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ABSTRACT Millimeter-wave (mmWave) radar sensors are a promising modality for gesture recognition
as they can overcome several limitations of optic sensors typically used for gesture recognition. These
limitations include cost, battery consumption, and privacy concerns. This work focuses on finger level (called
micro) gesture recognition using mmWave radar. We propose a set of 6 micro-gestures that are not only
intuitive and easy to perform for the user but are distinguishable based on Doppler and angle variation in
time. For gesture recognition, we propose an end-to-end solution including an activity detection module
(ADM) that automatically segments the data and the gesture classifier (GC) that takes the segmented data
and predicts the gesture. Both the ADM and GC are based on machine learning (ML) tools. We evaluate
the proposed solution using data collected from 11 users and our proposed solution achieves an end-to-end
accuracy of 95%.

INDEX TERMS Human-computer interface, activity detection, gesture recognition, radar, machine learning.

I. INTRODUCTION
Voice and gestural interactions are becoming increasingly
popular in the context of ambient computing. These input
methods allow the user to interact with digital devices,
e.g., smart TVs, smartphones, tablets, smart home devices,
AR/VR glasses, etc., while performing other tasks, e.g., cook-
ing and dining. Gestural interactions can be more effec-
tive than voice, particularly for simple interactions such
as snoozing an alarm or controlling a media player. For
such simple interactions, gestural interactions have two main
advantages over voice-based interactions, namely, complica-
tion and social acceptability. First, the voice-based commands
can often be long, and the user has to initiate with a hot word.
Second, in quiet places and during conversations, voice-based
interaction can be socially awkward.

Gestural interaction with a digital device can be based
on different sensor types, e.g., ultrasonic [1], IMU [2],
optic [3], and radar [4]. Optical sensors give the most
favorable gesture recognition performance. The limitations
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of optic sensor based solutions, however, are sensitivity to
ambient lighting conditions, privacy concerns, and battery
consumption - hence the inability to run for long periods of
time. LIDAR based solutions can overcome some of these
challenges such as lighting conditions and privacy, but the
cost is still prohibitive (currently, only available in high-
end devices). These limitations are overcome by the radar
based solutions. Specifically, millimeter-wave (mmWave)
radar sensors are a particularly suitable choice. In addition to
overcoming all the limitations of optic sensor based solutions,
themmWave radars are small in sizemaking them suitable for
mobile devices. Further, due to the ability of electromagnetic
waves to pass through dielectric materials, the radar does not
need to be visible on a mobile device.

Considering radar characteristics, we select dynamic ges-
tures rather than static hand/finger poses in our solution.
Radars have limited resolution in both the angle and range.
Due to form-factor constraints, radar modules on mobile
devices have only a few antennas, and as a result have
limited angle resolution. While large bandwidths are avail-
able at mmWave bands, the range resolution is still several
centimeters, which is too coarse for differentiating fingers’
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positions. Fortunately, radars have superb Doppler (speed)
measurement capability. The Doppler resolution is inversely
proportional to the duration of the radar coherent processing
duration, which is a design parameter. The high Doppler reso-
lution enables the radar to capture and potentially distinguish
between subtle movements. As such, radars are suitable for
distinguishing dynamic micro-gestures.

A. CONTRIBUTIONS
In this work, we propose an end-to-end solution for dynamic
micro-gesture recognition. We consider 3 pairs of dynamic
micro-gestures, i.e., total 6 gestures. After processing the
raw radar data, first, the activity detection module (ADM)
determines the portion of the data containing a gesture. This
portion of data is then fed to the gesture classifier (GC) which
predicts the performed gesture. Themain contributions of this
work are

1) We propose a set of 6, i.e., 3 pairs of intuitive dynamic
micro-gesture. The selected gestures are easy to per-
form and remember, hence suitable for a good user
experience. Further, the selected gestures have clearly
distinguishable features, and as such are conducive to
good classification.

2) We develop an ADM based on simple features of the
input signal to determine a gesture end. The ADM is
based on a tree based machine learning (ML) model
chosen to have good gesture end detection performance
and low computational complexity.

3) We develop a convolutional neural network (CNN)
based GC. The proposed CNN model can predict the
gestures with high accuracy and generalizes well to
unseen users.

4) We evaluate our end-to-end solution on the data col-
lected from 11 users and show a leave-one-out cross-
validation (LOOCV) accuracy of 95%.

B. PRIOR WORK
There is a considerable amount of prior work on hand gesture
recognition using radar, see e.g., [5], for a recent review.
We start by discussing a series of articles by a group of
researchers at Google [6], [7], [8]. While the first work [6]
discussed the idea of using high range and Doppler resolution
radars for dynamic gesture recognition, no evaluation results
were provided. The subsequent work [7] considered 11 ges-
tures - only 5 of these were micro-gestures and the rest of
the gestures required full hand movements. The difficulty of
classifying micro-gestures was clear from the results, as the
classification accuracy on unseen users was reported to be as
low as 59% for a micro-gesture. Further, only pre-segmented
data was considered in [7], in which each segment contains
one gesture. In a more recent work [8], the gesture vocabu-
lary is simplified to only contain hand swipes (4 directional
swipes and 1 swipe in any direction), in part to get good
classification accuracy. In comparison with [7], we do not
consider pre-segmented data, consider 6 micro-gestures, and
can show 95%LOOCV accuracy. In comparison with [8], our

gesture set is more complicated and allows richer interaction
with the devices.

Most of the other prior work on gesture recognition using
radar, e.g., [4], [9], [10], [11], [12], [13], and [14], consid-
ers macro-gestures, i.e., gestures based on hand level move-
ments. Hand level movements have stronger signatures and
hence are easier to classify. In comparison, we consider
micro-gestures in this work. The prior work that does con-
sider micro-gestures or a mix of macro-gestures and micro-
gestures e.g., [15], [16], [17], [18], and [19], has the data
pre-segmented, and hence the solution is incomplete. In this
work, we provide a data-segmentation solution for online
segmentation. Finally, the prior work that considers some
micro-gestures and data-segmentation, e.g., [20], [21], [22],
and [23], does not extend their evaluations to unseen users.
In this work, we evaluate our data-segmentation and micro-
gesture recognition solution for unseen users.

The rest of this paper is organized as follows: In Sec. II,
we discuss the preliminaries of radar signal processing and
the method to extract the required information from the pro-
cessed signal. In Sec. III, we discuss the selected gesture
vocabulary. In Sec. IV, we outline the details of the proposed
approach. In Sec. V, we provide evaluation results to show
the promise of the proposed strategy. Finally, we conclude
the paper in Sec. VI and outline directions for future work.
Notation: We use the following notation throughout the

paper. Bold lowercase x is used for column vectors, bold
uppercase X is used for matrices, and non-bold letters x, X
are used for scalers. Superscript T and ∗ represent the trans-
pose and conjugate transpose respectively. The fast Fourier
transform (FFT) output of a vector x is denoted as X . The
N×N identity matrix is represented by IN , and theN×1 zero
vector is 0N×1. The sets of complex and real numbers are
denoted by C and R, respectively.

II. RADAR SIGNAL PROCESSING
A. PRELIMINARIES OF RADAR SIGNAL PROCESSING
In this work, we use a mmWave monostatic frequency-
modulated continuous wave (FMCW) radar with sawtooth
linear frequency modulation. Let the operational bandwidth
of the radar be B = fmax− fmin, where fmin and fmax are min-
imum and maximum sweep frequencies of the radar, respec-
tively. The radar is equipped with a single transmit and Nr
receive antennas. The receive antennas form a uniform linear
array (ULA) with spacing d0 = λmax/2, where λmax =

c
fmin

and c is the velocity of the light. As shown in Fig. 1, the
transmitter transmits a frequency modulated sinusoid chirp of
duration Tc over the bandwidthB. Hence, the range resolution
of the radar is rmin =

c
2B [24]. In the time domain, the

transmitted chirp s(t) is given as [25]

s(t) = AT cos(2π(fmint +
1
2
St2)), (1)

where AT is the transmit signal amplitude and S = B
Tc

con-
trols the frequency ramp of s(t). The reflected signal from an
object is received at the Nr receive antennas. Let the object,
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FIGURE 1. FMCW transceiver system diagram.

such as a finger or hand, be at a distance R0 from the radar.
Assuming one dominant reflected path, the received signal at
the reference antenna is given as

r(t) = AR cos(2π (fmin(t − τ )+
1
2
S(t − τ )2), (2)

where AR is the amplitude of the reflected signal which is a
function of AT , distance between the radar and the reflecting
object, and the physical properties of the object. Further, τ =
2R0
c is the round trip time delay to the reference antenna. The

beat signal for the reference antenna is obtained by low pass
filtering the output of the mixer. For the reference antenna,
the beat signal is given as

rb(t) =
ATAR
2

cos
(
2π
(
fminτ + Sτ t −

1
2
Sτ 2

))
≈

ATAR
2

cos(2πSτ t + 2π fminτ ), (3)

where the last approximation follows from the fact that the
propagation delay is orders of magnitude less than the chirp
duration, i.e., τ � Tc. The beat signal in (3) has two impor-
tant parameters, namely the beat frequency fb = Sτ =
S2R0/c and the beat phase φb = 2π fminτ . The beat fre-
quency is used to estimate the object range R0. Further, for
a moving target, the velocity can be estimated using beat
phases corresponding to at least two consecutive chirps. For
example, if two chirps are transmitted with a time separation
of 1tc > Tc, then the difference in beat phases is given as

1φb = 4π
1R
λmax

= 4π
v01tc
λmax

, (4)

where v0 is the velocity of the object.
We obtain the beat frequency by taking the Fourier trans-

form of the beat signal (3) that directly gives us the range R0.
To do so, the beat signal rb(t) is passed through an analog
to digital converter (ADC) with sampling frequency Fs = 1

Ts
,

where Ts is the sampling period. As a consequence, each chirp
is sampled Ns times where Tc = NsTs. The ADC output
corresponding to the n-th chirp is xn ∈ RNs×1 and defined as

xn = [{x[k, n]}Ns−1k=0 ], where x[k, n] = rb(n1tc+kTs). Let the
Ns-point fast Fourier transform (FFT) output of xn be denoted
as Xn. Assuming a single object, as we have considered so
far, the frequency bin that corresponds to the beat frequency
can be obtained as k∗ = argmax ‖Xn‖

2. Since the radar
resolution is c

2B , the n-th bin of the FFT output corresponds to
a target located within [ kc2B−

kc
4B ,

kc
2B+

kc
4B ] for 1 ≤ k ≤ Ns−1.

As the range information of the object is embedded inXn, it is
also known as the range FFT.

FIGURE 2. Frame-based radar transmission timing structure.

To facilitate velocity estimation, we adopt a radar transmis-
sion timing structure as shown in Fig. 2. The radar transmis-
sions are divided into frames, where each frame consists of
Nc equally spaced chirps. The range FFT of each chirp gives
us the phase information on each range bin. For a given range
bin, the Doppler spectrum, which has the velocity informa-
tion, is obtained by applying Nc-point FFT across the range
FFTs of chirps corresponding to that range bin. We construct
the range-Doppler map (RDM) by repeating the above step
for each range bin. Mathematically, we defineR ∈ CNc×Ns as
R = [X0,X1, . . . ,XNc−1]

T. The RDMM is obtained by tak-
ing Nc-point FFT across all the columns of R. The minimum
velocity that can be estimated corresponds to the Doppler
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resolution, which is inversely proportional to the number of
chirps Nc and is given as

vmin =
λmax

2Nc1tc
. (5)

Further, the maximum velocity that can be estimated is given
by

vmax =
Nc
2
vmin =

λmax

41tc
. (6)

1) CLUTTER REMOVAL
Since we have considered a monostatic radar, the RDM
obtained using the above-mentioned approach has significant
power contributions from direct leakage from the transmitting
antenna to the receiving antennas. Further, the contributions
from larger and slowly moving body parts such as the fist
and forearm can be higher compared to the fingers. Since
the transmit and receive antennas are static, the direct leak-
age appears in the zero-Doppler bin in the RDM. On the
other hand, the larger body parts such as the fist and forearm
move relatively slowly compared to the fingers. Hence, their
signal contributions mainly concentrate at lower velocities.
Since the contributions from both these artifacts dominate the
desired signal in the RDM, it is desirable to remove them
using appropriate signal processing techniques. The static
contribution from the direct leakage is simply removed by
nulling the zero-Doppler bin. To remove the contributions
from slowly moving body parts, we pass the sampled beat
signal of all the chirps in a frame through a first-order infinite
impulse response (IIR) filter. For the reference frame f , the
clutter removed samples corresponding to all the chirps can
be obtained as

x̂f [k, n] = xf [k, n]− ȳf [k, n− 1] (7)

ȳf [k, n] = αxf [k, n]+ (1− α)ȳf [k, n− 1],

for 0 ≤ k ≤ Ns − 1, 0 ≤ n ≤ Nc − 1, (8)

where ȳf [k, n] has contributions from all previous samples of
different chirps in the frame.

III. GESTURE VOCABULARY
We considered several gestures before selecting the appro-
priate gesture set. We considered two attributes during the
selection. The first attribute was the intuitiveness and sim-
plicity of the gesture. Intuitive gestures are easy for the users
to remember, and simpler gestures also imply more unifor-
mity across users. To this end, we also considered gestures
in pairs. The second desirable attribute was the distinguisha-
bility of the gesture in the considered features. As we use
the time-velocity diagram (TVD) and the time-angle diagram
(TAD) as the features for gesture classifications, we were
interested in a gesture set, in which each gesture is distin-
guishable from the other gestures either in TVD or TAD
(more on TVD and TAD in Sec. IV-A, and more on the dis-
tinguishability of gestures in Sec. V). With these attributes in
mind, we considered a total of 14 gestures. In addition to the

selected 6 gestures, the other considered 8 gestures include,
index extension, inwhich the index finger is extended towards
the radar and is subsequently contracted, clockwise circle,
counter-clockwise circle, left-half circle, right-half circle, and
slide (of thumb on index finger), open only (from touching
thumb and index fingers separating), and close only (from the
separated thumb and index fingers to touching). The selected
gesture set is shown in Fig. 3. The gesture set contains 3 pairs
of gestures, i.e., a total of 6 gestures. Specifically, there is a
pair of circles, a pair of pinches, and a pair of swipes. The
pair of circles contains a radial circle and a tangential circle.
The names radial and tangential come from the movement of
the finger relative to the radar. As the name implies in the
radial circle the movement of the finger is radial to the radar,
whereas in the tangential circle the movement is tangential to
the radar. The pair of pinches contain a single pinch and a dou-
ble pinch. Finally, the pair of swipes contains two directional
swipes, i.e., a left-to-right swipe and a right-to-left swipe.

FIGURE 3. The proposed gesture set of 6 gestures.

IV. APPROACH AND METHODOLOGY
The overall system diagram of the proposed solution is given
in Fig. 4. The first block is the triggering mechanism that
triggers the gesture detection mode. The next block is the
ADM which determines the end of a gesture to trigger the
GC. The GC predicts the gesture performed by the user.

FIGURE 4. Overall system diagram of the proposed solution.

First, we discuss the signal processing performed on the
radar signal discussed in Sec. II to obtain the features that are
used for gesture detection. Subsequently, we discuss all the
three blocks of the overall system diagram in Fig. 4.

A. SIGNAL PROCESSING TO OBTAIN THE FEATURES
As we are interested in dynamic micro-gestures, the vari-
ation in the received signal as a function of time should
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highlight the unique signatures of different gestures. The
variation in the range is not particularly important in the
context of micro-gesture recognition because the movement
of the fingers is on the order of a few centimeters. As the
range resolution itself is several centimeters, e.g., 3 cm for a
radar with 5GHz bandwidth, the variation in range, if any,
is quite coarse. The variation in Doppler and angle is thus
more important for our application. The variation in Doppler
as a function of time is captured through TVD. Similarly, the
variation in angle is captured via TAD. In this work, we use
TVD and TAD as features for gesture classification. In the
next two subsections, we highlight how to obtain the TVD
and TAD from the radar data.

1) TIME-VELOCITY DIAGRAM (TVD)
The procedure for obtaining the TVD from the RDM is shown
in Fig. 5. Using the clutter removed and zero-Doppler nulled
RDM, for a given frame, we obtain the range profile by sum-
ming the power across all Doppler bins. The range profile
is compared with a detection threshold to extract the range
information of the target of interest. In this work, we consider
the first detected peak in the range profile as the location
of the desired object. Specifically, the first peak above the
detection threshold is considered to contain the moving fin-
ger. This is based on the observation that in a typical use
case, the gesture is the closest moving target to the radar.
The detection threshold itself varies with range to accommo-
date the leakage residual in the first few taps. As such, the
detection threshold on the first few taps is chosen higher than
the subsequent taps. How many taps and how much offset
is applied to the detection threshold is determined based on
measurements. We observed that for the radar kits we exper-
imented with, these thresholds only depend on the choice of
the radar parameters and stay consistent across kits and time.
Thus, these thresholds, once determined, can be used across
platforms and time. Once the first peak is known, the Doppler
from the RDM for the tap corresponding to the first peak is
used to construct the TVD.

2) TIME-ANGLE DIAGRAM (TAD)
For the TVD generation, the received signal from any of the
antennas can be considered. However, for the TAD genera-
tion, the beat signals from all antennas need to be considered.
The process of TAD generation is shown in Fig. 6. Assuming
the target is located at an angle θ0 with respect to the end fire
of the ULA, the beat signal for antenna i ≥ 1 is given as

rib (t) ≈
ATARi

2
cos(2πSτit + 2π fminτi), (9)

where τi =
2R0+(i−1)d0 cos(θ0)

c . Since R0 � d0, the beat
frequency at the i-th antenna is Sτi ≈ Sτ1,∀i. On the other
hand, the spatial angle information is easily extracted using
the phases of the beat signals across the antennas. For a given
frame f , the sampled ADC output corresponding to the n-th
chirp for the i-th antenna is given as

xi,n,f = [{xi,f [k, n]}
Ns−1
k=0 ], (10)

where xi,f [k, n] = rib (n1tc + kTs). To extract the angle
information using all the chirps in f -th frame, in the
first step, we compute the range FFT Ri,f ∈ CNc×Ns

of all the chirps for each antenna i. Note that Ri,f =

[Xi,0,f ,Xi,1,f , . . . ,Xi,Nc−1,f ]
T, where Xi,n,f is the range FFT

corresponding to xi,n,f . Let the target location corresponding
to the range bin index b0 and ri,f ,b0 be the corresponding
column in Ri,f . We define Bf ,b0 ∈ CNr×Nc as Bf ,b0 =
[r1,f ,b0 , r2,f ,b0 , . . . , rNr ,f ,b0 ]

T. In the second step, we empir-
ically obtain the co-variance matrix of the received signal
across the antennas. Mathematically, we write

Cf ,b0 =
Bf ,b0B

∗
f ,b0

Nc
. (11)

In the third step, using Cf ,b0 , we obtain the spatial spec-
trum of the target at bin b0 leveraging the MUSIC algo-
rithm [26]. Other direction estimation algorithms can also
be used instead of MUSIC. Formally, we decompose Cf ,b0
using the eigenvalue decomposition and separate the signal
and noise subspaces as follow

Cf ,b0 = Us,f ,b03s,f ,b0U
∗
s,f ,b0 + σ

2
nUn,f ,b0U

∗
n,f ,b0 , (12)

where3s,f ,b0 is a diagonal matrix containing the eigenvalues
of Cf ,b0 corresponding to the signal and σ 2

n is the noise vari-
ance. Separating signal and noise subspaces is not a trivial
problem, but for our current setup we assume single target
and always pick the subspace corresponding to the strongest
eigenvalue as the signal subspace. In the next step, the angular
spectrum is obtained as

Pf ,b0 (β) =
1

a(β)Un,f ,b0U
∗
n,f ,b0

a(β)
, (13)

where a(β) = [1, e−j
2πd0
λmin

cos(β)
, . . . , e−j

2π(Nr−1)d0
λmin

cos(β)]. The
peak of the spectrum is attained at β = θ0. To construct
the TAD column for the f -th frame, we evaluate Pf ,b0 (β) for

β ∈
[
0, πNc , . . . ,

π (Nc−1)
Nc

]
. This choice of β is selected to

match the dimension of TVD.

B. TRIGGERING THE GESTURE DETECTION MODE
The first block in Fig. 4 is the gesture mode triggering
mechanism. There are several possibilities for this triggering
mechanism, e.g., based on proximity detection and/or active
applications, etc. In a proximity detection based trigger, the
gesture mode is activated only when an object near the radar
is detected. The proximity detection mode can itself be based
on the radar used for gesture detection. The benefit of trigger-
ing the gesture mode based on proximity detection comes in
reduced power consumption. It is expected that a simpler task
of proximity detection can be achieved reliably with radar
configurations that have low power consumption. It is only
when an object is detected in radar’s proximity, that we switch
to the gesture detection mode, which could be based on radar
configuration that consumes more power. Another possibility
for triggering the gesture mode is application based. As an
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FIGURE 5. The process of TVD column generation from a frame.

example, the dynamic finger gestures may be used with only
a few applications, and as such, the gesture mode needs to be
triggered only when the user is actively using the application
exploiting gestural interaction. As our primary focus in this
work is gesture detection, we do not delve deeply into the
implementation of the triggering mechanism.

C. ACTIVITY DETECTION MODULE (ADM)
The second block in Fig. 4 is the ADM. When the gesture
recognition system is activated, the data is continuously cap-
tured from the radar. The GC - discussed later in Sec. IV-D,
however, needs to be triggered only when the gesture is per-
formed. The purpose of the ADM is to determine the end of
a gesture and subsequently trigger the GC. From a design
perspective, the ADM can be based on some rules devised
to determine the activity. For example, the rules could be
based on the level of Doppler and how it varies with time to
determine the gesture ends. The limitation of the rule based
method is that if the gesture vocabulary or the radar parame-
ters are to be revised, it is likely that the rules may also need
to be revised and/or refined, making the rule based method
laborious in practice. An alternative design is data-driven
in which an ML model is trained to determine the gesture
ends. The data-drivenmethod will require data-collection and
training whenever the gesture set or radar parameters change
but eliminates the need to re-engineer the rules.

Our solution is based on a binary classifier followed by an
accumulator, as shown in Fig. 7. The function of the accumu-
lator is to keep track of the predictions of the binary classifier.
As long as the condition to trigger the GC is not satisfied,
the operation of the binary classifier and the accumulator
continues. Once the condition is satisfied, the GC is triggered.
We now discuss the operation of the binary classifier and the
accumulator in detail.

1) THE BINARY CLASSIFIER
Features derived from TVD are used for this classifier.
Although more information such as range and angle may also
be considered, we found that using TVD alone already pro-
vides satisfactory performance. In the following, we describe
our solution that only uses features derived from TVD.

The binary classifier predicts whether a gesture has ended
or not. As the TVD is updated at the frame rate, the binary
classifier will operate at the same or lower rate than the
frame rate. For ease of exposition, we assume that the binary
classifier makes one prediction per frame in subsequent dis-
cussions. In every frame, the prediction of the classifier is
either ‘‘class 0’’ implying that the gesture has not ended,
or ‘‘class 1’’ implying that the gesture has ended. For training,
‘‘class 0’’ and ‘‘class 1’’ samples are generated. Specifically,
consider the TVD of a gesture shown in Fig. 8. For this given
TVD, the ground truth ending of the gesture is marked by the
user as shown via the red vertical line. The ground truth end-
ings are marked based on visual observations. Subsequently,
the TVD is shifted so that the ground truth ending frame is
now at the last frame (in our example 50), as shown in Fig. 8b.
Subsequently, a ‘‘class 0’’ sample is generated by shifting
the TVD to the right by a random number of frames. The
‘‘class 0’’ sample obtained by a shift of 5 frames is shown
in Fig. 8c. This way the end of the gesture is not within
the TVD, and hence the TVD corresponds to the case when
the gesture has not ended. Similarly, a ‘‘class 1’’ sample is
generated by shifting the TVD to the left as shown in Fig. 8d
for a shift of 5 frames. This way the end of the gesture is
within the TVD, and hence the TVD corresponds to a case
when the gesture has ended. Note that since ‘‘class 0’’ and
‘‘class 1’’ samples are generated by applying random off-
sets/shifts to the same TVD, multiple ‘‘class 0’’ and ‘‘class 1’’
samples can be generated from a single TVD. Further, the
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FIGURE 6. The process of TAD column generation from a frame.

FIGURE 7. Binary classifier and accumulator based ADM.

‘‘class 0’’ samples thus generated represent the case in which
the gesture has started but not ended. The ADM, however,
is continuously operational and it needs to make predictions
even in cases when no gesture is being performed. To deal
with this, we need to have representation in the training
set of the case when the gesture has not even started, i.e.,
no-activity. For this, we collect data at the ending position
of each gesture in the gesture set. An example of the static
finger or no-activity ‘‘class 0’’ sample is shown in Fig. 8e.

The ‘‘class 0’’ and ‘‘class 1’’ TVD samples shown in Fig.8
can be considered Nc×F gray-scale images. In the examples
in Fig. 8,F = 50. A binary classifier can thus be trained based
on these images directly, e.g., based on a convolutional neural
network (CNN). It is, however, vital to keep the complexity of

the ADM model low. This is because the ADM classifier can
be required to predict the frame rate. To reduce the computa-
tional complexity of the classifier, we seek simpler features
so that a simpler model can be trained. Specifically, we seek
to collapse the Doppler dimension of the TVD. To this end,
several strategies can be tried, e.g., taking the mean in the
Doppler dimension in the linear or the log scale. For brevity,
however, we limit our discussion to a feature that gave the
most promising results. This feature d ∈ RF is calculated
from the linear version of the TVD Tl = 10T/10. Here T
is the TVD in dB, and the power and division operations
are element-wise. The feature d called the power weighted
Doppler normalized by maximum (PWDNM) is given below

d =
d̄

maxj |d̄[j]|
, d̄[j] =

Nc
2 −1∑

k=−Nc
2

kTl[k, j]. (14)

The rationale for the name PWDNM is clear from the def-
inition (14). The Doppler k is weighted by the power Tl[k, j]
and the result d̄ is normalized by the maximum absolute
value to get the feature entries d[j] ∈ [−1, 1]. This feature
is designed to have some desirable properties. The first is to
put higher weight on high Doppler bins by scaling the power
in k-th bin by k . The lower Doppler bins might contain some
leftover clutter - after clutter removal - in addition to the sig-
nal. As such, the power in the high frequency bins is a stronger
indicator of gestural activity, and can better distinguish the
gesture part from the non-gesture part for activity detection.
The normalization by the maximum absolute value helps
to generalize the feature across users (some users having
a stronger/weaker signature than the others). The PWDNM
feature of the ‘‘class 0’’ and ‘‘class 1’’ samples in Fig. 8
are shown in Fig. 9. From Fig. 9a, we see that the feature
assumes a non-negligible value for j = 50, implying a high
activity. From Fig. 9b, we see a small value (close to 0) for
j = 50. As the preceding values, i.e., for j = 20 to j = 43 are
high, followed by a small value, it is a good indication that
the gesture has ended. Finally, in Fig. 9c, we see that almost
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FIGURE 8. The ‘‘class 0’’ and ‘‘class 1’’ samples generated from a gesture, and ‘‘class 0’’ sample representing no-activity.

for all j ∈ 1, 2, · · · , 50, the feature assumes a non-negligible
value. Note that, though there is no-activity, the normalization
means that the largest value will always be 1. As such, large
values for all j are an indication that the gesture has not ended.

2) THE ACCUMULATOR
The purpose of the accumulator is to robustify the predic-
tion of the binary classifier, and it declares a gesture end
detected only when it has enough confidence. The binary
classifier predicts the end of a gesture. These predictions are
then collected through the accumulator. The GC is triggered
only when a predetermined accumulation condition is met.
The rationale for accumulating predictions is twofold. First,
the classifier is imperfect, and occasionally it predicts that the
gesture has ended, whereas, in reality, it has not. Secondly,
some delay is required to make sure that the gesture has ended
in reality. To this end, a good example is the case of single
pinch and double pinch (see Fig. 13c and Fig. 13d). The
double pinch inherently contains two single pinch gestures.
If the user intends to perform a double pinch, then after the
first pinch, if there is no delay, the gesture classifier will be
triggered and will predict a single pinch. In contrast, if there
is enough delay, then the user will start the second pinch in
a double pinch, and hence only after the user completes the
whole double pinch gesture, the classifier will be triggered.

Just like other design choices, several accumulation meth-
ods can be used. One simple possibility is to wait for con-
secutive N ‘‘class 1’’ outcomes before triggering the gesture

classifier. Here N is a parameter that provides a trade-off
between accuracy and delay. In this accumulation method,
the counter to N is completely reset whenever the predic-
tion is ‘‘class 0’’. The limitation of this simple method is
due to the imperfection in the classifier predictions. If due
to imperfection, the classifier predicts ‘‘class 0’’ instead of
‘‘class 1’’, the counter will be reset. Particularly, if the counter
has already reached a value close to N , resetting the counter
to 0 based on a single ‘‘class 0’’ prediction, implies throw-
ing away all the information contained in the previous few
frames. To overcome this limitation, we penalize the counter
whenever the prediction is ‘‘class 0’’, but do not completely
reset it. The proposed accumulation algorithm is given in
Algorithm 1. If there is a ‘‘class 1’’ prediction, the counter
c is incremented, if the prediction is ‘‘class 0’’, the counter c
is decremented. Whenever the counter c reaches the value N ,
the gesture classifier is triggered, and the counter is reset to 0
to look for the subsequent gesture. In the proposed strategy,
a higher value of N will still give more delay but also more
confidence in the prediction of gesture ends.

D. GESTURE CLASSIFIER (GC)
The third block in Fig. 4 is the GC. We now discuss the
neural network architecture that was designed to classify the
gestures in Fig. 3. We choose to design a deep CNN because
CNN has been shown to work remarkably well with tasks that
involve unstructured data such as images, audio, and text [27]
due to its ability to automatically extract features in multiple
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FIGURE 9. The PWDNM feature of the ‘‘class 0’’ and ‘‘class 1’’ samples in Fig. 8.

Algorithm 1 The Accumulation Algorithm
Initialization: c← 0
Input: pi
1: if pi == 1: then
2: c← c+ 1
3: else if pi == 0: then
4: c← max(c− 1, 0)
5: end if
6: if c == N then
7: Trigger the gesture classifier
8: c← 0
9: end if

stages (layers) and learn the patterns and representations of
the input from raw data.

Fig. 10 summarizes the architecture of our network. Specif-
ically, it shows the transformation of the input through mul-
tiple layers of the network. In discussing the dimensions of
the network, we assume that Nc = 64 and F = 50, which are
also the parameters used in evaluations given later in Sec. V.
The architecture consists of

Two Convolutional layers
- - First with 64 channels and a kernel size of (7, 8).
- - Second with 32 channels and a kernel size of (2, 3).
Two MaxPool layers
- - First with a kernel size of (4, 4).
- - Second with a kernel size of (2, 2).
Two Dense layers
- - First with a size of 32.
- - Second with a size of 6 (number of gestures).
Two Blurpool layers [28]
- - To improve the robustness of the model against

input-shifting, one BlurPool layer is inserted after
each convolutional layer.

- - Both of the BlurPool layers have a kernel size
of (3, 3).

- - We will provide some experimental results on the
effect of BlurPool in Section V-F.

A Softmax layer
- - We add a softmax activation function to the last

dense layer to enable multi-class classification.
Regularization layers
- - To avoid over-fitting, batch normalization [29], and

drop-out with a drop-out rate of 0.1 [30] is used.
- - 3 batch normalization layers and 2 drop-out layers

are used.

V. EXPERIMENTAL RESULTS AND ANALYSIS
A. EXPERIMENTAL PLATFORM
The platform used for the gesture recognition is shown in
Fig. 11. The Infineon radar baseboard MCU7, which is
a 60 GHz radar system platform is used. The sensor board is
BGT60TR24C which has 2 transmit and 4 receive antennas.
The layout of the transmit and receive antennas is shown in
Fig. 12. Only TX1, RX1, and RX3 are used in our evaluation,
which are underlined in Fig. 12. The sensor board is con-
nected to a laptop computer via USB. Subsequently, the data
collected from the radar is processed in Python, including
clutter removal, RDM calculation, range profile estimation,
TVD/TAD generation, and calculating the feature for ADM.
The ADMmodule is based on XGBoost, and the GC is imple-
mented using the open-source Keras library [31] supported by
Tensorflow [32].

B. RADAR AND SYSTEM PARAMETERS
We summarize the radar and system parameters in Table 1.
The radar operates in the 60GHz band, with fmax = 63GHz,
fmin = 58GHz, bandwidth B = 5GHz, and the range resolu-
tion rmin = 3 cm. We set the number of samples per chirp Ns,
and the number of chirps per frame Nc both to 64. Note that,
TVD is selected as a feature in this work because due to the
dynamic nature of the gestures, the Doppler - and the varia-
tion of Doppler across time - contain useful information about
the gestures. The purpose of the radar parameters selection
is then to maximize the Doppler resolution while ensuring a
high enough frame rate. To this end, we set the frame rate to
be 25 frames per second, i.e., F = 50 frames in the 2 sec-
onds period considered to contain the gesture. After setting
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FIGURE 10. Summary of our CNN architecture used for gesture classification in this study.

FIGURE 11. The platform used in evaluations.

FIGURE 12. The layout of the transmit and receive antennas in
BGT60TR24C. Only the underlined antennas are used in evaluations.

the aforementioned parameters for the Infineon radar, the
chirp-to-chirp time Tf /Nc was 640µs. The aforementioned

TABLE 1. Summary of the parameters.

parameters result in the Doppler resolution of vmin =

6.15 cm s−1. For the clutter removal, we use a value of
α = 0.2 in our experiments.

C. DISTINGUISHABILITY OF THE GESTURES IN TVD/TAD
In Fig. 13, we show the TVD/TAD of all the gestures in the
gesture vocabulary set. In each figure, the TVD is shown
on top, whereas the TAD is shown at the bottom. Due to
the clear movement towards and away from the radar, the
radial circle has a clear and strong signature in the TVD.
The TAD, however, does not change much throughout the
gesture duration. In contrast, for tangential circle, the Doppler
signature is not as strong, but the variation of the angle in
TAD is quite clear. Further, for a single pinch, we can see
two regions of activity in the TVD, whereas, for a dou-
ble pinch, we can see four regions of activity in the TVD.
Finally, for the left-to-right swipe and right-to-left swipe,
the starting and finishing angles are opposite of each other.
In summary, all six gestures have a unique TVD/TAD sig-
nature that allows its prediction when TVD/TAD are used as
features.
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FIGURE 13. The TVD and TAD of all the gestures in the gesture vocabulary set based on the selected radar parameters. The examples show that each
gesture is distinguishable from all other gestures in either TVD or TAD.

D. DATA-COLLECTION
In our experimental setup, the gestures are performed at
10 cm in the radar boresight. Each gesture sample is per-
formed in a window of 125 frames (∼ 5 s) with the under-
standing that the duration of the gesture would not exceed
50 frames (∼ 2 s). The data is collected from 11 users, i.e.,
U1-U11. Each of the 11 users performed 600 gestures, i.e.,
100 gestures per gesture-class per user. For users U1-U4,
we collected an additional 600 samples from each user for
ADM training.

E. ACTIVITY DETECTION MODULE
The evaluation of the ADM is based on all 11 users. We use
100 gestures per gesture-class per user in the evaluation. For
training, we use the additional data collected from users U1-
U4. For all the data, ground truths are marked as discussed in
Sec. IV-C1. For each of the samples, 3 ‘‘class 1’’ samples are
generated by applying a random offset to the left. This offset
is picked uniformly at random in {1, 2, · · · , 10}. This gives us
number of gestures-per-class × number of gesture-classes ×
number of users× number of offsets= 100×6×4×3 = 7200
‘‘class 1’’ samples. For ‘‘class 0’’, 2 samples are generated
from each gesture. The offsets to the right is also picked
uniformly at random in {1, 2, · · · , 10}. With 2 samples per
gesture, we have a total of 4800 ‘‘class 0’’ samples. The
remaining 7200 − 4800 = 2400 samples are obtained from
the data containing no activity. This data is based on the

ending positions of all the 6 gestures. For data collection,
the user placed his hand/finger in one of the gestures end-
ing position for 40 s and 1000 frames were collected. For
generating ‘‘class 0’’ samples from the collected data, 1 out
of the 6 gesture ending position is selected at random, and
subsequently, a consecutive window of 50 frames starting
at a random position in the 1000 − 50 frames is used. The
PWDNM feature discussed in Sec. IV-C1 is calculated for all
the 7200 × 2 = 14400 samples, and a binary classifier is
trained. In this work, we compare extreme gradient boosting
(XGBoost) [33] and long short-term memory (LSTM) [34].
We train the XGBoost classifier with a binary logistic objec-
tive and the area under the precision-recall curve (AUCPR)
evaluation metric. The number of early stopping rounds is
100, and the remaining parameters are the default param-
eters of the XGBoost [35]. The training/test split ratio is
0.9/0.1. The LSTM based binary classifier has two layers.
The first is an LSTM layer with 32 units, and the second
is a dense layer with 1 unit. The hyperbolic tangent acti-
vation is used for the LSTM layer, and sigmoid activation
is used for the dense unit. The classifier is trained with
binary cross-entropy loss and adaptive moment estimation
(ADAM) optimization, and the learning rate is 0.01. The
model is trained for 200 epochs, and we pick the model with
the best validation accuracy. The train/validation/test split is
0.81/0.09/0.1. The parameter N of the accumulator is set
to 11.
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TABLE 2. The performance of the ADM based on XGBoost binary classifier.

TABLE 3. The performance of the ADM based on LSTM binary classifier.

The evaluation results are presented in Table 2 and 3. The
evaluation metric is accuracy, which is the percentage of the
correct gesture end detections. We consider the gesture end
detection to be a failure if it is either early detection or no
detection. An early detection is an event in which the gesture
end predicted by the ADMhappens before themarked ground
truth gesture end. The no detection is an event in which the
ADM does not predict a gesture end within 15 frames (i.e.,
approximately 600ms) from the marked ground truth. From
Table 2 and 3, we observe that the mean accuracy across the
users and gestures for XGBoost is 5.3% better compared to
the LSTM. Further, the worst user average accuracy is> 97%
for XGBoost, whereas the worst user average accuracy for
LSTM is just 84.6%. In addition, the gesture with the worst
accuracy for XGBoost is the tangential circle of U9, with an
accuracy of 87%. In comparison, the gesture with the worst
accuracy for LSTM is the right-to-left swipe, with an accu-
racy of only 31%. Finally, the LSTM has 3× higher run time
compared to XGBoost. As such, we recommend the use of
XGBoost based ADM.

F. GESTURE CLASSIFIER (GC)
To evaluate theGC,we performLOOCV that can provide bet-
ter assessment of the generalizability of the classifier. Specif-
ically, in each fold, we hold one user out for testing and use
the other 10 users for training. In this evaluation, we only
use the samples that were correctly detected by the ADM.
Since ADM accuracy is very high, for each fold, we have
∼ 6000 samples for training and ∼600 samples for testing.
For training, we select the categorical cross-entropy as the
loss function and use the Adam optimizer with a learning rate
of 5×10−5. We use the Glorot uniform initialization [36] (we
also tried He initialization [37], but did not see any significant
performance difference and thus results for He initialization
are not reported here) and train for 150 epochs. An example
of a typical training loss curve is shown in Fig. 14. We did
not observe any irregular behavior for all the training con-
ducted for this LOOCV. We employ ensemble method with

5 models using majority voting to stabilize the prediction
output.

In the following, we will first report the leave-one-
out performance for the network architecture described in
Section IV-D. Then, we provide additional results to show the
effect of the BlurPool layer [28], which supports our decision
to include BlurPool in our CNN architecture.

Table 4 shows the LOOCV performance for 11 users and
the corresponding confusion matrix is shown in Fig. 15.
The samples used here are those detected by the ADM
as described in Section IV-C with the counting threshold
N = 11. The average accuracy for the 11 users is 95.5%.
We observe some performance variations across the users,
with a majority of users (10 out of 11) having > 90% accu-
racy. The relatively low accuracy of U2 and U5 could be
attributed to the uniqueness in how those two users perform
the gestures. This hypothesis is based on our observation that
those confusion cases of a single pinch as a radial circle
mainly come from U5 (31 out of the total confusion cases
of 35 in Fig. 15), and all 41 confusion cases of right-to-left
swipe as radial circle belong to U2. If this hypothesis is true,
we expect the accuracy will improve if we have more users
in the training set. The verification of this hypothesis is left
for future work. For the average accuracy for each gesture,
we see a similar level of accuracy for all gestures except for a
single pinch. Based on our empirical analysis, we conjecture
that this can be due to the weaker movement of the thumb
in a single pinch gesture which weakens its signature and
might make it prone to confusion with other gestures. This
is because our radar processing solution is based on Doppler
which may amplify the faster moving index finger and mask
the contribution from the slower moving thumb in some sin-
gle pinch gestures. The verification of this hypothesis is also
left for future work.

We next report a comparison result to show the effect of the
BlurPool layer [28]. As mentioned in Section IV-D, our rea-
son to adopt BlurPool is that it can improve robustness against
the shift of the input features. To verify this, we conduct the
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TABLE 4. LOOCV performance on 11 users using the CNN architecture with BlurPool.

TABLE 5. End-to-end performance results of the proposed solution.

FIGURE 14. The training loss as a function of the number of epochs.

FIGURE 15. The confusion matrix of the LOOCV evaluation result of
Table 4.

following experiment. We train two sets of models (still using
the LOOCV setting as above): one using the architecture

FIGURE 16. Comparison of the LOOCV average accuracy for the
architecture with and without BlurPool when trained using data
generated by ADM with N = 11 and testing with data samples generated
with variable N .

with BlurPool as described in Section IV-D and the other
one without BlurPool. We use the samples detected by ADM
with a counting threshold N = 11 for training. For testing,
we generate another set of samples using ADMwith counting
thresholds N = {5, 6, 7, 8, 9, 10, 11}. By setting different
N between training and testing, there will be different linear
shifts of the input features in the training and testing samples.
The LOOCV average accuracy of the 11 users versus the
choice of N in the testing is shown in Fig. 16. The plots show
that there is some degradation as we perform the test on data
generated with ADM using a different threshold N . As N
becomes smaller and deviates more from N = 11 (for which
the models are trained), the degradation increases. While this
trend is true for both architectures, we can see clearly from the
plots that the architecture with Blurpool has less degradation,
and thus is more robust against variations in N . This is the
main reason for our decision to adopt BlurPool in our GC
architecture.
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G. END-TO-END ACCURACY RESULTS
The end-to-end performance is reported in Table 5. The end-
to-end accuracy is defined as the percentage of the test sam-
ples whose end is determined accurately by the ADM and the
prediction by the GC is correct. Because the ADM has very
high accuracy at 99.5%, the end-to-end accuracy is highly
correlated with the accuracy results of the GC in Table 4. Our
end-to-end accuracy is 95.0%.

VI. CONCLUSION AND FUTURE WORK
We presented an end-to-end solution for micro-gesture recog-
nition using mmWave radar. We proposed 3 pairs of intuitive
micro-gestures to be classified. Subsequently, we determined
TVD and TAD to be meaningful features for gesture clas-
sification and confirmed that the proposed gestures are all
distinguishable in TVD and/or TAD. We segmented the con-
tinuous stream of radar data using an ADM based on a binary
classifier - that predicted whether the gesture has ended or
not - and an accumulator - which gathered the predictions of
the binary classifier. Subsequently, we classified segmented
TVD/TADs containing gesture information using a CNN that
includes a Blurpool layer to increase robustness against the
shift in input features. The ADM and GCwere both evaluated
on data collected from 11 users. The end-to-end results show
that the proposed solution can achieve 95% average accuracy.

More evaluations are required to establish the robustness
of the proposed solution. Specifically, further generalization
in terms of the number of users for training as well as the
testing is needed. Also, we limited our evaluations to the
10 cm distance and the boresight of the radar. Extensions are
required both to the distance and the angle relative to the
radar. Though it is expected that the solution will be robust
to small variations, e.g., distance variation of 2 − 5cm, and
angle variation of [−10, 10]◦, extension for larger variance
in distance and angles will likely require obtaining data and
re-training the models. Further, the evaluations are made on
a static radar, whereas the radar mounted on mobile devices
is likely to move within the duration of the gesture, and
evaluations catering to the mobile nature of the device are
required. Finally, evaluating the computational complexity of
the proposed solution, and the development of low complex-
ity alternatives (e.g., similar in spirit to [17], [20], [23]) is
another direction for future work.
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