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ABSTRACT In the traditional visual simultaneous localization and mapping (SLAM), the strong static
assumption leads to a large degradation in the accuracy of visual SLAM in dynamic environments. For
this reason, many scholars incorporate semantic segmentation networks into the visual SLAM framework
to extract dynamic information in images. However, most semantic segmentation networks consume a lot
of computing time due to the large model size, which leads to the algorithm’s inability to meet real-time
requirements in practical applications. In this paper, a real-time visual SLAM algorithm based on deep
learning is proposed. This novel algorithm is based on ORB-SLAM2, and a parallel semantic thread based on
the lightweight object detection networkYOLOv5s is designed, which enables us to get semantic information
in the scene more quickly. In the tracking thread, an optimized homography matrix module is proposed,
which utilizes semantic information to optimize and solve the homography matrix so that we can calculate
a more accurate optical flow vector. In the optical flow module, the semantic information is used to narrow
down the calculation range of the optical flow value to improve the real-time performance of the system, and
the dynamic feature points in the image are removed by the optical flow mask to improve the accuracy of
the system. Experimental results show that compared with ORB-SLAM2, DynaSLAM, and other excellent
visual SLAM algorithms, this algorithm can effectively reduce the absolute trajectory error of visual SLAM
in dynamic environments. Compared with other deep learning-based visual SLAM algorithms, the real-time
performance of this algorithm is also significantly improved.

INDEX TERMS SLAM, dynamic environment, semantic, optical flow method, pose estimation.

I. INTRODUCTION
SLAM refers to the independent construction of the surround-
ing environment map and updates the position of the robot
in real-time through sensors in an unknown environment [1].
Laser SLAM and visual SLAM can be divided into two
categories according to the types of sensors carried by robots.
Laser SLAM has been widely used due to its high precision
and high resolution [2]. However, due to the high price of its
sensors and the increasing demand for semantic information
in SLAM,many scholars turn to the research of visual SLAM.
Visual SLAM takes a camera as its main sensor, which is
characterized by low cost, easy to installation, and obtaining a
large amount of semantic information, has become a research
hotspot in the field of robotics [3].
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At present, many excellent visual SLAM algorithms have
been proposed, such as DTAM [4], LSD-SLAM [5], SVO [6],
and ORB-SLAM2 [7]. But these algorithms are under the
assumption that the environment around them is static. Since
the pose estimation of the camera is based on the match-
ing of pixels in the image, when there is a moving object
in the environment, the camera moves with the pixels on
the moving object in the image at the same time, which
will lead to a large error in the solution matrix of the pose
estimation. The accuracy of pose estimation will be also
reduced. Some algorithms eliminate the influence of dynamic
objects through the motion law of the camera, but most of
the algorithms have harsh constraints or low model accuracy.
With the development of deep learning, many scholars use
semantic segmentation networks to propose dynamic objects
in images, although the semantic segmentation network can
effectively segment dynamic objects, the system cannot meet
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the real-time requirements due to the huge size of the
model.

In this paper, a parallel semantic thread is designed to
extract semantic information in images. An optimized optical
flow mask module is applied to remove dynamic features in
the image. In the semantic thread, YOLOv5s, a target detec-
tion network with high real-time performance, is adopted
to detect quasi-dynamic information. At the same time,
a method of optimizing the homography matrix is designed
in the tracking thread to improve the accuracy of the sys-
tem. In the optimized optical flow mask module, the seman-
tic thread, optimized homography matrix, and optical flow
method work collaboratively to enhance the systemwith real-
time performance and robustness in a dynamic environment.

The main contributions of this paper are as follows:
• A real-time visual SLAMalgorithmwith parallel seman-
tic threads based on ORB-SLAM2 is proposed. The
lightweight object detection network YOLOv5s is inte-
grated into the semantic thread, this network can extract
semantic information accurately and quickly.

• In the tracking thread, the homography matrix opti-
mization module is added. The static feature points are
separated by semantic information, and then the noise
points are removed by the RANSAC algorithm to obtain
more accurate static feature points. Finally, these static
feature points are used to obtain the optimal homography
matrix by the L-M algorithm.

• In the part of removing dynamic feature points, an opti-
mized optical flow mask module is constructed. The
semantic information is applied to narrow the computa-
tion range of the optical flow vector and the optical flow
mask is solved by the optimized homography matrix.
The dynamic feature points in continuous frames are
robustly and quickly removed by the optimized optical
flow mask.

II. RELATE WORK
Visual SLAM can be divided into direct and indirect methods
according to different ways of estimating camera motion.
The direct method estimates camera motion by minimizing
the photometric error of image pixels. Newcombe et al. [4]
proposed the DTAM system, which realized the establish-
ment of a dense map of every frame by the direct method.
Engel et al. [5] proposed a semi-dense visual odometer
LSD-SLAM system to estimate camera motion by selecting
the part with a large pixel gradient in the whole image.
Forster et al. [6] proposed the SVO system, which is a classi-
cal sparse direct SLAM system, position estimation is carried
out by FAST features in images, and its operational efficiency
is very high due to the small number of estimated pixels.
However, due to the high sensitivity of images to illumination
changes, the robustness of the visual SLAM system using
the direct method is poor due to environmental illumination
changes and camera exposure. Indirect method, also called
the feature point method, estimates camera pose by matching
feature points between images. Mur-Artal et al. [7] proposed

the ORB-SLAM2 system, which is the most classic visual
SLAM system based on the feature point method. The system
integrates three threads of tracking, local map, and loopback
detection, which can effectively improve the running speed
and pose accuracy of the system. In addition, reposition-
ing after tracking failure is realized, and the interfaces of
monocular, stereo and RGB-D cameras are supported. In the
research of visual SLAM, many scholars have taken it as the
basic framework of its algorithm. However, when there are
moving objects such as dynamic pedestrians, animals, and
vehicles in the environment, neither the direct method nor the
indirect method can distinguish the static and dynamic pixels
in the image, so the accuracy of the algorithm will be greatly
degraded [8].

In a dynamic environment, in order to eliminate the influ-
ence of dynamic objects on the accuracy of the visual SLAM
system, dynamic feature points in the system are gener-
ally detected and removed according to the motion law of
the camera or mathematical model processing algorithm.
Bakkay et al. [9] completed the removal of dynamic features
according to the different moving speeds of dynamic fea-
ture points and static feature points at the same camera’s
moving speed. Kundu et al. [10] discriminated dynamic fea-
ture points by calculating the distance between the matched
feature point and the core line in the next frame of the
image through the method of multi-perspective geometry.
Zou et al. [11] projected the feature point of the previous
frame to the current frame and calculated its reprojection
error. When the error was greater than a certain thresh-
old, the feature point was regarded as a dynamic feature
point and removed. Sun et al. [12] obtained the basic matrix
through the color information of the matching feature points
between two frames, estimated the dynamic feature points
based on this, and then tracked these feature points with
the particle filter method to achieve dynamic and static
segmentation of feature points. Wang et al. [13] used the
depth information of images for clustering, and constrained
camera motion through the basic matrix to eliminate the
mismatched dynamic feature points. Moratuwage et al. [14]
proposed a random finite set based on feature graphs and
measured values to track feature points and estimate proba-
bility density through Bayesian recursion to obtain estimates
of dynamic features. Chivilo et al. [15], Handa et al. [16]
judged the dynamic feature points in the image through the
changes of optical flow values of pixel points. Li et al. [17]
located dynamic feature points in images by moving prob-
ability propagation model. Liu et al. [18] used the dense
optical flow method to predict semantic labels in images
to obtain dynamic semantic information. These algorithms
have excellent performance in static environments. The
above algorithms all remove the detected dynamic feature
points to improve the accuracy of the system in dynamic
environments. But, most of the above algorithms cannot
accurately distinguish dynamic and static feature points
due to harsh constraints or low accuracy of mathematical
models.
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FIGURE 1. The system is built on the ORB-SLAM2 framework, and we propose parallel semantic threads to extract semantic information with YOLOv5s.
We introduced the homography matrix optimization module in the tracking thread, which combines semantic information and optical flow module to
cooperate to remove dynamic feature points.

With the development of deep learning technology, many
scholars began to integrate neural networks into visual
SLAM to obtain rich semantic information. Zhong et al. [19]
added the neural network model of SSD (Single Shot
MultiBox Detector) [20] into the SLAM framework to
detect dynamic objects such as pedestrians and cars in the
image, and removed all the feature points in the detection
box. Zhang et al. [21] integrated YOLO (You Only Look
Once) [22] network model into a visual SLAM framework to
eliminate potential dynamic feature points. Yang et al. [23]
used Faster R-CNN [24] to detect dynamic objects. Since
static features may exist on dynamic objects, these methods
can effectively eliminate dynamic features, but also cause
the loss of many static features, which reduces the SLAM
accuracy. Bescos et al. [25] proposed Dyna-SLAM, which
added the semantic segmentation network Mask R-CNN [26]
into the visual SLAM system, combined with the method of
multi-view geometry to determine dynamic and static infor-
mation, and used key frames to repair the image background
after removing dynamic objects. Cheng et al. [27] proposed
DM-SLAM, which utilized an optical flowmethod to remove
dynamic features based on Dyna-SLAM. Yu et al. [28] pro-
posed DS-SLAM, which applied semantic segmentation net-
work SegNet [29] to extract semantic information, and can
also use key frames to construct octree maps. However,
the process of extracting dynamic information by semantic
segmentation is time-consuming and cannot meet the real-
time requirements of the system. Long et al. [30] proposed
to eliminate dynamic feature points by combining seman-
tic segmentation network PSPNet [31] with the multi-view
geometry of optimal error compensation homographymatrix,

and added the reverse ant colony search strategy to the
multi-view geometry to improve the real-time performance
of the system. Yang et al. [32] proposed SGC-VSLAM,
which extracts semantic detection frames through YOLO and
removes dynamic features with semantic and geometric con-
straints. Zhang et al. [33] used semantic information to esti-
mate rigid objects in the scene. Yuan et al. [34] constructed a
word bag model using semantic tags to reduce the impact of
dynamic objects on the SLAM system. However, in the case
of actual industrial implementation, visual SLAM needs to
satisfy both accuracy and real-time, so there is still a lot of
research space for it.

Based on the research of many excellent scholars, this
paper integrates the lightweight neural network model
YOLOv5s into the ORB-SLAM2 system to extract seman-
tic information from images. Meanwhile, with the help of
semantic information, the images are divided into quasi-
dynamic regions and quasi-static regions, and a separate
thread is set up in the target detection network to improve
the real-time performance of the system. In the opti-
mized homography matrix module, the feature points of
the quasi-static region are used to optimize the homogra-
phy matrix of the system through the RANSAC algorithm
and L-M algorithm to improve the accuracy of pose esti-
mation. In addition, we design an optimized optical flow
mask module and use the optimized homography matrix to
only calculate the optical flow vector in the quasi-dynamic
region of the image, which greatly saves the time of the
optical flow method. The excellent robustness and real-time
performance of our system are demonstrated through
experiments.
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III. SYSTEM DESCRIPTION
In order to solve the problems of accuracy degradation
of traditional visual SLAM in dynamic environments and
lack of real-time performance of deep learning-based visual
SLAM, we take ORB-SLAM2 as the base framework and
make some improvements. Our system framework is shown
in Fig. 1.

There are three parallel threads in ORB-SLAM2, tracking,
local map, and loop detection. The tracking thread mainly
extracts and matches the feature points of the input RGB
image frames, then estimates the camera pose by using the
matched feature points, or initializes the camera pose by
global repositioning, and finally optimizes the pose by track-
ing the local map and decides whether the current frame
is a key frame or not. The local map thread is responsi-
ble for saving the key frames into the database, and then
optimizing the pose of the key frames in the local map
through local Bundle Adjustment (BA constraint). The loop
detection thread is responsible for searching and detecting
closed-loop key frames, and when a closed-loop is detected,
the camera pose is optimized through the final global
bundling.

In order to obtain semantic information in image frames,
this paper adds semantic threads based on three threads.
Semantic threads are parallel to tracking threads, which
reduces the running time of the system. In the semantic
thread, YOLOv5s, a lightweight real-time target detection
network, is used to extract semantic information, and the
semantic information of the current frame is transmitted to
the tracking thread. Then, the semantic thread is suspended
by a logic algorithm, and the semantic thread is awakened
when the next frame enters.

In the tracking thread, this paper adds an optimized homog-
raphy matrix module. Because of the dynamic features in the
image, when ORB-SLAM2 randomly selects four points to
calculate the homographymatrix, the matrix deviation will be
too large and the pose accuracy will be reduced. Therefore,
this paper first selects the quasi-static feature points outside
the dynamic semantic frame through semantic information,
then uses the RANSAC algorithm to eliminate the external
points in the quasi-static feature points, and finally utilizes the
L-M optimization algorithm to get the homography matrix
with minimized error.

After the optimized homography matrix is obtained, the
dynamic feature points are eliminated by the optimized opti-
cal flow mask module. Using the optimized homography
matrix to only calculate the optical flow vector of pixels
in the quasi-dynamic region in the dynamic semantic frame
can not only reduce the calculation amount, but also reduce
the noise of the optical flow method. After the optical flow
vector of image pixels is obtained, a threshold is set to distin-
guish the dynamic pixels from the static pixels. Finally, the
features extracted from the dynamic pixels are eliminated,
and only the static features are used to estimate the camera
pose.

A. TARGE DETECTION NETWORK
At present, researchers have proposed many excellent con-
volutional neural network models, the most representative of
which are R-CNN series and YOLO series. R-CNN series
is a two-stage model, such as Fast R-CNN [35] and Faster
R-CNN [24]. The first step of the two-step method is to
find out the candidate frame first, and the second step is
to determine the probability of the detected object in the
candidate frame. This method has a slow detection speed
due to the many detection steps. YOLO series is a one-
stage representative network model, such as YOLOv4 and
YOLOv5. The one-step method omits the step of finding out
the candidate box, and directly realizes the regression of the
detection results through the establishment of anchor, which
not only ensures the accuracy, but also greatly improves the
detection speed and is more real-time.

YOLOv5 is the latest work in the YOLO family, which is
a network model proposed by Ultralytics LLC in 2020 [36].
It is based on YOLOv4 with some improvements, such as
adding the Focus structure for image slicing operations in
the backbone network, using two different CSP (Cross Stage
Partial Network) [37] modules in Backbone and Neck, etc.
And according to the size of depth and feature map width.
YOLOv5 is further divided into YOLOv5s, YOLOv5m,
YOLOv5l, and YOLO5x to suit different needs, and the size
of the model increases from left to right model in order.
Compared with YOLOv4, YOLOv5 has higher flexibility and
faster detection speed.

To ensure the real-time performance of the system,
YOLOv5s is selected as the feature extraction network of the
visual SLAM front-end in this paper. the network structure of
YOLOv5s is shown in Fig. 2, which mainly consists of four
parts as follows.
(1) Input: The input side is fed with a 608∗608∗3 three-

channel image, and the data set is enriched by Mosaic
data enhancement to reduce the GPU computation.
Adaptive anchor frames and adaptive image scaling are
also used to enhance the flexibility of the system.

(2) Backbone: Based on YOLOv4, the Focus structure
is added to the backbone network to perform slicing
operations on the images and reduce the computation
of the input images. The rest of the network uses the
CSPDarknet53 structure, which separates the feature
mapping of the base layer through the CSP module and
then merges them through the cross-stage hierarchy,
which can greatly reduce the size of the network model
and enhance the learning ability of the convolutional
neural network tomeet the real-time performancewhile
maintaining the accuracy.

(3) Neck: The connection network is the same as YOLOv4,
and the multi-scale feature fusion network structure
of FPN (Feature Pyramid Networks) [38] and PAN
(PANet) [39] is used to sample the image high-level
features and low-level features, and then the parameters
are aggregated for multi-level features, which brings
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FIGURE 2. The framework of YOLOv5 consists of four parts. The image is transferred from the input layer to the backbone to extract features, and
then the FPN+PAN structure is used to fuse features of different dimensions. Finally, the semantic boxes and semantic labels are obtained through
the prediction layer.

the rich feature information to the prediction layer.
Also, YOLOv5 uses the network structure CSP2 of
CSP in Neck to enhance the image feature fusion.

(4) Prediction: YOLOv5 uses the GIOU_Loss function in
the prediction classifier. Based on the IOU_Loss, the
intersection scale measure is added to solve the prob-
lem when the bounding boxes do not overlap. And the
semantic bounding box is generated by the weighted
NMS (non-maximum suppression) method to output
the classification result with the highest prediction
probability [40].

To improve the system performance, we open a new thread
on top of ORB-SLAM2 and add the YOLOv5s convolutional
neural network built under the LibTorch framework to the
new thread. The training weights are trained with the ONNX
inference framework, which is an open file format designed
for machine learning that allows our algorithms and models
to migrate between different frameworks.We transformed the
trained yolov5s.pt weight file under the Python version into
yolov5s.torchscript.pt through the ONNX inference frame-
work, and then put the generated TorchScript file into the
SLAM framework for use. There are 24 categories in our

training model, such as pedestrian, chair, monitor, and cup in
the indoor environment. The final detection effect is shown
in Fig. 3.

FIGURE 3. In the semantic thread, YOLOv5s perform semantic box
extraction on objects such as pedestrians, books, tables, and chairs in key
frames. The semantic box contains almost all objects that have the
possibility of moving.

B. OPTIMIZED HOMOGRAPHY MATRIX MODULE
1) FEATURE EXTRACTION AND MATCHING
The feature points in the image can be regarded as the
more significant points in the image, some common feature
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point extraction algorithms include SIFT [41], SURF [42],
FAST [35], ORB [44], and other methods. The ORB feature
points use FAST feature points and combine the BRIEF
descriptors to represent the attributes of these feature points.
In addition to better real-time performance, ORB features
also have rotation invariance. When the camera continuously
collects video frames, the ORB feature has a relatively robust
performance. The ORB-SLAM2 system extracts feature at
different scales by building an image pyramid, making it
scale-invariant. And using the method of dividing the picture
into grids, the feature points of the whole picture are uni-
formly extracted.

After the feature points are obtained, it is necessary to
find the feature point matching between adjacent frames. For
the feature point method of visual SLAM, feature matching
can provide better pose information for the SLAM front-
end, and can also provide initial values for the SLAM back-
end optimization. The feature matching in the ORB-SLAM2
system is mainly divided into three steps. First, the bag of
words (BOW) vector corresponding to the current frame
descriptor is calculated, then a matching threshold is set, and
the BOW feature vector matching is performed to determine
the optimal match. Finally, the final match is determined by
counting the angle deviation of the matching descriptor.

2) HOMOGRAPHY MATRIX OF THE CAMERA
In order to estimate the camera’s pose and calculate the
subsequent optical flow vector, we need to know the mapping
relationship between the matching feature points, so we use
the matching points to calculate the homography matrix of
the pose changes between adjacent frames. The definition of a
homographymatrix is the mapping from one plane to another.

FIGURE 4. The homography matrix describes the mapping relationship
between two planes. In the process of camera motion, if the same feature
points of the image all fall on the same plane, the motion estimation can
be performed through the homography matrix.

In Fig. 4, O1 and O2 are the origins of the two camera
coordinate systems at different poses of the camera, andR and
T denote the rotation and translation matrices of the change
between the two coordinate systems. A point on the plane
ρ has coordinates X1 and X2 under two camera coordinate
systems, and the coordinates projected to the pixel coordinate

system are x1 and x2, respectively. let the normal vector of the
plane ρ under the first camera coordinate system be n and its
distance to the origin of the coordinate system O1 be d , then
the plane ρ can be expressed as:

nTX1 = d (1)

Transform the equation into:

1
d
nTX1 = 1, ∀X1 ∈ ρ (2)

At the same time, the relationship between X1 and X2
can be represented by the camera’s rotation matrix R and
translation matrix T

X2 = RX1 + T (3)

Combining equations (2) and (3) has:

X2 = RX1 + T
1
d
nTX1 =

(
R+ T

1
d
nT
)
X1 (4)

Let the homography matrix between two camera coordi-
nate systems be H ′, then H ′ can be expressed as:

H ′ = R+ T
1
d
NT (5)

Combining equations (4) and (5) has:

X2 = H ′X1 (6)

At this point, the homography matrix of two different
camera coordinate systems under the same plane is obtained.
In order to obtain the homography matrix H between two
frames in the pixel coordinate system, we should also convert
X1 and X2 into the pixel coordinate system. Let K be the
internal parameters of the camera, there are:

x1 = KX1, x2 = KX2 (7)

Substituting equation (7) into equation (4) has:

x2 = K−1
(
R+ T

1
d
NT
)
K−1x1 = Hx1 (8)

In the same way, the relationship between y1 and y2 can be
obtained. At this time, the homography matrixH between the
two images is represented. Since the single response matrix
is a 3× 3 matrix and has scale invariance, let the scale factor
be α, The normalized expression of equation (8) has: x2

y2
1

 = α
H11 H12 H13
H21 H22 H23
H31 H32 H33

 x1
y1
1

 (9)

Expanding equation (9):

x2 = α (H11x1 + H12y1 + H13) (10)

y2 = α (H21x1 + H22y1 + H23) (11)

1 = α (H31x1 + H32y1 + H33) (12)

Combine equation (12) with equations (10) and (11)
respectively:

x2 =
(H11x1 + H12y1 + H13)

(H31x1 + H32y1 + H33)
(13)
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y2 =
(H21x1 + H22y1 + H23)

(H31x1 + H32y1 + H33)
(14)

Because the degree of freedom of the homography matrix is
eight, we can solve the homography matrix of the camera by
only four pairs of matching point pairs. The ORB-SLAM2
system solves the homography matrix by randomly selecting
four matching point pairs. However, due to the presence of
many dynamic feature points and noise points in the image,
the solved homography matrix is less robust.

3) OPTIMIZING HOMOGRAPHY MATRIX
In order to reduce the influence of dynamic features and noise
on solving the homography matrix, we pass the semantic
information obtained by the semantic thread to the tracking
thread. Since the feature points within the semantic frame are
highly likely to belong to dynamic feature points, the feature
point pairs within the semantic frame are regarded as hypo-
thetical dynamic feature point pairs, and the feature point
pairs outside the semantic frame are regarded as hypothesized
static feature point pairs, as shown in Fig. 5.

FIGURE 5. The feature points in the previous frame are projected to the
current frame through the homography matrix. The blue dotted line
indicates that the projection between feature points satisfies the
homography transformation, while the red dotted line indicates that the
projection between feature points does not. The feature points outside
the semantic boxes include quasi-static feature points and noise points,
and the feature points within the semantic boxes are assumed to be
quasi-dynamic feature points.

Next, the homography matrix is solved using only the
assumed static feature point pairs. However, in addition to
dynamic features, there are also noise points generated by the
camera pose transformation in the feature point pair. In order
to reduce the influence of these noise points, we remove
outliers through the RANSAC algorithm. RANSAC is also
known as random sampling consistency. When a set of data
contains many outliers, RANSAC can estimate the mathe-
matical model of the set of data through an iterative method
and eliminate outliers. Assume that the homography matrix
H is the mathematical model to be iterated by RANSAC, the
mathematical model is iterated by continuously substituting
four random pairs of points outside the semantic detection
frame, and finally, the feature point pairs that do not satisfy
the mathematical model are regarded as noise point pairs and
eliminated.

After obtaining more robust static feature point pairs,
we need to use these feature point pairs to fit the homography

matrix, and establish the error equation as shown below:

ε =
∑

i

((
xt −

H11xt−1 + H12yt−1 + H13

H31xt−1 + H32yt−1 + H33

)
+

(
yt −

H21xt−1 + H22yt−1 + H23

H31xt−1 + H32yt−1 + H33

))
(15)

In the equation, ε represents the reprojection error of
pixels, xt and yt represent the pixel coordinates of frame t , and
xt−1 and yt−1 represent the pixel coordinates of frame t − 1.
At this point, the solution of the homography matrix changes
to the least square method to solve the minimum error. Here,
the homography matrix is optimized by the L-M algorithm.
The L-M algorithm is also called the Levenberg-Marquardt
algorithm. The incremental equation is expressed as
follows: (

JTk Jk + I
)
1x = −Jk f(x) (16)

He ≈ JkT Jk + I (17)

In the equation, f(x) represents the cost function, 1x rep-
resents the incremental iteration during the solution. The
L-M algorithm uses the first derivative of the cost function
with respect to the optimization variable Jk to fit the second
derivative of the cost function with respect to the optimization
variable He, and then introduces a confidence matrix I on
this basis to ensure that the calculated matrix is invertible.
Through this method, the optimized homography matrix H
can be finally obtained. The specific algorithm flow is shown
in Fig. 6.

C. OPTIMIZED OPTICAL FLOW MASK MODULE
1) OPTICAL FLOW METHOD
Optical flow refers to the instantaneous speed of motion of
image pixels in space. The optical flow method calculates
the motion of objects between adjacent frames through the
change of image pixels in the temporal domain between two
adjacent frames. There are usually two basic assumptions.
One is the assumption of constant brightness, which means
that the brightness of the same matching pixel on different
frames will not change when the camera moves; the other
is the assumption of temporal continuity, that is, during the
movement of the target in adjacent frames, the position of the
same matching pixel will not change drastically. After two
basic assumptions are satisfied, the basic constraint equation
can be established.

Let I (x, y, t) be the gray value of the pixel point (x, y) at the
t-th frame, and the point (x, y) moves the distance (dx , dy) to
the next frame with dt time, then according to the brightness
invariance assumption:

I (x, y, t) = I
(
x + dx , y+ dy, t + dt

)
(18)

The Taylor series expansion of the expression on the right
side of the equal sign in (18) is as follows:

I (x, y, t) = I (x, y, t)+
∂I
∂x
dx +

∂I
∂y
dy+

∂I
∂t
dt + µ (19)
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FIGURE 6. The semantic boxes are used for feature point classification. Only the classified static feature points are used to calculate the
homography matrix. The noise points are eliminated by the RANSAC algorithm, and the remaining static feature points are optimized and solved by
the L-M algorithm.

FIGURE 7. After the camera motion is calculated through the optimized homography matrix, the pixels in the semantic boxes are down-sampled to
calculate the optical flow vector.

Where µ represents second-order infinitesimal and its
value can be ignored. Move the left side of the equation (19)
to the right. Then the equation (19) can be expressed as:

∂I
∂x
dx +

∂I
∂y
dy+

∂I
∂t
dt = 0 (20)

Let u and v be the velocity vectors of the optical flow along
the X and Y axes, respectively, then we have:

u =
dx
dt
, v =

dy
dt

(21)

Let Ix = ∂I
∂x , Iy =

∂I
∂y , and It =

∂I
∂t to represent the partial

derivatives of the gray value of the image pixel in the three
directions of X, Y, and T, respectively. Then equation (20)
can be transformed into:

Ixu+ Iyv+ It = 0 (22)

Since there are two unknowns, we cannot solve the optical
flow vector by this equation, so additional constraints need to
be introduced. In the Farneback [45] optical flow algorithm,
a (2n + 1) × (2n + 1) neighborhood is set for the pixels in
each frame of the image, and the pixels in the neighborhood
are used for least-squares fitting. The motion vector (u, v) of
the pixel can be obtained.

In our system, since the camera is moving, we first need to
use the optimized homography matrix H obtained in 3.2.3 to
eliminate the effect of camera motion between two adjacent
frames. In order to improve the real-time performance of
the system and reduce the influence of optical flow noise,

we only need to calculate the motion vector of the pixels in
the semantic information frame in the image, and the outside
of the semantic information frame is regarded as a static
environment. At the same time, we improve the calculation
speed of the algorithm by down-sampling the image. The
specific algorithm flow is shown in Fig. 7.

2) DYNAMIC FEATURE CULLING
Since there may also be static feature points on dynamic
objects, directly through semantic segmentation or culling
all the feature points in the semantic information frame will
cause many static feature points to be culled, which will
affect the pose estimation accuracy. Therefore, we determine
the range of feature point culling by calculating the optical
flow value of the pixel points in the semantic information
frame, which can not only reduce the calculation amount of
dense optical flow, improve the real-time performance of the
system, but also retain more static feature points and improve
the pose estimated accuracy.

Suppose the optical flow value of a pixel is P, then P can
be expressed as:

P = u2 + v2 (23)

At this time, amaskmatrix with the same size as the current
frame image matrix is established, and all values in the mask
matrix are set to 1. Next, the pixels in the image are traversed,
and if the pixel is within the semantic information box, the
optical flow value of the pixel is calculated. Since the optical
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flow values of moving objects and stationary objects are quite
different in the image, a threshold θ is established. If the
optical flow value P > θ , the pixel point is determined as
the dynamic point, and the mask matrix value corresponding
to this point is set to 0.

From this, a complete optical flow mask of dynamic
objects in an image can be obtained. The mask is processed
through erosion and dilation operations, and then the mask is
passed to the tracking thread. If the feature point of the current
frame falls within the optical flow mask of the current frame,
it will be culled. The final effect is shown in Fig. 8. Only
the feature points of the moving part of the dynamic object
are removed from the semantic frame, and the static feature
points of the dynamic object are completely preserved.

FIGURE 8. The value of the optical flow vector is used to determine
whether the pixel is moving to avoid rejecting static features on dynamic
objects. Then, use dynamic pixel to build an optical flow mask, and
remove all dynamic feature points in the mask.

IV. EXPERIMENT
The experiments in this paper use the online public dataset
TUM RGB-D dataset for verification. The camera pose esti-
mated by the system is compared with the ground truth, and
the Absolute trajectory Error (ATE) is used for evaluation.
At the same time, we also compared the running time of
other deep learning-based systems to verify the real-time
performance of our system.

A. SYSTEM SETUP
The hardware configuration of the computer in the exper-
iment is CPU: Intel(R) Xeon(R) W-2159B, GPU: GeForce
RTX 3070, memory: 16G. The algorithm is based on C++,
Pytorch, OpenCV and compiled under Ubuntu 16.04 operat-
ing system.

B. SYSTEM ACCURACY EVALUATION
The TUM dataset [46] is an RGB-D dataset provided by the
Technical University of Munich, which contains test datasets
under dynamic scenes. According to different motion condi-
tions, it is divided into a high dynamic data set walking series
containing pedestrian walking and a low dynamic data set
sitting series containing pedestrian slight movement. Mean-
while, the RootMean Squared Error (RMSE), Standard Devi-
ation (STD), Mean Error, and Median Error are calculated to
reflect the robustness and stability of the system.

TABLE 1. Comparison of absolute trajectory error of our algorithm,
ORB-SLAM2, and DynaSLAM in low dynamic scenes (unit: m).

TABLE 2. Comparison of absolute trajectory error of our algorithm,
ORB-SLAM2, and DynaSLAM in high dynamic scenes (unit: m).

The experiment first compares ORB-SLAM2,DynaSLAM
based on deep learning and our algorithm under the low
dynamic scene dataset fr3/sitting_static and the high dynamic
scene dataset fr3/walking_xyz respectively. The comparison
results are summarized in Table. 1 and Table. 2, The cam-
era trajectory comparison of the three algorithms are shown
in Fig. 9. the low dynamic scene fr3/sitting_static, ORB-
SLAM2 performs well. However, in the high dynamic scene
fr3/walking_xyz, due to the influence of dynamic objects, the
trajectory offset value of ORB-SLAM2 is large. DynaSLAM
performs better than our algorithm in high-dynamic scenarios
fr3/walking_xyz because the DynaSLAM algorithm removes
all the feature points from the semantic mask of the dynamic
object. However, there are still static feature points that are
not moving and can be used for pose estimation. As a result,
DynaSLAM can cause poor pose estimation accuracy or even
tracking failure in low-dynamic scenarios by removing too
many feature points. Compared with the above two algo-
rithms, our algorithm performs well in both the low dynamic
scene and the high dynamic scene.

In order to further verify the robustness of the algo-
rithm in this paper, the SLAM algorithm proposed in some
other dynamic scenarios was compared in the experiment.
These include MR-SLAM [47] based on motion segmenta-
tion; OFB-SLAM [48] based on optical flow method; and
DS-SLAM, Detect-SLAM, DM-SLAM, and RDS-SLAM
[49] based on semantic information. The absolute trajectory
error comparison results are shown in Table. 3.

It can be seen in Table. 3 that when the environment is
a low dynamic scene, the absolute trajectory error of the
algorithm of this paper is smaller than that of other classical
dynamic scene SLAM algorithms. In a scene where only the
camera rotates, the proposed algorithm is slightly lower than
OFB-SLAM. The main reason is that OFB-SLAM calculates
the optical flow value of all pixels in the image, which can
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FIGURE 9. The SLAM trajectories of our algorithm, ORB-SLAM2, and DynaSLAM in dynamic and static scenes.

obtain a more accurate optical flow vector when the camera
is rotating, but also increases the running time of the system
and the optical flow noise when the camera is not rotat-
ing. In high dynamic scenes, compared with other excellent
algorithms, the accuracy of this paper may not be the best,
but the difference is not much. The main reason is that in

DynaSLAM and DM-SLAM, the dynamic and static feature
points are not distinguished, but all the feature points in the
semantic mask are directly eliminated, which increases the
fault tolerance rate of the algorithm. But at the same time,
in low dynamic scenes, the accuracy of the algorithm will
decline.
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TABLE 3. Comparison of absolute trajectory error under different algorithms (unit: m).

TABLE 4. The execution time under different deep learning-based algorithms. We use the data in their original paper as possible. If not provided in their
papers, we approximate the processing time.

C. SYSTEMS TIME CONSUMPTION
In order to verify the real-time performance of the algorithm
in this paper, the experiment compares the time-consuming
processing of each frame of pictures by the semantic thread
of other SLAM algorithms combined with semantic infor-
mation and the time of processing each frame of pictures
by the tracking thread. The experimental results are shown
in Table. 4.

As can be seen from Table. 4, DynaSLAM, DM-SLAM,
and Detect-SLAM take a long time to process each frame
of pictures due to the semantic thread, so the tracking thread
takes more than 200ms to process each frame of the picture.
RDS-SLAM and DS-SLAM with excellent real-time perfor-
mance also take more than 50ms to process each frame of
pictures in the tracking thread. Compared with other deep
learning-based visual SLAM algorithms, the tracking thread
of the algorithm in this paper takes only 45ms to process each
frame of pictures, which can meet the real-time requirements
of visual SLAM.

V. CONCLUSION
In this paper, A novel real-time visual SLAM algorithm
is proposed. we apply the lightweight convolutional neural
network YOLOv5s as a parallel semantic thread, which can

quickly extract semantic information from the scene. In the
tracking thread, we introduce a module for optimizing the
homography matrix, which utilizes the semantic information
box combinedwith the RANSAC and L-M algorithms to opti-
mize the homography matrix in the system. In the dynamic
feature point culling part, we combine semantic information,
optimal homography matrix, and optical flow mask to cull
dynamic feature points in the front-end of SLAM to improve
the accuracy of the whole SLAM system.

In order to verify the performance of the system,
we conduct experiments on the TUM dataset, and com-
pare ORB-SLAM2, DynaSLAM, and other excellent visual
SLAMalgorithms. Experimental results show that our system
improves in both accuracy and real-time performance.

Although the performance of the current system has
improved in accuracy and real-time performance, there is still
a lot of work that we need to continue to study in the future.
On the one hand, we will optimize the backbone network of
YOLOv5 to make the network more lightweight and reduce
the time-consuming of the semantic system. On the other
hand, since the sparse point cloud map constructed by the
system cannot be used for navigation, we will complete the
construction of the octree map in the system next, further
improving the robustness and practicability of the system.
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