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ABSTRACT Nonnegative Matrix Factorization (NMF) has become a popular technique for dimensionality
reduction, and been widely used in machine learning, computer vision, and data mining. Existing unsuper-
vised NMF methods impose the intrinsic geometric constraint on the encoding matrix, which only indirectly
affects the base matrix. Moreover, they ignore the global structure of the data space. To address these issues,
in this paper we propose a novel unsupervised NMF learning framework, called Robust Graph regularized
Nonnegative Matrix Factorization (RGNMF). RGNMEF constructs a sparse graph imposed on the basis matrix
to catch the global structure and preserve the discriminative information. And it models the local structure
by building a k-NN graph constrained on the encoding matrix, which gains the compact representation.
Consequently, RGNMF not only respects the global structure, but also depicts the local structure. In addition,
it employs such a L j-norm cost function to decompose the basis matrix and encoding matrix that its
robustness can be improved. Further, it imposes the Ly j-norm constraint on the basis matrix to choose
the discriminative feature. Hence, RGNMF can gain the robust discriminative representation by combining
structure learning and L j-norm constraints imposed on the basis matrix and encoding matrix. Extensive
experiments on real-world problems demonstrate that RGNMF achieves better clustering results than the
state-of-the-art approaches.

INDEX TERMS Nonnegative matrix factorization, manifold learning, sparse representation, global struc-
ture, local structure, data representation.

I. INTRODUCTION
As a popular technique for data representation, nonnegative

focus on finding two low-dimensional nonnegative matrices
A and X so that the product of A and X approximates Y. The

matrix factorization (NMF) has been successfully applied in
computational intelligence [1], [2], machine learning [3], [4]
and data mining [5], [6], [7]. Its power lies in its ability
to give meaningful decompositions of data into two non-
negative matrices. Compared with other matrix factorization
techniques, NMF can achieve relatively good performance.
Moreover, the basis vectors obtained by NMF provide inter-
pretability and clear physical meaning from the nonnegative
view. Hence, more and more researchers have paid close
attention to NMF. Specifically, given a nonnegative matrix
Y = [y1,y2,...¥n] € R™*" consisting of n samples, NMF
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objective function of NMF with the square of the Frobenius
norm is defined as follows [8]:

: 2
i 1Y — AX|z, ey
where A represents a basis matrix with m rows and / columns.
X e R is usually a coefficient matrix (or an encoding
matrix) and also considered as the new representation of data
with respect to the new basis A. By alternately optimizing A
and X in (1), one can gain their optimal solution. Although
NMF can provide solid mathematical theory and encouraging
performance, it suffers from three limitations in real-world
applications. First of all, it ignores the intrinsic geometric
structure. It has been shown that the intrinsic geometry of
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the data distribution is essentially useful for many practical
problems [9], [10], [11]. secondly, it fails to apply the super-
vised information of data. The supervised information can be
used to learn more discriminative features [12], [13]. Finally,
it is sensitive to noise and outliers [14]. To address these
problems, recently, a number of improved NMF algorithms
have been proposed and successfully applied in various fields.
According to whether the supervised information is used,
we divide existing NMF algorithms into three categories:
supervised, semi-supervised and unsupervised.

Supervised NMF methods make use of labeled data to
explore the discriminative representation that enforces the
separability between classes and promotes the performance
of NMF to some extent. Zafeiriou et al. [15] introduced
well-known linear discriminant criterion into NMF by using
the data labels, which increased the separability of sam-
ples from different classes and enforced the compactness of
samples from the same class. Guan et al. [16] employed
the label information of data to formulate between-class
k-nearest neighbor (k-NN) and within-class k-NN scatters
and then incorporated them into NMF. Similar to [16],
An et al. [17] expanded the local regions of the between-class
neighborhood and reduced the local regions of the within-
class neighborhood to extract discriminative features of data.
Lieral. [18] exploited the data labels to respectively construct
a neighbor graph and a penalty graph for capturing both the
within-class compactness and the between-class distinctness
of data. Nikitidis et al. [19] sought the discriminant projec-
tion by incorporating subclass-based constraints into the loss
function of NMF. Generally, it is difficult to obtain the class
labels of the whole data, but relatively easy to gain a small
number of data labels or pairwise constraints. Liu ez al. [20]
proposed a semi-supervised NMF, which explicitly imposes
the label information on the encoding matrix as additional
hard constraints to improve the discriminative ability of the
representation. Different from [20] that uses a few data labels
to guide matrix decomposition, Zhang et al. [21] integrated
pairwise constraints in the form of must-link and cannot-link
in the objective function of NMF to find an appropriate
indicator matrix. Wang et al. [22] propagated both cannot-
link and must-link constraints to unlabeled samples for con-
structing a new data weight matrix. Li et al. [23] applied
the labeled and unlabeled data to gain the discriminative
representations by investigating the block-diagonal structure
learned by the label information. Jiao et al. [64] proposed a
novel semi-supervised NMF method by merging the hyper-
graph regularizer and class label into NMF.

Generally, it is very expensive to gain the class label of
data. For example, In the diagnosis of tuberculosis, it is
difficult for a doctor to judge whether the tumor is nega-
tive or positive according to a medical image of the lung.
Therefore, unsupervised NMFs are more suitable for solving
real-world problems than supervised and semi-supervised
NMF approaches [24]. Dirichlet matrix factorization [25]
exploits matrix factorization to enhance the prediction and
the reliability of recommender system, so as to achieve
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a better performance for recommender system. Sparseness
constraint-based NMF [26] incorporates sparseness con-
straints into NMF to explicitly control the sparsity of the
factor matrices. In various applications, data are usually
contaminated by noise and outliers. To address the issue,
Kong et al. [14] minimized the L, 1-norm loss to factorize the
original matrix into the two matrices which has been shown
to handle noise and outliers. Studies [10], [28] have shown
that manifold learning technique can be applied to improve
the performance of NMF. Robust manifold NMF (RMNMF)
[27] depicts the local structure and relaxes the nonnegativ-
ity of the basis matrix for seeking the proper factorization.
NMF with Adaptive Neighbors (NMFAN) [29] alternately
seeks the similar matrix, the basis matrix and the encoding
matrix by constructing an adaptive k-NN graph. Low-rank
matrix factorization [30] exploits the k-NN graph regular-
ization and low-rank factorization to find these two factor
matrices. General subspace constrained NMF [31] regular-
izes NMF with various subspace constraints formulated into
a certain form. Graph regularized low-rank NMF (GNLMF)
[32] incorporates the local structure into the nonnegative
low-rank matrix factorization framework to get an effective
low-rank data representation. Zhang et al. [33] exploited the
manifold regularization and matrix factorization to simulta-
neously solve the affinity matrix and the encoding matrix.
Yi et al. [34] constructed a sparse graph and a k-NN graph
and merged them into NMF for seeking two factor matrices.
Peng et al. [55] proposed a novel robust log-norm regular-
ized sparse NMF method (RLS-NMF). RLS-NMF formulates
L5 10g-shrink operator as the solution to the L jog-(pseudo)
norm, which makes the data with noise subtraction nonneg-
ative. With Lj jog-shrink operator, it develops multiplicative
updating rules to gain a robust parts-based representation by
sparser solutions. Yu et al. [65] exploited the correntropy
measure in the loss function and constructed a hypergraph
to preserve the high-order geometric information of the data,
which improved the performance and robustness of NMF.
The above-mentioned NMF-based methods are linear, and
effectively decompose the data located in the linear space.
Recently, with the successful application of deep learning,
many researchers have combined deep learning technique
with NMF to handle the matrix factorization problem of non-
linear data. Trigeorgis et al. [56] proposed a deep semi-NMF
via graph regularization technique, which can learn such
hidden representation and interpret clustering according to
different unknown attributes of a given data set. Deep NMF
based on autoencoders (DNMF) [57] is applied to improve
nonlinear data-driven fault detection by combining deep
autoencoders into NMF. Zhao et al. [58] proposed a deep
NMF framework based on underlying basis image learning,
which is used to extract features that reflect the depth posi-
tioning features of samples. Sparse dual graph-regularized
DNMF [59] respects the geometric structures of feature man-
ifold and data manifold to seek the data information of hidden
layers so that it learns a sparse and compact representation.
Semi-supervised graph regularized DNMF (SGDNMF) [60]
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employs a small number of labels to learn a representation
from the hidden layer of the deep network. Furthermore,
SGDNMF introduces bi-orthogonal constraints on two factor
matrices into NMF framework to make the solution unique.
By revealing the hierarchical semantics of the input data,
Huang et al. [61] proposed a new collaborative deep matrix
factorization framework to seek the hidden representation of
different attributes.

Obviously, supervised and semi-supervised NMF
approaches can depict the global structure with the labeled
data. Because of the lack of the supervised information,
however, unsupervised ones pay more attention to the local
structure of data or the sparsity of the factor matrix to
gain the compact representation. Consequently, they fail to
respect the global structure so that the discriminative power
of the representation is limited to some extent. In addition,
many of them constrain the geometrical information on the
encoding matrix, which can find a proper encoding matrix.
For many tasks, however, especially feature extraction, clus-
tering and classification, the projection matrix constructed
by the base matrix is used to project the original data into
various subspaces [35], [36], [37]. Clearly, if the geometric
constraint is imposed on the encoding matrix, the influence
of data geometry on the base matrix is indirect. Recent
studies have shown that the sparse graph constructed based
on sparse representation technique can capture the discrim-
inative information [38], [39]. For example, by constructing
sparse graph, sparsity preserving projections (SPP) [40] not
only naturally preserves the global structure of data, but
also contains discriminative information. It has been shown
that the performance of the learning model can be markedly
enhanced if the discriminative information is exploited and
the geometric structure is respected [16], [17], [41].

To address the above-mentioned problems, we propose a
novel unsupervised NMF framework, called Robust Graph
regularized NMF (RGNMF) which combines a spare graph
and a k-NN graph construction into matrix factorization to
learn a discriminative representation. To be specific, RGNMF
captures the global structure and preserves the discrimina-
tive information by constructing the spare graph imposed
on the basis matrix. And the new model constructs the k-
NN graph constrained on the encoding matrix to depict
the local geometric structure, which can learn the compact
representation. Further, RGNMF exploits the L, 1-norm loss
function to seek the basis matrix and encoding matrix so
that it is insensitive to noise and outliers. Also, it imposes
L 1-norm constraint on the basis matrix to choose the dis-
criminative feature. Hence, the proposed algorithm can gain
a more discriminative representation for subsequent tasks
by combining structure learning and L, j-norm constraints
imposed on the basis matrix and encoding matrix. In addition,
an optimization scheme is developed to alternately solve such
two metrices. Its convergence is proved theoretically and
experimentally.

The proposed RGNMF has the
contributions:

following four
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(1) Different from existing approaches that ignore the geo-
metric structure or only considers the local structure,
our RGNMF algorithm not only respects the global
structure, but also depicts the local structure. More-
over, it characterizes local and global structures as two
regularization terms integrated into its loss function
for respectively seeking the basis matrix and encoding
matrix. Hence, RGNMF is particularly suitable for
solving real-world problem via learning the intrinsic
structure.

(2) RGNMEF constructs a sparse graph imposed on the basis
matrix to catch the global structure and preserve the
discriminative information. And it models the local
structure by building a k-NN graph constrained on the
encoding matrix, which gains the compact representa-
tion. Thus, RGNMF cannot only find more discrimina-
tive representations, but also project the new samples
into the low-dimensional subspace by the learned basis.

(3) RGNMF employs such a Ly 1-norm cost function to
decompose the basis matrix and encoding matrix that
its robustness can be improved. Further, it imposes
L, 1-norm constraint on the basis matrix to choose the
discriminative feature. Obviously, the proposed algo-
rithm can gain the robust data representation by com-
bining structure learning and L, j-norm constraints
imposed on the basis matrix and encoding matrix.
This indicates that RGNMF can naturally be used as a
preprocessing technique for subsequent tasks, such as
classification and clustering.

(4) The power of our RGNMF algorithm lies in its ability to
integrate feature learning, representation learning and
L, 1-norm constraints into a general framework. Such a
framework can be easily spread to supervised and semi-
supervised scenarios. This naturally brings about wider
application of RGNMF.

We organize this paper as follows: In Section 2, we briefly
review several algorithms closely related to our work, such
as KLS-NMF, GNLMF, and ENMF methods. In Section 3,
our algorithm is introduced and the convergence proof of our
optimization scheme is described in detail. Section 4 presents
the experimental results and analysis. Finally, we conclude
this paper in Section 5.

Il. RELATED WORKS

In this section, we briefly review existing methods closely
related to our work. These algorithms aim to respect the local
geometric structure of data in the unsupervised scenario.

A. NMF WITH LOCAL LEARNING

Recent studies have shown that the local structure of data can
be employed to enhance the quality of the learned representa-
tion [42], [43]. However, NMF fails to discover the intrinsic
structure in its model. To this end, Cai et al. [10] proposed
a graph regularized NMF (GNMF) to respect the intrinsic
geometry of data. GNMF depicts the local structure by setting
up a nearest neighbor graph and integrate it into NMF to seek
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the compact representation. RMNMF [27] and MNMFL,; ;
[28] extend GNMF by exploiting the L -norm loss func-
tion to replace the least square error function. different
from the above approaches that depict the local structure by
building a nearest neighbor graph, a kernel local similarity-
based NMF algorithm (KLS-NMF) [9] is proposed, which
merges kernel local similarity learning and self-expressive
property into matrix factorization for clustering. Specifically,
KLS-NMF introduces self-expressive property to formulate
a new basis matrix. Thus, the data matrix Y can be approxi-
mately expressed as the product of ¥ and A. KLS-NMF for-
mulates the weight of the similarity between samples as the
product of the basis matrix and encoding matrix. Moreover,
it enforces an orthogonality constraint on the encoding matrix
for enhancing the clustering performance. KLS-NMF solves
the following problem:

2
min ”Y — yax? ” FTrATMY), Q)
A>0,X>0,XTX=I F

where Tr(e) denotes the trace function of a matrix and
Tr(ATMX) is a regularizer of the local similarity. M is
a metric matrix with §; = ||x,- —xjH; and Z =AXT
denotes a similarity matrix. To address the nonlinear problem,
KLS-NMF introduces the kernel function into the model (2)
and thus obtains the following loss function:

min H(p(Y) — p()AXT Hz +TrATMYX).  (3)
A>0,X>0,XTxX=] F

B. GRAPH REGULARIZED LOW-RANK NMF

Li et al. [31] incorporated NMF and the graph regularizer
into a low-rank recovery algorithm for finding the essential
representation of the data and thus proposed a graph regular-
ized NLMF (GNLMF). Specifically, GNLMF decomposes its
model into two subproblems: low-rank recovery and matrix
factorization. It first applies the low-rank recovery technique
to remove blur or noise in the original data, which optimizes
the following objective subproblem:

in|Y —G—B|%, 4
min Il I 4

where G is the low-rank part of ¥ and B denotes the blur
or noise. After obtaining G, GNLMF encodes the geomet-
ric information by constructing the nearest neighbor graph
and extends the objective function of NMF. Thus, the cost
function of GNLMEF is defined as the following optimization
problem:

in |G —AX||%> +oTr(XLXT Tr(AAT). (5
&gﬁwn 7 + aTr( )+ BTr(AAY).  (5)

C. ELASTIC NMF

To address the problem of noise and outliers in the data,
Xiong et al. [3] proposed a novel graph-regularized ENMF,
which is adapted in Frobenius norm and L j-norm. The
elastic loss is used to fit matrix factorization for giving the
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data and is defined as follows:

h(yi, Av)) =)

i

8 llyi—Ax;||% y llyi—Axi 1% ©

S+llyi—Axill - 8+Ilyi—Axill’
where according to the scale parameter &, the first term is
called L, pseudo loss and the last term is called L; pseudo
loss.

ENMF also considers the geometric structure of data by
constructing the affinity graph and merges it into the elastic
loss function as the regularization term. Thus, it optimizes the
following objective function:

min h(y;, Ax)) + «Tr(XLXT) + B IX |l 2. (D)
A>0,X>0 ’

The above-mentioned algorithms improve the performance
of NMF from different perspectives. However, these algo-
rithms usually impose the intrinsic geometric information on
the encoding matrix which indirectly affects the basis matrix.
In addition, they fail to find the discriminative mapping,
which is beneficial to obtain a better subspace representation.
To address these issues, we propose a novel algorithm called
RGNMF in this paper.

Ill. ROBUST GRAPH REGULARIZED NONNEGATIVE
MATRIX FACTORIZATION (RGNMF)

A. MODEL FORMULATION

As analyzed above, the intrinsic geometric and discriminative
information of the data space plays an essential role in finding
such a more discriminative representation [12], [18], [23].
In fact, the quality of the representation obtained by most
approaches is relatively poor due to the omission of the
important information. Clearly, if the proposed algorithm
satisfies the following three conditions, it can improve the
quality of the data representation.

(1) It should meet the local invariance. In other words,
if two samples are neighbor in high-dimensional space,
their corresponding representations are also neighbor in
the low-dimensional space.

(2) Itshould be able to discover the global structure, which
is used to enhance the discriminative power of the
representation.

(3) It should choose the discriminative feature and make
the model more robust.

When the data are projected into the low-dimensional
space, one needs to preserve the local structure for finding
the compact representation. To this end, samples from the
high-dimensional space are close, their representations in the
latent space should be close. For example, if two samples y;
and y; are close, their corresponding low-dimensional repre-
sentations x; and x; should be close. Therefore, this neighbor
relationship is achieved by the following problem:

1 n
3 X bl

ij=1
n n
= le-Txl-D,-,- — Z xl-ijS,-j
i=1 i,j=1
= Tr(XDX") — Tr(XSXT) = Tr(XLsXT) (8)
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where the graph Laplacian Lg can be computed by D-S.
Accordingly, any diagonal element of the diagonal matrix
D is the sum of the corresponding column (or row) and
the similarity matrix S can be obtained by Gaussian kernel
function.

Clearly, the first condition can be realized by optimizing
the problem (8). Because of the complexity of data structure
in real-world applications, it is difficult to enhance the dis-
criminative power of the representation by considering only
one structure. For example, the face images of one person
forms a subspace, and those of different persons consist
of multiple subspaces. Because of the influence of illumi-
nation and posture, the data structures composed of these
face images are very complex. If only the local structure is
exploited, all images are not easy to be segmented into corre-
sponding subspaces [44]. Hence, the global structure needs to
be taken into account. Modified sparse representation (MSR)
technique has been proved to be able to capture the global
structure of data and find the discriminative mapping, which
is helpful for the subsequent classification and clustering
tasks [38], [40], [45]. Hence, we introduce MSR to respect
the global structure and find the discriminative mapping by
constructing the sparse graph. Specifically, we use as few
samples as possible to reconstruct each sample y;. We look
for a sparse reconstructive weight z; for each sample y; by
solving the following L|-norm optimization problem:

min ||zl
%

sty; =Yy, 1Tzi=1,4>0, )

where z; = [zi1, -+, Zii—1, 0, Ziit 1, - - - » zin]T denotes an n-
dimensional reconstructive vector where the i-th element is
zero, and ||-||; is the Li-norm. 1 € 9" is a column vector
whose entries are 1. The problem (9) is the widely used self-
expression property of data, which represents each sample
as a linear combination of other samples in the same group.
It can reflect the intrinsic geometric characteristics of data
and preserve potential discriminative information [38], [40],
[68]. Lin et al. [69] exploited the self-expression property of
data to seek a smooth node representation, so as to achieve
multi-view graph clustering.

The alternating direction method of multipliers (ADMM)
[49] has been proven to be effective in solving Lj-norm
optimization problems [50], [51], [52]. Thus, we exploit it
to solve the problem (9) with regard to Z. Following methods
[50], [51], [52], we make use of ADMM to solve the sparse
weight Z. We first transform the problem (9) into the follow-
ing equivalent problem:

min [|V[;
A%

st.V=2Z, Y=YZ,1'Z=1,Z>0. (10)

We define an augmented Lagrange formula to solve the
problem (10):

LZ, V)= IVl +Tr(CT(Y = YZ) + Tr(H"(Z — V)
+§<||Y—YZ||%+ 1Z = V) (11)
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where C and H are two Lagrange multipliers, u >0 denotes
a penalty parameter. Since there are two variables Z and V in
the problem (11), we need to solve them alternately. Hence,
we design the following three steps to deal with these two
variables.
Step 1: Computing Z. When V is fixed, Z is updated by
solving the problem
. I 2 2
—(|lY =YZ zZ-V
L 2(II lF + 1 )
+Tr(CT(Y = Y2)+ Tr(HT (Z — V). (12)
For each i (i = 1...n), we define the following Lagrange
function to obtain Z:
n
Lirn, 6i) = (i = Yaill3 + llzi = vill3)
+C i = Yo) + H @ —v) ="z = 1)

B (13)

where 71 and ¢; are two nonnegative Lagrange multipliers.
We take the partial derivative of Eq. (13) with respect to z;
and set it to 0, thus obtaining:

w(YTY + Dz —u(¥Ty; +v)

—Y'Ci+H —nl—¢ =0. (14)
We further simplify Eq. (14) and gain:
Zi +6; — nw — vig; = 0. (15)

where §; = (YTY + I)"1(=YTy; —v; — (YT C; — H)Ip),
w = YTY)""1/p and v = (YTY)"'/u. For the j-the
element of z;, we gain
Zjj + 8 — nwj — vjigii = 0. (16)
According to KKT condition, we have g;; z;; = 0 and thus
get
zij = (=0j; + nwj)+, (17)
where (1) = max(0,r). Without loss of generality,
we assume that ;1, 8;2, . . . , 8in are sorted from small to large.
If k elements of the optimal z; are nonzero, then we get
Zik > 0and z;x+1 = O in the light of Eq. (17). It follows
that
=ik + nwr >0, and — 8 k41 + nwk+1 < 0. (18)
Combining the constraint 17z; = 1 and Eq. (17), we arrive
at

. k
! ir
Z( Sir ”wr)=1:>n—M.
r=1 Zr:] (wr)

Step 2: Computing V. When Z is fixed, V is updated by
solving the problem

min [Vl + Tr(H' Z = V) + S1Z=VIF.  (20)

(19)

We update V by solving the optimization problem

. H H|?
V=agmn|V|+=|Z-V+ — (21)
2 ullg
Therefore, we can gain the closed solution of V:
V =Qi,(Z +H/w), (22)

where 2 denotes the shrinkage operator [53].
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Step 3: Computing two Lagrange multipliers and the
penalty parameter. C, H and u can be updated as follows:

C=C+uy -Y2) (23)
H=H+uwZzZ-V) (24
= min(p/L, Umax) (25)

where p and w4 are two nonnegative constants. We sum-
marize the process of solving problem (9) in Algorithm 1.

Algorithm 1 Solving the Problem (9) by ADMM
Input: Data matrix Y.
Initialize: Z =V =0,C =H =0, u = 1072, p = 1.2,
Mmax = 108,
while not converged do
1. Update Z by solving the problem (12).
2. Update V by exploiting (22).
3. Update C, H and u by exploiting (23)-(25), respectively.
end while
Output: Z and V.

The theoretical results of ADMM [49], [50] have proved
that the iterative process of solving two variables is conver-
gent. As formulated in Algorithm 1, we exploit the ADMM
method to iteratively solve two variables. Hence, Algorithm 1
converges.

After obtaining the optimal weight vector z;, the
sparse reconstructive weight matrix is denoted as Z =
[z1,z2, ...,2,]. As demonstrated in [38], [40], and [45], the
sparse graph has three important advantages: 1) Since z; is
constructed by exploiting all the samples, it characterizes
the global structure. 2) Although there are no class labels
available, the discriminative information can be naturally
preserved in the weight matrix. 3) Because of its sparsity,
the weight matrix Z is robust to noise and outliers in the data.
Since NMF is a popular dimensionality reduction technique,
A is also used as a projection matrix [10], [18], [22]. Our
proposed RGNMEF aims to project samples with the same
structure into the same cluster and samples with different
structures into different clusters. Hence, it can preserve
the discriminative information through the basis matrix.
To achieve this, after obtaining the reconstructive weight
matrix Z, we can optimize the following problem to gain the
basis matrix:

min Z HATy,- — ATy Hi (26)
i=1

For the convenience of calculation, we simplify (26) as
follows:

" 2
Z HATy,' — ATYZi
i=1

= Tr(AT () i — Yz)i — Yz)")A)

i=1
n

= Tr(AT (Y (Yei — Yzi)(Yei — Yz;)" )A)
i=1

VOLUME 10, 2022

n
= Tr(ATY(Z (eie,-T — eiZ,-T — Zié’,-T + ZiZ,-T))YTA)
i=1
=TrATYd - zT —z+Z72T2)YTA)
= Tr(ATYL, YT A), (27

where the i-th entry of the n-dimensional column vector e;
is 1, and the other entries are 0. Ly = [ — 2T — 7 +277.
By minimizing the problem (27), we respect the global struc-
ture and preserve the discriminative information. Therefore,
we can fulfil the second property.

Discriminative Ridge Machine (DRM) [54] is a super-
vised classification method by in introducing a discrimi-
nant ridge regression. DRM makes use of data labels to
investigate the between-class scatter and within-class scatter,
respectively. Therefore, it can accurately derive class infor-
mation and obtain an appropriate representation model by
taking into account the discriminativeness between classes.
Although DRM and our RGNMF can learn a discriminative
representation, they have two main differences:

(1) With data labels, DRM can learn the global
discriminativeness by maximizing between-class sep-
arability. Since our RGNMF is an unsupervised algo-
rithm, we solve the problem (9) to respect the global
structure. After arriving at the reconstructive weight
matrix, our algorithm can learn the global discrimina-
tiveness by minimizing the problem (26). It is worth
noting that, when DRM does not use data labels,
it uses the same method as RGNMF to learn the global
structure.

(2) DRM seeks the local discriminativeness by maximiz-
ing within-class similarity. Different from DRM, our
RGNMF considers the local geometrical structure by
minimizing the problem (8). Actually, the difference
between DRM and RGNMF in learning the local dis-
criminativeness is a typical difference between super-

vised and unsupervised methods.
NMF and its variants usually employ the least squares loss

function to minimize the two nonnegative factors. However,
their performance declines when the data are contaminated
by noise and outliers. On the other hand, the L, ;-norm loss
function can effectively deal with contaminated data [27],
[28], [32]. Therefore, we introduce a L 1-norm loss to handle
the problem of noise and outliers as

i Y = AX g+ 2 AR (28)
where the Lo j-norm of the matrix A is equivalent to
Tr(ATPA), that is, ||A]l2,1 = Tr(A” PA). The diagonal matrix
P can be expressed as [P;;] = 1/(||a;ll2). In (28), the first
term is used to enhance the robustness of matrix factoriza-
tion, and the second term is used to choose discriminative
features [43], [46].

The advantage of using the Ly j-norm objective function
is that our RGNMF can well address the problems of noise
and outliers. Such an advantage has been proved by many
NMEF-based methods [7], [14], [27], [28]. To demonstrate the
robustness of the L, 1-norm objective function, we display the
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FIGURE 1. Illustration of the robustness of the L, ;-norm cost function.

experimental results of the L j-norm and Ly-norm objective
functions on the toy data set. The toy data set consists of
ten data points, two of which are outliers. The experimental
results are shown in Fig. 1. When the data set is contaminated
by the outlier y,, the residual o, = ||y, —AerI% is larger
than those of other data points. Thus, the outlier can easily
control the L,-norm objective function. As can be seen from
the left panel of Fig. 1, the Ly-norm results are closer to
the outliers than the Lj j-norm results. Further, we assign
larger values to two outliers. In other words, two outliers are
farther away from other points. We can observe from the right
panel of Fig. 1 that the Ly-norm results are greatly affected.
However, the Ly 1-norm results seem to remain unchanged.
This indicates that the L, j-norm objective function is more
robust than the Ly-norm objective function.

According to the above formulation, the loss function of
our RGNMF can be defined as

rEi)? IY —AX ||y, + aTr(AT YLz YT A) + BTr(XLsXT)

+ AlAll2
st.A>0, X=>0, (29)

where o, 8 and X are three nonnegative parameters. By opti-
mizing the problem (29), the above three conditions can be
met.

It is worth noting that although the k-NN graph and L, ;-
norm were introduced into existing approaches [10], [27],
[28], our algorithm has the following three differences from
them:

(1) Unlike other methods that use only a single graph,
our RGNMF algorithm simultaneously constructs two
graphs, namely, the sparse graph and the k-NN graph.
The former graph is used to respect the global structure,
and the latter one is used to preserve the local structure.
Our algorithm characterizes local and global structures
as two regularization terms integrated into our objective
function. Hence, RGNMF takes advantage of complex
data structure, which is particularly suitable for solving
real-world problem.

(2) Different from the existing methods of imposing the
discriminative constraint on the coding matrix, our
algorithm constructs the sparse graph imposed on the
basis matrix to catch the global structure and preserve
the discriminative information. And it models the local
structure by building the k-NN graph constrained on
the encoding matrix. Thus, RGNMF cannot only find
more discriminative representations, but also project
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the new samples into the low-dimensional subspace by
the learned basis.

(3) Our algorithm lays special stress on the joint L 1-norm
optimization of the cost function and the basis matrix.
The Ly, 1-norm loss function is insensitive to noise and
outliers. And the L j-norm optimization on the basis
matrix is applied to choose the discriminative feature.
In a word, the proposed algorithm can gain the robust
data representation by combining structure learning
and Ly 1-norm minimization of the cost function and
the basis matrix. This indicates that our algorithm can
naturally be used as a preprocessing technique for sub-
sequent tasks, such as classification and clustering.

B. OPTIMAL SOLUTION FOR TWO FACTOR MATRICES
To gain the optimal solution of the two matrices A and X,

we update one matrix by fixing the other. To this end, the loss
function of RGNMF in (29) can be expressed as

J =Tr((Y = AX)P(Y —AX)") + aTr(AT YLz YT A)
+ BTr(XLsXT) 4+ ATr(AT QA)
= Tr(YPYT) — 2Tr(YPXTAT) 4+ Tr(AXPXT AT)
+aTr(ATYLzYTA) + BTr(XLsXT) 4+ ATr(AT QA)
(30)

where we apply Tr(U) = Tr(U Ty and Tr(UH) = Tr(HU) to
merge similar terms. The diagonal entries of two diagonal
matrices P and Q are computed as

Py = 1/(2\/2;,":1 (¥ — AX)3), 31

Qe =1/ A%). (32)

Considering inequality constraints A > 0 and X > 0,
two Lagrange multipliers ¥;x and ¢; need to be set for these
two variables Aj; and Xy;. Therefore, we can introduce the
following Lagrange problem with W = [v/;; ] and ® = [¢;]:

L =Tr(YPYT) = 2Tr(YPXTAT) + Tr(AXPXTAT)
+aTr(ATYLzYTA) + BTr(XLsXT) 4+ ATr(AT QA)
+Tr(vAT) + Tr(oxT). (33)

and

We calculate the partial derivatives of (33) concerning two
variables A and X as follows:

L

= —2vPxT +24xPXT 4+ 2aYLzYTA
+210A + 0, (34)

AL

oy = —2ATYP +2ATAXP 4+ 2B8XLs + ®.  (35)

We set YixAix = 0 and ¢;Xy; = 0 by applying the KKT
conditions and arrive at two equations with regard to A;; and
Xl

—(YPX")ieAi + (AXPXT )y A
+a(YLy YT A)icAik + 1A =0 (36)
—(ATYP)Xij + (ATAXP) Xy + B(XLs)iiXxj = O.
(37)
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Hence, we gain the following solutions of A and X:

(YPXT +aY(Z +ZTYTA)i

A A 38
ik < Ak NPXT T VU + ZZ0VTA T 20h)yg OO
(ATYP + BXS);;
ij < ij T J . (39)
(ATAXP + BXD)y;
Algorithm 2 Our RGNMF

Input: Data matrix Y and parameters «, 8, A.
Set t = 0; Initialize Ag, Xo.
Compute the similarity weight § by Gaussian kernel.
Compute the sparsity weight Z by using Algorithm 1.
while (t < 300 or |[J'~1-J1/J'~1 > 1073)
1.Update A by using (38).
2.Update X by using (39).
3.Update P and Q by using (31) and (32), respectively.
4.t=t+ 1.
end while
Output: A and X.

Obviously, the solutions of A and X are an iterative updat-
ing process. When such an updating process stops, their
optimal solutions can be obtained. We formulate the iterative
updating process for A and X in Algorithm 2.

C. PROOF OF CONVERGENCE

We need to prove that the objective function in (30) is non-
increasing under the updating rules in (38) and (39). The
presented proof will adopt an auxiliary function similar to
that used in NMF and its variants. Therefore, we introduce
the definition of the auxiliary function.

Definition 1: Auxiliary Function) Give any two function
G(b, b)) and H(b), if G(b, b)) > H(b) and G(b, b) = H(b)
hold, G(b, b") denotes an auxiliary function of H(b).

Proposition 1: Suppose G(b,b') is the auxiliary function
of H(D), the function H is decreasing via the following opti-
mization problem:

't = argmin G(b, b') (40)
b

Proof of Proposition 1: H(b't) < Gt b)) <
G(V', b') = H(b').

As seen from (38) and (39), the updating rules for A and
X need to be executed alternately. We first demonstrate the
convergence of the updating rule for A in (38). To this end,
we fix three variables fix X, P, and Q, and define a proper
auxiliary function for A. For any element A; in A, we make
use of F(Aj) to denote the part of (30) with regard to A.
F(A;) is formulated as:

F(A) = Tr(—2YPXTAT + AXPXTAT)
+aTr(ATYLzYTA) + ATr(AT 0A).  (41)
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Proposition 2: The function

G(A, A"
AF (A"
_ t . 1.
= F(A") + %j(w),km — Ak
A'XPXT +aY(I +Z2ZT)YTA" + 10A )i
+ > —
ik ik
X (A — A (42)

is an auxiliary function of F(Aj).

Proof of Proposition 2: It is easy to check that
G(A,A) = F(A). According to Definition 1, we need to verify
G(A,A") > F(A). Consequently, we compute the first-order
and the second-order derivative of F'(A) about A, respectively:

F'(Ai) = (—=2YPXT +2AXPXT + 2aYL;YTA
+ 2A0A)jk, (43)
F"(Aw) = 2(XPX e + 20(YLzY )i + 20051, (44)

With (43) and (44), it is easy to gain a Taylor series problem
of F(A),

F(A) = F(A") + ) F'(A)A — Ay
ik
+ ) IXPX ) + a(YLzY )i + 1Qil(A — A"
i,k
(45)

From (42) and (45), we can observe that G(A, A’) > F(A)
is equivalent to
A'XPXT +aY(I +ZZT)YTA" + 10ANi
Al
> (XPX )i + a(YLzY )i + AQii. (46)

We can gain the following inequality according to
A>0and X > 0:

1

AXPXT)g =Y AL(XPXT ) = Al (XPXT )i
r=1

(47)

m
o Z (Ya +zzhHy"y,Al,
r=1
> a(Y(U +2Z")Y7 )AL,
>a(Y(I + 22" —7 - Z2T)yTy),AlL
>

a(YT +Z2ZTHYT ANy

a(YLzY T )iA (48)
and
l
MOA Y = 1Y QiAl, > 1Q;iAl. (49)
r=1

By combining (47)-(49), (42) holds and G(A,A") > F(A).
We finish the proof of Proposition 2.
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Theorem 1: When the updating rule of (38) is used to solve
the matrix A, the value of our objective function in (30) is
decreasing.

Proof of Theorem 1: We substitute (42) into (40) to gain
the following equation with the help of Propositions 1 and 2:

t+1
Aik

; F'(AY)
= Al — A},

2A'XPXT +aY(I +ZZT)YTA! +- LQAN)i
_a (YPXT +aY(Z + ZT)YT Ay, 50

T Uk AIXPXT 4 aY (I +ZZT)YTA! 4+ AQAN)y (50)

It is easy to see that (50) and (38) are consistent. We obtain
that G(A, A?) is an auxiliary function of F(A). Thus, the value
of F(A) is decreasing under (38) when the other variables are
fixed.

Similar to the proof of the updating rule for A in (38),
we prove that the value of F(X) is decreasing, in which F(X)
is the objective function in (30) by fixing A, P and Q. F(X)
can be described as

F(X) = Tr(—2YPXTAT + AXPXTAT) + BTr(XLsXT).

(S

Proposition 3: The function

G(X.X") = FX)+ Y FX)X — Xy
k.j

ATAX'P + BX' D)

+ Z ( :3 )kj

f
ij

X=X (52
k.j
is an auxiliary function of F(X) only related to X.

Proof of Proposition 3: Since G(X,X) = F(X) is evident,
we just need to prove G(X,X’) > F(X). Similar to the
proof of Proposition 2, we formulate the first and the second
derivative of F(X):

F'(Xy) = (—2ATYP 4+ 2ATAXP + 28XLs)y,  (53)
F"(Xyj) = 2(AT Ay Pjj + 2B(Ls)j. (54)

With (53) and (54), the function F(X) can spread the
following Taylor series problem:

F(X)=F(X")+ Y F'X")X - X")y
k’j
+ D [AT APy + BLs)IX — X (59)

k.j

To verify G(X, X") > F(X), we need to demonstrate that
the following inequality holds:

(ATAX'P + BX'D)y

i > (ATA)Pjj + B(Ls)j.  (56)
kj

According to A > 0 and X > 0, the following inequality

holds:
i

ATAX Py =) (AT A (X' P),5
r=1

l
=Y (AT A XPy = AT AuX(Py  (57)
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and

BX'Dy; = B ZxkrDrj > BXi;Djj

> ﬂij(Djj —Sj) = BX(Ls).  (58)

The sum of the left-hand side of (57) and (58) is greater
than or equal to the sum of their right-hand side. Hence,
we have G(X, X') > F(X). Proposition 3 is proven.

Theorem 2: When the updating rule of (39) is used to solve
the matrix X, the value of our objective function in (30) is
decreasing.

Proof of Theorem 2: We substitute (52) into (40) to gain
the following equation with the help of Propositions 1 and 3:

/ t
ki ki TK2ATAX'P + BX'D)
T
. ATYP+ pX'S)y 59)
I(ATAX'P + BX' D)y

Because of Proposition 3, the value of F(X) is decreasing
under (39) when the other variables are fixed. We have
completed the proof of theorem 2.

Theorem 3: When the updating rules of (38) and (39) are
used to solve the nonnegative matrices A and X, the value of
our objective function in (30) is decreasing. RGNMF remains
stable if and only if A and X reach the local optimal value.

Proof of Theorem 3: Assuming that Algorithm 1 is
executed to the (t47)-th iteration, we gain the following
inequality with Theorem 1:

JATU X P QY <JAL X PO, (60)

where X', P! and Q' denote the values of the ¢-th iteration.
When the values of A’*!, P! and Q' are fixed, we can gain
the following in equality via Theorem 2:

JAT X ptofy < JA™t X! P Q). (61)
According to (42) and (43), we have
JATL XL ptofy < JAL X P ), (62)
that is

|”l+1 ”2

m
23],

where U = Y-AX whose i-th column vector is u;.
From Lemma 1 in [46], the following inequation holds:

Z |”t Hz (63)

r=1

utr—HH _ ”“tr—H Hi < Huz H _ H’ﬁ”i ) (64)
2 2wy, T 2w,
Further, we have
S ;3 | ’Hz
1+ l‘
RS AREINE o
(65)

VOLUME 10, 2022



Q. Huang et al.: Robust Graph Regularized Nonnegative Matrix Factorization

IEEE Access

We get the following inequality by combining (63) and
(65):

3

m
ul’H”z <> |, (66)
r=1
Therefore,
t+1 t
o], < 1L @
According to the above analysis, we have
JAT x TP oY < J@L XL PL Q. (68)
Similar to the proof of (67), we gain
(69)
Hence,
J@ATL XL P ot < gl XL P QY. (70)

Theorem 3 has proved and thus Algorithm 1 is convergent.
When A and X are updated by exploiting (38) and (39), they
remain stable if and only if they reach the local optimal value.

D. COMPUTATIONAL COMPLEXITY

We use a big O notation to describe the complexity of the
proposed algorithm. It is important to note that we need to
compute two weight matrices Z and W. It cost O(mnlog(m))
to compute Z. In fact, Solving Z results in a sparse repre-
sentation issue, which can be efficiently solved by off-the-
shelf algorithms. RGNMEF also needs O(mn?) to construct the
nearest neighbor graph.

From Steps 4 and 5 in Algorithm 1, we need to calculate
YP, AXP, XS and ZYT A. Since G is a diagonal matrix, it cost
O(mn) and O(lmn) to compute YP and AXP, respectively.
RGNMEF costs O(In?) and O(Imn) to compute XS and zYTA,
respectively. Thus, the complexities to update A and X are
O(mn—+Imn) and O(In2+Imn), respectively. In addition, since
both P and Q are diagonal matrixes, they cost O (mn+n) and
O (ml+1), respectively. Assuming that our proposed method
converges after ¢ iterations, the overall cost for RGNMF is O
(tmnl +t(mn+n) +t(ml+1)+ mnlog(m)+ mn2).

IV. EXPERIMENTAL RESULT

Existing state-of-the-art algorithms can achieve relatively
good performance. However, they depicted the graph struc-
ture constrained on the encoding matrix, which only indi-
rectly affects the base matrix. In this section, we investigate
our RGNMF by conducting extensive experiments.

A. DATA SETS

To make fair comparison with other methods, we use eight
commonly-used data sets to evaluate the performance of
our algorithm and other related methods. These data sets
are composed of three biological data sets,' i.e., Carcinom,

1 http://featureselection.asu.edu/datasets.php
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TABLE 1. Details of the data sets.

Data sets Samples Features Classes
ORL 400 1024 40
CBCL 2000 1024 10
Face94 3040 4096 152
Face95 1440 4096 72
Georgia 750 4096 50
Carcinom 174 9182 11
LUNG 203 3312 5
TOX 171 171 5748 4
MNIST 10000 784 10

LUNG and TOX_171, five face image data sets, i.e., ORL2
CBCL [61], Face94,3 Face953, Georgia [62]. In addition,
we use a big data set MNIST* to evaluate the performance
of all algorithms. The data contained in the above-mentioned
data sets are real-world and used by the state-of-the-art algo-
rithms [7], [23], [28], [41], [46], [66], [67]. ORL and Georgia
are two relatively new data sets. Details of these data sets are
described in Table 1.

B. EVALUATION MEASURES

Two widely used measures, accuracy (ACC) and normalized
mutual information (NMI) [10], [18], [20], are adopted to
compare the performance of our RGNMF and other related
approaches. The values of ACC and NMI are in the interval
[0,1]. The closer their values are to 1, the better the learning
performance of this algorithm. ACC is applied to measure the
percentage of correct groups obtained by one algorithm and
formulated as

ACC = %;w(h‘, n(ci)), (71)

where c; denotes the clustering label and r; is the ground truth
label provided by the data set. Here, 1(c;) aims at mapping
the clustering labels to the ground truth labels. The indicator
function w(w, B) equals 1 if @ = B and equals 0 otherwise.

NMI is used to measure the similarity between two sets of
clusters and is depicted as follows:

K K Njj
2ict Zj:] nij log( Zf;f.)
NMI = . , (72)

\/(ZzK:l n;log %)(ZJKII ijlog 7)

where n; denotes the sample number of the -cluster
C; (1 < i < K) provided by the clustering algorithm and #;
is the number of samples belonging to the j-th ground-truth
class (1 < j < K), and n;; denotes the number of samples
that are in the intersection between the cluster C; and the j-th
class.

2http://www.cad.zju.edu.cn/home/dengcai/Data/data.html
3 https://cswww.essex.ac.uk/mv/allfaces/index.html
4http://yann.le:cun.com/exdb/mnist/
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TABLE 2. Clustering results (ACC% = std%) of the compared methods.

Datasets ORL CBCL Face94 Face95 Grimace Carcinom LUNG TOX 171 MNIST
NMF 60.75+2.71  63.67£3.43  75.1+£227 37.56t1.61 85.06+5.35 45.98+3.82 46.8£3.43 43.86+3.85 44.34+4.45
L, NMF 60.54+2.81 69.43+3.71 75.81£1.56  40.26£1.85 87.81+£5.42 50.2+3.67 45.81+3.9 43.2844.23 46.18+5.21
GNMF 66.72+3.22  64.79+4.15  7522+0.61 41.66+1.41 87.58+520  59.243.14  79.84£2.86 44.14+3.66 61.06+3.34
MNMFL,,  68.39+2.55 68.34+4.4 75.77+1.35  45.08+1.37 88.67+5.13  69.54+2.92  79.8+2.91 44.44+3.47 62.31+3.79
ONMFS 65.5+2.41 70.1£3.37 75.07£1.72  43.26+2.21 88.13£1.99  49.43+3.74 57.14+£3.28 46.2+£3.7 53.33+4.24
NMF-LCAG 64.76£3.18  64.8245.55  74.66£1.45 38.71+1.52 85.99+4.64 54.02+4.25 76.84+3.34 45.61+4.39 58.25£3.29
ENMF 68.25+3.49 71.25+4.29 75.31+£2.15 45.35+1.33 89.83+2.12 58.05+4.4  78.33+2.31 45.03+4.12  59.4+4.28
GLNMF 67.35+£2.66 68.20+4.83 75.79€1.42  44.79£1.48 89.02+4.92  64.37+£3.29 80.79+£3.11 44.35+3.54 55.16+4.77
CHNMF 72.5+3.11 72.95+4.02  75.66+1.19 49.23+1.21 86.38+4.45 56.89+4.02 79.80+3.69 42.69+3.15 62.23+3.32
DSNMF 68.73+£3.15  65.97+4.22  76.15+2.31  43.9+1.54 90.17+3.66  66.6+4.21 65.2944.7 44.71+2.88  58.74+4.44
Ours 74.25+2.33 81.7+3.18 77.07£1.03  49.65+1.41  92.5+1.37  72.99+2.66  86.21+2.5 47.37+3.32  67.07+3.19

TABLE 3. Clustering results (NMI% =+ std%) of the compared methods.

Datasets ORL CBCL Face94 Face95 Grimace Carcinom LUNG TOX 171 MNIST
NMF 77.21x1.65  68.59+1.64  92.46+0.59 61.49+1.04 91.00+2.08 42.57+2.56 28.17+4.13 13.61+£5.89 41.62+4.11
L, NMF 79.25+¢1.23  71.96£1.90  93.08+0.56  64.03+1.14 94.47+1.92 43434243 26.07+4.2 14.91£5.65 40.34+4.47
GNMF 81.93+1.68 69.76+1.35 92.74+£0.25  64.54£1.03  94.59+2.09 66.0+2.1 56.27£3.79 15.64+6.11 62.20+£3.98
MNMFL,, 82.78+0.87  72.19+2.51  93.17+0.63  66.22+0.69 94.60+1.87  69.05+1.93 56.27+3.88 16.59+6.76  63.15+4.05
ONMFS 81.49+£1.44  72.76+£2.04  92.49+0.75  65.3x1.26  94.29+1.4  49.05+£2.78 40.78+5.39 16.49+6.55 46.47+4.27
NMF-LCAG  80.55£1.42  69.53£2.69  92.08+0.72  62.72+0.93 93.46+2.32  55.55+2.51 52.58+4.41 16.37+6.43 56.36+4.36
ENMF 83.43+1.34 72214232 92.75+0.86  67.38+1.17 94.62+1.13  59.32+2.77 56.34+3.26 15.45+6.84 59.54+3.54
GLNMF 82.24+1.14  70.96+2.74  93.24+0.57 65.26£1.12 94.77£2.01 67.21£2.18 56.9+£3.51 14.58+6.21 57.22+3.80
CHNMF 86.4+1.65 74.15+£2.66  93.17+0.58  68.06+£0.54 93.07+2.77  61.67+2.89 51.78+4.43 17.02+4.33  62.88+3.7
DSNMF 85.54+1.46 71.57+£2.21 93.33+1.65 64.21+£1.33 94.49+2.43  68.09+2.72 64.59+3.88 16.44£5.65 55.57+4.09
Ours 87.15+1.18  78.48+1.62  93.83+0.42 68.41+0.84 96.98+0.57 74.16+1.89 67.48+3.44 26.66+5.31 64.28+3.24

C. COMPARED METHODS

A baseline and state-of-the-art NMF approaches are exploited
to compare with our RGNMF. Here, we briefly summarize
them as follows:

(1) NMF [8]: Standard NMF is considered as a baseline.
(2) LoiNMF [14]: A Ly ;-norm loss function in NMF is
exploited to decompose the input matrix into tow non-
negative factor matrices.

GNMF [10]: It takes advantage of the local structure of
data to guide the process of matrix factorization.
MNMFL;; [28]: It merges the local structure into
L, NMF as a regularizer to enhance the robustness of
GNMFE.

ONMES [47]: It presents nonnegative PCA algorithm
to solve the orthogonal NMF with global approxima-
tion guarantees.

NMF-LCAG [34]: It integrates graph construction into
the processes of matrix factorization and thus the graph
structure changes during the NMF procedure.

ENMF [3]: Its loss function is intercalated between
Frobenius norm and L, ;-norm and adds the local struc-
ture of data as the regularization term.

GLNMF [31]: It uses low-rank recovery technique to
obtain the low-rank part of the raw data and then incor-
porates the local structure into NMF for factorizing the
low-rank data.

CHNMEF [65]: It exploits the correntropy measure in
the loss function and constructed a hypergraph to pre-
serve the high-order geometric information of the data.

3
“

&)

(6)

@)

®)

€))
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(10) DSNMF [56]: it outlines a deep framework to learn
such hidden representation and to interpret clustering
according to different unknown attributes of a given
data set.

D. COMPARISON OF CLUSTERING PERFORMANCE

Because nine compared approaches are unsupervised, clus-
tering comparison is performed on the whole sample space.
For fair comparison, we exploit a random scheme to initial-
ize two nonnegative factors A and X. Following [3], [23],
and [28], the clustering number K is set to the real num-
ber of classes belonging to one data set and the classical
K-means is applied to cluster the learned representation X
for obtaining the clustering results. MNMFL,; and GNMF
have the regularization parameter A and the nearest neighbor
size p. As described in their experiments, A changes within
{1073, 1072, 1071, 10°, 10!, 102, 10%} and the best values
of ACC and NMI are shown. In addition to the above two
parameters, GNLMF has « and r that need to be assigned in
advance. According to [31], o and r are assigned 10~* and
0.1xmin(m, n), respectively. There are four regularization
parameters, «, §, A, and y in NMF-LCAG. The values of «,
B, A, and y are searched from {1073, 1072, 10~', 10°, 10",
102, 103} and the best values of ACC and NMI are shown.
For ENMEF, its three parameters §, o, and B are searched
from {1073, 1072, 1071, 10°, 10!, 102, 10?}. In addition
to p, the proposed RGNMF has three regularization param-
eters, o, B, and A. Three parameters are selected from the
grid {1073, 1072, 1071, 10°, 10!, 102, 103}. For GNMEF,
MNMFL;, NMF-LCAG, ENMF, GNLMF and RGNMEF, the
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neighborhood size p is set to 5 in all experiments. Exper-
iments are performed 20 runs with different initial points
on each data set. We show the average clustering result for
each algorithm. Finally, following state-of-the-art methods
[31, [28], [47], [48], we set the dimension [/ to the number
of clusters in the experiments.

The values of ACC and NMI on eight data sets used in this
paper are demonstrated in Tables 2-3. From Tables 2-3, a few
interesting observations can be gained.

(1) Obviously, our RGNMF performs differently on dif-
ferent data sets. For example, on Face94 data set, the
ACC value of RGNMF is 1.28% higher than that of
the second best GLNMF. On LUNG data set, the NMI
value of RGNMF is 10.58% higher than that of the
second best GLNMF. For larger MNIST data set, our
RGNMF is superior to these methods compared in
this paper. Obviously, it can be seen that our algo-
rithm always achieves relatively better performance
than other ten compared approaches. Thus, RGNMF
can find more discriminative representations for the
real-world data. Intuitively, the constructed k-NN graph
and sparse graph that are imposed on the basis matrix
and the encoding matrix play an essential role in finding
the discriminative representation.

(2) CHNMF is inferior to our RGNME. The reason is
that CHNMF constructs the Hypergraph to preserve
the local structure of the data, while ignoring the
global structure. It performs better than other methods
on ORL, CBCL, and Face95 data sets. CHNMF can
also provide the comparative performance on Face94,
LUNG, TOX_171 and MNIS. However, its perfor-
mance is lower than that of MNMFL,; on Grimace,
and Carcinom data sets. In a word, although CHNMF
is slightly worse than our algorithm, it is a very good
method. DSNMF also achieves good clustering per-
formance. For example, it outperforms other methods
on Face94 and Grimace data sets. For ORL, Face95,
LUNG and MNIST data sets, however, CHNMF is
superior to DSNMF. Generally, deep methods suffer
from two limitations: one is that they usually involve a
large number of parameters and are easy to fit; the other
is that they require very high training cost in running
time and space [69], [70].

(3) Although MNMFL,;, ENMF and GNLMF form the
remaining five algorithms including NMF, L, NMF,
ONMFS, NMF-LCAG and GNMF, they are inferior
to the proposed method. The reason is that three algo-
rithms pay attention to the local structure and ignore
the global structure. In addition, their regularizers are
imposed on the encoding matrix, which fails to directly
affect the base matrix. We can see that the three algo-
rithms perform almost well on most data sets. How-
ever, both MNMFL,; and GNLMF perform better than
ENMEF on the Carcinom data set.

(4) GNMF outperforms NMF, L, NMF, and NMF-
LCAG, because it constructs a nearest neighbor
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FIGURE 2. Performance of RGNMF with different «, 8 and A on ORL data

graph to encode the geometric information of the
data space. However, its performance is relatively
worse than MNMFL,;, ENMF, GNLMF and RGNMEF.
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FIGURE 3. Clustering performance of RGNMF with different «, 8 and A on FIGURE 4. Clustering performance of RGNMF with different «, 8 and A on
CBCL data set. LUNG data set.

the local structure into the least square loss function of

As demonstrated in [28], the Ly j-norm is helpful NME. Thus, its performance is limited to some extent.
to distinguish noise and outliers around clusters and (5) As we can see, the performance of NMF-LCAG is
enhance the clustering accuracy. GNMF incorporates lower than that of other manifold learning approaches,

86974 VOLUME 10, 2022



Q. Huang et al.: Robust Graph Regularized Nonnegative Matrix Factorization

IEEE Access

(6)

Objective Function Value
S b x @ > 3@ b

150 200 250 300 350 400 450 500
Number of Iterations

600

Obijective Function Value
8 8 8 ¢ § 8 2
3 3 85 5 3 o 5
o
3
-

20 40 60 80 100 120 140 160 180 200
Number of Iterations

x10% Face94

Objective Function Value
N I'S o ® 3

0 50 100 150 200 250 300
Number of Iterations

%107 Face95

Obijective Function Value
° " ~ ©
d . N a W o s

0 50 100 150 200 250 300

Number of Iterations

105 Georgia

08
0.7
50 100 150 200 250 300
Number of lterations
%105
16
1.55
1.45
14

0 20 40 60 80 100 120 140 160 180 200
Number of Iterations

>

N s o

Objective Function Value

°
©

°

Carcinom

Objective Function Value
o«

105 LUNG
35 10
3
@
3
S
-3
CE’ 25
B
g
S
I
@
g 2
5
k-3
=
I}
15
1
o 50 100 150 200 250 300
Number of Iterations
5 TOX-171
22 10
2
18
®
=
S1e
r
5
T 14
g
s
I
@ 12
&
g
£ 1
(=]
08
06
04
o 50 100 150 200 250 300

Number of Iterations

FIGURE 5. Convergence curves of our RGNMF algorithm on eight data sets.

even though it constructs the graph to consider
the intrinsic geometric structure. The reason is that
NMF-LCAG exploits self-expressive coefficients to
depict the local structure of data, which may not
be conducive to improving clustering performance.
In addition, the optimal solution cannot be gained,
since two regularization terms are controlled by one
parameter A [18].

As a baseline, NMF is simple to perform, but it
usually performs worse than other eight methods.
Thus, it is necessary to introduce different regular-
ization terms into NMF to improve the performance.
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The performance of ONMF is better than that of
L2INMF in six data sets and NMF in all data sets,
which validates that orthogonal constraint in NMF per-
forms well for clustering tasks [3].

It is worth noting that NMF performs almost as well
as manifold learning-based algorithms on the Face94
and TOX_171 data sets, but it is much worse than
RGNMEF, especially on the TOX_171 data set. This
indicates that is not enough to improve the performance
of NMF only by encoding the local structure, but also
by considering other information, such as the global
structure.
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E. PARAMETER SENSITIVENESS

As mentioned in the previous section, in addition to p, there
are three regularization parameters ¢, §, and A in RGNMFE.
Clearly, if all three parameters are set to 0, our RGNMF is
converted to Ly NMF [14]. If « and A are set to 0, RGNMF
is changed to MNMFL;; [28]. Consequently, our RGNMF
is more general than LyiNMF and MNMFL;;. In other
words, MNMFL;; and L,;NMF are two special cases of our
RGNMFE. To demonstrate the influence of three parameters
o, B and X on the performance of our algorithm, we perform
the sensitivity experiments on ORL, CBCL and LUNG data
sets. We can gain similar insight on the remaining data sets
and thus leave out them.

We can observe from Figs. 2-4 that these three parameters
have a significant impact on the performance of RGNMF.
Actually, such a significant impact also exists in other meth-
ods. As seen in experiments, the impact of parameters on
the performance of the algorithm is different on different
data sets. For example, o, B and A have a relatively little
impact on RGNMF on the ORL data set. When three param-
eters vary from 0.001 to 1000, the performance of RGNMF
has little change. Clearly, the performance of the proposed
method is relatively stable with respect to three parameters.
It can be seen from Fig. 3 that RGNMF can achieve consis-
tently good performance when « and B vary respectively in
[1073,10?] and [1072, 10'] on the CBCL data set. Compared
with o and B, A has a relatively little influence on RGNMF.
RGNMF becomes stable and obtains the good performance
when A is less than 100. As we can see from Fig. 4, 8 has
a relatively large influence on RGNMF on the LUNG data
set. RGNMF performs relatively poorly when 8 is less than
900. However, when S is greater 900, RGNMF becomes very
stable and outperforms other algorithms. Similarly, others
manifold learning methods, including GMNF, NMF-LCAG,
MNMFL;;, ENMF and GNLMF, perform relatively worse
when the regularization parameter of the affinity graph in
their objective function is less than 900. The five methods
can get the best performance when the value of this parameter
is set to 1000. For example, on the LUNG data set, the best
ACC and NMI values of GLNMF are 80.79% and 56.9%,
respectively. It is worth noting that GMNF and MNMFL;;
have the same clustering accuracy. The best ACC and NMI
of the two algorithms are 79.8% and 56.27%, respectively.
If the regularization parameter of the local structure in our
objective function is set to 1000, the best ACC and NMI of
RGNMF are 86.21% and 67.48%, respectively. Obviously,
NMI of RGNMF is about 11% higher than that of GLNMF.

F. CONVERGENCE ANALYSIS

To intuitively understand the convergence of our RGNMF
algorithm, we discuss the empirical results on its conver-
gence. The convergence curves of RGNMF are shown in
Fig. 5 on eight data sets. In each subfigure of Fig. 5, the
y-axis denotes the value of the objective function and the
x-axis represents the number of iterations. We can observe
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that RGNMF usually converges within 150 iterations. This
indicates that our algorithm converges relatively fast.

V. CONCLUSION
In this paper, we proposed a novel unsupervised NMF algo-
rithm, called RGNMF. Different from existing approaches
that ignore the geometric structure or only considers the
local structure, first of all, a sparse graph is constructed
to model the global structure imposed on the basis matrix,
and a nearest neighbor graph is constructed to respect the
local structure constrained on the encoding matrix. Secondly,
RGNMF exploits the Ly 1-norm loss function to seek the
basis matrix and encoding matrix, which can avoid the inter-
ference of noise and outliers. Thirdly, it enforces a L, 1-norm
regularization on the basis matrix to choose the important fea-
tures of samples. Hence, the discriminative representations
of data are simultaneously learned by explicitly exploiting
the intrinsic structure and L j-norm minimization. Finally,
the optimization approach is developed to seek two factor
matrices. And its convergence is proven. Experiments on
eight real-world data sets demonstrate that RGNMF is better
than the other eight algorithms.

In the next work, we will focus on the following questions:
1) There are three parameters «, 8 and A which control the
smoothness and the sparsity of the new model. Obviously,
the proper values of the three parameters are very important
to our algorithm. However, it is not clear how to select
parameters effectively in theory. 2) Although it is difficult to
obtain all the class labels of data, some of the class labels
are available. We will consider representation learning from
labeled and unlabeled data and naturally extend our RGNMF
to semi-supervised scenarios.
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