defined as secure
computing capacity, considering the secrecy offloading rate
and the local computations. The optimizations took jointly
into account the computation and communication resources,
as well as the UAV trajectories. After transformations, the
problems could be solved using the BCD algorithm, as well
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as a penalized BCD. Besides, the convex subproblems were
efficiently solved using CVX [66]. The simulations showed
improvement in the security computing capacity performance
of the system, as well as, that the NOMA outperforms the
conventional TDMA method, as far as the security improve-
ment is concerned.

The main particularity in [78] is that NOMA was applied
in a setup, where one UAV acted as a MEC node serv-
ing GSs, while a second UAV was a flying eavesdropper.
Simultaneously, a ground jammer transmitted artificial noise
to this eavesdropper. The targeted security metric was the
secure computing capacity, under the following constraints;
system energy, computation capabilities of GSs and MEC,
UAV flight movement (and collision prevention between
UAVs), and the minimum computation requirements of the
GSs. Besides, the formulated problem took into account the
transmit power, the CPU computation capabilities, the local
computation, and the UAV’s trajectory. On the other hand,
the location of the eavesdropper was considered uncertain.
Based on this scenario, the formulated problem was non-
convex and both the SCA and BCD methods were used to
iteratively solve this problem. For the numerical calculations,
CVX [66] was used to tackle the decomposed subproblems.
To cope with the uncertainty of the eavesdropper’s position,
the worst-case NOMA conditions were considered by using
the upper bound of the eavesdropping rate. The algorithmwas
compared with various other schemes (e.g., straight trajec-
tory, UAV both MEC and jammer, fixed transmit power, etc.)
and its superiority was confirmed.

In [79], several cell users (located at the cell edge) were
considered and had the responsibility to communicate with
the BS and process a specific workload. In this environment,
a UAV was used as a relay for cellular connectivity and as
an edge-server for task offloading. Moreover, the proposed
network included a flying eavesdropper that intercepted the
cellular traffic, while the idea of using the offloading traffic
from the edge users to the UAV-based MEC server as a
cooperative jammer for the eavesdropper emerged. Towards
this end, a joint optimization problem was formulated to
minimize the overall energy consumption for the UAV and
the cell-edge users, considering the UAV position, the trans-
mission duration, and the computation offloading. All cell-
edge users were assumed to form a NOMA cluster to send
their data to the UAV. In addition, the process was performed
in two distinct phases. In Phase 1, the users sent through
NOMA their cellular data to the relay. Then, in Phase 2,
the UAV relayed the packets to the BS, but also the cell-
edge users transmitted through NOMA their offloading tasks,
which were cooperatively used as jamming signals to protect
the UAV–BS link from the eavesdropper. The optimization
problem was non-convex and thus the study proposed an
algorithm that converged to the optimal solution. First, a poly-
block approximation-based algorithm was used to optimize
the transmission and the offloading process at a specific
UAV position, and then the position was optimized using
a precoding-based cross-entropy algorithm. The numerical

results demonstrated the efficiency of the proposed algorithm
in conjunction with the achieved secrecy in the UAV–BS path.
Besides, the accuracy and efficiency of the algorithms were
evaluated using LINGO as a benchmark [80].

D. USE OF RIS UNITS
As the Radio Frequency (RF) Micro Electromechanical Sys-
tems (MEMS) rapidly evolve, the use of programmable and
reconfigurable meta-surfaces has been recently suggested
[81]. In this direction, the RIS technology can offer energy
efficiency, low complexity, and cost-effectiveness.

In [74], the dual UAV setup presented in [73] was consid-
ered with an eavesdropper positioned on the ground. Specifi-
cally, one UAV collected data from the GSs, while the second
UAV acted as an interferer/jammer to enable secure commu-
nication. In the underlying network, a RIS unit was used as
a passive beamformer with a large number of small reflect-
ing elements that were jointly adjusted to reconfigure the
wireless propagation environment in favor of signal transmis-
sion [82]. The main objective of this paper was to minimize
the total energy consumption. However, in the analysis, the
minimum secrecy rate requirement was also considered and
the formulated optimization problem jointly adjusted the GU
power, the jamming UAV transmission power, and the phase
shifters of the RIS reflecting elements. In addition, the BCD
method was leveraged to deal with the non-convexity of the
formulated problem. The occurred convex subproblems were
treated using CVX [66].

A quite similar problem was treated in [83], where only
one UAVwas used to collect offloading data from the GS and
transmit interfering signals towards the eavesdropper. Once
again, the communication was supported by a RIS unit. The
formed optimization problem had the goal of maximizing
energy efficiency and trajectory design with respect to the
secrecy rate, taking into account the RIS elements. Also, the
non-convexity of the formulated problem is resolved through
transformations and approximations. For the calculation of
the numerical results, CVX solvers [66] were used.

The use of Intelligent Omni Surfaces (IOSs) in the
UAV-aided MEC-enabled IoT environment was also envi-
sioned in [84]. These surfaces can both reflect and transmit
to serving stations on both sides of the surface, constituting a
full-space smart radio environment. The considered use case
examined the UAVs as the stations requiring MEC support
through aerial offloading, while a MEC was hosted at the
serving BS. In the proposed network setup, multiple UAVs
and ground eavesdroppers were considered. This paper tried
to optimize the Secrecy Energy Efficiency (SEE) with con-
straints in terms of the delay, energy, and security require-
ments. Also, iterative algorithms were used for computing
and communication scheduling. The SEE generally balanced
information security and energy efficiency, and it was defined
as the ratio of the secrecy rate to the total power consumption.
In addition, the CVX [66] framework was adopted for tack-
ling the specified optimization subproblems.
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E. ITS SCENARIOS
The construction of future smart cities necessitates the
development of efficient ITS with integrated connected and
autonomous vehicles. By adding an extra degree of freedom
compared with the ground RSUs owing to their 3-D posi-
tioning, the UAVs have the potential to better support the
transportation infrastructure in terms of connectivity.

The role of UAVs and edge computing in ITS was
addressed in [85], where a smart city with multiple UAVs
and multiple vehicles was considered. In this environment,
several edges were assumed that acted as data processing
and decision-making centers for the UAVs’ data. Each UAV
was assigned a domain and it hovered over the vehicles of
the domain collecting data. The UAVs did not process, but
they deliver the data to an entity called dispatcher, which
acted as a workload distribution center and dispatched the
data to the edge with minimum load. After analysis, the deci-
sions (e.g., regarding the UAV trajectory) were sent to the
UAVs through the aggregator, which ensured that the edge’s
decision was not hacked or leaked to any third party. The
proposed scheme relied on Bloom filters (BF), which were
used in three steps. In the first step, the UAV validated the
authenticity of vehicles hashed to the BF. Then, in the second
step, the loadwas balanced among all edges by the dispatcher,
after authenticating the UAVs (2nd BF). In the third step,
data processing was performed and the edges informed the
dispatcher of the processing status. In case of abnormality in
a vehicle behavior, the edge securely conveyed its decision to
the respective UAV. Consequently, the aggregator accepted
the data from the edge after validating the keys (3rd BF),
and eventually the decision reached the vehicle. The process
was refined through optimization that maximized the pro-
cessing capabilities, minimized the delay, and maximized the
security. Also, the simulations of the proposed framework
were conducted via MATLAB, while the hash functions were
calculated using the CityHash 64-bit library.

The security was dealt with through a different prism
in [86], where a reputation-based scheme was used. First,
the UAVs were considered as mobile devices and part of a
vehicular ecosystem to collect measurements from the envi-
ronment. Moreover, a MEC server was located at the BSs
or APs of the network, where RSUs could play the role of
the AP. The UAVs transmitted the collected information to
the server, whenever an infrastructure network was avail-
able. Each UAV had the responsibility to monitor the net-
work and detect misbehaviors that were then disseminated to
the neighboring users, whereas all UAVs retained reputation
metrics from their monitored neighbors. More importantly,
the UAV-based edge offloading in conjunction with DoS
attacks detection was examined, while taking into account
the energy consumption and the computation overhead of
the UAVs. In this respect, each UAV had security agents
that detected suspicious activities, whereas the misbehavior
detection was either performed locally or through offloading.
The system-scale problem was analyzed with a zero-sum
game based on a Stackelberg [87] methodology with two

types of non-cooperative players (i.e., the agents and the
attackers). To simulate the IEEE 802.11p transmission, the
NS-2 network simulator [88] was used, while the mobility
of vehicles was generated by the SUMO simulator [89].
As revealed by the results, the proposed game-theoretic
method showcased significant benefits in the detection accu-
racy and energy efficiency.

Although the VANETs stand for a basic structural element
for ITS deployments, the UAVs can assist VANETs to fulfil
the requirements for improved connectivity, reliability, and
stability [90]. In this respect, a VANET was supported by
multiple UAVs operating as MEC servers in [91]. It was
considered that multiple Poisson-generated vehicles were
moving along a road and offloaded computation tasks to the
UAVs, while keeping a subset of them for local computation.
Among the vehicles, an eavesdropper existed. A particularity
of the study was that the IEEE 802.11p protocol was used for
car-to-car communications. Since this protocol is a Carrier
Sense Multiple Access protocol with Collision Avoidance
(CSMA/CA), the process contained collisions, back-off, and
retransmissions. It is noted, however, that even though this
protocol was used to specify the task computation model,
the security was measured through the secrecy capacity.
By assuming that each vehicle can select and use one MEC
node, an optimization problem was formulated to minimize
the overall serving time using latency, secrecy/security, and
compute resource constraints at the MEC servers. To obtain
a solution for this problem, the problem was decoupled into
two sub-problems: a) optimization of task-offloading and
b) optimization of resource allocation. Then, the problem
was iteratively solved using the relax-and-rounding method
together with the Lagrangian method. A system simulator
was implemented in MATLAB and the simulation results
demonstrated significant gains in comparison with local com-
puting or computation at MEC servers located on the ground
(e.g., MEC servers at RSUs).

F. SUMMARY
As far as PLS is concerned, there is a vast range of scenarios,
configurations, requirements, andmetrics to take into account
in the UAV-aided MEC-enabled operation. This section has
investigated PLS in three axes:

• Calculation of information-theoretic security metrics
under a specific topology without any actual security
measure.

• Achievement of PLS through eavesdropper and/or inter-
ference avoidance.

• Achievement of PLS through artificial noise transmis-
sion to remove any advantage from the eavesdropper.

Also, PLS has been investigated in conjunction with com-
munication or offloading requirements (e.g., throughput,
offloading rates, reliability). As indicated in this section, the
UAVsmay have different roles. Theymay host theMEC, they
may relay data flows towards an edge unit located at the BSs,
they may have the role of a data dispatcher, they may act as an
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TABLE 3. Summary of recent research works on ML-inspired and blockchain-based security solutions.

active jammer protecting the communication, or they may be
malicious nodes. Therefore, there is a large pallet of possibil-
ities that should be considered for next-generation networks.
The common part in all previous investigations has been the
formulation of optimization problems, where information-
theoretic variables (e.g., secrecy, secure rate, secrecy outage
probability) are considered either as part of the cost function
or as constraints. In this respect, this section has presented
an extensive review of studies that jointly considered PLS,
communication quality, offloading efficiency, radio/network
resource allocation, energy consumption, UAV trajectory, etc.

VI. REVIEW OF ML-INSPIRED AND BLOCKCHAIN-BASED
SECURITY SOLUTIONS
In previous research works, the importance of distilling intel-
ligence through ML-based methods in heterogeneous, com-
plex, and dynamic UAV-aided MEC-enabled IoT networks
with a large number of nodes has been underlined. On the
other hand, the emergence of Blockchain has revolutionized
the security sector by ensuring decentralization, immutability,
and transparency, as well as secured and legitimate data. This
section studies the recent works that are predominantly asso-
ciated with either ML, Blockchain, or both. In these works,
which are outlined in Table 3, the execution of computation
tasks is facilitated by the MEC nodes.

To avoid raw data exchange in UAV swarms and protect
data privacy, the Federated Edge Learning (FEEL) method
was used in [92], in which the training data of a particular

task is stored in a decentralized way across the UAVs in
the swarm and the optimization problem is addressed coop-
eratively. However, the UAVs usually have batteries with a
limited life, which may lead to an untimely dropping of these
UAVs from FEEL training. Thus, an optimization strategy
for time-varying channel conditions was presented, where
the UAVs could extend their flight endurance by adaptively
adjusting the frequency of their onboard CPU. In this respect,
the computational resources and the wireless bandwidth were
jointly allocated and a non-convex optimization problem was
formulated and solved through a DRL-based Deep Deter-
ministic Policy Gradient (DDPG)-based method, which was
implemented using the well-known open-source PyTorch
framework. Using this method, the total latency and energy
consumption were linearly combined to estimate the system
cost and their linear combination was minimized.

By combining the RL-based Q-learning advances with
Deep Neural Networks (DNNs), an efficient deep Q-network
(DQN) algorithm was proposed in [93] to dynamically opti-
mize the computation offloading procedure and the band-
width allocation, as well as enable the secure and green design
of a MEC network. In the DQN algorithm, the DNN was
used to approximate the Q-function and the RL was adaptive
to many states. It was considered that the mobile devices
in this network had limited computation capacity and could
partly and locally execute their tasks with their onboard com-
puting processors. The remaining part of these tasks should
be offloaded to Computational Access Points (CAPs), which
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acted as MEC servers with powerful computation capacity
to obtain a reduced system cost in terms of latency, energy
consumption, and price. However, owing to the broadcast
nature of the radio channel, a malicious UAV intended to
perform a security attack and act as an eavesdropper during
data transmission. The effectiveness of this DQN scheme was
confirmed through extensive simulation results for Rayleigh
flat fading channels.

Although ML-based schemes, e.g., DRL, can decrease
energy consumption and time delay in dynamic and com-
plex computation offloading scenarios without requiring
prior radio channel knowledge [21], the feasibility of these
schemes is confined owing to possible privacy issues and
leakage of sensitive information. Specifically, adversaries
may monitor the offloading decision-making process by cap-
turing the status of the communication link and infer the
value function of the learning algorithm, which in turn leads
to an unprotected UAV’s computation offloading preference.
To preserve privacy during partial computation offloading,
an online Differential Privacy (DP)-based Deep Q-Learning
(DP-DQL) scheme for UAV-aided MEC-enabled IoT net-
works was presented in [94]. In this scheme, the DQL repre-
sented the primal learning mechanism, a generated Gaussian
noise safeguarded the offloading preference, and the Priori-
tized Experience Replay (PER) technique [95] expedited the
learning process. The network consisted of multiple fixed
BSs with powerful computation capacity and grid power sup-
ply as well as a UAV, which flew above the area of interest and
gathered data. Experimental results were provided to com-
pare the performance of this scheme with the results obtained
using full and partial offloading without the DP mechanism.
It was considered that the UAV had limited resources and
could locally perform task computation using a Raspberry Pi
3B+. Moreover, Pytorch and Python were adopted to imple-
ment the DP-DQL scheme. Based on the results, the proposed
scheme surpassed other existing schemeswith respect to cost-
efficiency and privacy protection.

In [96], a secure offloading scheme for multi-UAV-aided
MEC-enabled networks was proposed. In this direction, the
UAVs were optimally deployed to serve all the GUs, under
LoS propagation conditions, using a spiral placement algo-
rithm. In addition to the legitimate UAVs, another UAV
played the role of the eavesdropper, whereas a ground jammer
tried to intercept the malicious UAV by transmitting artificial
noise. Tomaximize the system utility, a non-convex optimiza-
tion problem with a variety of constraints (i.e., transmission
rate, latency, energy consumption, and type of task) was
formulated and the low-complexity single-agent and multi-
agent RL-based methods were adopted to solve this problem.
The performance analysis demonstrated that the multi-agent
method outperforms the single-agent method and the random
offloading method in terms of the achieved system utility.

In [59], a decentralized Blockchain-based secure FL
scheme, in which the UAVs trained their data locally to
avoid several security and privacy issues, was leveraged for a
Mobile Crowdsensing (MCS) scenario. The MSC comprised

multiple mobile devices acting as task publishers, a group of
resource-constrainedUAVs acting asworkers, powerfulMEC
nodes deployed at the BSs, and a consortium Blockchain,
which designated the authorized nodes within the network
that registered at a trusted Certification Authority (CA).
It was considered that the devices initially published the
sensing tasks to MEC nodes in their proximity and then the
tasks were published to the UAVs that were also equipped
with specialized sensors. By using the local sensing data
of the UAVs, which were locally kept, a global model was
collaboratively trained and the local model updates were
forwarded to theMEC nodes to build this global model. More
importantly, the UAVs aimed to enhance the QoS of MCS
in a flexible, rapid, and cost-effective fashion, as long as
challenging and emergency situations (e.g., earthquakes or
flooding) took place. To mitigate privacy threats during the
update of UAVs’ local data and obtain aggregate accuracy,
a specially designed privacy-preserving algorithm was pro-
posed that relied on Local Differential Privacy (LDP). On the
other hand, an RL-based incentive method was exploited to
optimize the Quality of Local Model (QoLM) update during
the FL procedure in the underlying highly dynamic network.
According to the simulation results, which were obtained
using Python, the proposed scheme outperforms other exist-
ing schemes in terms of the utilities for UAVs, model sharing,
privacy preservation, and QoLM.

It is well known that the IoT enables the deployment of
a massive number of Machine-Type Devices (MTDs), which
interact and cooperate without human intervention through
Machine-to-Machine (M2M) communications. Nevertheless,
large-scale unexpected events or natural disasters may devas-
tate the terrestrial M2M communication infrastructure. In this
respect, the use of UAVs as BSs or aerial relays can restore
the communication links, whereas combining Blockchain
and MEC enables trustful data exchange and execution of
data-intensive computing tasks, respectively. In [97], the data
computation capacity and the throughput of a Blockchain
system for multi-UAV-aided MEC-enabled M2M communi-
cations were jointly maximized and the optimization prob-
lem was formulated as a Markov Decision Process (MDP).
More specifically, a DQN algorithm was developed to handle
mission-critical, dynamic and complex application scenarios
with variability and uncertainty. It is noted that the DQN com-
bined an offline deep Convolutional Neural Network (CNN)
and an online dynamic DP-DQL phase. It was considered that
the UAVs could perform task computation with their onboard
processor, as long as the computing requirements were not
demanding. Otherwise, full task offloading to MEC servers
was necessary. Also, these UAVs acted as Blockchain nodes
and forwarded the data received from the MTDs. The perfor-
mance of the proposed method was tested using Tensorflow
with Python on Ubuntu and the simulation results revealed
that the optimization framework can significantly enhance the
system performance.

By leveraging an IoD network architecture and the pow-
erful capabilities of DL and Blockchain, a swarm of drones
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was used in [98] for autonomous monitoring of pandemics in
urban and rural areas with insufficient wireless connectivity.
In this regard, a lightweight authentication scheme that com-
bines a cuckoo filter and a digital signature algorithm was
proposed to avoid security attacks (i.e., spoofing, tampering,
repudiation, information disclosure, DoS, and elevation of
privilege). Also, the recent COVID-19 outbreak was consid-
ered as a use case. In this scheme, surveillance drones were
used to remotely check face masks and social distances. Also,
bumblebee drones in close proximity to the ground users
were deployed to record people’s body temperature in real-
time through Forward-looking infrared (FLIR) cameras and
provide delivery services. To improve the QoS during the
execution of computation tasks and maintain low latency,
the IoD network included an edge server. In addition, the
drones were equipped with dew servers [99] to enable the
local offline execution of the computation tasks. Besides,
a consortium Blockchain system securely managed sensi-
tive information and a DL-based algorithm was adopted to
accurately detect face masks. To obtain experimental results,
the DJI Mavic 2 Pro and Parrot Bebop 2 were used as
surveillance and bumblebee drones, respectively. Further-
more, the Blockchain network was built using Multichain
(https://www.multichain.com/) and 15 local computers acting
as miners, whereas the DL-basedmask detection was realized
using the ‘‘you only look once (YOLO)’’ real-time object
detection system. The experimental results in terms of ser-
vice execution time and block transmission rate validated the
feasibility of the proposed scheme.

In [100], an FL method and a Blockchain framework were
successfully combined and a secure drone-aided data accu-
mulation IoT scheme was proposed, namely FBI. To surpass
connectivity issues in remote areas, the drones were used as
intermediate nodes with onboard dew servers [99] and pre-
served the end-to-end communication between IoT devices
and edge servers. The IoT deviceswere equippedwith sensors
and collected data to train the local models, which were
securely stored in Blockchain. These models were verified
using a Hampel filter and loss checks, while the privacy was
maintained using a DP approach. In addition, the authenti-
cation of the network nodes involved two phases, where a
cuckoo filter was used in Phase 1 and a timestamp nonce was
used in Phase 2. The experiments were carried out using a
DJI Mavic Pro 2 as a drone and a Jetson Xavier NX board
as a dew server, whereas the Jetson TX2 and the Raspberry
Pi 4 Model B were used as IoT devices. Also, PyTorch and
PySyft were exploited to provide an FL environment for the
proposed scheme and the open-source Multichain platform
was adopted to construct the Blockchain network. The results
confirmed the effectiveness of the proposed scheme with
respect to the mean absolute error in the local model, the
execution time, and the data transmission rate.

In [101], drones were used to expand the radio cover-
age of a MEC-enabled IoT network in remote locations
beyond the outdoor coverage of conventional cellular net-
works. Also, a private Blockchain was exploited to safeguard

computation offloading and increase reliability. In this direc-
tion, a decentralized three-layer network architecture was
proposed. The first layer involved Wireless Sensor Networks
(WSNs), which were deployed in different areas to gather
sensed data. Moreover, the second layer included registered
battery-operated rotary-wing drones as intermediate network
entities that received the sensed data from the authorized
IoT nodes of the WSNs and forwarded this data to MEC
servers. In addition, the third layer comprised the MEC
servers that performed task execution as well as the pri-
vate Blockchain network between these servers that recorded
the network data in a decentralized manner and allowed or
restricted the participation of particular nodes in the network
through a smart contract, which designated the offloading
policy operations. The Ethereum-based Ropsten testnet was
used to evaluate the smart contracts, which were imple-
mented using the object-oriented high-level Solidity language
(https://docs.soliditylang.org/en/v0.8.15/). To identify secu-
rity threats, the STRIDE threat model [102] was adopted. The
simulation results verified the performance, feasibility, and
flexibility of the proposed offloading scheme.

Recently, the UAVs have been recognized as an inex-
pensive, sustainable, and affordable component of parcel
delivery systems compared to conventional ground vehi-
cles [103]. In this regard, UAVs can be used as ‘‘last-
mile’’ aerial nodes and extend connectivity. As the deliv-
ery process involves operation among untrusted or mali-
cious entities (i.e., the sender, the receiver, the intermediate
node or the administrator of the UAV), securing this pro-
cess is challenging and of high importance. To solve the
‘‘last mile’’ problem in logistics via a cost-effective and
secure approach, a UAV-aided delivery system that adopts
the MEC and Blockchain advances was presented in [104].
In particular, a network architecture was presented, where
Blockchain nodes were positioned on the edge servers to
mitigate potential security threats and these edge servers han-
dled computation-intensive and latency-critical tasks (e.g.,
real-time UAV navigation) and ensured sufficient storage.
By designating the rights and responsibilities of different
nodes and automating the transaction process via the smart
contract technology, the UAVs were successfully authenti-
cated, the delivery process was monitored and access control,
accountability, and traceability were provided. To verify the
performance of the proposed delivery solution in terms of the
access time and the transaction processing time, a UAV-aided
MEC-enabled delivery system prototype was implemented.
In this respect, the OpenAirInterface (OAI)-based MEC plat-
form (https://openairinterface.org) and an Ethereum-based
private Blockchain network were used. According to the
experimental results, the proposed delivery solution is effi-
cient and practically realizable.

In [105], a resource pricing and trading optimization
scheme was proposed for a UAV-aided MEC-enabled net-
work and the allocation of the edge computing resources
between the Edge Computing Stations (ECSs) and the UAVs
in their proximity was dynamically optimized to enhance the
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QoS for the users.More importantly, the resources price of the
edge computing resources was adjusted by the ECSs, whereas
the requests for additional computing resources were recon-
ciled by the UAVs. In this context, a Stackelberg dynamic
game [87] was considered to characterize the trading inter-
actions of the edge computing resources and construct the
optimization problem with the ECSs and UAVs acting as
leaders and followers, respectively. To solve this problem
under open loop and feedback situations, the Lagrangian
method and the Bellman dynamic programming were used.
Also, the Blockchain technology was adopted, where the
ECSs had the role of the mining tasks issuers to record the
information about the trading interactions (e.g., requests for
resources and price) and simultaneously handle the secu-
rity and privacy threats. The numerical results highlighted
the efficacy of the proposed scheme, under varied services
demands of the users and different required resources of the
UAVs. The equilibrium solutions of the ECSs, which are
related to the optimal pricing strategies, were also depicted
alongwith the optimal objectives of the UAVs and the optimal
profit of the ECSs.

A swarm of UAVs was considered in [106] to facili-
tate data collection from IoT devices and a Blockchain-
based data acquisition system, namely BUS, was proposed.
As this system may be vulnerable to a wide range of security
attacks (e.g., man-in-the-middle attacks, spoofing, and replay
attacks), a shared key was used and data encryption was
performed to obtain secure data transmission between the
UAVs and the IoT devices. Before forwarding the data to a
proximate server and storing these data on Blockchain, the
UAV swarm performed an authentication process through
a π -hash bloom filter and a digital signature algorithm.
To efficiently perform data acquisition, two types of UAVs
were used, i.e., the Minion UAVs that are located close to
the IoT devices and the Emissary UAVs that transmit the
data received from the Minion to the servers. Moreover,
a MEC server provided additional computational resources
and enabled real-time data collection, whereas a Ground
Control Station (GCS) remotely controlled the UAVs during
their operation. By using MATLAB and Python on the server
and UAV side, respectively, and an Ethereum-based decen-
tralized Blockchain platform, extended experimental results
were obtained. In the experiments, the DJI Mavic 2 Pro and
Parrot Bebop 2 were deployed to act as UAVs, whereas the
Raspberry Pi 3 model b+ represented an IoT device. The
results indicated that BUS can provide superior performance
with respect to the throughput, processing time, energy con-
sumption, and latency.

A. SUMMARY
ML-based security methods have opened up new chances
for safeguarding security, under complex and unpredictable
conditions. In this regard, this section has reviewed recent
ML-based research efforts and highlighted how different
learning algorithms have been adopted and evaluated depend-
ing on the optimization target, such as the power consumption

and latency. As long as vast amounts of data from mul-
tiple sources are available for training, the most powerful
DL-based learning solutions can satisfactorily reveal useful
correlations among heterogeneous data toward optimizing the
security aspects of UAV-aided MEC-enabled IoT. However,
solutions entailing lower complexity, i.e., RL and FL, may be
preferable, when the computation resources are inadequate or
inaccessible. Besides, the role of Blockchain as a protector of
shared data against security threats has been underlined and
relevant research works have been reviewed. As underlined
in this section, Blockchain can provide transparency, flexi-
bility, and an extra layer of security without the need for a
centralized authority.

VII. REVIEW OF AUTHENTICATION SOLUTIONS
As UAV-aided networks are highly dynamic, a large num-
ber of ground and aerial nodes may unexpectedly join or
leave these networks. However, only the legitimate nodes
should gain access to sensitive information. In this section,
recently proposed software- and hardware-based authentica-
tion schemes are presented that aim to prevent in real-time
unauthorized access to the IoT network by leveraging the
MEC capabilities. These schemes, which are summarized in
Table 4, involve MEC capabilities to expedite the authentica-
tion process and reduce the authentication cost.

In [107], the privacy information (i.e., identity, location,
and flying routes) of UAVs in a highly mobile MEC-enabled
IoD network was efficiently protected against external and
internal threats (i.e., malicious UAVs) using a predictive
and scalable authentication method for the UAV-to-UAV
(U2U) communication links. In this respect, modular arith-
metic operations were carried out in the authentication pro-
cess to reduce the computation requirements. A lightweight
online/offline signature design for the UAVswas also adopted
[108] to enable self-control of signature key generation and
avoid key escrow. The IoD consisted of a Trusted Authority
(TA) that generated the certificates, the trusted MEC devices
with powerful storage and computation capabilities, and the
untrusted UAVs. The authentication procedure involved four
distinct steps. The first step included the registration of
MEC devices and UAVs by the TA and the initialization
of the system. In the second step, the UAVs were allowed
to join the network, whereas the MEC devices facilitated
the rapid authentication of U2U communication in the third
step. Moreover, the privacy of the UAVs was ensured in a
non-interactive manner using a Pseudonym and Key Update
design in the fourth step. To investigate the performance
of the proposed authentication method, a Raspberry Pi 3
(Model B+) was used as the UAVs’ onboard computer and
a desktop running OS X was used as the MEC device. The
MEC devices and the TA applied RSA-2048 digital signature
techniques, while the modular arithmetic operations were
implemented using the Multiprecision Integer and Rational
Arithmetic Cryptographic Library (MIRACL) [109]. Numer-
ical and simulation results were provided to verify the
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TABLE 4. Summary of recent research works on authentication solutions.

superior performance of this method in terms of computa-
tional cost, communication cost, and storage overhead.

To avoid public-key certificates and the key escrow issue,
the provably verified certificateless blind signature (CL-BS)
scheme for resource-constrained 5G-enabled FANETs was
proposed in [110] for a surveillance application scenario.
This scheme relies on hyperelliptic curves and uses keys of
relatively small size. A three-layer network architecture was
considered, where Layer 1 comprised the BS and the ground-
based IoT devices that were connected with a raspberry pi-
based multi-access edge computing UAV (RMEC-UAV) with
adequate computing resources for the execution of the secu-
rity mechanism. Also, Layer 2 included monitoring UAVs
(M-UAVs) that were equipped with cameras, Inertial Mea-
surement Unit (IMU), sensors, and GPS. These M-UAVs
were interconnected via Bluetooth and collected images and
videos from the area of interest. In addition, Layer consisted
of the RMEC-UAV, which authenticated the M-UAVs and
also forwarded the collected data of the M-UAVs and the IoT
devices to a BS along with their flight information and fea-
tures. The test of the runtime of the cryptographic operations
using MIRACL [109], the informal security analysis, and the
formal security analysis using the Automated Validation for
Internet Security Validation and Application (AVISPA) tool
indicated that CL-BS can outperform other schemes with
regard to computational and communication costs.

An identity-based generalized signcryption scheme was
proposed in [111] to prevent the risk of unauthorized access
and preserve confidentiality in multi-UAV FANETs. In this
scheme, both 5G and Wi-Fi technologies were leveraged
to enable backhaul and fronthaul connectivity, respectively.
Since UAVs typically have low onboard computational and
energy resources, the implementation of cryptographic proto-
cols with low complexity is required. To this end, this scheme
adopted the Hyperelliptic Curve Cryptography (HECC) and
used very small size keys during key exchange. Apart from
the monitoring UAVs, this scheme also included UAVs that
acted as MEC servers and provided offloading services to
other UAVs. Based on the Dolev and Yao (DY) threat model
[112] and the AVISPA tool, security analysis was real-
ized. Also, MIRACL [109] was exploited to investigate the

performance of the proposed scheme, and precision agricul-
ture was considered as a case study. The results indicated
that the proposed scheme was effective against known and
unknown attacks and could surpass other schemes in terms
of computational and communication costs.

The certificateless-based and Elliptic-Curve Cryptography
(ECC)-based SLPAKA (Secure Lightweight Proven Authen-
ticated Key Agreement) authentication method, which can
cope with the widely used Canetti–Krawczyk (CK) adversary
model [113], was presented in [114]. In this model, a proba-
bilistic polynomial adversarywas considered that could affect
the communication channel. Apart from the drones that were
dynamically added, the IoD network consisted of the Trusted
Authority Center (TAC) that facilitated the key generation,
the MEC devices that assisted the drones during computation
tasks, and the GCS. To implement SLPAKA and investigate
its energy and computational efficiency, the Python program-
ming language was used. In this regard, the security was
analyzed both informally and formally (via the ProVerif tool),
and the advantages of SLPAKA were demonstrated.

As key management is challenging in large-scale IoD
networks and the network nodes are usually resource-
constrained, exploiting the intrinsic characteristics of hard-
ware can strengthen the identification, authentication, and
access control [18]. In this direction, embedded PUF chips
can be used to authenticate individual nodes without using
costly cryptographic methods. In [115], a simple key agree-
ment scheme was proposed to efficiently preserve privacy
and handle the authentication process in the MEC-enabled
IoD. In this scheme, invasive and non-invasive attacks could
be prevented, while minimum computing resources were
required by exploiting PUFs to store cryptographic keys and
hash functions. More importantly, the use of memory-based
devices was avoided, since they are vulnerable to physical
attacks. In particular, an IoD consisting of multiple UAVs
was considered. These UAVs used third-party edge devices
susceptible to various threats (e.g., authentication, privacy,
location, session-key security, and physical security threats).
In this regard, the MEC operators could validate the legit-
imacy of a particular UAV owing to a double-PUF-based
configuration at each UAV, where the first PUF was located
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in the memory unit and the second PUF was placed in the
main control circuit. In the performance evaluation of the
proposed authentication mechanism, a 128-bit arbiter PUF
circuit and the SHA-256 were considered. Additionally, the
cryptographic operations were carried out using an ATMel
ATMega2560 machine with an MSP430 micro-controller on
the UAV side and a powerful desktop computer with an
Intel Core i7 processor at the server side. The results, which
were obtained using the Java Cryptography Extension (JCE)
library, verified the superior performance of this authentica-
tion scheme in terms of the total authentication time for a
varying number of UAVs.

A. SUMMARY
As authentication stands for one of the major requirements
towards security for a UAV-aidedMEC-enabled IoT network,
this section has discussed relevant authentication mecha-
nisms. These mechanisms allow for optimized real-time
authentication owing to the powerful capabilities of MEC
servers. The primal goal of these mechanisms is to compen-
sate the energy, communication, computation, and storage
costs. Beyond the conventional cryptographic methods (e.g.,
hash functions and ECC), the PUFs enable the successful
authentication of the network nodes efficiently and cost-
effectively.

VIII. FUTURE RESEARCH DIRECTIONS
The emergence of novel deployment paradigms for
UAV-assisted MEC-enabled IoT systems is anticipated over
the next decade, as UAV,MEC, and IoT technologies continue
to mature. Within the environment of future computing-
aware networks, the cooperation of the network nodes will
be far more effective as well as complex, allowing for the
formation of novel security vulnerabilities. Although current
work provides a convenient methodological framework for
maintaining security in UAV-aided MEC-enabled IoT, future
supplementary work and further advancements in this area,
from PLS, ML, Blockchain, and authentication perspective,
are required. To foster further advancements in this research
field, still many open research issues require critical attention
as follows.

A. OPEN ISSUES IN PLS
In the vast majority of the relevant studies on secrecy
and PLS, the encountered threat was the existence of
eavesdroppers/men-in-the-middle. Besides, few studies
investigated DoS misbehavior/anomaly detection based on
trust or reputation-based metrics. This fact indicates that
there are still open issues and challenges in tackling other
types of threats like jamming, Sybil attacks, spoofing, and
tampering. Additional investigation on the secrecy-key rate
estimation and coding for secrecy is also required. Moreover,
the analysis of PLS under outdated channel state information
(CSI) conditions should be considered in future work, since
the CSI may be outdated in UAV-based scenarios due to the
high mobility and fast channel fading. Also, one of the main

challenges of designing RIS-aided networks is to determine
the proper location of the RIS units that leads to optimal or
near-optimal performance. Thus, optimizing the location of
multiple RIS units to maximize the secrecy performance is
also suggested.

B. OPEN ISSUES IN THE ADOPTION OF ML AND
BLOCKCHAIN
As the integration of ML and Blockchain is in its infancy,
additional research efforts should be devoted to investigat-
ing the computation efficiency and software/hardware design
issues. In this direction, the scheduling of the computation
tasks can lead to reduced execution time. Furthermore, the
trustworthiness of the IoT nodes during Blockchain trans-
actions should be ascertained, whereas incentive schemes
that recompense the MEC providers should be established
to motivate them to allocate computing resources. Besides,
sophisticated ML techniques can be adopted to enable effi-
cient vision-based detection and tracking of aerial and ground
objects.

C. OPEN ISSUES IN THE AUTHENTICATION PROCEDURE
The increased mobility and the dynamic distribution of the
network nodes during data exchange should be taken into
account in future authentication solutions along with decen-
tralized scenarios. Instead of using public key cryptosystems,
sophisticated hybrid Blockchain-based and quantum-based
schemes are also envisioned to increase the robustness of the
authentication procedure.

D. OPEN ISSUES IN THE EXPERIMENTAL TESTING
Currently, there is a gap in acquiring measured data from
real-world experiments in various scenarios and dynamically
changing propagation environments with high resiliency
requirements and real-world constraints. Thus, small-scale
experimental campaigns that involve various ML algorithms,
a real Blockchain testbed, different adversaries, and various
attacks constitute the basis for the verification of the hitherto
theoretical outcomes.

IX. CONCLUSION
Since long-range radio coverage, uninterrupted connectivity,
and sufficient computation capacity have been deemed a
necessity in a wide variety of novel IoT applications and
services, the UAVs together with the MEC technology can
significantly enhance the QoS and QoE and strongly pro-
mote the evolution of IoT. As UAVs have limited onboard
processing resources and limited battery capacity, dedicated
infrastructures with MEC capabilities can facilitate the pro-
cessing of large amounts of data. Cellular BSs, for example,
can use MEC to deliver next-generation services and applica-
tions more flexibly. Multimedia content, such as video games
and movies, can be placed closer to the end-user, lowering
latency and bandwidth requirements. In addition, applications
requiring powerful computing capacity (e.g., intelligent video
analytics that automatically recognize temporal and spatial

86378 VOLUME 10, 2022



E. T. Michailidis et al.: Secure UAV-Aided Mobile Edge Computing for IoT: A Review

events in videos or augmented reality-based applications) can
be performed efficiently at the edge node. Using the same rea-
soning, we can also conclude that by introducing cloud com-
puting to the edge of the radio access network, MEC can be
a crucial component for real-time IoT systems and services,
such as surveillance and long-distance medical monitoring.
Nevertheless, there exists a quest for an equilibrium between
satisfying the computation demands and developing effective
countermeasures to mitigate security threats. Therefore, this
paper has provided an extensive overview and classification
of recently proposed security solutions. To this end, the major
outcomes of this paper can be summarized as follows:

• Specific use cases were identified, in which the employ-
ment of UAV-assisted MEC-enabled IoT systems can
be not only beneficial, but also essential for meeting
end-user QoS and QoE requirements. Specifically, the
issue of significant and rapid fluctuations in cellular
network traffic volume was discussed, as well as the
extension of cellular coverage and connectivity, espe-
cially in disaster-affected and remote areas. Also, due
to its strategic significance in modern society, a detailed
overview ofUAV-assistedMEC-enabled IoT systems for
precision agriculture was provided.

• In general, there exists a trade-off between security and
system costs (i.e., communication, computation, and
storage costs) in practical implementations of the UAV-
aided MEC-enabled IoT.

• Although PLS is generally computationally more effi-
cient than conventional cryptosystems, IoT imposes
strict computational requirements. Therefore, a UAV-
based MEC node can play the role of PLS enabler in
such configurations.

• The possibilities and capabilities of PLS heavily rely
on the topology, i.e., the number of eavesdroppers, the
location of the eavesdroppers (i.e., airborne or ground),
the number of UAVs cooperating to achieve secure com-
munications, and the number and location of the user
terminals.

• Elaborate techniques to increase PLS, while retaining
an acceptable rate of communication, require multiple
antennas and are significantly benefited by the use of
state-of-the-art techniques, such as the use of NOMA,
RIS, etc.

• Although DL algorithms require remarkable computing
power, running DL algorithms on MEC servers sig-
nificantly increases the response and efficiency of the
network.

• Considering the varying processing capabilities of
UAVs, their energy constraints, and the need for secure
network operation, exploiting decentralized privacy-
preserving collaborative ML methods, such as FL, can
ensure feasibility in practical scenarios and lead to ade-
quate protection of the node privacy, less experienced
latency, and decreased energy burden.

• Blockchain can be further optimized and become more
accurate using ML methods.

• In general, traditional cryptographic methods, includ-
ing hash functions and ECC, can satisfactorily mitigate
malicious attacks. However, adopting PUFs or hybrid
schemes with software- and hardware-based mecha-
nisms can drastically improve the security level and
leads to cost-effective, scalable, and robust authentica-
tion solutions.

REFERENCES
[1] N. Nomikos, E. T. Michailidis, P. Trakadas, D. Vouyioukas,

H. Karl, J. Martrat, T. Zahariadis, K. Papadopoulos, and S. Voliotis,
‘‘A UAV-based moving 5G RAN for massive connectivity of mobile users
and IoT devices,’’ Veh. Commun., vol. 25, Oct. 2020, Art. no. 100250,
doi: 10.1016/j.vehcom.2020.100250.

[2] P. Boccadoro, D. Striccoli, and L. A. Grieco, ‘‘An extensive survey on the
Internet of Drones,’’ Ad Hoc Netw., vol. 122, Nov. 2021, Art. no. 102600,
doi: 10.1016/j.adhoc.2021.102600.

[3] D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust,
‘‘Mobile-edge computing architecture: The role of MEC in the Internet
of Things,’’ IEEE Consum. Electron. Mag., vol. 5, no. 4, pp. 84–91,
Oct. 2016, doi: 10.1109/MCE.2016.2590118.

[4] Y. Liu, M. Peng, G. Shou, Y. Chen, and S. Chen, ‘‘Toward edge intel-
ligence: Multiaccess edge computing for 5G and Internet of Things,’’
IEEE Internet Things J., vol. 7, no. 8, pp. 6722–6747, Aug. 2020, doi:
10.1109/JIOT.2020.3004500.

[5] P. Zhang, C. Wang, C. Jiang, and A. Benslimane, ‘‘UAV-assisted
multi-access edge computing: Technologies and challenges,’’ IEEE
Internet Things Mag., vol. 4, no. 4, pp. 12–17, Dec. 2021, doi:
10.1109/IOTM.001.2100092.

[6] N. Cheng, W. Xu, W. Shi, Y. Zhou, N. Lu, H. Zhou, and X. Shen,
‘‘Air-ground integrated mobile edge networks: Architecture, challenges,
and opportunities,’’ IEEE Commun. Mag., vol. 56, no. 8, pp. 26–32,
Aug. 2018, doi: 10.1109/MCOM.2018.1701092.

[7] J. Ji, K. Zhu, and D. Niyato, ‘‘Joint communication and computation
design for UAV-enabled aerial computing,’’ IEEECommun.Mag., vol. 59,
no. 11, pp. 73–79, Nov. 2021, doi: 10.1109/MCOM.101.2100229.

[8] W. Lin, T. Huang, X. Li, F. Shi, X. Wang, and C.-H. Hsu, ‘‘Energy-
efficient computation offloading for UAV-assisted MEC: A two-stage
optimization scheme,’’ ACM Trans. Internet Technol., vol. 22, no. 1,
pp. 1–23, Feb. 2022, doi: 10.1145/3430503.

[9] Z. Yu, Y. Gong, S. Gong, and Y. Guo, ‘‘Joint task offloading and
resource allocation in UAV-enabled mobile edge computing,’’ IEEE
Internet Things J., vol. 7, no. 4, pp. 3147–3159, Apr. 2020, doi:
10.1109/JIOT.2020.2965898.

[10] L. Zhang and N. Ansari, ‘‘Latency-aware IoT service provision-
ing in UAV-aided mobile-edge computing networks,’’ IEEE Inter-
net Things J., vol. 7, no. 10, pp. 10573–10580, Oct. 2020, doi:
10.1109/JIOT.2020.3005117.

[11] Z. Hu, F. Zeng, Z. Xiao, B. Fu, H. Jiang, and H. Chen, ‘‘Computation
efficiency maximization and QoE-provisioning in UAV-enabled MEC
communication systems,’’ IEEE Trans. Netw. Sci. Eng., vol. 8, no. 2,
pp. 1630–1645, Apr./Jun. 2021, doi: 10.1109/TNSE.2021.3068123.

[12] W. Feng, J. Tang, N. Zhao, X. Zhang, X. Wang, K.-K. Wong, and
J. A. Chambers, ‘‘Hybrid beamforming design and resource allocation
for UAV-aided wireless-powered mobile edge computing networks with
NOMA,’’ IEEE J. Sel. Areas Commun., vol. 39, no. 11, pp. 3271–3286,
Nov. 2021, doi: 10.1109/JSAC.2021.3091158.

[13] C. Lin, G. Han, S. B. H. Shah, Y. Zou, and L. Gou, ‘‘Integrating mobile
edge computing into unmanned aerial vehicle networks: An SDN-enabled
architecture,’’ IEEE Internet Things Mag., vol. 4, no. 4, pp. 18–23,
Dec. 2021, doi: 10.1109/IOTM.001.2100070.

[14] E. T. Michailidis, N. I. Miridakis, A. Michalas, E. Skondras,
and D. J. Vergados, ‘‘Energy optimization in dual-RIS UAV-aided
MEC-enabled Internet of Vehicles,’’ Sensors, vol. 21, no. 13, p. 4392,
Jun. 2021, doi: 10.3390/s21134392.

[15] E. T. Michailidis, N. I. Miridakis, A. Michalas, E. Skondras,
D. J. Vergados, and D. D. Vergados, ‘‘Energy optimization in mas-
sive MIMO UAV-aided MEC-enabled vehicular networks,’’ IEEE
Access, vol. 9, pp. 117388–117403, 2021, doi: 10.1109/ACCESS.2021.
3106495.

VOLUME 10, 2022 86379

http://dx.doi.org/10.1016/j.vehcom.2020.100250
http://dx.doi.org/10.1016/j.adhoc.2021.102600
http://dx.doi.org/10.1109/MCE.2016.2590118
http://dx.doi.org/10.1109/JIOT.2020.3004500
http://dx.doi.org/10.1109/IOTM.001.2100092
http://dx.doi.org/10.1109/MCOM.2018.1701092
http://dx.doi.org/10.1109/MCOM.101.2100229
http://dx.doi.org/10.1145/3430503
http://dx.doi.org/10.1109/JIOT.2020.2965898
http://dx.doi.org/10.1109/JIOT.2020.3005117
http://dx.doi.org/10.1109/TNSE.2021.3068123
http://dx.doi.org/10.1109/JSAC.2021.3091158
http://dx.doi.org/10.1109/IOTM.001.2100070
http://dx.doi.org/10.3390/s21134392
http://dx.doi.org/10.1109/ACCESS.2021.3106495
http://dx.doi.org/10.1109/ACCESS.2021.3106495


E. T. Michailidis et al.: Secure UAV-Aided Mobile Edge Computing for IoT: A Review

[16] Z. Yang, M. Chen, X. Liu, Y. Liu, Y. Chen, S. Cui, and H. V. Poor,
‘‘AI-driven UAV-NOMA-MEC in next generation wireless networks,’’
IEEE Wireless Commun., vol. 28, no. 5, pp. 66–73, Oct. 2021, doi:
10.1109/MWC.121.2100058.

[17] P. Ranaweera, A. D. Jurcut, and M. Liyanage, ‘‘Survey on multi-
access edge computing security and privacy,’’ IEEE Commun. Sur-
veys Tuts., vol. 23, no. 2, pp. 1078–1124, 2nd Quart., 2021, doi:
10.1109/COMST.2021.3062546.

[18] E. T. Michailidis and D. Vouyioukas, ‘‘A review on software-based and
hardware-based authentication mechanisms for the Internet of Drones,’’
Drones, vol. 6, no. 2, p. 41, Feb. 2022, doi: 10.3390/drones6020041.

[19] D. He, S. Chan, and M. Guizani, ‘‘Security in the Internet of Things
supported by mobile edge computing,’’ IEEE Commun. Mag., vol. 56,
no. 8, pp. 56–61, Aug. 2018, doi: 10.1109/MCOM.2018.1701132.

[20] X. Sun, D. W. K. Ng, Z. Ding, Y. Xu, and Z. Zhong, ‘‘Physi-
cal layer security in UAV systems: Challenges and opportunities,’’
IEEE Wireless Commun., vol. 26, no. 5, pp. 40–47, Oct. 2019, doi:
10.1109/MWC.001.1900028.

[21] P. S. Bithas, E. T. Michailidis, N. Nomikos, D. Vouyioukas, and
A. G. Kanatas, ‘‘A survey onmachine-learning techniques for UAV-based
communications,’’ Sensors, vol. 19, no. 23, p. 5170, 2019, doi:
10.3390/s19235170.

[22] P. Mehta, R. Gupta, and S. Tanwar, ‘‘Blockchain envisioned UAV net-
works: Challenges, solutions, and comparisons,’’ Comput. Commun.,
vol. 151, pp. 518–538, Feb. 2020, doi: 10.1016/j.comcom.2020.01.023.

[23] Q.-V. Pham, F. Fang, V. N. Ha, M. J. Piran, M. Le, L. B. Le,
W.-J. Hwang, and Z. Ding, ‘‘A survey of multi-access edge comput-
ing in 5G and beyond: Fundamentals, technology integration, and
state-of-the-art,’’ IEEE Access, vol. 8, pp. 116974–117017, 2020, doi:
10.1109/ACCESS.2020.3001277.

[24] P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, and T. Taleb,
‘‘Survey on multi-access edge computing for Internet of Things real-
ization,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 4, pp. 2961–2991,
4th Quart., 2018, doi: 10.1109/COMST.2018.2849509.

[25] S. Zaidi, M. Atiquzzaman, and C. T. Calafate, ‘‘Internet of flying things
(IoFT): A survey,’’ Comput. Commun., vol. 165, pp. 53–74, Jan. 2021,
doi: 10.1016/j.comcom.2020.10.023.

[26] Q. Wu, J. Xu, Y. Zeng, D. W. K. Ng, N. Al-Dhahir, R. Schober, and
A. L. Swindlehurst, ‘‘A comprehensive overview on 5G-and-beyond net-
works with UAVs: From communications to sensing and intelligence,’’
IEEE J. Sel. Areas Commun., vol. 39, no. 10, pp. 2912–2945, Oct. 2021,
doi: 10.1109/JSAC.2021.3088681.

[27] A. Fotouhi, H. Qiang, M. Ding, M. Hassan, L. G. Giordano,
A. Garcia-Rodriguez, and J. Yuan, ‘‘Survey on UAV cellular commu-
nications: Practical aspects, standardization advancements, regulation,
and security challenges,’’ IEEE Commun. Surveys Tuts., vol. 21, no. 4,
pp. 3417–3442, 4th Quart., 2019, doi: 10.1109/COMST.2019.2906228.

[28] S. M. A. Huda and S. Moh, ‘‘Survey on computation offloading in
UAV-enabled mobile edge computing,’’ J. Netw. Comput. Appl., vol. 201,
May 2022, Art. no. 103341, doi: 10.1016/j.jnca.2022.103341.

[29] F. Zhou, R. Q. Hu, Z. Li, and Y. Wang, ‘‘Mobile edge computing in
unmanned aerial vehicle networks,’’ IEEE Wireless Commun., vol. 27,
no. 1, pp. 140–146, Feb. 2020, doi: 10.1109/MWC.001.1800594.

[30] N. Fatima, P. Saxena, and M. Gupta, ‘‘Integration of multi access edge
computing with unmanned aerial vehicles: Current techniques, open
issues and research directions,’’ Phys. Commun., vol. 52, Jun. 2022,
Art. no. 101641, doi: 10.1016/j.phycom.2022.101641.

[31] W. Zhang, L. Li, N. Zhang, T. Han, and S. Wang, ‘‘Air-ground
integrated mobile edge networks: A survey,’’ IEEE Access, vol. 8,
pp. 125998–126018, 2020, doi: 10.1109/ACCESS.2020.3008168.

[32] Y. Yazid, I. Ez-Zazi, A. Guerrero-González, A. El Oualkadi, and
M. Arioua, ‘‘UAV-enabled mobile edge-computing for IoT based on AI:
A comprehensive review,’’ Drones, vol. 5, no. 4, p. 148, Dec. 2021, doi:
10.3390/drones5040148.

[33] M. Abrar, U. Ajmal, Z. M. Almohaimeed, X. Gui, R. Akram, and
R. Masroor, ‘‘Energy efficient UAV-enabled mobile edge computing for
IoT devices: A review,’’ IEEE Access, vol. 9, pp. 127779–127798, 2021,
doi: 10.1109/ACCESS.2021.3112104.

[34] R. Shakeri, M. A. Al-Garadi, A. Badawy, A. Mohamed, T. Khattab,
A. K. Al-Ali, K. A. Harras, andM. Guizani, ‘‘Design challenges of multi-
UAV systems in cyber-physical applications: A comprehensive survey
and future directions,’’ IEEE Commun. Surveys Tuts., vol. 21, no. 4,
pp. 3340–3385, 4th Quart., 2019, doi: 10.1109/COMST.2019.2924143.

[35] A. Shafique, A.Mehmood, andM. Elhadef, ‘‘Survey of security protocols
and vulnerabilities in unmanned aerial vehicles,’’ IEEE Access, vol. 9,
pp. 46927–46948, 2021, doi: 10.1109/ACCESS.2021.3066778.

[36] Y. Mekdad, A. Aris, L. Babun, A. E. Fergougui, M. Conti, R. Lazzeretti,
and A. S. Uluagac, ‘‘A survey on security and privacy issues of UAVs,’’
2021, arXiv:2109.14442.

[37] T. Lagkas, V. Argyriou, S. Bibi, and P. Sarigiannidis, ‘‘UAV IoT frame-
work views and challenges: Towards protecting drones as ‘things,’’’ Sen-
sors, vol. 18, no. 11, p. 4015, Nov. 2018, doi: 10.3390/s18114015.

[38] J.-P. Yaacoub, H. Noura, O. Salman, and A. Chehab, ‘‘Security
analysis of drones systems: Attacks, limitations, and recommenda-
tions,’’ Internet Things, vol. 11, Sep. 2020, Art. no. 100218, doi:
10.1016/j.iot.2020.100218.

[39] R. Altawy and A. M. Youssef, ‘‘Security, privacy, and safety aspects of
civilian drones: A survey,’’ ACM Trans. Cyber Phys. Syst., vol. 1, no. 2,
p. 1–25, Nov. 2016, doi: 10.1145/3001836.

[40] F. Syed, S. K. Gupta, S. H. Alsamhi, M. Rashid, and X. Liu, ‘‘A survey on
recent optimal techniques for securing unmanned aerial vehicles applica-
tions,’’ Trans. Emerg. Telecommun. Technol., vol. 32, p. e4133, Jul. 2021,
doi: 10.1002/ett.4133.

[41] V. Hassija, V. Chamola, A. Agrawal, A. Goyal, N. C. Luong,
D. Niyato, F. R. Yu, and M. Guizani, ‘‘Fast, reliable, and secure
drone communication: A comprehensive survey,’’ IEEE Commun. Sur-
veys Tuts., vol. 23, no. 4, pp. 2802–2832, 4th Quart., 2021, doi:
10.1109/COMST.2021.3097916.

[42] U. Challita, A. Ferdowsi, M. Chen, and W. Saad, ‘‘Machine learning
for wireless connectivity and security of cellular-connected UAVs,’’
IEEE Wireless Commun., vol. 26, no. 1, pp. 28–35, Feb. 2019, doi:
10.1109/MWC.2018.1800155.

[43] J. McCoy and D. B. Rawat, ‘‘Software-defined networking for unmanned
aerial vehicular networking and security: A survey,’’ Electronics, vol. 8,
no. 12, p. 1468, Dec. 2019, doi: 10.3390/electronics8121468.

[44] Y.-C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, ‘‘Mobile
edge computing—A key technology towards 5G,’’ 1st ed., ETSI, Sophia
Antipolis, France, ETSI White Paper 11, Sep. 2015, pp. 1–16.

[45] E. T. Michailidis, S. M. Potirakis, and A. G. Kanatas, ‘‘AI-inspired
non-terrestrial networks for IIoT: Review on enabling technologies and
applications,’’ IoT, vol. 1, no. 1, pp. 21–48, Jul. 2020.

[46] Radio Technical Commission for Aeronautics (RTCA). Drone Advi-
sory Committee (DAC). Accessed: May 18, 2022. [Online]. Available:
http://www.rtca.org/content/drone-advisory-committee

[47] Armstrong Flight Research Center. Accessed: May 18, 2022. [Online].
Available: https://www.nasa.gov/centers/armstrong/images/UAV/index.
html

[48] A. Chriki, H. Touati, H. Snoussi, and F. Kamoun, ‘‘FANET: Communi-
cation, mobility models and security issues,’’ Comput. Netw., vol. 163,
Nov. 2019, Art. no. 106877, doi: 10.1016/j.comnet.2019.106877.

[49] Z. Zhao, P. Cumino, C. Esposito, M. Xiao, D. Rosário, T. Braun,
E. Cerqueira, and S. Sargento, ‘‘Smart unmanned aerial vehicles
as base stations placement to improve the mobile network oper-
ations,’’ Comput. Commun., vol. 181, pp. 45–57, Jan. 2022, doi:
10.1016/j.comcom.2021.09.016.

[50] M. Aloqaily, Y. Jararweh, and O. Bouachir, ‘‘Trustworthy cooperative
UAV-based data management in densely crowded environments,’’ IEEE
Commun. Standards Mag., vol. 5, no. 4, pp. 18–24, Dec. 2021, doi:
10.1109/MCOMSTD.0001.2000039.

[51] K. G. Panda, S. Das, D. Sen, and W. Arif, ‘‘Design and deployment
of UAV-aided post-disaster emergency network,’’ IEEE Access, vol. 7,
pp. 102985–102999, 2019, doi: 10.1109/ACCESS.2019.2931539.

[52] B. Bollard, A. Doshi, N. Gilbert, C. Poirot, and L. Gillman,
‘‘Drone technology for monitoring protected areas in remote and
fragile environments,’’ Drones, vol. 6, no. 2, p. 42, Feb. 2022, doi:
10.3390/drones6020042.

[53] Y. Liu, C.-X. Wang, H. Chang, Y. He, and J. Bian, ‘‘A novel non-
stationary 6G UAV channel model for maritime communications,’’ IEEE
J. Sel. Areas Commun., vol. 39, no. 10, pp. 2992–3005, Oct. 2021, doi:
10.1109/JSAC.2021.3088664.

[54] V. Chamola, V. Hassija, V. Gupta, and M. Guizani, ‘‘A comprehen-
sive review of the COVID-19 pandemic and the role of IoT, drones,
AI, blockchain, and 5G in managing its impact,’’ IEEE Access, vol. 8,
pp. 90225–90265, 2020, doi: 10.1109/ACCESS.2020.2992341.

[55] D. C. Tsouros, S. Bibi, and P. G. Sarigiannidis, ‘‘A review on UAV-based
applications for precision agriculture,’’ Information, vol. 10, no. 11,
p. 349, Nov. 2019, doi: 10.3390/info10110349.

86380 VOLUME 10, 2022

http://dx.doi.org/10.1109/MWC.121.2100058
http://dx.doi.org/10.1109/COMST.2021.3062546
http://dx.doi.org/10.3390/drones6020041
http://dx.doi.org/10.1109/MCOM.2018.1701132
http://dx.doi.org/10.1109/MWC.001.1900028
http://dx.doi.org/10.3390/s19235170
http://dx.doi.org/10.1016/j.comcom.2020.01.023
http://dx.doi.org/10.1109/ACCESS.2020.3001277
http://dx.doi.org/10.1109/COMST.2018.2849509
http://dx.doi.org/10.1016/j.comcom.2020.10.023
http://dx.doi.org/10.1109/JSAC.2021.3088681
http://dx.doi.org/10.1109/COMST.2019.2906228
http://dx.doi.org/10.1016/j.jnca.2022.103341
http://dx.doi.org/10.1109/MWC.001.1800594
http://dx.doi.org/10.1016/j.phycom.2022.101641
http://dx.doi.org/10.1109/ACCESS.2020.3008168
http://dx.doi.org/10.3390/drones5040148
http://dx.doi.org/10.1109/ACCESS.2021.3112104
http://dx.doi.org/10.1109/COMST.2019.2924143
http://dx.doi.org/10.1109/ACCESS.2021.3066778
http://dx.doi.org/10.3390/s18114015
http://dx.doi.org/10.1016/j.iot.2020.100218
http://dx.doi.org/10.1145/3001836
http://dx.doi.org/10.1002/ett.4133
http://dx.doi.org/10.1109/COMST.2021.3097916
http://dx.doi.org/10.1109/MWC.2018.1800155
http://dx.doi.org/10.3390/electronics8121468
http://dx.doi.org/10.1016/j.comnet.2019.106877
http://dx.doi.org/10.1016/j.comcom.2021.09.016
http://dx.doi.org/10.1109/MCOMSTD.0001.2000039
http://dx.doi.org/10.1109/ACCESS.2019.2931539
http://dx.doi.org/10.3390/drones6020042
http://dx.doi.org/10.1109/JSAC.2021.3088664
http://dx.doi.org/10.1109/ACCESS.2020.2992341
http://dx.doi.org/10.3390/info10110349


E. T. Michailidis et al.: Secure UAV-Aided Mobile Edge Computing for IoT: A Review

[56] K. Demestichas, N. Peppes, and T. Alexakis, ‘‘Survey on security threats
in agricultural IoT and smart farming,’’ Sensors, vol. 20, no. 22, p. 6458,
Nov. 2020, doi: 10.3390/s20226458.

[57] X. Yang, L. Shu, J. Chen,M.A. Ferrag, J.Wu, E. Nurellari, andK. Huang,
‘‘A survey on smart agriculture: Development modes, technologies, and
security and privacy challenges,’’ IEEE/CAA J. Automatica Sinica, vol. 8,
no. 2, pp. 273–302, Feb. 2021, doi: 10.1109/JAS.2020.1003536.

[58] M. A. Ferrag, L. Shu, X. Yang, A. Derhab, and L. Maglaras, ‘‘Security
and privacy for green IoT-based agriculture: Review, blockchain solu-
tions, and challenges,’’ IEEE Access, vol. 8, pp. 32031–32053, 2020, doi:
10.1109/ACCESS.2020.2973178.

[59] Y. Wang, Z. Su, N. Zhang, and A. Benslimane, ‘‘Learning in the air:
Secure federated learning for UAV-assisted crowdsensing,’’ IEEE Trans.
Netw. Sci. Eng., vol. 8, no. 2, pp. 1055–1069, Apr./Jun. 2021, doi:
10.1109/TNSE.2020.3014385.

[60] T. Alladi, V. Chamola, N. Sahu, and M. Guizani, ‘‘Applications of
blockchain in unmanned aerial vehicles: A review,’’ Veh. Commun.,
vol. 23, Jun. 2020, Art. no. 100249, doi: 10.1016/j.vehcom.2020.100249.

[61] S. H. Alsamhi, F. A. Almalki, F. Afghah, A. Hawbani, A. V. Shvetsov,
B. Lee, and H. Song, ‘‘Drones’ edge intelligence over smart environ-
ments in B5G: Blockchain and federated learning synergy,’’ IEEE Trans.
Green Commun. Netw., vol. 6, no. 1, pp. 295–312, Mar. 2022, doi:
10.1109/TGCN.2021.3132561.

[62] D. Saraswat, A. Verma, P. Bhattacharya, S. Tanwar, G. Sharma,
P. N. Bokoro, and R. Sharma, ‘‘Blockchain-based federated learning
in UAVs beyond 5G networks: A solution taxonomy and future
directions,’’ IEEE Access, vol. 10, pp. 33154–33182, 2022, doi:
10.1109/ACCESS.2022.3161132.

[63] C. Feng, B. Liu, K. Yu, S. K. Goudos, and S. Wan, ‘‘Blockchain-
empowered decentralized horizontal federated learning for 5G-enabled
UAVs,’’ IEEE Trans. Ind. Informat., vol. 18, no. 5, pp. 3582–3592,
May 2022, doi: 10.1109/TII.2021.3116132.

[64] P. Amos, P. Li, W. Wu, and B. Wang, ‘‘Computation efficiency
maximization for secure UAV-enabled mobile edge computing net-
works,’’ Phys. Commun., vol. 46, Jun. 2021, Art. no. 101284, doi:
10.1016/j.phycom.2021.101284.

[65] Y. Li, Y. Fang, and L. Qiu, ‘‘Joint computation offloading and com-
munication design for secure UAV-enabled MEC systems,’’ in Proc.
IEEE Wireless Commun. Netw. Conf. (WCNC), Mar. 2021, pp. 1–6, doi:
10.1109/WCNC49053.2021.9417457.

[66] M. Grant, S. Boyd, and Y. Ye. (2013). CVX: MATLAB Software for Disci-
plined Convex Programming, Version 2.0 Beta. Accessed: Jul. 19, 2021.
[Online]. Available: http://cvxr.com/cvx

[67] D. Han and T. Shi, ‘‘Secrecy capacity maximization for a UAV-assisted
MEC system,’’ China Commun., vol. 17, no. 10, pp. 64–81, Oct. 2020,
doi: 10.23919/JCC.2020.10.005.

[68] Y. Zhou, C. Pan, P. L. Yeoh, K. Wang, M. Elkashlan, B. Vucetic, and
Y. Li, ‘‘Secure communications for UAV-enabled mobile edge computing
systems,’’ IEEE Trans. Commun., vol. 68, no. 1, pp. 376–388, Jan. 2020,
doi: 10.1109/TCOMM.2019.2947921.

[69] R. Han, L. Bai, J. Liu, J. Choi, and Y.-C. Liang, ‘‘A secure structure
for UAV-aided IoT networks: Space-time key,’’ IEEE Wireless Commun.,
vol. 28, no. 5, pp. 96–101, Oct. 2021, doi: 10.1109/MWC.111.2100087.

[70] W. Lu, Y. Ding, Y. Gao, S. Hu, Y. Wu, N. Zhao, and Y. Gong,
‘‘Resource and trajectory optimization for secure communications in
dual unmanned aerial vehicle mobile edge computing systems,’’ IEEE
Trans. Ind. Informat., vol. 18, no. 4, pp. 2704–2713, Apr. 2022, doi:
10.1109/TII.2021.3087726.

[71] W. Liu, Y. Xu, D. Wu, H. Wang, X. Zheng, and X. Chen, ‘‘Distributed
energy-efficient and secure offloading in air-to-ground MEC networks,’’
EURASIP J. Adv. Signal Process., vol. 2021, no. 1, pp. 1–18, Dec. 2021,
doi: 10.1186/s13634-021-00785-9.

[72] J. Bai, Z. Zeng, T. Wang, S. Zhang, N. N. Xiong, and A. Liu, ‘‘TANTO:
An effective trust based unmanned aerial vehicle computing system
for the Internet-of-Things,’’ IEEE Internet Things J., early access,
Feb. 11, 2022, doi: 10.1109/JIOT.2022.3150765.

[73] Y. Xu, T. Zhang, D. Yang, Y. Liu, and M. Tao, ‘‘Joint resource and
trajectory optimization for security in UAV-assisted MEC systems,’’
IEEE Trans. Commun., vol. 69, no. 1, pp. 573–588, Jan. 2021, doi:
10.1109/TCOMM.2020.3025910.

[74] H. Yang, ‘‘Secure energy efficiency maximization for dual-UAV-assisted
intelligent reflecting surface system,’’ Phys. Commun., vol. 52, Jun. 2022,
Art. no. 101622, doi: 10.1016/j.phycom.2022.101622.

[75] T. Bai, J. Wang, Y. Ren, and L. Hanzo, ‘‘Energy-efficient com-
putation offloading for secure UAV-edge-computing systems,’’ IEEE
Trans. Veh. Technol., vol. 68, no. 6, pp. 6074–6087, Jun. 2019, doi:
10.1109/TVT.2019.2912227.

[76] X. Gu, G. Zhang, and J. Gu, ‘‘Offloading optimization for energy-
minimization secure UAV-edge-computing systems,’’ in Proc. IEEE
Wireless Commun. Netw. Conf. (WCNC), Mar. 2021, pp. 1–6, doi:
10.1109/WCNC49053.2021.9417527.

[77] X. Gu, G. Zhang,M.Wang,W. Duan,M.Wen, and P.-H. Ho, ‘‘UAV-aided
energy-efficient edge computing networks: Security offloading optimiza-
tion,’’ IEEE Internet Things J., vol. 9, no. 6, pp. 4245–4258, Mar. 2022,
doi: 10.1109/JIOT.2021.3103391.

[78] W. Lu, Y. Ding, Y. Gao, Y. Chen, N. Zhao, Z. Ding, and A. Nallanathan,
‘‘Secure NOMA-based UAV-MEC network towards a flying eavesdrop-
per,’’ IEEE Trans. Commun., vol. 70, no. 5, pp. 3364–3376, May 2022,
doi: 10.1109/TCOMM.2022.3159703.

[79] T. Wang, Y. Li, and Y. Wu, ‘‘Energy-efficient UAV assisted secure
relay transmission via cooperative computation offloading,’’ IEEE Trans.
Green Commun. Netw., vol. 5, no. 4, pp. 1669–1683, Dec. 2021, doi:
10.1109/TGCN.2021.3099523.

[80] J. X. Xie and Y. Xue, Optimization Modeling and LINDO/LINGO
Software, vol. 18, no. 4. Beijing, China: Tsinghua Univ. Press, 2005,
pp. 67–73.

[81] H. Hashida, Y. Kawamoto, and N. Kato, ‘‘Intelligent reflecting surface
placement optimization in air-ground communication networks toward
6G,’’ IEEE Wireless Commun., vol. 27, no. 6, pp. 146–151, Dec. 2020,
doi: 10.1109/MWC.001.2000142.

[82] Y. Liu, X. Liu, X. Mu, T. Hou, J. Xu, M. Di Renzo, and N. Al-Dhahir,
‘‘Reconfigurable intelligent surfaces: Principles and opportunities,’’
IEEE Commun. Surveys Tuts., vol. 23, no. 3, pp. 1546–1577,
3rd Quart., 2021, doi: 10.1109/COMST.2021.3077737.

[83] L. Yan, C. Wang, and W. Zheng, ‘‘Secure efficiency maximization
for UAV-assisted mobile edge computing networks,’’ Phys. Commun.,
vol. 51, Apr. 2022, Art. no. 101568, doi: 10.1016/j.phycom.2021.101568.

[84] W. Wang, W. Ni, H. Tian, and L. Song, ‘‘Intelligent Omni-surface
enhanced aerial secure offloading,’’ IEEE Trans. Veh. Technol., vol. 71,
no. 5, pp. 5007–5022, May 2022, doi: 10.1109/TVT.2022.3150769.

[85] S. Garg, A. Singh, S. Batra, N. Kumar, and L. T. Yang, ‘‘UAV-empowered
edge computing environment for cyber-threat detection in smart vehi-
cles,’’ IEEE Netw., vol. 32, no. 3, pp. 42–51, May/Jun. 2018, doi:
10.1109/MNET.2018.1700286.

[86] H. Sedjelmaci, A. Boudguiga, I. B. Jemaa, and S. M. Senouci,
‘‘An efficient cyber defense framework for UAV-edge computing net-
work,’’ Ad Hoc Netw., vol. 94, Nov. 2019, Art. no. 101970, doi:
10.1016/j.adhoc.2019.101970.

[87] S. Guo, Y. Dai, S. Guo, X. Qiu, and F. Qi, ‘‘Blockchain meets edge
computing: Stackelberg game and double auction based task offload-
ing for mobile blockchain,’’ IEEE Trans. Veh. Technol., vol. 69, no. 5,
pp. 5549–5561, May 2020, doi: 10.1109/TVT.2020.2982000.

[88] The Network Simulator-NS. Accessed: Jul. 25, 2022. [Online]. Available:
https://sourceforge.net/projects/nsnam/files/

[89] P. A. Lopez, E. Wiessner, M. Behrisch, L. Bieker-Walz, J. Erdmann,
Y.-P. Flotterod, R. Hilbrich, L. Lucken, J. Rummel, and P. Wagner,
‘‘Microscopic traffic simulation using SUMO,’’ in Proc. 21st Int.
Conf. Intell. Transp. Syst. (ITSC), Nov. 2018, pp. 2575–2582, doi:
10.1109/ITSC.2018.8569938.

[90] O. S. Oubbati, N. Chaib, A. Lakas, P. Lorenz, and A. Rachedi,
‘‘UAV-assisted supporting services connectivity in urban VANETs,’’
IEEE Trans. Veh. Technol., vol. 68, no. 4, pp. 3944–3951, Apr. 2019, doi:
10.1109/TVT.2019.2898477.

[91] Y. He, D. Zhai, F. Huang, D. Wang, X. Tang, and R. Zhang, ‘‘Joint task
offloading, resource allocation, and security assurance for mobile edge
computing-enabled UAV-assisted VANETs,’’Remote Sens., vol. 13, no. 8,
p. 1547, Apr. 2021, doi: 10.3390/rs13081547.

[92] S. Tang, W. Zhou, L. Chen, L. Lai, J. Xia, and L. Fan, ‘‘Battery-
constrained federated edge learning in UAV-enabled IoT for B5G/6G
networks,’’ Phys. Commun., vol. 47, Aug. 2021, Art. no. 101381, doi:
10.1016/j.phycom.2021.101381.

[93] R. Zhao, J. Xia, Z. Zhao, S. Lai, L. Fan, and D. Li, ‘‘GreenMEC networks
design under UAV attack: A deep reinforcement learning approach,’’
IEEE Trans. Green Commun. Netw., vol. 5, no. 3, pp. 1248–1258,
Sep. 2021, doi: 10.1109/TGCN.2021.3073939.

VOLUME 10, 2022 86381

http://dx.doi.org/10.3390/s20226458
http://dx.doi.org/10.1109/JAS.2020.1003536
http://dx.doi.org/10.1109/ACCESS.2020.2973178
http://dx.doi.org/10.1109/TNSE.2020.3014385
http://dx.doi.org/10.1016/j.vehcom.2020.100249
http://dx.doi.org/10.1109/TGCN.2021.3132561
http://dx.doi.org/10.1109/ACCESS.2022.3161132
http://dx.doi.org/10.1109/TII.2021.3116132
http://dx.doi.org/10.1016/j.phycom.2021.101284
http://dx.doi.org/10.1109/WCNC49053.2021.9417457
http://dx.doi.org/10.23919/JCC.2020.10.005
http://dx.doi.org/10.1109/TCOMM.2019.2947921
http://dx.doi.org/10.1109/MWC.111.2100087
http://dx.doi.org/10.1109/TII.2021.3087726
http://dx.doi.org/10.1186/s13634-021-00785-9
http://dx.doi.org/10.1109/JIOT.2022.3150765
http://dx.doi.org/10.1109/TCOMM.2020.3025910
http://dx.doi.org/10.1016/j.phycom.2022.101622
http://dx.doi.org/10.1109/TVT.2019.2912227
http://dx.doi.org/10.1109/WCNC49053.2021.9417527
http://dx.doi.org/10.1109/JIOT.2021.3103391
http://dx.doi.org/10.1109/TCOMM.2022.3159703
http://dx.doi.org/10.1109/TGCN.2021.3099523
http://dx.doi.org/10.1109/MWC.001.2000142
http://dx.doi.org/10.1109/COMST.2021.3077737
http://dx.doi.org/10.1016/j.phycom.2021.101568
http://dx.doi.org/10.1109/TVT.2022.3150769
http://dx.doi.org/10.1109/MNET.2018.1700286
http://dx.doi.org/10.1016/j.adhoc.2019.101970
http://dx.doi.org/10.1109/TVT.2020.2982000
http://dx.doi.org/10.1109/ITSC.2018.8569938
http://dx.doi.org/10.1109/TVT.2019.2898477
http://dx.doi.org/10.3390/rs13081547
http://dx.doi.org/10.1016/j.phycom.2021.101381
http://dx.doi.org/10.1109/TGCN.2021.3073939


E. T. Michailidis et al.: Secure UAV-Aided Mobile Edge Computing for IoT: A Review

[94] D.Wei, N. Xi, J. Ma, and L. He, ‘‘UAV-assisted privacy-preserving online
computation offloading for Internet of Things,’’ Remote Sens., vol. 13,
no. 23, p. 4853, Nov. 2021, doi: 10.3390/rs13234853.

[95] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, ‘‘Prioritized experience
replay,’’ 2015, arXiv:1511.05952.

[96] W. Lu, Y. Mo, Y. Feng, Y. Gao, N. Zhao, Y. Wu, and A. Nal-
lanathan, ‘‘Secure transmission for multi-UAV-assisted mobile edge
computing based on reinforcement learning,’’ IEEE Trans. Netw.
Sci. Eng., early access, Jun. 22, 2022, doi: 10.1109/TNSE.2022.
3185130.

[97] M. Li, F. R. Yu, P. Si, R. Yang, Z. Wang, and Y. Zhang, ‘‘UAV-assisted
data transmission in blockchain-enabled M2M communications with
mobile edge computing,’’ IEEE Netw., vol. 34, no. 6, pp. 242–249,
Nov./Dec. 2020, doi: 10.1109/MNET.011.2000147.

[98] A. Islam, T. Rahim, M. Masuduzzaman, and S. Y. Shin, ‘‘A blockchain-
based artificial intelligence-empowered contagious pandemic situa-
tion supervision scheme using internet of drone things,’’ IEEE
Wireless Commun., vol. 28, no. 4, pp. 166–173, Aug. 2021, doi:
10.1109/MWC.001.2000429.

[99] P. P. Ray, ‘‘An introduction to dew computing: Definition, con-
cept and implications,’’ IEEE Access, vol. 6, pp. 723–737, 2018, doi:
10.1109/ACCESS.2017.2775042.

[100] A. Islam, A. Al Amin, and S. Y. Shin, ‘‘FBI: A federated learning-based
blockchain-embedded data accumulation scheme using drones for Inter-
net of Things,’’ IEEEWireless Commun. Lett., vol. 11, no. 5, pp. 972–976,
May 2022, doi: 10.1109/LWC.2022.3151873.

[101] S. Luo, H. Li, Z. Wen, B. Qian, G. Morgan, A. Longo, O. Rana,
and R. Ranjan, ‘‘Blockchain-based task offloading in drone-aided
mobile edge computing,’’ IEEE Netw., vol. 35, no. 1, pp. 124–129,
Jan./Feb. 2021, doi: 10.1109/MNET.011.2000222.

[102] S. Hernan, S. Lambert, T. Ostwald, and A. Shostack, ‘‘Threat modeling-
uncover security design flaws using the stride approach,’’ in MSDN
Magazine-Louisville (MSDN Magazine is the Microsoft Journal for
Developers). USA: Microsoft, 2006, pp. 68–75.

[103] R. She andY. Ouyang, ‘‘Efficiency of UAV-based last-mile delivery under
congestion in low-altitude air,’’ Transp. Res. C, Emerg. Technol., vol. 122,
Jan. 2021, Art. no. 102878, doi: 10.1016/j.trc.2020.102878.

[104] X. Li, L. Gong, X. Liu, F. Jiang, W. Shi, L. Fan, H. Gao, R. Li, and
J. Xu, ‘‘Solving the last mile problem in logistics: A mobile edge com-
puting and blockchain-based unmanned aerial vehicle delivery system,’’
Concurrency Comput. Pract. Exp., vol. 34, no. 7, p. e6068, 2022, doi:
10.1002/cpe.6068.

[105] H. Xu, W. Huang, Y. Zhou, D. Yang, M. Li, and Z. Han, ‘‘Edge com-
puting resource allocation for unmanned aerial vehicle assisted mobile
network with blockchain applications,’’ IEEE Trans. Wireless Commun.,
vol. 20, no. 5, pp. 3107–3121, May 2021, doi: 10.1109/TWC.2020.
3047496.

[106] A. Islam and S. Y. Shin, ‘‘BUS: A blockchain-enabled data
acquisition scheme with the assistance of UAV swarm in Internet
of Things,’’ IEEE Access, vol. 7, pp. 103231–103249, 2019, doi:
10.1109/ACCESS.2019.2930774.

[107] Y. Tian, J. Yuan, and H. Song, ‘‘Efficient privacy-preserving authenti-
cation framework for edge-assisted Internet of Drones,’’ J. Inf. Secur.
Appl., vol. 48, Oct. 2019, Art. no. 102354, doi: 10.1016/j.jisa.2019.
06.010.

[108] S. Even, O. Goldreich, and S. Micali, ‘‘On-line/off-line digital signa-
tures,’’ in Advances in Cryptology—CRYPTO (Lecture Notes in Com-
puter Science), vol. 435, G. Brassard, Ed. New York, NY, USA: Springer,
1989, doi: 10.1007/0-387-34805-0_24.

[109] Multiprecision Integer and Rational Arithmetic Cryptographic Library
(MIRACL). Accessed: Jul. 21, 2022. [Online]. Available: https://github.
com/miracl/MIRACL

[110] M. A. Khan, I. M. Qureshi, I. Ullah, S. Khan, F. Khanzada, and F. Noor,
‘‘An efficient and provably secure certificateless blind signature scheme
for flying ad-hoc network based on multi-access edge computing,’’ Elec-
tronics, vol. 9, no. 1, p. 30, Dec. 2019, doi: 10.3390/electronics9010030.

[111] M. A. Khan, I. Ullah, S. Nisar, F. Noor, I. M. Qureshi, F. Khanzada,
H. Khattak, and M. A. Aziz, ‘‘Multiaccess edge computing empow-
ered flying ad hoc networks with secure deployment using identity-
based generalized signcryption,’’ Mobile Inf. Syst., vol. 2020, Jul. 2020,
Art. no. 8861947, doi: 10.1155/2020/8861947.

[112] D. Dolev and A. C. Yao, ‘‘On the security of public key protocols,’’
IEEE Trans. Inf. Theory, vol. IT-29, no. 2, pp. 198–208, Mar. 1983, doi:
10.1109/TIT.1983.1056650.

[113] R. Canetti and H. Krawczyk, ‘‘Analysis of key-exchange proto-
cols and their use for building secure channels,’’ in Advances in
Cryptology—EUROCRYPT (Lecture Notes in Computer Science),
vol. 2045, B. Pfitzmann, Ed. Berlin, Germany: Springer, 2001, doi: 10.10
07/3-540-44987-6_28.

[114] M. Yahuza, M. Y. I. Idris, A. W. A. Wahab, T. Nandy, I. B. Ahmedy, and
R. Ramli, ‘‘An edge assisted secure lightweight authentication technique
for safe communication on the Internet of Drones network,’’ IEEEAccess,
vol. 9, pp. 31420–31440, 2021, doi: 10.1109/ACCESS.2021.3060420.

[115] P. Gope and B. Sikdar, ‘‘An efficient privacy-preserving authenticated
key agreement scheme for edge-assisted Internet of Drones,’’ IEEE
Trans. Veh. Technol., vol. 69, no. 11, pp. 13621–13630, Nov. 2020, doi:
10.1109/TVT.2020.3018778.

EMMANOUEL T. MICHAILIDIS (Member,
IEEE) was born in Athens, Greece. He received
the M.Sc. degree in digital communications and
networks from the Department of Digital Sys-
tems, University of Piraeus, Piraeus, Greece,
in 2006, and the Ph.D. degree with specialization
in ‘‘aerospace communication systems’’ from the
University of Piraeus, in 2011. Since 2018, he has
been an Adjunct Lecturer with the Department of
Electrical and Electronics Engineering, School of

Engineering, University of West Attica, Egaleo, Greece. Since 2021, he has
been a Postdoctoral Researcher with the Department of Information and
Communication Systems Engineering, University of the Aegean, Samos
Island, Greece. He has publishedmore than 50 scientific articles and received
several best paper awards in his areas of research. His current research
interests include the channel modeling and performance analysis of next-
generation terrestrial wireless, aerial, and satellite communication systems.

KONSTANTINOS MALIATSOS graduated from
the School of Electrical and Computer Engi-
neering, National Technical University of Athens
(NTUA), Greece, in 2003. He received the M.B.A.
degree from the Postgraduate Program ‘‘Tech-
noeconomic Systems’’ (co-organized by NTUA,
National and Kapodistrian University of Athens,
and University of Piraeus), in 2005, and the
Ph.D. degree in design, analysis and transmission
techniques for cognitive radio systems, in 2011.

In 2003, he began his collaboration with the Mobile Radio Communications
Laboratory (NTUA) as an Engineer in various research projects. Since 2013,
he collaborates with the Telecommunication Systems Laboratory, University
of Piraeus, as a Senior Researcher in various projects, mainly EU-funded.
In 2015, he co-founded the technology SME, FERON TECHNOLOGIES,
in which he served as the Director of research and development programs.
In 2020, he was elected as an Assistant Professor at the ICSD. He is currently
an Assistant Professor at the Department of Information and Communication
Systems Engineering (ICSD), University of the Aegean, Greece. He was/is
actively involved in more than 17 European projects, with a key role in many
of them (indicatively, technical manager, steering committee member, and
WP leader). His research interests include MIMO systems, cognitive radio,
information-theoretic security, vehicular communications, and riskmodeling
and analysis.

86382 VOLUME 10, 2022

http://dx.doi.org/10.3390/rs13234853
http://dx.doi.org/10.1109/TNSE.2022.3185130
http://dx.doi.org/10.1109/TNSE.2022.3185130
http://dx.doi.org/10.1109/MNET.011.2000147
http://dx.doi.org/10.1109/MWC.001.2000429
http://dx.doi.org/10.1109/ACCESS.2017.2775042
http://dx.doi.org/10.1109/LWC.2022.3151873
http://dx.doi.org/10.1109/MNET.011.2000222
http://dx.doi.org/10.1016/j.trc.2020.102878
http://dx.doi.org/10.1002/cpe.6068
http://dx.doi.org/10.1109/TWC.2020.3047496
http://dx.doi.org/10.1109/TWC.2020.3047496
http://dx.doi.org/10.1109/ACCESS.2019.2930774
http://dx.doi.org/10.1016/j.jisa.2019.06.010
http://dx.doi.org/10.1016/j.jisa.2019.06.010
http://dx.doi.org/10.1007/0-387-34805-0_24
http://dx.doi.org/10.3390/electronics9010030
http://dx.doi.org/10.1155/2020/8861947
http://dx.doi.org/10.1109/TIT.1983.1056650
http://dx.doi.org/10.1007/3-540-44987-6_28
http://dx.doi.org/10.1007/3-540-44987-6_28
http://dx.doi.org/10.1109/ACCESS.2021.3060420
http://dx.doi.org/10.1109/TVT.2020.3018778


E. T. Michailidis et al.: Secure UAV-Aided Mobile Edge Computing for IoT: A Review

DIMITRIOS N. SKOUTAS (Senior Member,
IEEE) received the Ph.D. degree in communica-
tion networks and the Dipl.-Eng (five-year degree)
degree in electrical and computer engineering with
a major in telecommunications. He currently holds
the position of an Assistant Professor with the
Department of Information and Communication
Systems Engineering (ICSE), University of the
Aegean, Greece. His research activities are cur-
rently focused on the development of cooperative

transmission schemes that can be extended to multiple networks in a HetNet
environment as well as on the IoT networks. He has also been keenly working
on the areas of resource management and quality of service provisioning in
mobile and wireless broadband networks, where he has proposed several
algorithmic and architectural optimizations. He is a member of the Edi-
torial Boards for Wireless Networks (Springer), Journal of Wireless Com-
munications and Networking (EURASIP), and Internet Technology Letters
(Wiley). He had previously served on the editorial boards for Advances
in Electrical Engineering and The Scientific World Journal (subject area:
Communications and Networking), both of which are published by Hindawi.
He also serves on the technical program and organizing committees for
several conferences.

DEMOSTHENES VOUYIOUKAS (Senior Mem-
ber, IEEE) received the five-year Diploma and
Ph.D. degrees in electrical and computer engineer-
ing and the Joint Engineering-Economics M.Sc.
degree from the National Technical University of
Athens (NTUA), in 1996, 2003, and 2004, respec-
tively. He is currently a Professor and the Direc-
tor of the Computer and Communication Systems
Laboratory, Department of Information and Com-
munication Systems Engineering, University of

the Aegean, Greece. His research interests include mobile and wireless
communication systems, channel characterization and propagation models,
machine learning techniques for pathloss prediction, performance modeling
of wireless networks, cooperative wideband systems with relays, UWB
indoor localization techniques, UAV and aerial communications, next gen-
eration mobile and satellite networks, MIMO and 5G and beyond/6G tech-
nologies, and network security and privacy policies. In this area, he has over
130 publications in scientific journals, books, book chapters, and interna-
tional conference proceedings. He is a member of the IEEE Communication
Society of the Greek Section, a member of IFIP and ACM, and a member of
the Technical Chamber of Greece.

CHARALABOS SKIANIS (Senior Member,
IEEE) received the B.A. degree in physics from
the University of Patras, Greece, and the Ph.D.
degree in computer science from the University of
Bradford, U.K. He is currently a Professor at the
Department of Information and Communication
Systems Engineering, University of the Aegean.
His work has been published in magazines, con-
ference proceedings, and book chapters, while it
has been presented in numerous conferences and

workshops. He has extensive experience in attracting funding and managing
international consortia in the ecosystem of information, network and commu-
nication systems. He is a member of scientific and organizational committees
for numerous conferences and workshops and has edited special publications
for scientific journals. He is a member of the editorial/scientific committee
of several journals, a member of professional communities, and an active
reviewer in scientific journals and he participates and chairs international
technical committees.

VOLUME 10, 2022 86383


