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ABSTRACT Practical work is one of themost important instructional tools in control engineering. To address
concerns linked to the cost and space requirements of traditional hands-on laboratories, technology-enabled
laboratory modes, such as virtual, remote, and take-home laboratory modes are proposed. Each of these
alliterative laboratory modes has its own set of benefits and emphasizes a distinct learning goal. Furthermore,
due to lockdown and physical proximity restrictions imposed by policies in response to the COVID-19
pandemic, the employment of these laboratory modes has been quickly increasing. The laboratories’
development, operation, and maintenance become more fragmented as a result of these many possibilities.
In this study, we propose ‘‘ReImagine Lab’’ as a framework for leveraging digital twins and extended reality
technologies to streamline the development and operation of hands-on, virtual, and remote laboratories. By
increasing the level of interaction, immersion, and collaboration in technology-enabled laboratory forms,
this framework intends to boost student engagement. The benefits of this framework are demonstrated by
examining several use cases, and a 37-person ‘‘system usability study’’ is conducted to assess the usability
of virtual laboratories employing desktop computers and immersive virtual reality.

INDEX TERMS Control system, digital twins, extended reality, virtual reality, industry 4.0, remote
laboratories, virtual laboratories, metaverse.

I. INTRODUCTION
Control engineering is a major interdisciplinary topic that
exists in almost every engineering discipline [1]. Automatic
control is fundamental to advancements in a wide sector
of industries, including the energy sector, transportation,
manufacturing, aerospace, smart homes and consumer appli-
ances. Control engineering is devoted to the use of math-
ematical modeling and analysis to understand systems and
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their interactions in nature, as well as applying control theory
to the controllers’ designs that drive these systems to reach
desired states. Control engineering is applied to systems that
can vary in nature and include mechanical, electrical, fluid,
chemical, financial or biological systems [2]. While they
are conventionally taught in educational institutions, con-
trol courses have roots in mathematical theory, and at the
same time, they require an intuitive understanding of differ-
ent concepts from students, which allows students to relate
the acquired knowledge to actual practical applications of
control theory. As a result, control engineering instructors
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persistently highlight the importance of practical hands-on
experience in successful control engineering education from
the early stages of learning [3].

There are many pedagogical tools that can be applied to
build the practical hands-on expertise required by control
courses, including course project assignments, internships
and laboratory experiments. Practical work in the laboratory
(‘‘control laboratory’’) has become a standard component of
automatic control courses, as they aim to [4]:
• connect theory to implementations and observations in
the laboratory,

• identify differences between models and physical
systems,

• design and verify controllers that meet specifications,
• collect and visualize data.
Traditionally, these laboratories were based on work-

ing with laboratory-scale control objects that were used to
demonstrate dynamic phenomena that was observed in full-
scale, industrial counterparts of these objects.

These experimental setups incorporated computer inter-
faces to enable students to design and tune controllers and
observe how the system behaves under these new conditions.
For example, in [5], the laboratories included experiments
with a coupled tank system, an inverted pendulum and a
rotary table. These systems were used to demonstrate the use
of modeling, simulation and control design to students.

However, actual physical laboratories are costly to build
and maintain. They require a considerable amount of space
and are composed of specialized hardware, which increases
the complexity of the necessary infrastructure. Moreover,
as the number of students increases, managing the infrastruc-
ture and organizing physical laboratories becomes extremely
challenging. In other words, this infrastructure does not
scale well.

Thus, leveraging the recent advances in information and
communication technologies, educators have created differ-
ent alternative modes of technology-enabled laboratories to
tackle the issues related to traditional physical hands-on lab-
oratories. Works [2] categorized these different laboratory
modes based on the nature of the experimental resources (real
or simulated) and the location of these resources (local or
remote), as shown in Table 1. Further discussion is largely
based on this taxonomy.

A. SEEKING THE ULTIMATE LABORATORY MODE
There is an ongoing debate on the effectiveness of the
different laboratory modes. A comparative analysis of the
different laboratory modes has shown that when these lab-
oratory modes are developed, their efficiency is measured
by their ability to achieve different learning objectives [29].
For example, remote laboratories are more suited for under-
standing concepts, while virtual laboratories are better suited
for learning design skills. This makes it difficult to prioritize
any single laboratory mode.

Another important factor to consider is the way that stu-
dents’ interaction with laboratory objects, instructors and

other students is affected by the specific laboratory mode.
Analysis of results from studies of students’ interaction in
face-to-face and remote hands-on laboratories have shown
that there is a lack of systemic analysis of students’ interac-
tions in the alternative technology laboratory modes. Before
we are able to understand the full implications of the use
of such laboratory modes, we need to have better tools to
investigate the students’ interactions [30].

While hands-on physical laboratories have evident disad-
vantages related to cost and space requirements, remote and
virtual laboratories also have drawbacks:
• In remote laboratories, students report a lack of personal
engagement because of the separation between them and
the experimental objects [31], [32].

• Virtual laboratories have even more of a separation,
as the virtual system does not physically exist and the
relationship is not clear between the physical and the
virtual environment.

• The usability of virtual laboratories is questioned,
as it is not the focus point when designing virtual
laboratories [33].

In addition to the learning objectives of control engineering
courses, to meet the needs of the industry as well as the
accreditation criteria imposed on the university study pro-
grams, engineering students should develop not only profes-
sional skills but also soft skills. In this case, the working
patterns that happen in hands-on laboratories are more suited
to foster these skills compared to remote and virtual laborato-
ries [34]. An overview of laboratories in control engineering
and their alternatives is presented in Table 2.
Regardless of the ongoing debate, the recent coronavirus

pandemic has forced the use of these alternative laboratory
modes as physical distancing and lockdowns prevented the
use of traditional physical laboratories [35], [36]. The lock-
downs and related movement restrictions resulted in the need
for organizing classes in hybrid form, and thus, the option of
distance learning was made available to students. In a similar
way, a hybrid approach combining several laboratory modes
has emerged that allowed for the modes to complement each
other. For example, virtual and remote laboratories concerned
with the same control object can be used as follows [26]:
• the virtual mode is applied during the control design
stage when no interaction with the real system is strictly
necessary;

• the remote mode is applied for observing the behaviors
introduced by the real system and deepening the under-
standing of related concepts.

As a result, rather than searching for the ultimate laboratory
mode, one might devise a method for combining all of the
modes within the same laboratory activity.

B. EMERGING INDUSTRY 4.0 TECHNOLOGIES: DIGITAL
TWINS AND EXTENDED REALITY
Hands-on laboratories in control engineering are often
extended with mathematical models and simulations that,
on the one hand, provide the theoretical foundations for
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TABLE 1. Laboratory mode classifications.

modeling the specific control object and, on the other hand,
allow the students to design control systems based on these
models. The models themselves are often based on approx-
imations leading to unmodeled dynamics. For example, the
parameters of the studied systems are assumed to be time-
invariant, yet in real life, the parameters of the systems are
subject to change. Thus, updating these models and simula-
tions requires manual effort and specialized expertise, which
makes creating, operating, and maintaining the laboratories
even more costly.

The industry 4.0 revolution, however, emphasized the
usage of data as the cornerstone for improving processes
and operations across all industries. For example, industry
4.0 builds on a data-driven architecture by utilizing models
that are capable of using data from real systems, which are
used to synchronize the virtual representation of these sys-
tems with their real life counterparts, leading to the concept
of Digital Twins (DT). The most cited definition for a digital
twin reads as follows [37]. Note that the quote is taken from
the document published by NASA, hence the occurrence of
the ‘‘flying twin’’ concept, but the applications of the digital
twins are obviously not limited to the aerospace industry.

A digital twin is an integrated multiphysics, multi-
scale, probabilistic simulation of an as-built vehicle
or system that uses the best available physical mod-
els, sensor updates, and fleet history to mirror the
life of its corresponding flying twin.

The digital twin concept has many other definitions in the
literature, as it is an emerging technology, and researchers are
experimenting with its applications across different types of
industries.

In our work, we follow the definition presented by the Dig-
ital Twin Consortium: ‘‘A digital twin is a virtual represen-
tation of real world entities and processes, synchronized at a
specified frequency and fidelity’’ [38]. Toward the dynamical
modeling aspect of a digital twin, we turn to [39], which
describes the digital twin as having three main parts:

• a model of the object,
• an evolving set of data relating to the object,
• a tool for dynamically updating or adjusting the model
in accordance with the data.

Concerning the last item, we note that the need for transfer-
ring data from virtual simulation to DT-based virtual labora-
tories specifically has been stressed in [9].

C. CONTRIBUTION
In this paper, we build upon this idea by showing that
DT-based laboratories replace traditional simulated virtual
laboratories and remote laboratories. Furthermore, with this
approach, the traditional hands-on experiments are enhanced
by enabling shared and mixed experiences coupled with the
use of the extended reality technology.

The proposed framework is composed of multiple levels of
fidelity based on digital twin implementation and extended
reality (XR), with the ability to create unified and com-
pliant modes for hands-on, virtual and remote laboratory
experiments:

• First, remote laboratories are replicated as digital
twins of the original laboratories synchronized at high
frequency.

• Second, locally hosted virtual laboratories are digital
twins of the original laboratories synchronized period-
ically to ensure the validity of the virtual representation.

• Finally, XR is used to enable a higher level of interaction
and visualization offered by digital twin representation.

A comparison of the characteristics of different laboratory
modes and hybrid ReImagine laboratories is presented in
Table 3.

The main contribution of this study is presented in the
following paragraphs. We first introduce the ‘‘Reimagine
Lab’’ framework and show how the use of digital twins
and extended realities streamlines the creation of virtual and
remote laboratory modes. We then review the benefits of
using the framework for both remote and virtual laboratories,
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TABLE 2. Overview of laboratories in control engineering and their alternatives.

VOLUME 10, 2022 89927



S. Alsaleh et al.: ReImagine Lab

TABLE 3. Characteristics comparison of different laboratory modes and hybrid ReImagine laboratories.

as well as how it enables the creation of shared experiments
with hands-on laboratories. A specific use case is studied to
test the validity of the framework, where a digital twin of
an actual control object, a laboratory-scale model of a 3D
crane located in the CS laboratory at Tallinn University of
Technology, Tallinn, Estonia [40] is created.

The structure of the manuscript is as follows. The proposed
DT and XR laboratory framework is detailed in Section II.
A use case of a digital twin-based implementation of a 3D
crane is described in Section III. Next, the system usability
study comparing the use of immersive virtual reality and
desktop virtual experiments is put into context and presented
in Section IV. The results of the experiments are presented
and discussed in Section V. Finally, conclusions are drawn
in Section VI.

II. REIMAGINE LAB: A DIGITAL TWINS AND
EXTENDED REALITY FRAMEWORK
The proposed framework is underpinned by two major com-
ponents: digital twins and extended reality. Fig. 1 presents
an overview of the proposed framework. The components
highlighted by dashed outlines represent the different lab
modes (with the exception of hands-on labs):
• Remote laboratory mode;
• Virtual laboratory mode;
• Cloud hosted virtual laboratory mode.
In all cases, while multiple fidelity levels of digital twin

implementations are used to represent the controlled physical
object, XR is used to enable a higher level of visualization and
interaction required by the digital twin representation. The
components on the bottom left represent:
• the physical lab asset, which allows for the hands-on lab
mode to be employed;

• the big data server that handles data storage for digital
twin synchronization and other tasks;

• a cloud-hosted version of the digital twin of the physical
lab asset.

The suggested framework addresses all of the issues raised
previously. Table 4 presents an overview of the characteristics
of the framework, and each lab mode is discussed separately
in the next section.

A. REIMAGINE-LAB MODES
1) REMOTE MODE
As illustrated in Fig. 2, the framework performs remote
teleportation of the laboratory asset by substituting video
streaming with synchronization of the local digital twin of the
real asset. Extended reality is being utilized to offer a more

intuitive and natural form of engagement using hand gestures
and other tools, allowing for an experience comparable to
that found in the hands-on laboratories. Because this type of
engagement does not need any user to have control privileges,
the usage of XR facilitates collaboration by establishing vir-
tual environments where users may interact with one another
and the laboratory object.

2) VIRTUAL MODE
Fig. 3 shows how the proposed solution enables locally hosted
virtual laboratories by replacing the simulated model with a
digital twin:
• first, the bidirectional evolving set of data guarantees
that updates from the actual laboratory object are applied
automatically to the digital twin;

• second, adhering to the digital twin principle, ReImag-
inedata that describes the uncertainty and divergence
between the digital twin and the physical twin is also
available;

• finally, usingf XR technology as amedium of interaction
to take advantage of the rich amount of information is
available through the digital twin architecture.

The first two features are intended to foster greater trust in the
virtual simulation, while the use of XR enables the creation
of environments that promote student collaboration.

Cloud-hosted virtual environments provide additional ben-
efits from the framework because they enable the use of
higher-fidelity twin models. As illustrated in Fig. 3, the simu-
lation is distributed across the network, with the local device
rendering the visual representation of the digital twin asset
while computation is offloaded to the cloud.

3) HANDS-ON MODE
The benefits of utilizing the framework are not limited to
technology-enabled laboratories; they also benefit hands-on
laboratories by allowing for mixed experiences in various
laboratory modes. The use of XR and digital twins in Fig. 4
enables a mixed experience where a group of students can
interact directly with the laboratory asset while others can
interact remotely. This interaction can be bidirectional if local
students are also utilizing augmented reality to interact with
laboratory assets.

B. CREATION OF THE REIMAGINE LAB ASSETS
The following section defines the core process of creating
digital twins in the context of automatic control systems. This
involves mathematical modeling, the creation of 3D assets,
interaction and visualization design.
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FIGURE 1. The overall schematic diagram for the ReImagine-laboratory framework.

FIGURE 2. The schematic diagram for a remote laboratory and ReImagine enabled remote laboratory.

1) MATHEMATICAL MODELING
Wefirst address the modeling and simulation aspect of digital
twins. Here, modeling broadly refers to the problem of the

coherent representation of the dynamics of the system studied
by computing the evolution of its internal variables (states)
under external stimuli (inputs). States and inputs represent
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TABLE 4. Characteristic of the ReImagine Lab.

some physical properties of the system. In general, a dynamic
model can be represented in state space form using a system
of differential equations as follows:

ẋ = f (x,u, t) (1)

y = h(x,u, t),

where x ∈ Rn is the state vector, u ∈ Rm is the input vector,
y ∈ Rp is the output vector, and t is the time argument, and
f (·) and h(·) are nonlinear functions. For convenience, linear,
time-invariant approximations of (1) are often used and are
of the form as follows:

ẋ = Ax+ Bu (2)

y = Cx+ Du,

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈
Rp×m are state, input, output, and direct transmissionmatrices
with numerical entries, respectively [41]. For single-input,
single-output linear, time-invariance systems, the concept of

the transfer function can be employed. The corresponding
dynamics equation in the Laplace domain is given as follows:

G(s) =
bmsm + bm−1sm−1 + · · · + b0
ansn + an−1sn−1 + · · · + a0

, (3)

where s is the Laplace operator, and ai and bj are real num-
bers, and n is the order of the model. For the system in (3) to
be practically realizable, it must be proper, i.e., the condition
n > m must be satisfied.
In terms of modeling approaches, the usual ‘‘box’’ models

are considered:
• White box modeling (also known as First Principles
modeling). The structure of the model is known, and the
model is derived from physical laws.

• Gray box modeling. The model is partially derived from
physical laws. Certain parts of the model are approx-
imated such that these approximations have no direct
physical interpretation but are nevertheless suitable for
modeling purposes.
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FIGURE 3. The schematic diagram for a virtual laboratory and ReImagine enabled virtual laboratory.

• Black box modeling. No information about the physical
structure of the system is given a priori. As a result,
the model is created by fitting experimental data to a
mathematical type of model and structure that has been
arbitrarily chosen. This is a data-driven technique that
is ubiquitous, although it may be less beneficial if the
structure of the systems under investigation is known.

In the case of gray and black box modeling, data must be
collected from real life plants. In the present work, data
are collected by sampling the sensors of the real life plant.
The system under investigation is connected to a desktop
computer through a data acquisition device that allows the
collection of all relevant data for creating a mathematical

model of the digital twin. The complete process is presented
in Fig. 5.

After the collection and preprocessing of data, the model
identification procedure is carried out. In this work, we con-
sider linear approximations of the system in question and for
the linear models in (2) and (3), the estimated parameter sets
are as follows:

θss =
[
θA θB θC θD

]
(4)

and

θtf =
[
θb θa

]
, (5)

respectively, with the individual entries of θss and θtf repre-
senting row vectors of parameters stemming from either the
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FIGURE 4. The schematic diagram for a hands-on laboratory and ReImagine enabled hands-on laboratory.

corresponding system matrices or the zero and pole polyno-
mials. Time identification is employed such that the output
error criterion (residual norm) is as follows:

F =
N∑
i=1

ε2i = ‖ε‖
2
2 (6)

is minimized, where εi = yi − ŷi is the residual (sim-
ulation error), yi is the true system output and ŷi is the
predicted output for collected samples i = 1, 2, . . . ,N .
In the case of a multi-input, multioutput system, the resid-
uals resulting from modeling individual outputs are scaled
according to the magnitude of the modeled physical variable,
and a weighted sum is used as the cost function. Several
optimization algorithms are used to estimate the parame-
ters of the model, including the Trust Region Reflective
algorithm [42], [43], the Levenberg–Marquardt algorithm
[44], [45], and the Nelder–Mead direct search method [46].
The latter is well-suited to optimize a function with
derivatives that are unknown or nonexistent. Addressing the
problem of the initial parameter estimation, the subspace
estimation method is used [47].

Concerning control, in the present work, we consider the
classical negative unity feedback control loop as follows:

H (s) =
C(s)G(s)

1+ C(s)G(s)
(7)

consisting of a controller denoted by C(s) and the plant
denoted byG(s). Here, the objective of the control system is to
manipulate the plant input u via the controller to minimize the
error e, i.e., difference between the desired output r (reference
value) and the true output of the plant y, and we consider the
output tracking problem. In real life industrial applications,
a proportional-integral derivative (PID) controller is typically
used [48], [49], [50]. In this work, we employ the parallel
form of the PID controller that has the form as follows:

C(s) = Kp + Kis−1 + Kd s, (8)

where Kp, Ki, and Kd are the proportional, integral, and
derivative gains, respectively. These parameters must be
properly tuned for each control loop that composes the full
system.

An important point to make is that in the case of digital
twin synchronization with real systems, the parameters of
the models obtained using the methods described above are
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not static and coevolve with the changes in real systems.
Therefore, the process depicted in Fig. 5 can be thought of
as the creation of a mathematical model snapshot. At preset
time intervals, new model snapshots are created. Hence, the
process of parameter estimation and controller parameter
transfer is continuous. As the specific physical lab asset is
utilized, it generates valuable data that are stored on the server
and used to obtain the updated mathematical models.

2) 3D MODELING
All digital twins of control objects are recreated by either
measuring the dimensions of the parts of physical devices
or by using available blueprints and then implementing the
3D models using CAD software, such as the Blender 3D
modeling software [51]. For XR applications, efficient real-
time rendering of the objects must be ensured. Therefore,
the following important considerations are in effect when
modeling all objects:
• All 3D models must be optimized, i.e., the number of
polygons forming the part reduced and visualization
tradeoffs sought in terms of applying textures, displace-
ment maps and lightmaps.

• A sufficient level of detail must be ensured such that the
effect of immersion is achieved [52].

The complete procedure for 3Dmodeling thus is composed
of the following: steps:

1) Measuring the physical devices or using a previously
known blueprint data;

2) 3D modeling in Blender ensuring a sufficient level of
detail is achieved;

3) Optimization, meaning the application of necessary
textures, baking displacement- and lightmaps;

4) Exporting the 3D model from Blender into a common
3D asset exchange format (usually FBX);

5) Importing the 3D asset into the real-time rendering
engine, creation of materials that are used on the
3D model, validation in the target extended reality
application.

If necessary, we may return to step 2 to correct any issues
discovered in the real-time application.

The process of 3Dmodeling can also be semiautomated by
introducing photogrammetry [53]. This approach, however,
falls outside the scope of the present paper.

3) PROTOTYPING PLATFORM
To efficiently codevelop the 3D visualization and XR and
themathematical modeling parts, a coherent prototyping plat-
form is needed. In the present work, the following software
packages are chosen to implement the platform:
• Unreal Engine 4 [54] as the visualization platform due to
highly sophisticated support for virtual reality and rapid
game logic prototyping via Unreal Engine Blueprints.

• MATLAB/Simulink environment [55] as the mathemat-
ical prototyping platform with real-time simulation sup-
port via the Simulink Desktop Real-Time toolbox.

• UDP communication plugin for Unreal Engine 4 that
makes real-time simulation possible and was devel-
oped for Re:creation Virtual and Augmented Reality
Laboratory-related applications [56].

The diagram showing the prototyping configuration is
depicted in Fig. 6. This configuration allows for true real-
time simulations to be carried out. Prototyping involves the
following stages:

1) Development of mathematical models based on
the methods discussed in Subsection III-B. Design
of mathematical models of interaction mechanics.
Validation of the models using data from real control
objects. This part is done in either the MATLAB or
Simulink environment. As a final stage, functions or
blocks enabling real-time data communication through
the UDP protocol are added to the project.

2) Development of the 3D models per the methods dis-
cussed in Subsection II-B2. After importing the models
into Unreal Engine 4, correct assembly of all parts
in the hierarchical structures follows. This has to do
with ensuring correct coordinate transformations to be
applied to connected parts of the given object.

3) Evaluation of the developed application in virtual real-
ity. Assessment of the immersion effect, correctness of
dynamics and interaction mechanics.

Once refined, the mathematical models can be directly
exported from Simulink as C++ code and integrated into
Unreal Engine 4 as blueprint-accessible code plugins. This
approach provides the greatest amount of flexibility because
the developed mathematical models of dynamics are com-
puted in separate modules that are accessible as blueprint
blocks with the required number of inputs and outputs. The
plugins are also reusable in other projects.

The prototyping platform can also be used to teach control
system design effectively. In this case, the student receives the
Simulink block, which represents the system and internally
implements communication between themathematical model
and visualization. The visualization application can then be
kept running at all times while the mathematical model with
the designed controllers is launched several times to enable
experimentation with different controllers or controller set-
tings. This can also be done as part of group work, with
one student controlling the experiment from the VR envi-
ronment and the other designing the control experiment in
MATLAB/Simulink.

4) INTERACTION DESIGN
Interaction is the most important aspect of an immersive
XR environment. While developing digital twins of control
systems, the design of meaningful interactions is the main
goal of the training aspect of the application [57]. As a result,
the development of coherent interactions is regarded as a top
priority for ensuring effective laboratory instruction.

In this work, we explore two types of interactions that arise
in the area of control systems:
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FIGURE 5. The process of creating a data-driven mathematical model for the digital twin. Relevant data are first
collected from the real plant. Then one of the box models is used with system identification (the choice is
determined by the position of the switch in the figure). Finally, the digital twin can use the model of the dynamics.
The model is periodically updated in a process referred to as synchronization of the real system and the digital twin.

FIGURE 6. Real-time prototyping platform for developing digital twins of
control objects.

1) Interactive selection of the control system tracking ref-
erence (set point);

2) Interactions with floating information panels that dis-
play valuable data concerning the setup and the state of
the laboratory experiment.

Next, we focus on key aspects of the implementation of
these interactions. There are several options available when
designing interactions. First, we can implement those using
the physics engine available in the target platform. In this
case, the mathematical description of the process is largely
unclear. The task is, however, to obtain a valid mathematical
model of the whole system, including interactions, which
must be reproduced in the digital twin. Thus, interaction
design is also seen as a mathematical problem and all mod-
eling methods discussed in Subsection III-B are valid for this
purpose. Several methods are used for developing interaction
mechanics:
• Interactions are coupled with the object dynamics, that
is, the corresponding (non)linear mathematical model is
augmented with corresponding inputs and states;

• Interactions are decoupled from the object dynamics,
that is, a separate mathematical model is designed for

the interaction. This approach is feasible only if the inter-
action does not affect the control system performance,
and thus, its use is usually limited.

• An interaction is designed for the supporting compo-
nents of the XR experience (such as using the infor-
mation panels). Mathematical models of these interac-
tions are, at first glance, not needed; however, if one
considers the concept of intelligent immersive virtual
environments (IIVEs), useful intelligent mechanics can
be employed as well [58].

Interaction mechanics are first evaluated by comparing the
performance of the model with that of the original con-
trol object. Then, the subject-based evaluation is performed
in XR internally by developers and through subject-based
experiments. If the results are not satisfactory based on the
feedback, the mechanism is revised.

Another important interaction mechanic is not considered
in the case study presented in this work, but it should be
mentioned. This is the direct physical interaction with the
moving parts of the recreated control objects. From the con-
trol systems perspective, this is generally used to introduce
disturbances into the studied systems. From the user perspec-
tive, such interactions are of curiosity driven experimental
nature, and hence, are very valuable features.

5) GRAPHICAL DATA ANALYSIS
Graphical representation of data is a very convenient tool for
analyzing the underlying phenomena [59]. Consequently, one
of the key aspects of learning control system dynamics is
related to the study of time series charts depicting system
dynamics [41]. For this reason, the corresponding feature
must be implemented in the XR visualization, that is, a real-
time time series chart must be available. Therefore, the fol-
lowing items are considered:
• Due to the flexibility of presenting data in XR, the
graphs can be presented to the user upon request and
attached to the view port in an unobtrusive way. For
example, the dynamic chart may be attached to one or
both of the motion controllers and shown upon the user
pressing a preset button;
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FIGURE 7. Typical time series chart for studying control system dynamics,
here for a single input single output system. Top: tracking performance
analysis through step response evaluation. Bottom: control law dynamics
analysis (system input generated by a controller).

• The structure and types of charts shall depend on the
particular study. In studying control systems, one is gen-
erally interested in control system tracking performance
and control law behavior. Thus, the most general chart
is presented in Fig. 7.

In this work, for implementing charts in the XR application,
an Unreal Engine 4 plugin called Kantan Charts is used [60].

III. CASE STUDY: DIGITAL TWIN BASED
IMPLEMENTATION OF A 3D CRANE
IN EXTENDED REALITY
Hereinafter, a case study of developing a coherent digital
twin of a lab-scale model of an overhead crane is provided
in the context of the proposed framework. The original real
life control object was produced by the Inteco company [61]
and is commonly referred to as the ‘‘3D crane’’ as a reference
to the number of degrees of freedom involved in moving the
payload.

The 3D crane is a nonlinear electromechanical system that
possesses a complex dynamic behavior and creates challeng-
ing control problems [61], [62]. The industrial counterpart
of this laboratory model is used in various industries and
seaports to transport large and heavy containers and other
payloads. To ensure efficiency and productivity, the crane
must transport the payload as fast as possible to its desti-
nation. However, a certain motion profile must be employed
such that the control actions leading to the acceleration and
deceleration of the payload ensure secure and sway-free
transportation [63]. The characteristics of the system allow
the application of various control strategies [62], [64], [65].
This makes it very appealing as an educational tool in the
control systems laboratory.

The present control object is depicted in Fig. 8. It consists
of a frame, a moving rail attached to a moving cart. The
payload is attached to the cart via a rotating spool. Thus, three
degrees of freedom are achieved. The rail, cart and payload

FIGURE 8. Real-life 3D crane control object.

spool are actuated by DC motors, and their positions are
determined with incremental encoder sensors. In addition, the
two encoders are attached to the cart that measure the swing
angle of the attached payload.

A. 3D MODEL OF THE OVERHEAD CRANE
Following the discussion above, the 3D model of the crane is
developed. The following major components are recreated:
• Yellow frame;
• The moving rail;
• The moving cart with the moving spool;
• The payload itself attached to its cable.

Thus, all critical mechanical components and the frame
have been faithfully recreated, while the wires, DC motors,
encoders, pulleys and belts were ignored. It was confirmed
through initial experiments that as long as the recreated
components had the correct scale and behaved exactly as
expected, the 3D model would be convincing enough for
immersion to occur [58]. In the future, the other components
can be recreated as well, but the additional complexity may
not necessarily benefit the present digital twin. The resulting
model is shown in Fig. 12.

B. MATHEMATICAL MODEL OF THE 3D CRANE
The discussion below pertains to obtaining a single snapshot
of the physical twin dynamics using the methods described
in Sec. II-B1. The model shall be updated periodically based
on the data generated during the operation of the physical
overhead crane.

In this work, we use the physical model of the object
shown in Fig. 9. Instead of using a complicated nonlinear
model as in previous cases, linear models are used for two
purposes:
• Describing the motion of the rail and the caret in the
(x, y)-plane (transfer functions);

• Determining the dynamics of the payload swing angles
α and β (state space model).

The third degree of freedom (payload height) is not used.
The payload is fixed at a height of approximately 30 cm
from the floor. Time domain identification is used to obtain a
snapshot of a decoupled set of models. For the transfer from
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FIGURE 9. Physical model of the 3D crane system.

the normalized actuator control signal ux , uy ∈ [0, 1] to the
rail and caret positions, we obtain the following:

Gx(s) =
1
s

0.30651
0.035073s+ 1

(9)

and

Gy(s) =
1
s

0.33821
0.041963s+ 1

, (10)

and for the transfer from the inputs to the swing angles the
state space model of the form (2) is obtained, where the state
matrix is as follows:

A =


−0.4377 3.513 0.5393 −1.9075
−3.804 0.2155 −1.5478 −0.8172
−0.0913 1.3392 −0.0178 4.3422
1.1336 0.0534 −3.0303 0.1400

 ,
(11)

The input matrix is as follows:

B =


0.56505 0.21808
−1.1166 −6.7447
−0.13395 −2.3007
4.8125 −3.1489

 , (12)

The output matrix is as follows:

C =
[
−0.0123 0.02454 −0.00524 −0.03695
−0.04552 0.09786 0.03010 −0.02335

]
,

(13)

and the direct transmission matrix is as follows:

D =
[
−0.0011281 0.0013873
0.0011836 0.0012102

]
. (14)

Furthermore, the model in (11)–(14) was modified so that
the second swing angle motion needed to be corrected. This
was done by multiplying the real part of the corresponding
eigenvalues by a factor of 2.5. Then, a balanced reduction
technique was applied to the modified model, which also
resulted in a nonzero matrix D. The corresponding validation
plot is shown in Fig. 10.
Some modeling discrepancies can be observed. However,

when the digital twin of the 3D crane is observed in the XR
environment, the modeling errors do not, generally, result in

FIGURE 10. Results of model validation for the swing angle dynamics of
the 3D crane.

breaking the effect of immersion; the dynamics of the crane
are perceived by the subjects as believable. For the present
work, the accuracy of the model is not critical as long as
immersion is achieved because the goal of the experimental
study is not related to demonstrating the precision of the
mathematical model but rather demonstrating some high-
level control concepts. However, when further experiments
are designed, a different modeling approach should be used.
Therefore, instead of using the black box route in Fig. 5,
which yields a linear approximation for a fixed line length
of the 3D crane, the gray box route should be used instead
of involving a nonlinear model of the system. That way,
a more precise model can be achieved, the state variable
corresponding to the line length can be integrated into the
model, and relevant experiments that are, e.g., related to
controller tuning, can be designed and carried out in the real
environment and with the digital twin.

Finally, although the identification procedure for the mod-
els in (9)–(10) and (11)–(14) is carried out separately, since
the inputs are the same in both cases, the mathematical model
can be combined into a single 8th order state-space formula-
tion for convenience.

C. 3D CRANE INTERACTION DESIGN
The following two interaction mechanics have been imple-
mented for the experiment with the 3D crane:
• Interaction with the control object variables: changing
the set-point, which refers to the desired location of the
crane’s payload—and changing the control mode of the
crane;

• Interaction with the plot widgets: moving them to the
predefined locations, grabbing and moving them to a
new location, or grabbing and throwing them anywhere
in the virtual environment.

IV. EXPERIMENTAL VERIFICATION OF A DIGITAL TWIN
OF AN OVERHEAD CRANE MODEL IN
EXTENDED REALITY
The goal of this section is to show evidence of a successful
implementation of an overhead crane digital twin that can be

89936 VOLUME 10, 2022



S. Alsaleh et al.: ReImagine Lab

FIGURE 11. The schematic diagram for the 3D crane control experiment.

experienced in an extended reality environment. We cover
a single lab mode in the experiment, namely, the virtual
lab mode; however, because the digital twin and extended
reality technologies underpin all of the other lab modes as
well, the data obtained through subject-based testing should
contain information about the usability of these technologies
in general for the intended application. As a result, if the data
show that the digital twins and extended reality are effective
in the intended application, then this result can be valid for
all other lab modes.

A. THE DESCRIPTION OF THE LAB EXPERIMENT
The experimental configuration is shown in Fig. 11. The
main control loop addresses the position of the payload in
the (x, y)-plane. The task is to transport the payload from
one point to another as fast as possible. The secondary loop
compensates for the payload swing and can be turned on and
off; the goal of the experiment is to assess the performance
of the control loop in both these cases. A screenshot from the
application is depicted in Fig. 12. Here, the user points the
motion controller away from the reference cube, so the set
point is unchanged but is shown on the floor in the form of a
crosshair.

The charting facility in this case serves as a reference for
the performance of the control loop with and without swing
compensation enabled. An exemple depicting the situation
when the swing compensation is enabled is shown in Fig. 13.
By introducing control actions that lead to some oscillations
in the caret position, the swing is effectively damped. The
specific parameters of the PID controllers are not shown to
the subjects in the experiments. Tuning the PID controllers is

FIGURE 12. Screenshot from the VR-based 3D Crane application. The user
is pointing the motion controller to an area outside of the reference box,
so the crosshair appears only to show the current set point.

a topic for a different kind of experiment along the lines of
what was presented previously in [66].

B. VALIDATION OF THE SOLUTION WITH A SYSTEM
USABILITY STUDY WITH SUBJECTS
In the educational setting, cognitive ergonomics is the study
of the design of learning activities that conform to students’
cognitive capabilities by applying principles based on human
perception, mental processing, and memory to improve the
usability of the learning activities. Since we are interested
in understanding the usability of using VR in control sys-
tems courses, we conduct a system usability study (SUS) to
compare a classical experiment that introduced the concept
of automatic control application for the 3D crane object and
a similar experiment in VR. The original experiment uses an
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FIGURE 13. Experimental chart showing the performance of the control
system with payload swing compensation enabled.

interactive Simulink environment enhanced with a 3D model
of the crane. The VR experiment uses a digital visual twin
of the 3D crane in Unreal Engine driven with a mathematical
model implemented in the MATLAB environment.

The experiment is divided into three parts. First, a presenta-
tion created by the course instructor introduces the participant
to the experiment and the 3D crane control object.

The second part is a classical control course experiment
conducted on a desktop computer where a Simulink model
of the 3D crane and swing compensation PID controller is
presented. The Simulink interface shown in Fig. 14 is dis-
played on one screen, while the second screen shows graphs
that display the model’s real-time response and a 3D model
of the crane that is moving in real-time based on data received
from the Simulink model shown in Fig. 15.
The third part is a similar control course experiment con-

ducted in a VR laboratory environment that includes the ‘‘3D
Crane’’ control object, a laboratory-scale simplified model
of a gantry crane produced by Inteco and recreated as a
digital twin in VR, as well as two interactive plot widgets;
the first widget shows real-time data representing the 3D
crane dynamics and the other graph shows an explanation
of the control object parameters. Fig. 16 shows the different
elements of the VR laboratory.

For the desktop experiment, we used a laptop computer
connected to two monitors. The Simulink model was shown
on the first screen, and a 3D presentation of the 3D crane that
was created using Unreal Engine was shown on the second
screen. Table 5 demonstrates the component configuration of
the desktop PC.

To create a VR environment, we used an HTC VIVE Pro
Eye virtual reality headset. The HTC VIVE Pro Eye HMD
features dual-OLED displays with a combined resolution
of 2880 × 1600 pixels and precision eye tracking sensors.
In addition to the headset, we used two HTCVive Controllers
that track the location of the user’s hands and receive input
commands. The tracking area was set up with two sensors,

TABLE 5. Hardware components of the desktop and VR experiment
computers.

FIGURE 14. Simulink model of the 3D crane and the swing compensation
PID controller.

and the size of the tracking area was approximately 3 meters
by 2 meters. The headset was connected to a PC that hosted
the virtual environment. Table 5 shows the component con-
figuration of the VR PC.

Our study included 37 participants (20 male, 17 female;
an average age of 25.0 years old). Table 6 summarizes the
distribution of participants according to several key variables.

All test participants were given the same instructions that
are described below.

All three phases of the study took place in the same room.
The participant was given a summary of the three main
activities they would perform, as well as the sort of data that
would be collected. They were requested to sign an informed
consent form after agreeing to participate, which specifies the
three parts of the experiments, as well as the nature and the
extent of data usage and their right to quit the tests at any time.

Participants were directed to a desktop computer where the
presentation was shown once they were ready. Participants
were encouraged to go over the slides and ask questions if
they had any questions.

Once the participant indicated that they had finished going
through the slides, they were presented with the second part
of the experiment and given the following instructions:

1) Select run in real-time (from the top menu) and flip the
first switch (DOUBLE CLICK);

2) Observe the animation. Notice how the load on the 3D
crane keeps swinging from side-to-side;

3) After approximately half a minute, flip the first switch
back;
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FIGURE 15. Charts display the model’s real-time response and a 3D
model of the crane that is moving in real-time based on data received
from the Simulink model graphs that display the model’s real-time
response and a 3D model of the crane that is moving in real-time based
on data received from the Simulink model.

TABLE 6. Distribution table of participants.

4) Now flip the second switch (OFF / ON) and observe
the 3D crane. Additionally, observe the time series
plots generated on the virtual scope screen and make
conclusions about which mode would work best for in
a real life scenario.

When the second part of the experiment was finished, the
participant was guided to an area in the same room where the
VR HMD was located.

In the third part of the experiment, a set of steps that served
as an introduction to the VR controllers and HMD, as well as
performing eye calibration, which allows the capturing of the
participant’s gaze direction, are performed.

1) An introduction to the VR headset and controllers is
given;

2) The headset is put on and adjusted so the display is
centered in the view;

3) The controllers are located and picked up;
4) The eye-tracker is calibrated:

a) The headset is adjusted vertically so that the dis-
play is centered on the eyes;

FIGURE 16. Virtual environment used in the experiment.

b) The lens distance is adjusted based on the partic-
ipants’ eyes;

c) The participants are asked to follow a set of dots
using only their eyes.

5) The operator starts the experiment.
At the beginning of the experiment, the participants are

transferred to a virtual laboratory environment where they
can see the ‘‘3D Crane’’ control object, a laboratory-scale
simplified model of a gantry crane produced by Inteco and
recreated as a digital twin in VR, as well as two interactive
plot widgets; the first widget shows real-time data represent-
ing the 3D crane dynamics and the other graph shows an
explanation of the control object parameters. Fig. 16 shows
the different elements of the VR laboratory.

During the experiment, the participant’s first task was to
walk to a predefined location adjacent to the control object.
This location was clearly marked in the VE. Once the partic-
ipants reached the marked location, they were free to do any
of the following actions:
• Interact with the control object (change the set-point,
i.e., the desired location of the crane’s payload—and
change the control mode of the crane);

• Interact with the plot widgets (move them to the prede-
fined locations, grab and move them to a new location,
or grab and throw them anywhere in the VE).

C. QUESTIONNAIRE AND SYSTEM USABILITY SCALE (SUS)
After participants finished the third part of the experiment,
they were asked to complete a questionnaire of 10 SUS ques-
tion items for the desktop experiment and 10 SUS question
items for the VE experiment with three additional questions
about their confidence level in the VR, IT and control sys-
tems. The system usability scale includes 10 items with five
responses that range from strongly agree to strongly disagree.
The example questionnaire includes the following: I found
the system was easy to use, and I would imagine that most
people would learn to use this system very quickly. To exam-
ine perceived task loads:

1) I think that I would like to use this system frequently.
2) I found the system unnecessarily complex.
3) I thought the system was easy to use.
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FIGURE 17. System usability scale results for all participants in the
desktop and VR experiments.

4) I think that I would need the support of a technical
person to be able to use this system.

5) I found that the various functions in this system were
well-integrated.

6) I thought there was too much inconsistency in this
system.

7) I would imagine that most people would learn to use
this system very quickly.

8) I found the system very cumbersome to use.
9) I felt very confident using the system.

10) I needed to learn a lot of things before I could get going
with this system.

V. RESULTS
The SUS elements are divided into two categories: positive
and negative. Even items are negative, while odd items are
positive. To acquire the actual score of the SUS results,
we deduct 1 for each of the users answers for the five odd
components, then subtract the user answer from 5 for the
even components. Finally, we multiply all the components by
2.5 to obtain a score in the range of 0 to 100.

The quartile distribution of the SUS score for all partici-
pants in both experiments is shown in Fig. 17. The average
SUS score for all participants in the desktop experiment was
70 with a standard deviation (SD) = 20.8279, while the
average SUS score for all participants in the VR experiment
was 85 (SD = 10.2977). This shows that the suggested
solution’s usability is superior to that of the desktop exper-
iment. Furthermore, the lower SD suggests that in the VR
experiment, there was more of an agreement on the system’s
usefulness.

Further analysis was conducted to determine how the self-
reported participant distribution affected the usefulness of
both experiments. First, as shown in Fig. 18, the system
usability scale results, which were categorized based on par-
ticipants’ self-evaluated confidence in using VR, revealed
that users who reported being confident in using VR had
the highest average usability score. This finding reveals that
as users become more comfortable with virtual reality and
their confidence grows, the system’s usability will improve.

FIGURE 18. System usability scale results based on participants’
self-evaluated confidence using VR.

FIGURE 19. System usability scale results based on participants’
self-evaluated confidence in general IT skills and knowledge.

FIGURE 20. System usability scale results based on participants’
self-evaluated confidence with control systems.

These findings support the use of VR experiments in a
broader context throughout the control systems course.

Second, we examine whether individuals who are confi-
dent in their overall IT skills are more likely to favor the VR
option. The average SUS results for participants with greater
levels of confidence in general IT skills and knowledge were
higher in the case of the VR solution, as shown in Fig. 19,
whereas the average score for the desktop experiment did not
change significantly.

Finally, we looked to see if the participants’ level of con-
fidence in the targeted study material had an effect on the
SUS results in this instance control system. The findings
of the system’s usability scale were categorized based on
the participants’ self-evaluated confidence in control systems
(Fig. 20). The results show that in both the desktop and
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VR experiments, participants who reported neutral confi-
dence with control systems provided the greatest usability
score. In general, the VR experiment was rated as being easier
to use than the desktop trial by the participants. While the
limited sample size restricted any conclusions taken from this
research, the findings highlighted the need to leverage virtual
reality in the creation of more realistic rich experiments for
control object digital twins.

VI. CONCLUSION
In this paper, a digital twin and an extended reality-enabled
framework for constructing control system laboratory modes
is developed and examined as a full framework integrating
all lab modes. The developed solution fits naturally into
the scope of Industry 4.0 in the context of these emerg-
ing digital technologies, each having an important role in
transforming the manufacturing landscape. We thoroughly
explain how virtual and remote laboratories can be recreated
as digital twins of physical control objects. Incorporating
extended reality into the proposed digital representation
allows for greater interaction with the object while also
allowing students and instructors to collaborate with one
another.

To verify the main innovation in the proposed contribution,
a case study was conducted with a laboratory model of an
overhead crane. An immersive virtual reality simulation
was created for the crane using the proposed framework.
A subject-based experiment was then designed focusing on
the usability of the proposed solution versus a traditional
desktop-based environment. For this, a typical lab assignment
was considered part of the subject-based testing. There were
37 participants involved in the study.

The main conclusion based on the conducted study is
as follows. It was successfully confirmed that the proposed
framework, from the perspective of combining the digi-
tal twins and extended reality technologies, substantially
improved the usability of the simulated laboratory environ-
ment. While only the virtual lab mode was considered and
advanced features, such as remote collaboration, were not
addressed, it is possible to say that the technologies support-
ing the proposed framework have a high potential to improve
lab work outcomes for students.

The ability to manipulate the control object and study
the outcomes from several perspectives was identified as a
critical factor during the design and development of the sim-
ulation. This is not particularly surprising because hands-on
labs have known similar favorable qualities. However, when
implemented in extended reality, new possibilities emerge
to provide a more complete experience. For example, the
user can manifest and position a time series chart in the
surrounding space near the control object. The chart allows
us to interpret the results of the experiment from a time
domain analysis perspective, which is common in industry.
The solidification of this important connection between the
time series and actual events can be achieved naturally with
the proposed solution.

Future work must be concentrated on implementing the
framework in its entirety. Additional subject-based tests with
larger sample sizes will also be conducted as the restrictions
related to the COVID-19 pandemic are fully lifted.

Furthermore, the design of advanced control system exper-
iments must be done in accordance with the desired learning
outcomes of the related study courses. One pressing issue in
the industry is the ability to coherently tune PID controllers
subject to certain performance specifications. It is expected
that the proposed framework will positively influence the
ability of the students to manipulate the parameters of the PID
controllers in hands-on XR experiments toward achieving
better performing control loops with both digital twins of
control objects and real objects, as demonstrated in [66].

To conclude the paper, we would like to acknowledge
the contribution from Ms. Dolores Freiberg for her work on
the 3D crane model described in this article. Additionally,
we would like to express our gratitude to Ms. Oleksandra
Zamana for assisting us in safely conducting the experiments
with the subjects during a particularly trying period of the
pandemic.
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