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ABSTRACT In the age of the smart city, things like the Internet of Things (IoT) and big data analytics are
making big changes to the way traditional structural health monitoring (SHM) is done. Also, the capacity,
flexibility, and robustness of artificial intelligence (AI) techniques for solving complex real-world problems
have led to an increasing interest in applying these methods to SHM systems of infrastructures in recent
years. Therefore, an analytical evaluation of recent advancements in SHM for infrastructures appears to be
important. The bridge is one of the significant transportation infrastructures where existing environmental
and destructive variables can have a negative impact on the structure’s life and health. The SHM system
for bridges in different stages of their life cycle, such as construction, development, management, and
maintenance, is seen as a complementary part of intelligent transportation systems (ITS). The main goal of
this study is to look at how AI can be used to improve the current state of the art in data-driven SHM systems
for bridges, including conceptual frameworks, advantages, and challenges, as well as existing approaches.
This article presents an overview of the role of AI in data-driven SHM systems for bridges in the future.
Finally, some potential research possibilities in AI-assisted SHM are also emphasized and detailed.

INDEX TERMS Structural health monitoring, the Internet of Things, artificial intelligence, data-driven,
bridge, intelligent transportation systems.

I. INTRODUCTION
With the increase in population growth rate in recent decades,
the development of cities, villages and related infrastructure
are among the undeniable needs. Infrastructure refers to the
collection of systems, equipment, and services that a city,
country, or region employs to conduct social, welfare, polit-
ical, and economic affairs. In fact, infrastructure is a kind of
artery of social life. Therefore, investment, design, construc-
tion, development and maintenance of infrastructure is one of
themost important goals of economic and social development
among countries that can be viewed in order to achieve the
goals of sustainable development [1], [2], [3], [4], [5]. Bridges
are one of the oldest infrastructures that humans have used to
improve their transportation routes. However, in the subject of
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urban management today, the bridge is seen as a structure for
overcoming physical boundaries in order to maximize the use
of available space for movement and access to destinations.
Bridges are one of the relatively expensive infrastructures.
Bridges may have a usable life of many decades, depending
on the location and materials employed. The condition of
bridges gets worse over time because of things like creep,
corrosion, and cyclic loads, among others. However, with
appropriate management and maintenance, they can last for
hundreds of years [6], [7], [8]. A study issue that has received
a great deal of interest throughout the years is the detection
of structural problems in bridges. Most of the reason it has
grown so popular is because the roads and trains are growing
outdated and are no longer capable of handling the volume of
traffic that theywere intended tomanage [9]. In transportation
system, bridges are extensively employed in railway traffic,
car traffic, and pedestrian traffic. They play an important
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role in reducing travel time and increasing travel safety.
Nowadays, as a result of sophisticated technologies for bridge
building, which need significant financial investment, the
relevance of researching the efficiency and performance of
structures has increased more than ever. Lack of maintenance
and monitoring of infrastructure such as bridges can lead to
reduced efficiency, damage and their destruction. As a result,
it can have a direct or indirect negative impact on the life
and work of people who use these infrastructures. Bridges
are affected by damaging effects over an extended period of
time. These variables have an effect on bridges in both natural
and unnatural ways. To make bridges last longer and be more
efficient, they need to have a control and monitoring system
[10], [11], [12], [13], [14]. So, structural health monitoring
(SHM) can be a powerful tool and a reliable way to keep
bridges safe. The SHM system is able to look at the bridge’s
workability, dependability, and ability to keep working in
order to make it more durable [15], [16]. It is deemed critical
to promptly identify damage, analyze the damaged element,
and assess its health in order to reinforce and secure it to
extend the bridge’s lifespan. In the past, traditional methods
were used to monitor, control, and test bridges, such as
periodic visual inspections by technicians, magnetic method,
mechanical wave (vibration) method. The great majority of
in-service bridge data is still gathered by visual examination,
despite the significant amount of academic research that has
been done on bridge damage detection and identification.
However, these procedures have been employed by bridge
owners for a long time, but it has several drawbacks and
isn’t always effective due to the wide range of inspection
abilities [17]. These types of controls are categorized in the
form of non-destructive testing (NDT) or non-destructive
evaluation (NDE). One of the most important drawbacks of
these eye monitors is the lack of access and inspection of all
parts of the bridge. Technicians and specialists are also used
in this monitoring, but in any case, there is a possibility of
human error or a lack of misdiagnosis of damage. Another
difficulty is that, in some cases, it is necessary to stop the
operation of the bridges for inspection and testing, which
could have resulted in financial losses or not be possible to
stop the operation. Also, some basic components are covered
in bridges, and the breakdowns and damage may begin with
the sections inside the element, and there is no possibility
of visual inspection. In recent decades, with the significant
advancement of technology and cooperation between several
disciplines such as civil engineering, electronics, computer
science, it has become possible to come up with new ways to
monitor and analyze damage to bridges. On the other hand,
the introduction of concepts such as the Internet of Things
(IoT) has greatly contributed to the development of the tech-
nologies used in SHM. The integration of these sciences
and the development of new technologies have increased the
efficiency of the SHM system in monitoring, controlling, and
evaluating bridges as accurately and efficiently as possible.
Other advantages of using SHM for bridges can include pro-
viding basic information about the condition of bridges, quick

assessment of the damage, severity and level of damage,
as well as the location of the damage (location where it is
not possible to visually inspect). The mathematical or numer-
ical models may be improved by including the structure’s
attributes into it, allowing for a better understanding of both
its static and dynamic behaviors. Artificial intelligence (AI)
techniques among the achievements of researchers who in
recent decades have played a significant role in improving the
SHM system in the areas of monitoring, control, evaluation
and decision making.

The purpose of this study is to examine the use of AI in
SHM systems, including its potential benefits, challenges,
current approaches, and recent advancements. Another pur-
pose of this study is to introduce researchers with tools
that will aid them in developing a deeper knowledge of the
monitoring systems found on bridges. In particular, a review
and discussion of AI techniques will be conducted in order
to evaluate SHM systems for bridges. In addition, future
research in the field of AI and SHM systems are highlighted,
as well as less-studied aspects of these approaches. The field
of SHM has gained a great deal of attention throughout the
last several decades, and numerous evaluations of the SHM
literature are already available, but this work aims to give
a broad and complete picture of present AI techniques with
SHM systems as well as the most recent advancements and
developing trends in this subject.

The remainder of this paper is structured as follows:
Section 2 presents a brief overview on structural health mon-
itoring system for bridge as well as definitions and con-
ceptualizations. Section 3 describes AI methodologies. New
research directions and developing trends in the use of AI in
SHMare discussed in Section 4. Finally, Conclusions are then
presented in Section 5.

II. STRUCTURAL HEALTH MONITORING (SHM)
SYSTEM FOR BRIDGE
Many bridges today are carrying traffic loads that were never
intended to be carried by such structures in the first place.
Due to the growth in operating condition stresses, structural
fatigue is no longer only a problem for a single structure, but
a problem for the whole transportation network. Predicting
and detecting failures in the future and those that have already
occurred might lead to lower potential economic expenses as
well as fewer human life deaths. As an example of the catas-
trophic, the I-35Wbridge across theMississippi River inMin-
neapolis,Minnesota, collapsed in themidst of rush hour in the
summer of 2007. The collapse claimed the lives of 13 indi-
viduals and showed engineers the deteriorating infrastructure
of the United States. This led to more and more engineers
trying to control, retrieve, and improve that infrastructures
[18]. In another example of a tragedy, the Polcevera viaduct
(Ponte Morandi or Ponte delle Condotte) in Genoa collapsed
in the summer of 2018. It was the consequence of structural
flaws in the building’s design, construction, and subsequent
maintenance that led to corrosion in certain steel cables that
eventually broke causing the collapse that claimed the lives
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FIGURE 1. Some reasons to use SHM systems on bridges.

of 43 people. This caused the engineers to use new and
smart technology and tools to monitor the health of the new
bridge that was built in 2020 instead of the collapsed bridge
in Genoa [19]. Static and dynamic forms of traffic-induced
modal variation are also possible. Static variations are pro-
portional to mass; however, traffic-induced dynamic vari-
ations have been demonstrated to be nonlinear and may
reduce as the load impact increases. In addition, observed
changes in a bridge’s modal characteristics may actually be
the result of the interaction response of a healthy bridge with
a moving vehicle, making vibration-based monitoring of in-
service bridges much more difficult to perform [17]. Hence,
identifying structural deterioration is essential to this process.
Also, it is important to figure out what kind of system is best
for monitoring, controlling, and evaluating conditions [20].
Structural health monitoring SHM is a broad word that refers
to a process that generates reliable data on the present con-
dition of a structure, as well as its efficiency, which may
be analyzed in the intermediate term. In order to properly
diagnose and monitor bridge deterioration, it is necessary
to consider two essential characteristics of the bridges: their
physical state and structural function. Using a succession of
continuous measurement sensors, SHM is an approach for
detecting deterioration to a structure over an extended period
of time. Numerous valuable studies have been conducted to
investigate the reasons and how SHM systems are used to

monitor bridges, which have stated the reasons (Figure 1)
[21], [22], [23], [24], [25].

In addition to receiving and collecting information from
bridges, SHM is also capable of evaluating, analyzing, and
predicting obtained data in order to determine appropriate
actions for raising and enhancing the capacity and life-span
of bridges. It is possible to classify SHM into two gen-
eral categories: diagnostic and prognosis. Defects, locations
of defects, and the degree of their spread are recognized
using diagnostic techniques. But in contrast to this approach,
prognostication makes use of diagnostic results to estimate
how long a building will continue to stand. Figure 2 depicts
an overview of the performance monitoring procedure for
bridges that are equipped with the SHM system.

The term ‘‘damage’’ refers to alterations made to a system
that have a negative impact on the system’s present or future
functioning. In order for damage to be meaningful, it must be
measured in relation to a prior state of the system. ‘‘Initial’’
state‘‘ is a term used to describe a system in its original form,
without any alterations or damage [26]. Damage to bridges
is often recognized using a vertical hierarchy. It is often
necessary to have knowledge about the previous level in a
hierarchical structure in order to accurately diagnose damage
at the following level. There is a strong possibility that the
success of each level will be influenced by howwell the levels
that came before it performed in relation to the current level.
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FIGURE 2. Overview of the performance monitoring process of bridges with the SHM system.

Some ground-breaking categorizations of damage introduced
by researches [27]. According to the categorization scheme,
damage can be broken down into five groups [28]:

- Level I (Damage detection): This level is identified when
a damage event occurs.

- Level II (Damage location): This level is detected when
damage occurs, and then the location and orientation of the
damage are determined.

- Level III (Damage typification): This level is detected
when damage occurs, the location and orientation of the
damage, and then damage severity is determined, and the kind
of damage is estimated.

- Level IV (Damage extent): This level considers the pos-
sibilities of limiting or postponing the extent of damage once
previous levels have been completed.

- Level V (Damage prediction): After completing the pre-
vious four levels, this level assesses the bridge’s remaining
usable life or its viability status, depending on the situation.

Table 1 contains the study’s acronyms and abbreviations,
which makes it easier to read along.

III. CHALLENGING PROBLEMS OF SHM SYSTEM FOR
BRIDGE
There are a number of factors that make SHM a difficult
process to complete. The bulk of these challenges come as a
result of the data that must be acquired, the imperfection and
variety of sensor technologies, and the use of various method-
ologies for analyzing the data that has been collected. These
challenges can be broken down into four general categories
based on past research and a general summary as follows:

- Installation of equipment and sensors: One of the most
basic challenges in SHM is the correct and appropriate selec-
tion, installation and commissioning of sensors. Selecting a
project-appropriate sensor as well as considering the sensor
performance in the project based on the importance of the
project can be the first major challenge in SHM systems.

Sensors used in SHM, particularly for long-term monitor-
ing, must be resistant to external conditions that influence
performance, such as temperature, humidity, and corrosive
compounds. Most sensors now in use need an external power
source. Sensors that detect strain or stress in a structure
may be located distant from the structure being monitored,
necessitating the transmission of data to be processed and
analyzed. Due to the requirement to link sensors to cables
for power and data transmission, the SHM system is often
more difficult to set up and maintain. There is also a direct or
indirect influence on project costs since the whole structure
may have to be modified to suit these sensor networks.
As a result, more expenses may be incurred [29]. Given
the relatively high cost of providing sensors, determining
the minimum number of sensors is another challenge for
SHM. So, the location of sensors is very important when it
comes to making an effective SHM system. This is so that
the number of sensors can be cut down and optimized, and
then costs can be kept down at the same time with the best
efficacy.

- Acquiring data and data fusion: Damage detection and
evaluation in a SHM system might be complicated by mea-
surement noise, poor boundary conditions, and vibrations
from the environment [30]. How to ensure that data is nor-
malized and processed under a broad variety of environmental
loads or noise sources is one of the most critical concerns in
the field of structural health monitoring. As a result, it is crit-
ical to adjust for or filter out these undesirable consequences.
All sensor data is susceptible to some amount of imprecision
and uncertainty in the readings, which is inherent in the data
collection and provisioning process. In yet another challenge,
data that comes from sensor networks can be qualitatively
identical (homogeneous) or distinct (heterogeneous). Hence,
some effective techniques are needed for data fusion. They
must be suitable and efficient; otherwise, the data produced
may not be proper [31].
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TABLE 1. Summary of used acronyms and abbreviations.
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- Data analysis and processing framework: After overcom-
ing the previous challenges, assuming complete and flawless
information, the best results can be obtained by considering
a framework for data analysis. But the important challenge in
this case is to properly determine a framework for the analysis
of the data. In the real world, things like unexpected problems
and uncertainty, on the one hand, and things like high data
volume, data type, and data reliability, on the other hand, have
a direct and indirect impact on the results. So, when choosing
an analytical system, attention to many of these factors is
necessary.

- Operational scheduling and the best solution introduc-
tion: Having successfully completed and overcome on the
previous challenges, the last challenge is to provide a suitable
solution based on the analysis performed on the prepared
data. In light of the results and how important each damage
is, a set of appropriate steps should be taken for each one.
Using reliability-based scheduling (RBS), the existing struc-
tural state may be represented by well-known performance
measures, which is a more efficient technique of scheduling
maintenance. Repair can be performed only when these indi-
cations exceed predetermined criteria. Modal-based metrics
have been the traditional performance indicators utilized for
monitoring purposes [32].

The hardware and software components of a SHM system
must be considered together. Damage detection and dam-
age modeling techniques make up the software components,
while sensors and accompanying instruments comprise the
hardware. Discussion of new improvements in hardware
instruments may be beneficial; however, given this paper’s
emphasis is on artificial intelligence approaches as part of the
software process in the SHM system, such a presentation will
be left to future research.

IV. TYPES OF SHM SYSTEMS
As mentioned earlier, Bridges can be affected by natural and
man-made events that happen over and over again. Since the
vast majority of bridges are in constant use, any damage to
them might result in a human tragedy. In order to determine
how stable a bridge is, what hazards it poses, and how prob-
lems propagate over time, it is necessary to conduct regular
inspections. The SHM system for bridges is one of the best
ways to find and diagnose damage, look into changes caused
by damage spreading, and figure out how healthy a bridge is
overall. In SHM system, either assuming or developing the
bridge’s pre-damage state is required for damage detection.
When diagnosing and determining the extent and location
of the damage, it is vital to know the prior state of the
structure in order to make an accurate assessment. In reality,
the performance of this system is determined by analyzing
and comparing new models with old models, as well as
identifying and comparing discrepancies between two suc-
cessive models. It is not feasible to apply this approach
unless the damage that has already been done is known.
In general, there are two systems formodeling in SHM,which
include model-driven SHM and data-driven SHM. Using a

system identification paradigm, vibration data is processed
for SHM or damage detection with the goal of figuring out
the modal characteristics and keeping track of changes as
a result of the process. Employing sensitivity matrices was
considered by researchers to discover damage, which is now
the foundation for the new discipline of model updating.
Finite element analysis (FEA) models are often employed as
a starting point in model-driven SHM. Sensitivity matrixes
are used to update and modify them by adding the difference
between FEA predictions and experiment results. Extensive
studies have been conducted based on model-driven SHM
on bridges [33], [34], [35], [36], [37]. However, with all the
advantages of theModel-driven SHM, there are limitations to
this approach. Among these limitations, it can be mentioned
that model updates take time and that calculations in Model-
driven are complex and should be validatedwith experimental
results [38], [39], [40], [41]. Also, because of measurement
noise, non-ideal boundary conditions, and environmental
vibrations, it is almost impossible to perform damage detec-
tion and assessment in a SHM system with perfect precision.
In contrast, data-driven techniques are very adept at handling
ambiguity and unanticipated issues [42]. Particularly in the
last few years, SMH has made a lot of progress thanks to
the development of computational intelligence and the use
of data-driven approaches based on methods of artificial
intelligence and machine learning. Controlling uncertainty in
SHM systems may be done in a variety of ways. Artificial
intelligence and machine learning approaches are effective
strategies that have lately gained a lot of traction. These
techniques are powerful tools that have recently been used in
a lot of research because of how well they work [43]. Data-
driven techniques, alone or in combination with model-driven
approaches, can detect building damages.

Insufficient data and uncertainty in modeling, measure-
ment, and signal processing make SHM a complicated sys-
tem. Therefore, artificial intelligence and machine learn-
ing approaches can play an effective role during the SHM
process. In an investigation, Malekloo et al. showed eight
steps during the SHM process that artificial intelligence and
machine learning approaches could play a role base on Fig-
ure 3 [19], [31], [44], [45], [46], [47], [48], [49], [50], [51],
[52], [53], [54], [55], [56], [57], [58], [59], [60], [61], [62],
[63], [64], [65], [66].

V. APPLICATION OF ML IN PATTERN RECOGNITION
In the modern world, it is crucial to effectively analyze raw
data and transform it into information that is insightful and
clear. In the field of AI and machine learning applications,
one area of study is the creation of systems that automatically
sort data into groups and look for patterns that show what
the data means. This Mechanism is referred to as pattern
recognition. In truth, pattern recognition is both an ability and
a body of knowledge that can be applied to the development
of information-extracting systems from raw data [67], [68],
[69], [70]. As shown in Figure 3, artificial intelligence solu-
tions and machine learning algorithms can play a significant
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FIGURE 3. Overview of the processes involved in a data-driven SHM system in eight steps.

role in most of these eight steps based on the process of
each of these steps. Pattern recognition is one of these eight
steps, and machine learning algorithms play a big role in
making this step more efficient [57]. Many machine learning
approaches are put to use in pattern recognition, which is
an extensively used subject. In an SHM system, a pattern
recognition system needs information from sensors that are
connected to the real world in order to work properly. This
kind of system is able to analyze a wide variety of data
types, including image, video, numbers, and text. Pattern
recognition can be examined from several angles. One of
the most important aspects of pattern recognition is pattern
recognition analytical systems and algorithms. In general,
these systems and analytical algorithms are divided into three
general categories, including regression, classification, and
clustering algorithms. In another way of looking at them,
regression and classification algorithms are supervised learn-
ing techniques, while clustering algorithms are unsupervised
learning techniques [71], [73], [73]. In fact, in order to get
useful findings from the investigation, classification, regres-
sion, and clustering methods will be used, based on the infor-
mation that is currently accessible pertaining to the problem.

Figure 4 provides an overview of the techniques used in
pattern recognition.

1) FUZZY C-MEANS (FCM)
Fuzzy logic has the capacity to solve situations in which,
as a result of the limited information and comprehension pos-
sessed by people, it is very challenging to identify and com-
prehend the system in question. One of the most significant
applications of fuzzy logic in a variety of scientific fields is
known as fuzzy clustering. One of the methods for clustering
is known as fuzzy c-mean (FCM), and it was first introduced
by Bezdek et al. [74], [75], [76]. This method is based on
iterative optimization. With the FCM method, a data set is
partitioned into N clusters, and each data point in the dataset
is assigned to each cluster to a varying degree. In point of
fact, fuzzy clustering methods are only an improved version
of hard c-means clustering. In the FCMmethod, the degree to
which data belongs to a cluster might have a value between
0 and 1, as opposed to the classic clustering method. The
following is a condensed version of the four phases that make
up the FCM clustering process [77]:
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FIGURE 4. Overview of the pattern recognition techniques in a data-driven SHM system.

- In Step 1: the first thing that is done is to establish the
total number of classes (C). It is important to point out that
‘‘C’’ has a numerical value that is either more than or equal
to 2, and either lower than or equal to n (the number of data
samples). After then, the significance of the weight parame-
ter, denoted by the letter m’, must be figured out so that the
correct level of fuzziness may be assigned to the clustering
procedure. Within the context of the optimization process,
the significance of this parameter cannot be overstated. The
process of optimization that occurs inside the FCM algorithm
may continue for a number of iterations (r), denoted by the
notation ‘‘r = 0, 1, 2, . . . , n.’’

- Step 2 involves computing the locations of the cluster
centers for each iteration.

- In Step 3: Eqs. 1 to 5 are used to modify and update the
partitioned matrix for the r th iteration into the form Ũ (r) after
discovering the cluster centers [77], [78].

µ
(r+1)
ik =

 c∑
j=1

(
d (r)ik

d (r)jk

) 2
(m′−1)

−1 for Ik = ϕ (1)

µ
(r+1)
ik = 0 for all classes i where i ∈ Ĩk (2)

Ik =
{
i|2 ≤ C < n; d (r)ik = 0

}
(3)

Ĩk = {1, 2, . . . , c} − Ik (4)∑
i∈Ik

µ
(r+1)
ik = 1 (5)

where dik represents the Euclidean distance between the
center of the ith cluster and the k th data, and µ(r+1)

ik represents
the membership degree of k th data in the ith cluster for the
r + 1 iteration of the algorithm.
Step 4: Finally, the clustering accuracy must be assessed.

The minimal acceptance precision (r th) is specified in this
scenario, and the process will finish only if Eq. 6 is met. If it
isn’t, the algorithm returns to the second phase and repeats
the optimization process until the desired degree of accuracy
is achieved [78].

‖ Ũ (r+1)
− Ũ (r)

‖= εL (6)

The study by Yu et al., is one of the studies that looked at
how fuzzy clustering could be used to monitor the structural
health of bridges. They investigated how vibrations may be
utilized to detect deterioration in a truss bridge model and
suggested a novel approach based on fuzzy clustering and
reduced frequency response function (FRF) data using prin-
cipal component projection. For structural damage identifica-
tion, the FCM clustering technique was employed to classify
features for structural damage detection. By loosening the
bolted joints of the truss bridge structure to simulate damage,
the results showed that the proposed method could find the
damage to the bridge [79].

2) K-MEANS CLUSTERING (LLOYD’S ALGORITHM)
In the fields of machine learning and data science, the
K-Means algorithm is a kind of unsupervised learning
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technique that is used to tackle clustering issues. K-Means,
which can be found on the list of the best clustering algo-
rithms, is most likely the one that is the simplest to use [80],
[81], [82]. K-mean clustering is a collection of partitioning
clustering algorithms with a computational cost that depends
on some characteristics such as the number of objects (n),
the dimension of attributes (d), and the number of clusters
(k). Also, the algorithm’s time complexity depends on the
number of iterations (i). When doing k-mean clustering, it is
necessary to optimize an object function. The goal func-
tion may be minimized or maximized in this approach to
conduct clustering answers. This indicates that the objective
function will be based on minimization if the criteria is the
‘‘distance measure’’ between objects [83]. Finding clusters
with the shortest distances between items is the solution
to the clustering problem. To determine how different two
items are from one another, the dissimilarity function may
be utilized. In this case, however, the target function is set
in order to maximize the clustering response [84]. In an
investigation, Park et al., established wireless SHM based on
electromechanical impedance. PCA-based data compression,
and k-means clustering-based pattern identification were
used. The PCA technique was used to the raw impedance
data collected from the MFC patch to improve the on-board
active sensor system’s local data processing capacity, pre-
serving vital vibration features while removing undesirable
sounds via data compression. The outcome of the root-mean
square-deviation (RMSD)-based damage identification using
PCA-compressed impedances was then compared to the raw
impedance data without PCA preprocessing. In addition, just
two main components were used in k-means clustering-based
unsupervised pattern identification. Experimental research
consisting of checking loose bolts in a bolt-jointed aluminum
structure was used to verify the efficiency of the suggested
methodologies for the practical usage of the electromechani-
cal impedance-based wireless SHM. The results showed the
good performances of the suggested methodologies [85].

3) ARTIFICIAL NEURAL NETWORKS (ANNs)
Artificial neural networks (ANNs) are a kind of technology
derived from brain and nervous system research. ANNs are
computer networks that are inspired by biology. These net-
works are modeled after biological neural networks, although
they only utilize a subset of biological neural system ideas.
By imitating the way, the human brain works, artificial neural
networks can be taught to find patterns and group information
in the same way that humans can. ANN models, for exam-
ple, replicate brain and nervous system electrical activity
[86], [87], [88], [89], [90]. A neurode or a perceptron are
processing elements that are coupled to other processing
units. The neurons are often stacked in a layer or vector,
with one layer’s output acting as the input to the next layer
and maybe further layers. A neurode may be linked to all
or a subset of the neurons in the next layer, replicating brain
synaptic connections [91], [92]. When weighted data signals
come into a neurode, they simulate the electrical stimulation

of nerve cells and, as a result, the transfer of information
in the network or brain. In another word, an adaptive sys-
tem that learns by employing linked nodes or neurons in a
layered structure that mimics a human brain is known as a
neural network (also known as an artificial neural network).
A neural network simplifies the input by dividing it into
many levels of abstraction. It is possible to teach it to identify
patterns in speech or pictures by providing it with numerous
instances to study. Its behavior is determined by the manner
in which its many components are linked to one another
as well as the strength, or weight, of those connections.
During training, these weights are modified in accordance
with a predetermined learning rule in an automated process
[93], [94]. This process continues until the artificial neural
network successfully completes the job at hand. The inno-
vative structure of the information processing system is an
important part of this concept. ANNs have been used in a
variety of applications. A neural network may be taught to
identify patterns, classify data, and predict future events by
learning from data [95]. It’s important to note that artificial
neural networks can use either supervised or unsupervised
learning methods, depending on what they’re being used for.
There is a wide range of artificial neural networks that are
used in various parts of the SHM system, especially in pattern
recognition, such as self-organizing maps (SOM), multilayer
perceptron (MLP), and radial basis function (RBF). There has
been a significant amount of investigation carried out towards
the use of the ANNs algorithms in SHM of bridges.

4) K-NEAREST NEIGHBOR (KNN)
The K-Nearest Neighbors method, often known as the KNN
algorithm, is one of the supervised learning techniques that is
considered to be both one of the simplest and most commonly
used in the area of machine learning [96], [97]. KNN is a
technique that is used in data mining, machine learning, and
pattern recognition. It is not a parametric approach. Both clas-
sification and regression issues are amenable to being solved
using the k-nearest neighbor approach. On the other hand, it is
often used for purposes of categorization. According toWu et
al., KNN is considered to be one of the best 10 algorithms in
the field of data mining because of how easy it is to use, how
effective it is, and how easily it can be implemented. Also,
in order to determine the distance between neighbors while
dealing with issues pertaining to regression, kNN makes use
of three distance functions (Eqs 7-9), which may be written
as follows [98], [99]:

Euclidean Function :

√√√√ f∑
i=1

(xi − yi)2 (7)

Manhattan Function :
f∑
i=1

|xi − yi| (8)

Minkowski Function : (
f∑
i=1

(|xi − yi|)q )
1/q (9)
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Noise in the data influences the number of neighbors to con-
sider. The amount of data needed to train for low-dimensional
feature space is less. Higher training data is needed in SHM
instances with large feature dimensions, resulting in a compu-
tationally costly approach. Extensive research has been con-
ducted on the use of the KNN algorithm in SHM of bridges
[100], [101], [102], [103]. Feng et al., introduced a k-Nearest
Neighbors (kNN) technique based on time-varying forced
frequencies from driving trucks to locate and quantify bridge
deterioration. They used a time–frequency signal processing
technique to assess the acceleration caused by the crossing of
a test car in order to acquire the instantaneous frequencies.
The kNN algorithm then looks for the patterns of forced
eigenfrequencies that are nearest to the on-site immediate
frequencies in order to estimate the location of the damage as
well as its severity. Their findings demonstrated that damage
may be identified, and in the best situations, localized and
quantified, with some obvious unfavorable areas close to the
supports [104].

5) SUPPORT VECTOR MACHINE (SVM)
Support vector machines, sometimes known as SVMs, are
an efficient approach of machine learning that was first
developed by Cortes and Vapnik [105]. SVMs are a kind of
supervised learning algorithm that may be used to a variety
of modeling tasks, including regression and classification.
This type of modeling is very widespread. The support vector
machine (SVM) is a linear two-class classifier that seeks to
maximize themargin between the two classes in order to build
a classification hyperplane in the center of the largest margin.
It offers a wide variety of hyperplanes, while the support vec-
tor machine seeks to locate the one hyperplane that is superior
to the others in n-dimensional space. There are two labels that
are taken into consideration for this classification: label +1
is taken into consideration for instances that are regarded to
be above the hyperplane, while label -1 is assigned to cases
that are deemed to be below the hyperplane. A subset of the
sample set that is used in the process of classifying learning
data is shown by Eq. 10 [106], [107].

S =
{
(xi, yi)ni=1

∣∣∣xi ∈ RN , yi ∈ {−1, 1} , i = 1, 2, . . . . . . , l
}

(10)

where yi is the observed i-th sample’s target variable. The i-
th sample data is likewise supposed to be presented by xi.
Following the construction of hyperplanes, one of them is
designated as the ideal hyperplane since it has the largest
margin. The current support vectors and limitations define
this optimal hyperplane. The limitations are shown in Eqs.
11 and 12 [107].

Min
1
2
‖w‖ 2 (11)

s.t.yi (wxi + b) ≥ 1 (12)

where w and b are the weight vector and the bias vec-
tor, correspondingly. Then, considering an error coefficient,

the constraints are rewritten and corrected according to
Eqs 13 and 14. This error coefficient is intended to ensure
a more accurate classification. Where c is the penalty coeffi-
cient. Then, based on Eq. 15, SVM classification problems
are looked at as the following dual optimization problem
using the Lagrange method [107], [108].

Min
1
2
‖w‖ 2

+ c
n∑
i=1

εi(εi ≥ 0) (13)

s.t.

{
yi (wxi + b) ≥ 1 − εi
c ≥ 0

(i = 1, 2, 3, . . . . . . , n)

(14)
W (a) =

n∑
i=1

ai − 1
2

n∑
i,j=1

aiajyiyj K (xi, xj)

s.t.
n∑
i=1

aiyi (0 ≤ ai ≤ c ; i = 1, 2, 3, . . . ., n)
(15)

where K is the so-called kernel function in mathematics.
As illustrated in Table 2, there are a variety of kernel func-
tions, including linear, the radial basis function (RBF), and
polynomial. Kernel types are defined by gamma (γ ) and d.
RBF and POL both employ gamma (γ ), and ‘‘d’’ is only
required for the POL kernel function to indicate the term
of polynomial degree. Most importantly, the kernel function
takes the dataset and transforms it into the appropriate format.
The quality of a category may be influenced by an individ-
ual’s understanding of how distinct kernel functions are used
in related circumstances [109], [110].

Numerous studies have been conducted to use the SVM
in SHM of bridges [111], [112], [113], [114], [115], [116],
[117]. Li et al. applied particle swarm optimization-based
SVM to classify cable surface defects of cable-stayed bridges.
The particle swarm optimization technique (PSO) was used
to get the punish factor c and the kernel parameter g of the
SVM model, resulting in the PSO-SVM approach, which
improved the SVM classification performance. Finally, the
classification of real surface fault photos of bridge cables was
implemented using our PSO-SVM classification model. The
PSO-SVMmodel improved the classification performance of
surface defects, according to the experimental data [118].

6) DECISION TREE
In data mining, decision trees are among the most commonly
used algorithms. Predictive models such as the decision tree
may be used for both regression and stratified models in
data mining [119]. The decision tree is a nonparametric
technique with a straightforward structure, cheap process-
ing costs, and the capacity to be represented graphically.
DTs have been shown to be effective for a variety of tasks,
including classification, decision-making, and establishing
a link between independent and dependent variables. The
term ‘‘classification decision tree’’ refers to a technique used
for classification issues, while the term ‘‘regression decision
tree’’ refers to a technique used for regression issues. Deci-
sion trees are a subset of the larger family of algorithms
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known as supervised learning algorithms. Entropy is the
basis for their quantification. Alternative methods exist for
gaining insight into the decision tree, though. There are many
different forms of decision trees, including classification and
regression trees (CART), Chi-squared automated interaction
detection (CHAID), C4.5, and ID3, which are quick, unbi-
ased, and efficient statistical trees (QUEST) [120], [121].
According to a recent research, Mariniello et al. investigated
decision tree ensembles’ (DTEs) capacities for identifying
and localizing damage in SHM. Numerical models and phys-
ically recorded data were used to evaluate their suggested
approach to determine damage in three distinct ways. These
experiments were considered at a variety of damage scenar-
ios, including single and multiple damages, various kinds and
amounts of damage, and the random noise levels associated
with dynamic property acquisition. The accuracy, confidence
in probabilistic predictions, and measurements of physical
distances in localization errors were all used to judge how
well the proposed method worked [122].

7) RANDOM FORESTS ALGORITHM
There are nonparametric and tree-based ensemble tech-
niques known as random forests that were proposed by
Breiman [123]. Instead of parametric models, random forests
use a variety of decision tree models that are straightfor-
ward to understand. Combining information frommany deci-
sion tree models allows for more accurate forecasting [124],
[125]. Random Forest is an easy-to-use machine learning
technique that typically produces excellent results. To create
each ensemble member, RF employs the bagging approach,
which is used to gather data from many training datasets.
In a randommanner, bagging samples forecast from the space
of DTs very identically. For classification and regression,
this method is one of the most often used machine learning
algorithms. It is a supervised learning method and creates
a random forest. When dividing a ‘‘node,’’ the algorithm
doesn’t seek for the most essential attributes, but rather the
best properties in a random selection of properties. This
results in a wide range of options and a superior model in
the long run [126], [127], [128]. In a recent study, Li et
al. used an ensemble-based machine learning technique to
quantify structural damage at the elemental level, with accel-
eration reactions from the structures. In order to forecast
various output variables, such as the structure’s vector of
elemental level damage quantification data, their proposed
approach used a random forest as a regressor. The drop in
the stiffness parameters of the elements was shown to be an
indicator of damage severity. Their results showed that less
sensors were needed to measure acceleration responses in
order to figure out where damage is and how bad it is. Also,
an effective training approach yielded good identification
results. Compared to neural network training methods, the
proposed method for identifying damage could get good
results quickly and with much less computational work and
time [129].

8) DEEP LEARNING
Deep learning is a machine learning approach that is basically
a neural network with at least three layers. With the help of
deep learning, computers can ‘‘learn’’ from a large amount of
data and do so with great precision since it mimics the way
human brains operate [130], [131], [132]. Even though digital
image processing is one of the most popular areas of deep
learning, these methods can also work well with numerical
datasets. In contrast to other types of machine learning algo-
rithms, deep learning algorithms use a diverse set of models
[133]. This is due to the fact that deep learning algorithms
can be used in a variety of ways when creating a model that
is always evolving. There are many different architectures for
deep learning. AlexNet, Visual Graphics Group, GoogleNet,
Residual Networks, ResNeXt, Region Based CNN, You Only
LookOnce, SqueezeNet, SegNet, and Generative Adversarial
Network are 10 of the most important and advanced [134].
Also, the convolutional neural network (CNN) is an inter-
esting and commonly used deep learning architecture that
is often used to find images and objects and classify them.
CNN is a feed-forward neural network which has neurons
with trainable biases and weights. There are also many layers
to CNN. Convolutional, pooling, ReLU correction, and fully-
connected layers are the four main kinds of CNN layers,
in that order. With the use of a neural network, CNNs can
analyze images by analyzing their two-dimensional structure.
A traditional CNN structure for classification is shown in
Fig. 5 [135].

The high capability and efficiency of deep learning net-
works in adapting to various issues and complexities in SHM
of bridges, as well as their ability to function properly in
learning from large amounts of data, has led to valuable
studies in this field in recent years [136], [137], [138], [139],
[140], [141], [142], [143], [144]. For bridge damage detec-
tion, Fernandez-Navamuel et al., developed a supervised
deep learning strategy that incorporates Finite Element mod-
els to enhance the training phase of a deep neural network.
Their ultimate aim was to figure out where the damage
was and how severe the damage was by measuring how the
structure moved. They examined the suggested approach on
two full-scale instrumented bridges to see how it performed.
The technique accurately predicted the damage situation on
one of the bridges for two realistic damage scenarios of
increasing severity [145]. In another study, using Deep Learn-
ing Enhanced Principal Component Analysis, Fernandez-
Navamuel et al.were able to identify outliers in the structural
state of bridges. The monitoring data from two bridges were
used to apply the suggested strategy, and the results were
compared before and after residual connections were added.
Results revealed that the network’s capacity to recognize
outliers is improved by the inclusion of residual connections,
enabling it to detect mild damage [146].

Also, Table 2 shows a summary of the research that has
been done in the field of SHM over the past few years using
machine learning algorithms. In the sections that follow, some
of the most common pattern recognition algorithms used in
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FIGURE 5. Typical multi-layered CNN structure for classification.

the SHM system will be discussed. These algorithms use
either supervised or unsupervised learning techniques.

VI. OBSERVATION AND DISCUSSION
Examining past studies as well as examining the capabili-
ties of machine learning methods, it can be concluded that
machine learning approaches will be an integral part of SHM
systems in the data processing and pattern recognition in
bridge health monitoring because of their self-adaptation for
pattern detection based on data. Compared to classic and
older approaches, machine learning is accurate and efficient.
In summary, specific items can be stated or improved based
on reviews of past studies, and for future studies, certain
suggestions may be examined:

- As mentioned earlier, SHM systems give information
about the health, reliability, damage, and structural integrity
of a structure. In fact, SHM is a technique for acquir-
ing real-time, reliable information on structural health and
performance. In the SHM process, the first step in pat-
tern recognition by artificial intelligence algorithms for data
analysis with numerical data or visual data is to set up a
database with enough real-time data that is accurate [167],
[168]. Hence, the acquisition of precise and correct data,
as well as the analysis and correctness of this data, are two
critical parts of the SHM process. As a result of scientific
advancements in recent decades, remote monitoring tech-
nologies have recently been created. One of these techniques
is the use of sensors to monitor structures. However, the
cost of providing these sensors is relatively high, and their
economic cost should also be considered for projects. There-
fore, selecting the installation locations of these sensors in
order to obtain the maximum and best amount of data is
very important. Because by determining the most suitable
locations for installing sensors, it is possible to optimize their
number. So, the best amount of information can be gathered
with the fewest number of sensors. Therefore, despite the
valuable studies of recent years, it is suggested that more
extensive studies be conducted to find the optimal number
and locations of sensors on bridges. It is also suggested that
future studies lead to the creation of new protocols and codes

to figure out howmany sensors should be used andwhere they
should be placed. These can be added to the regulations and
standards for using sensors to check on the health of bridges.

- As mentioned, due to the relatively high cost of sensors,
more studies should be done to determine the optimal number
of sensors and their location. However, with the Internet
of Things being a relatively new technology, other rapidly
growing tools and technologies may be utilized as substitutes
or complementary tools instead of sensors to monitor and
gather data. Drone technology is one of the most signifi-
cant of these technologies. There are several advantages to
deploying drones in SHM, including time and cost savings;
rapid and repeatable access to project data; access to hard-
to-reach regions; and remote access to the present status of
the project [169], [170]. Also, drone technology, along with
the IoT and different ways to use AI to control and operate
drones, can be a very useful tool for monitoring the health of
bridges. Although studies have been conducted in this area,
due to the innovation of the subject as well as the smaller
amount of research compared to other new technologies in
SHM, it is suggested that more extensive studies on the com-
bination of these technologies and approaches in monitoring
the health of bridges be done.

- Many approaches to damage detection have been suc-
cessfully implemented using artificial intelligence, such as
artificial neural networks. However, these systems still have
issues. The first issue is the network’s sensitivity to input
changes. In fact, artificial neural networks may not work as
well in places like bridges where there is a lot of noise and
the environment is always changing. The second issue is that
as the amount of data falls, so does their accuracy. With the
rise of new phenomena and technologies like the Internet
of Things, 5G and 6G Internet, which have made it much
easier to send data, and sensor technology, large amounts
of data that may not be important for traditional machine
learning methods are being collected and sent. However,
for some new generations, machine learning techniques like
deep learning are very important. In comparison to traditional
artificial neural networks, deep learning methods are a sort
of neural network that have the most layers and parameters
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TABLE 2. Review of machine learning-based studies in the area of SHM.
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TABLE 2. (Continued.) Review of machine learning-based studies in the area of SHM.
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TABLE 2. (Continued.) Review of machine learning-based studies in the area of SHM.

TABLE 3. Equations relating to a variety of kernel functions.

and can learn from databases with a lot of data. In recent
years, we have seen the use of deep learning methods in
various parts of the SHM process [171], [171], [172], [173],
[174], [175]. But even though deep learning techniques have
many benefits, there are limitations. Some researchers have
done research in this issue. As an example, it’s still difficult
for vibration- or vision-based DL algorithms to match how
people view things, despite the many advancements in the

field since DL was originally presented. Furthermore, gen-
eralized numerical models cannot accurately mimic environ-
mental challenges [176]. So, in future studies, the capabilities
of machine learning approaches, especially deep learning
techniques, should be taken into account, and each case study
should pay attention to how these models are being built and
developed.

- Finally, after studying and reviewing the published arti-
cles on bridge health monitoring and the applications of
artificial intelligence in this regard, we can point to a very
important point: system security. With the growing number
of people, cars, and cities, there is no doubt that there will
be a greater push to turn cities into ‘‘smart cities.’’ Even
if all urban systems do not become smart city systems,
it will still be inevitable that some of these systems will
become smart systems. Intelligent transportation systems can
be one of these sectors. With SHM sensors and IoT, the ITS
systems can get information on the health of a bridge for ITS
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applications [177]. Bridges are considered one of the most
important urban and interurban infrastructures. When using
IoT platforms with artificial intelligence platforms to monitor
the health of the structure, special attention should be paid
to data retention. Even though these new technologies make
bridge health monitoring systems work better, they also make
it easier for persons to get to data in many ways. This data can
be used in specific situations to damage urban infrastructure.
Because of this, there needs to be more research done on
network security in bridge health monitoring systems that use
IoT and AI software and platforms.

VII. CONCLUSION
An in-depth analysis of AI’s role in SHM systems, as well as
its relationship to other emerging technologies, was offered
in this article. In this review, the focus is on machine learning
(ML) and the data-driven advances that are changing the
way SHM systems in bridges are being researched. A tax-
onomy of the ways that machine learning can be used in
pattern recognition was examined, and each category’s chal-
lenges, theoretical frameworks, and algorithms related to this
field were also reviewed. These explanations demonstrate
unequivocally that applications of AI in SHM significantly
boosted the system’s performance and provided researchers
with new avenues of investigation. Also, applications of AI in
SHM research are getting more and more prevalent, as seen
by this review. In fact, this issue leads researchers in vari-
ous fields of science, such as civil engineering, electronics,
mechanics, and computer sciences who are involved in the
subject of SHM to use more and more artificial intelligence
methods, especially machine learning techniques, in their
research. On the other hand, with the emergence of new
phenomena and technologies in recent years, such as the
Internet of Things and the Internet, 5G and 6G, along with
sensor technologies, we are facing an increase in the quantity
and quality of data. Deep learning, which is one of the most
important and modern approaches to machine learning and
artificial intelligence, can be used as a powerful and reliable
tool. In fact, a SHM system can predict trends and needs
with the help of metadata and the analytical and interpretive
skills of deep learning. This lets the system offer customized
options and personalized responses. As a result, we can see
the proper performance of SHM systems. Finally, it is hoped
that this study will help researchers in this field by giving an
overview of the current state of SHM research and a review
of the range of ways that artificial intelligence methods can
be used in SHM.
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