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ABSTRACT Wedevelop a fully automatedmethod for the segmentation of optic disc in retinal fundus images
using basis-spline-based active contour. The segmentation is achieved by performing scaling, translation, and
rotation of the active contour, thereby giving rise to five free parameters. The energy of the active contour is
defined by the local contrast and is optimized with respect to five free parameters to get the best fit on the
optic disc using gradient descent technique and Green’s theorem. The use of gradient descent technique and
Green’s theorem reduces the computational cost and speeds up the segmentation task. The detection of optic
disc is achieved using multiresolution-based normalized cross-correlation technique. The detection point is
used for the initialization of the active contour. Subsequent optimized evolution of the basis-spline-based
active contour provides an accurate segmentation of the optic disc. We present validations on the databases
such as Drishti-GS, MESSIDOR, RIGA, and a local database containing 101, 1200, 750, and 942 retinal
fundus images, respectively, amounting to a total of 2993 fundus images. Their corresponding Dice index
scores are 0.9182, 0.8912, 0.9331, and 0.9343. Basic data exploration is done on the results obtained to
visualize the trends and distribution of the performance parameters throughout the databases. This also helps
us evaluate the algorithm’s overall performance more accurately.

INDEX TERMS Basis-spline, active contour, glaucoma, optic disc, retinal fundus image, segmentation.

I. INTRODUCTION
Glaucoma is caused due to increased intraocular pressure
inside the eye. If left untreated it may lead to partial or com-
plete loss of vision. It is relatively common among adults over
60 years of age and is the second leading cause of blindness
in the world. The loss of vision due to glaucoma cannot
be recovered but can be slowed or prevented if recognized
early [1]. It is estimated that over 3% of the global population
over the age of 40 years is suffering from glaucoma, the
majority are undiagnosed. In 2013, 64.3 million people, aged
40-80 years, were estimated to be suffering from glaucoma
worldwide [1]. As per the World Report on Vision pub-
lished by World Health Organization (WHO) in 2019, about
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2.2 billion people suffer from visual impairments. Among
the 2.2 billion sufferings, at least 1 billion people could have
been saved from blindness if they had received appropriate
treatment on time [2]. The distribution of eye impairments
is not even in the world. But on average, about 53.40% and
51.65% of people from Asia-Pacific and East Asian high-
income regions suffer from myopia. As of 2020, a staggering
population of 195.6 million suffer from age-related macular
degeneration and a population of 76 million suffer from glau-
coma. The number is predicted to rise to about 243.4 million
and 95.4 million respectively, in the next decade [2].

As glaucoma progresses, the various geometrical parame-
ters of the retina undergo visible changes. It is key to monitor
the optic disc (OD) for the early detection and assessment of
glaucoma. The OD is also called the optic nerve head. It is
the circular region in the retina where the optic nerves meet.
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FIGURE 1. Fundus image with the manual outline (green) on the optic
disc.

To the human eye, it can be approximated as being circular
with its color ranging from orange to pink and white as well,
as shown in Fig.1. Presently, ophthalmologists perform OD
detection and outlining manually. This is quite an arduous
task and the results for the same may vary from one ophthal-
mologist to another.

As an aid to the traditional OD segmentation methods and
also as an objective way of segmenting OD, we propose an
automated and accurate OD segmentation method.

A. OUR CONTRIBUTION
We propose a B-spline-based active contour model for auto-
mated segmentation of OD in retinal fundus images. Ini-
tialization of the B-spline-based active contour is achieved
using the multiresolution-based normalized cross-correlation
(MNCC) technique. X-plane of the XYZ color scheme is
used to obtain better OD detection accuracy. The OD of the
fundus image is then cropped to reduce the computations of
segmentation. This reduces the time taken for segmentation
considerably. The coordinates of detected OD are used for
the initialization of B-spline-based active contour. The active
contour evolves from a shape-specific (circle) initialization
to an amorphous shape for accurate segmentation of the
OD. Gradient descent and Green’s theorem are then used to
minimize the local energy function with respect to five free
parameters. An exploratory data analysis of the segmentation
is done to get a clear picture of the performance of the
proposed method through the database.

II. PRIOR RESEARCH
Over the years, various state-of-the-art techniques, unique in
theoretical modeling and approach have been brought about.
Morales et al. proposed a watershed transformation based
OD detection method. They used circle-fitting technique for
the segmentation of OD. They used principal component
analysis (PCA) with other morphological operations as a
preprocessing step to improve the accuracy of OD detec-
tion [3]. Zahoor et al. utilized morphological operations and
circular Hough transform for preprocessing and OD localiza-
tion, respectively. The OD was segmented using the imple-
mentation of polar transform [4]. Cheng et al. developed a

superpixel-based OD segmentation algorithm. They used his-
togram analysis with center-surround statistics to categorize
the OD [5]. Dashtbozorg et al. segmented the OD by intro-
ducing a sliding-band filter [6]. Sigut et al. devised a contrast-
based circular approximation method to detect and segment
the OD [7]. Joshi et al. developed a region-based active con-
tour and traditional Chan-Vese model for the segmentation
of OD. It was a modified version of the active contour and
traditional Chan-Vese model [8] with the modification being
the use of the local image information from the area around
the region of interest [9]. Kumar et al. developed a circular
active contour model for the segmentation of OD [10], [11].
Abdullah et al. proposed a technique for localization and
segmentation of OD in retinal images using circular Hough
transform and grow-cut algorithm [12]. Dey et al. proposed
affine snakes in gradient vector field technique for the seg-
mentation of OD [13], [14]. Almazroa et al. developed a level
set-based algorithm for the segmentation of OD. The blood
vessel occlusions that interfere with the segmentation of OD
were dealt with using an image inpainting technique [15].
Ramani et al. devised a pixel density-based OD detection
method. They used circular Hough transform coupled with
Hough peak value selection and red channel-based superpixel
segmentation for OD segmentation [16].

Maninis et al. presented a Deep Retinal Image Understand-
ing (DRIU) tool, which is a unified framework of retinal
image analysis that provides both retinal vessel and OD
segmentation [17]. Sevastopolsky devised a U-Net based OD
segmentation algorithm [18]. It used the input image to gen-
erate a probability map. They used contrast limited adap-
tive histogram equalization (CLAHE) for preprocessing [19].
Zilly et al. developed a convolutional neural network (CNN)
inspired ensemble learning technique for the segmentation of
OD. Entropy sampling and Boosting were used to improve
the developed network [20]. Mohan et al. proposed Fine-
Net [21] and a combination of Fine-Net and P-Net [22] CNN
models for the segmentation of OD. Wang et al. developed
a coarse-to-fine U-Net model-based OD segmentation algo-
rithm. They trained the network on a pair of color fundus
images and their grayscale vessel density maps. They also
attained two different segmentation results from the input
image. This coarse segmentation obtained is then fed to a
U-Net model for further fine segmentation [23]. Liu et al.
devised an adversarial training method for the segmentation
of OD. They used an improved U-Net-based algorithm for
the detection of OD. The OD segmentation was achieved
by a Patch-level adversarial network to enhance higher con-
sistency between ground truth and algorithm’s segmentation
output [24]. Kadambi et al. developed a WGAN domain
adaptation framework for the detection of OD and optic
cup boundaries from the fundus images. The model is an
adversarial domain adaptation framework guided by Wasser-
stein distance to improve stability and convergence [25].
Sun et al. have devised a deep object detection network-
based pipeline for the detection of OD. The OD bound-
ary is then determined using the faster R-CNN method as
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an object detector by transforming the predicting bounding
box into a vertical and non-rotated ellipse [26]. Zilly et al.
proposed an ensemble learning-based CNN, where selective
informative points are selected using an entropy sampling
technique. A novel learning framework for the convolutional
framework based on boosting is designed with the sam-
pled points [27]. Zhang et al. developed a particle swarm
optimization enhanced deep neural network algorithm for
the segmentation of OD [28]. Fu et al. proposed a deep
learning architecture, M-net, to segment OD and optic cup
jointly as a one-stage multi-label system. Jiang et al. pro-
posed an end-to-end region-based CNN for joint OD and
optic cup segmentation. They also used Atrous convolution
to boost the feature extraction performance [29]. Li et al.
studied a sequence of supervised descent directions of the
OD boundary coordinates. They also introduced histograms
of gradient orientations to represent the OD. They felt that
the performance of the OD segmentation can be improved
by better shape-appearance modeling [30]. Thakur et al.
proposed a Level Set Based Adaptively Regularized Kernel-
Based Intuitionistic Fuzzy C means (LARKIFCM) based
approach for the segmentation of OD and optic cup [31].
Yu et al. developed amodifiedU-net architecture, which used
pre-trained ResNet-34 model as encoding layer and classical
U-Net as decoding layers [32]. Fu et al. have proposed a deep
learning model fused with model-driven probability bubble
approach. Thismethod is used to segment theOD in abnormal
fundus images. This model was proposed to be used when
there is a lack of sufficient training samples. The probability
bubble is dependent on the position relationship between
retinal vessels of OD, and the density of the intersection
points of the line segments that are fitted on the main blood
vessels through Hough transforms [33]. Xiong et al. have
introduced a Bayesian U-Net model for the segmentation of
fundus images. They have attempted to address the limita-
tions that arise due to pixel-level OD annotation mask, which
induces inter-subject variance. They have addressed the lim-
itations by introducing a weak label-based Bayesian U-Net
that uses Hough transform-based annotations to segment OD
in fundus images. The optimization of the proposed algo-
rithm was achieved using Expectation-maximization algo-
rithm. The authors claim that the performance of the proposed
method is superior to that of fully and weakly supervised
methods [34]. Pachade et al. developed a nested EfficientNet
patch-based adversarial learning framework for the segmen-
tation of OD and optic cup. The developed method uses
the EfficientNetB4 as an encoder with a nested network of
pre-activated residual blocks, atrous spatial pyramid pooling
blocks, and attention gates. To obtain accurate segmentation
the network is guided by a combination of cross-entropy and
Dice coefficient loss [35]. Hasan et al. developed a DRNet
model with a redesigned skip connection and called it residual
skip connection. The developed DRNet model has fewer
parameters, leading to shorter training and testing times.
For localization of OD and fovea centres a 2D bell-shaped
heatmap is used [36].

FIGURE 2. Example of a shape template used for the segmentation of the
optic disc. The shape template comprises of 8 knots.

The idea of basis spline (B-spline) based active contour
for the segmentation of OD is motivated by the following
seminal contributions. Rahali et al. developed a B-spline
level set algorithm for the segmentation of drosophila from
biological images. They also compared the results obtained
with the conventional level set method and marker-controlled
watershed algorithm [37]. Zheng et al. devised a statistical-
based global optimal segmentation algorithm using cubic
B-splines. They have used B-spline for explicit representation
of relaxation, convergence, and smoothing parameters [38].
Pawar et al. developed a B-spline-based active contour model
with hyperelastic regularization for the segmentation of neu-
rons in fluorescence microscopy images. Their boundary
extraction-based algorithm used cubic B-spline to accurately
segment the neurons [39]. Pedrosa et al. have devised a
fully automated method based on B-spline for the segmen-
tation of the left ventricle. They used B-spline, a traditional
image segmentation method, with statistical models to select
the appropriate shape template for a more accurate seg-
mentation [40]. This work is also motivated by the seminal
contributions from Thevenaz et al. [41], Unser et al. [42],
[43], Delgado-Gonzalo et al. [44], Mogali et al. [45], and
Pediredla et al. [46].

III. B-SPLINE-BASED ACTIVE CONTOUR FORMULATION
We have used two concentric circles to construct the shape
template model. The parameterization of the concentric shape
template is done with the use of a cubic B-spline kernel.
Its properties of non-negativity, compact support, continuous
second-order derivative, and minimum curvature make it the
prime choice [47], [48]. Additionally, it satisfies the Riesz
basis property [49], which ensures the stability of repre-
sentation between the continuous contour and the discrete
coefficients used in the representation.

A. SPECIFICATION OF SHAPE TEMPLATE
Let r0(t) = (u0(t), v0(t))T and r1(t) = (u1(t), v1(t))T be a
pair of parameterized inner and outer contours, respectively.
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FIGURE 3. (a1)-(a3): Randomly selected color fundus images; (b1)-(b3):
Red channel; (c1)-(c3): X-plane of the respective images.

FIGURE 4. Multiscale strategy employed in the detection of optic disc.

Here ‘t’ is an independent variable. 0 and 1 are subscripts
used to differentiate between the inner and outer contour,
respectively. Kernel function ζ (t) and its integer shifted ver-
sion is used to represent the function u0(t), u1(t), v0(t), and
v1(t). The parameterization has been achieved in accordance
with [50], and vector representation form of the results are:

ri(t) =
(
ui(t)
vi(t)

)
=

∞∑
k=−∞

ci,kζ (t − k), (1)

where ci,k =
(
cui,k
cvi,k

)
; i = 0, 1, are the spline coefficient

vectors. ui(t) and vi(t) are periodic for closed curves which
leads to the following equivalent representation.

ri(t) =
M−1∑
k=0

ci,kζp(t − k), (2)

where ζp(t) =
∞∑

k=−∞
ζ (t − kM ) is M -periodic;

cui,k = cui,k+M , cvi,k = cvi,k+M , i = 0, 1, are the peri-
odized coefficient sequences with periodM (M represents the

number of knots). An example of a shape template designed
using cubic B-spline with eight knots is shown in Fig. 2.

Outer contour (r1(t)) of an origin-centered convex shape
can be a scaled variant of the inner contour (r0(t)), i.e., r1(t) =
αr0(t), where α is a scalar variable that is greater than 1.
As a result, the outer contour coefficients get scaled up by
a factor of α times the inner contour coefficients. The local
energy function’s computation region and the control over the
annular region width are achieved by the parameter α.

B. THE DYNAMIC ACTIVE CONTOUR
The derivation of active contours from the shape template
in (2) is according to the following affine transformation:(

Ui
Vi

)
=

(
X1 cos θ X2 sin θ
−X1 sin θ X2 cos θ

)(
ui
vi

)
+

(
uc
vc

)
, (3)

where i = 0, 1 represents inner and outer contours, respec-
tively, of the active contour. For conciseness of notation,
we have dropped the parameter t and denoted (U (t),V (t))
and (u(t), v(t)) as (U ,V ) and (u, v), respectively. X1 and
X2 are the scale parameters; θ is the angle of rotation; uc and
vc are the translation parameters.

C. THE ENERGY FUNCTION
For an active contour initialized on an image p, let <0 and
<1 be the regions enclosed by the inner and outer contours,
respectively. We define the active contour energy as a nor-
malized local contrast function:

E =
1

X1X2

(
a1

∫∫
<1

p du dv︸ ︷︷ ︸
E1

− a0

∫∫
<0

p du dv︸ ︷︷ ︸
E0

)
, (4)

where a0 and a1 are the scalars (in the ratio 2:1) for the
areas enclosed by the inner and outer contour and E0 and
E1 represents the energy of the inner and outer contour of the
shape template, respectively. This ensures the active contour
is inert in regions of constant intensity. The term X1X2 is
the normalizing factor (net scaling in the area) of the active
contour. Minimizing E enables the active contour to lock on
to objects that are brighter than their immediate surroundings
and maximizing it would have the opposite effect.

D. PARAMETERIZATION OF B-SPLINE COEFFICIENT
ADAPTATION
Considering image p, finding partial derivatives of E with
respect to the free parameters and expressing them in terms
of u0(t), v0(t), u1(t), and v1(t), we have

∂E
∂X1
=

a0
X1

∮
<1

p(U1,V1)u1(t)v′1(t) dt

−
a1
X1

∮
<0

p(U0,V0)u0(t)v′0(t) dt −
1

X2
1X2

E,

∂E
∂X2
= −

a0
X2

∮
<1

p(U1,V1)u′1(t)v1(t) dt

+
a1
X2

∮
<0

p(U0,V0)u′0(t)v0(t) dt −
1

X1X2
2

E,
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∂E
∂θ
=

a0
X1X2

∮
<1

p(U1,V1)
(
X2
1 u1(t)u

′

1(t)

+X2
2 v1(t)v

′

1(t)
)
dt

−
a1
X1X2

∮
<0

p(U0,V0)
(
X2
1 u0(t)u

′

0(t)

+X2
2 v0(t)v

′

0(t)
)
dt,

∂E
∂uc
=

a0
X1X2

∮
<1

p(U1,V1)(−X1 sin θu′1(t)

+X2 cos θv′1(t)) dt

−
a1
X1X2

∮
<0

p(U0,V0)(−X1 sin θu′0(t)

+X2 cos θv′0(t)) dt,
∂E
∂vc
= −

a0
X1X2

∮
<1

p(U1,V1)(X1 cos θu′1(t)

+X2 sin θv′1(t)) dt

+
a1
X1X2

∮
<0

p(U0,V0)(X1 cos θu′0(t)

+X2 sin θv′0(t)) dt. (5)

The weighted sum of B-splines, as in (1), can be used
to express the active contour template. B-spline coefficient
adaptation from the partial derivatives of parameters shown
in (5) is done as in (6) and (7), shown at the bottom of the
next page. Convergence towards the OD is accelerated due to
the use of pre-computed kernels bk−l and ζ ′(t). The partial
derivatives of the parameter are bound to be finite-length
sequences as kernels bk−l and ζ ′(t) are finite.

The Qp,1 and Qp,2 are the common terms present in partial
derivatives with respect to (X1, X2, and θ ) and in partial
derivatives with respect to (uc and vc), respectively. The itera-
tive computation of kernels Qp,1 and Qp,2 reduces the overall
computations required. Recalculation of free parameters and
change of the corresponding energy terms in the cost function
is required after every iteration. The Locality property of
B-splines means that its coefficients often remain unchanged.

Optimization of the partial derivatives of energy E with
respect to the free parameters is achieved using gradient
descent technique [51]. By optimizing energy E , the con-
trast between the two regions increases, in other words, the
contrast in the annular region decreases.

The equations associated with gradient descent are

Pn+1 = Pn − γn∇E[Pn];

E[P0] ≥ E[P1] ≥ E[P2] . . . ≥ E[Pn],

where Pn denotes the parameter (X1, X2, θ , uc, and vc) at
iteration ‘n’.

Green’s theorem [52] is used to reduce the computations
required to find the partial derivatives of the B-spline coeffi-
cient with respect to the free parameters.

E. AUTOMATIC LOCALIZATION
B-spline-based active contour is initialized on the retinal
fundus image using the MNCC technique [53]. We calculate

a normalized sliding inner-product between the scaled down
version of the input image f , and the template h. The template
is developed by cropping the OD region manually from a
retinal fundus image.

To obtain better localization accuracy, X-plane of the XYZ
color scheme is used. The comparison of Red channel from
the RGB color scheme and X-plane of the XYZ color scheme
is shown in Fig. 3. The X-plane image provides us a distin-
guishable and sharp OD area in red-dominated, well-lit and
dull fundus images. The Red channel image fails to provide
a shape and distinguishable OD region in red-dominated and
dull fundus images. These factor influenced our decision to
use the X-plane over the Red channel for the localization and
segmentation of OD.

For fast localization, NCC is performed at the lowest level
of a four-level subsampled pyramid [54] representation of
the input fundus image and the OD location information is
propagated to the highest level of the decomposition. The
cosine similarity measure ξ between the input image f and
the template h at the jth level of the pyramid defined by f (j)

and h(j) is given by

ξ (xp, yp) =
〈
f (j)(x, y)
‖f (j)(x, y)‖

,
h(j)(x − xp, y− yp)
‖h(j)(x − xp, y− yp)‖

〉
,

The location corresponding to the peak of the cosine simi-
larity measure is chosen for initializing the B-spline-based
active contour. An illustration of OD detection for initializa-
tion of the active contour is shown in Fig. 4.

F. ALGORITHM IN BRIEF
The OD segmentation using B-spline-based active contour
algorithm, in brief, is given below:
Input: Color fundus image
Output: OD segmentation on the input color fundus image

Initialization: Assign the path of the OD template image
to be used by the MNCC algorithm.

1: Perform OD detection using MNCC algorithm
2: Crop the OD region from the fundus image using the

detection coordinates obtained from Step 1.
3: Initialize B-spline-based active contour in the detection

coordinates in the OD cropped image.
4: Perform affine transformation of the B-spline-based

active contour minimizing the energy function.
5: Optimize the free parameters using gradient descent and

Green’s theorem for the best fit active contour on the OD.
6: Stitch the segmentationmask obtained using Step 5 to the

original fundus image.

IV. EXPERIMENTS
The proposed method was validated on Drishti-GS [55],
MESSIDOR [56], RIGA [57], and a locally acquired database
totaling 2993 fundus images. Drishti-GS, MESSIDOR, and
RIGA are publicly available datasets. All the databases con-
sisted of colour fundus images.
Drishti-GS database consists of 101 images captured from

a population belonging to Indian ethnicity. Each image has
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FIGURE 5. (a1)-(c5): Optic disc segmentation and outlining (white in color) by the proposed algorithm on randomly selected fundus images. (c1)-(c2):
Optic disc segmentation and outlining in the presence of peripapillary atrophy. (c3)-(c5): Illustration of optic disc segmentation failure.

a resolution of 2896 × 1944 pixels. The data collection and
annotations were conducted by Aravind Eye Hospital, Madu-
rai, India. This dataset is divided into two namely, the training
and testing set consisting of 50 and 51 images respectively.
Ground truth was collected from four experts with varying
clinical experience. The database provides OD segmentation
soft-maps fused on one binary image and average OD bound-
ary derived from four expert markings.

MESSIDOR database is one of the most popular fundus
imaging database consisting of 1200 images with resolutions
of 2304 × 1536, 2240 × 1488, and 1440 × 960 pixels.
The database provides OD ground truth and fovea center

annotation by a single clinician. MESSIDOR stands for
Methods to Evaluate Segmentation and Indexing Techniques
in the field of Retinal Ophthalmology (in French). It was
part of a research project conducted by the French Min-
istry of Research and Defense in the year 2004. The images
were captured using a Topcon TRC NW6 non-mydriatic
retinograph. Among the 1200 images, 800 were captured
with pupil dilation and the rest were captured without pupil
dilation.

RIGA is a de-identified database derived from three dif-
ferent sources namely, MESSIDOR, Bin Rushed eye cen-
ter, and Magrabi eye center consisting of 460, 195, and

 ∂E/∂X1∂E/∂X2
∂E/∂θ

 = 1
X1X2

Mi−1∑
k,l=0

 X2 cuk cvl
X1 cul cvk

X2
1 cuk cul + X

2
2 cvk cvl


×

∫
∞

t=−∞
{p(U1(t + k),V1(t + k))− p(U0(t + k),V0(t + k))}bk−l(t)dt︸ ︷︷ ︸

Qp,1(k,l)

−

 1
X1
1
X2
0

E, (6)

(
∂E/∂uc
∂E/∂vc

)
= −

1
X1X2

Mi−1∑
k=0

(
cvk
cuk

)
×

∫
∞

t=−∞
{p(U1(t + k),V1(t + k))−

√
2p(U0(t + k),V0(t + k))}ζ ′(t)dt︸ ︷︷ ︸

Qp,2(k,l)

, (7)

where bk−l(t) = ζ (t)ζ ′(t + k − l) and Mi denotes the number of knots.
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FIGURE 6. (a1)-(a5): Randomly selected color fundus images; (b1)-(b5): Visual representation of the comparison of the segmentation obtained from
the proposed method and the ground truth.

95 images respectively. The images were manually annotated
by six experienced ophthalmologists. The database consists
of annotations of OD and optic cup.

The local database consists of 942 images captured from
three different fundus imaging devices (Courtesy: Spectrum
Lab, Department of Electrical Engineering, Indian Institute
of Science, Bangalore, India). The database is provided with
OD annotations by five expert ophthalmologists along with
average OD ground truth.

V. RESULTS
We developed an ImageJ [58] plugin for the implementa-
tion of the proposed method. ImageJ is a popular Java-
based biomedical image processing tool developed by
W. Rasband and team at the National Institutes of Health
(NIH), USA [59]. For validation, we have used the databases
Drishti-GS [55], MESSIDOR [56], RIGA [57], and a local
database amounting to a total of 2993 images. The segmen-
tation of the OD using the proposed method on randomly
selected fundus images from different databases have been
shown in Fig. 5.
A visual representation to understand the segmentation

performance metrics are shown in Fig. 6. Expert ground
truth and algorithm segmentation are overlaid to determine
the parameters such as true positives (green), true negatives
(black), false positives (yellow), and false negatives (red).
With most of the area representing the true positives (green),
very negligible areas representing the false positives (yellow)
and false negatives (red), it is evident that the expert ground
truth and algorithm segmentation are in close agreement with
each other.

Using the number of true positives, true negatives, false
positives, and false negatives, we have evaluated the sensitiv-
ity (Se), specificity (Sp), accuracy (Ac), and error (Er ). Our

results are then compared against the state-of-the-art meth-
ods. We have compared the segmentation results with the
ground truth and computed the Dice and Jaccard similarity
indices. The Dice and Jaccard indices are evaluated using the
following expressions:

Di(X ,Y ) =
2|X ∩ Y |
|X | + |Y |

; Ji(X ,Y ) =
|X ∩ Y |
|X ∪ Y |

,

where Di and Ji are the Dice and Jaccard similarity indices,
respectively. X and Y are the segmentation result obtained
from the proposed technique and the ground truth, respec-
tively. The comparison of the Dice and Jaccard index varia-
tions within the databases is shown in Fig. 7. The comparison
of the distribution of the Dice and Jaccard indices between
databases is shown as box plots in Fig. 8. The comparison
of the Dice index obtained for the six experts’ annotations
of the RIGA database are represented graphically in Fig. 9.
From the graph, we see that the Dice index value hovers
around the 0.95 mark for all the annotations. So, we can infer
that the proposed algorithm provides an accurate segmenta-
tion of the OD.

We have obtained sensitivity scores of 0.9675, 0.9, 0.9330,
and 0.9621; and specificity scores of 0.9968, 0.9991, 0.9991,
and 0.9973 on Drishti-GS, MESSIDOR, RIGA, and a local
database, respectively. We have also obtained an accuracy
of 0.9959, 0.9982, 0.9983, and 0.9964; and an error of
0.0040, 0.0018, 0.0017, and 0.0035 on Drishti-GS, MESSI-
DOR, RIGA, and a local database, respectively. Jaccard index
of 0.8410, 0.8186, 0.8695, and 0.8765; and Dice index of
0.9182, 0.8912, 0.9331, and 0.9343, are obtained on Drishti-
GS, MESSIDOR, RIGA, and a local database, respectively.
Table 1 summarizes the comparison of the performance
parameters of the existing state-of-the-art techniques with the
proposed algorithm.
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TABLE 1. Performance comparison of OD segmentation with various algorithms. Se - Sensitivity; Sp - Specificity; Ac - Accuracy; Er - Error; Ji - Jaccard
index; Di - Dice index; The symbol ‘‘—’’ indicates ‘values not reported’ by the authors and * indicates ML-based approach.

VOLUME 10, 2022 88159



J. H. Gagan et al.: Automated Optic Disc Segmentation Using Basis Splines-Based Active Contour

FIGURE 7. Visualization of Dice and Jaccard index within (a) MESSIDOR; (b) Drishti-GS; (c) RIGA; and (d) the local database.

VI. DISCUSSION
The proposed method is developed using traditional image
processing concepts. The developed methods use the con-
cepts such as multi-resolution-based normalized cross-
correlation method for the detection and basis splines-based
active contour for the segmentation of the OD. Normal-
ization and histogram equalization is used as a standard
preprocessing step to improve the detection and segmenta-
tion. After detection of the OD but, prior to its segmen-
tation, the image is cropped to retain only the region of
interest to reduce computation and improve the execution
speed.

Recently, various machine learning-based methods for the
detection and segmentation of the OD have been reported.
These methods have been included for comparison with the

proposed method. From Table 1, it is evident that machine
learning algorithms can perform better than traditional image
processing methods when there is adequate training data
available. But, it is difficult to acquire large amounts of
medical imaging data with expert annotations. With the
data currently available, machine learning algorithm’s results
appear to outperform traditional image processing methods
marginally. Hence, it is our opinion that image processing
methods are more robust when the available databases consist
of a small number of images.

Although with data augmentation it might be possible
for machine learning algorithms to outperform traditional
image processing methods, there is a possibility it can lead
to over-fitting. In which case the machine learning methods
might perform poorly in a test set. These problems will not
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FIGURE 8. Distribution of (a) Dice index; (b) Jaccard index for the proposed algorithm throughout MESSIDOR, Drishti-GS, and
the local databases, respectively.

FIGURE 9. Inter-observer variability with respect to the proposed
algorithm segmentation and six experts’ annotations of RIGA fundus
image database.

be encountered in the case of traditional image processing
methods.

VII. CONCLUSION
We proposed a novel basis spline-based active contour
method for the segmentation of optic disc. The technique pro-
vides an accurate and amorphous segmentation of the optic
disc against many of the techniques based on shape-specific
segmentation. Hence, the segmentation outline provided by
the proposed method is very close to the natural shape of
the optic disc, which is amorphous. Optimization of energy

function of basis spline-based active contour was achieved
using gradient descent and Green’s theorem. The developed
algorithmwas validated on three publicly available databases,
Drishti-GS, MESSIDOR, RIGA, and one locally procured
database amounting to a total of 2993 fundus images. The
proposed technique achieves an overall sensitivity, speci-
ficity, accuracy, error rate, Jaccard, and Dice index scores
of 94.07%, 99.82%, 99.71%, 0.28%, 85.59%, and 93.01%
respectively. The performance metrics obtained prove that
the proposed method has high accuracy in the highly varied
fundus image data.
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