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ABSTRACT To achieve real-time object detection tasks with high throughput and low latency, this paper
proposes a multi-die hardware accelerator architecture. It implements three accelerators on the VU9P chip,
each of which is bound to an independent super logic region (SLR). To reduce off-chip memory access and
power consumption, this design uses three on-chip buffers to store the weights and intermediate result data on
one hand; on the other hand, it minimizes data access and movement and maximizes data reuse. This design
uses an 8-bit quantization strategy for both weights and feature maps to achieve twice the throughput and
computational efficiency of a single digital signal processor (DSP). In addition, many operators are designed
in the accelerator, and all of them are fully parameterized, so it is easy to extend the network, and the control
of the accelerator can be realized by configuring the instruction group. By accelerating the YOLOv4-tiny
algorithm, the accelerator architecture can achieve a frame rate of 148.14 frames per second (FPS) and a
peak throughput of 2.76 tera operations per second (TOPS) at 200 MHz with an energy efficiency ratio of
93.15 GOPS/W. The code can be found at https://github.com/19801201/Verilog_CNN_Accelerator.

INDEX TERMS Hardware accelerator, multi-die, object detection, YOLOv4-tiny.

I. INTRODUCTION
As one of the most representative networks in deep learn-
ing, convolutional neural networks (CNNs) achieved good
performance in object detection [1], [2], image classifi-
cation [3], [4], image segmentation [5], [6], and other
fields. To capture more features, the structure of the model
becomes larger, which leads to the high computational com-
plexity of CNN. As a result, its computational process
requires more computing power and storage resources. Fur-
thermore, the complex structure causes it not suitable for
the general-purpose calculation and serial calculation of
central processing units (CPUs). On the contrary, graphics

The associate editor coordinating the review of this manuscript and

approving it for publication was Mario Donato Marino .

processing units (GPUs), application-specific integrated cir-
cuits (ASICs), and field-programmable gate arrays (FPGAs)
can meet the requirements well in terms of computing power
and computational parallelism. However, the high cost and
power consumption of GPUs, or the lack of programmability
of ASICs cause these devices to be unsuitable for accelerating
convolutional neural networks at the edge. In contrast, FPGAs
have a good balance between flexibility, performance, power
consumption, and cost, and are ideal devices for inference
acceleration of convolutional neural networks.

Over the past 50 years, chip process technology has been
following Moore’s Law development, but in recent years,
chip process technology is getting closer to the physical limit,
society has entered the post-Moore’s Law era, and the major
semiconductor manufacturers have to find new technologies
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FIGURE 1. Network structure of YOLOv4-tiny.

to break through the limits of Moore’s Law. In response,
AMD Xilinx has introduced stacked silicon interconnect
(SSI) [7] technology, which packages multiple small chips
into a single chip with greater bandwidth and capacity, and
has been applied to several families of products. This design
is a multi-die-based convolutional neural network accelerator
design using Virtex UltraScale+ VU9P chip based on SSI
technology, which is very important for multitasking and
batch processing in convolutional neural networks.

The main contributions of this work are summarized as the
following:

(1) A multi-die-based convolutional neural network accel-
erator design framework is proposed, in which three acceler-
ators are integrated into one VU9P chip and each accelerator
is constrained to each individual SLR so that they have their
independent resources and perform computations indepen-
dently without interfering with each other.

(2) The intermediate results of each layer of calculation are
no longer written back to the DDR but to an on-chip buffer
consisting of URAM. This design reduces frequent access to
the DDR, increases computation speed, and reduces power
consumption.

(3) This accelerator maximizes the reuse of input feature
maps and weights. The amount of data read from DDR and
on-chip buffers for weights and input feature maps is mini-
mized for each layer of computation, reducing the pressure
on bandwidth and AXI bus.

The rest of the paper is organized as follows. Section II
introduces convolutional neural networks and optimization
strategies. Section III introduces the overall architecture
design of the system. Section IV describes the architectural
design of each module in more detail. Section V intro-
duces the instruction group and host computer scheduling.
Section VI discusses the experimental setup and the analysis
of the experimental results. Finally, the conclusions are drawn
in Sec.VII.

II. BACKGROUND AND RELATED WORK
A. CONVOLUTIONAL NEURAL NETWORKS
The current target detection and recognition algorithms based
on convolutional neural networks are mainly divided into
two categories: single-stage target detection algorithms and
two-stage target detection algorithms. The two-stage target
detection algorithm mainly generates candidate boxes on the
input image first, and then classifies and regresses these can-
didate boxes, represented by R-CNN [8] and Faster R-CNN
[9]. Although their accuracy is high, their detection speed
is very slow. In contrast, the single-stage target detection
algorithm represented by you only look once (YOLO) [10]
series abandons the two-step frame drawing approach of the
R-CNN series and uses only one CNN network to achieve
target detection, so its detection speed is particularly fast
and can be well applied to scenarios requiring high real-time
performance, such as automatic driving.

Since Joseph Redmon proposed YOLO [10], the YOLO
series has gone through many versions. YOLOv4-tiny is a
simplified version of YOLOv4 [11], which is a lightweight
model with only about six million parameters, one-tenth
of YOLOv4. Due to its simple network structure, small
computational and parametric quantities, and fast detec-
tion speed, it is well suited for inference acceleration on
resource-constrained edge computing platforms.

The network structure of YOLOv4-tiny when the net-
work input is 416 × 416 × 3 in size is shown in Fig.1,
which mainly consists of three parts: backbone, feature pyra-
mid network (FPN), and detection head. YOLOv4-tiny uses
CSPdarknet53_tiny as the backbone feature extraction net-
work, which reduces the number of layers and modifies the
activation function to Leaky ReLU to be faster compared to
CSPdarknet53. FPN mainly performs feature fusion on the
effective feature layer generated by the backbone network.
The detection head is mainly to extract the final two feature
layers. YOLOv4-tiny network has a total of 21 convolutional
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layers, 3 split layers, 3 max-pooling layers, 7 concat layers
and 1 upsample layer.

B. OPERATOR FUSION
In the network structure of the YOLO family, the convolu-
tional block is usually composed of three parts: convolutional
layer, batch normalization (BN) [12] layer, and activation
function layer. The use of batch normalization allows the use
of larger learning rates to reduce the training time of neural
networks, it allows deep networks to use saturating activation
functions such as sigmoid, tanh, etc. to alleviate the problem
of gradient disappearance and gradient explosion, and it has
some regularization effect to reduce overfitting.

However, in the network inference stage, since the batch
normalization layer often follows the convolutional layer, the
operations of the batch normalization layer are often fused
into the convolutional layer to reduce the computation and
accelerate the inference.

C. 8-BIT QUANTIZATION
The parameters obtained after network model training are
often in FP32 format, and when inferring convolutional
neural networks on FPGAs, they are not suitable for
floating-point calculations due to the circuit characteristics
of FPGAs and their resource limitations, so quantization
of floating-point models is required. Mittal [13] compared
different quantization schemes and quantization bit widths
and found that the accuracy loss of the network was stable
within 1% when the quantization bit width was 8 bits and
above, while the accuracy loss was significant when quanti-
zation of lower bit widths such as 6 bits and 4 bits was per-
formed. Considering the above factors, the 8-bit quantization
scheme is adopted in this design. It is shown that, compared
with 32-bit floating-point numbers, when using 8-bit fixed-
point numbers for network inference, can greatly reduce the
number of parameters, the bandwidth requirement, and the
hardware computation pressure, thus increasing the inference
speed, while guaranteeing almost no loss of accuracy.

This design performs asymmetric quantization of feature
map data into UINT8 format and symmetric quantization of
weight data into INT8 format. The API function of PyTorch is
used to implement both feature data and weight data. In addi-
tion, after the convolution of two 8-bit data, the convolution
calculation result is no longer 8 bits, and the convolution
calculation result is to be used as the input feature map of the
next layer, so the 8-bit quantization of the convolution calcu-
lation result is also performed. According to the quantization
scheme of [14], we can obtain the mapping relation from the
integer q to the real number r , as shown in Equation (1):

r = s(q− z) (1)

where r is the real value, q is the quantized value, and s and
z are both quantization parameters. The convolution calcula-
tion formula is shown in Equation (2):

r3 = r1r2 + bias (2)

Among them, r3 is the result of the convolution calculation,
r1 is the input feature map, and r2 is the input weight. Putting
Equation (1) into Equation (2), we get Equation (3):

s3(q3 − z3) = s1(q1 − z1)× s2(q2 − z2)+ bias (3)

Since the weight data is symmetrically quantized, z2 is 0,
and Equation (3) is transformed to obtain Equation (4):

q3 =
s1s2
s3

(q1q2 − q2z1 +
bias
s1s2

)+ z3 (4)

In Equation (4), q1q2 is the convolution result of 8-bit
weights and input feature maps, and we define the parameters

M =
s1s2
s3

, B =
bias
s1s2
− q2z1, Z = z3, then Equation (4) is

expressed as Equation (5):

q3 = M (q1q2 + B)+ Z (5)

The TVM compiler can resolve the parameters M , B,
and Z . In the hardware implementation, the quantization
value of the convolution result can be obtained by first adding
the parameterB to the convolution result, thenmultiplying the
parameterM , and finally adding the parameter Z .

III. SYSTEM ARCHITECTURE DESIGN
The VU9P chip is AMDXilinx’s third-generation 3D IC [15]
product, which uses SSI technology to package three dies
into one chip with greater bandwidth and capacity. Each die
is also called an SLR, and the resources of each SLR are
independent of each other and can be regarded as a single
small-scale FPGA chip. For the VU9P chip, each SLR can be
designed individually, or multiple SLRs can be combined as
one large chip. In this design, three convolutional neural net-
work accelerators are instantiated for each SLR individually,
and the three accelerators are constrained in three separate
SLRs by creating Pblocks in Floorplanning mode in the
Vivado development tool. The three accelerators only use the
resources of their own SLRs without interfering with each
other, except for sharing the PCIe of the main SLR.

A. MULTIDIE DESIGN
The multi-die design framework is shown in Fig.2. The Host
PC is mainly responsible for the pre-processing of input
feature maps, sending and receiving data and task scheduling
of the FPGA board, decoding of output feature maps, and
non-maximum suppression (NMS).

First, we train the YOLOv4-tiny network on the GPU
server using the PyTorch framework. Then we select the
most effective parameters from the list of parameters obtained
from the training and provide the network structure and
the selected parameters to the TVM compiler. The TVM
compiler can extract the weights required for each layer of
the convolution operation and the parameters M , B, and Z
required for quantization based on the network structure and
this parameter. At the same time, the TVM compiler reorders
this data according to the calculation method of the hardware
accelerator and converts this data into the binary files required
by the accelerator.
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FIGURE 2. Multi-die-based CNN accelerator architecture.

The host computer sends the data such as weights, feature
maps, and instructions required for the accelerator calculation
from the PC to the FPGA board through the PCIe interface.
As can be seen in Fig.2, the VU9P board deploys three
convolutional neural network accelerators, each belonging to
a separate SLR with its own independent DDR and Instruc-
tion Group. The DDRs and instruction groups of different
SLRs are distinguished by their addresses. The host computer
writes data and instructions to the corresponding address for
whichever accelerator it wants to start, or it can write data
and instructions at the same time to start multiple accelerators
executing in parallel.

Taking a single accelerator as an example, the host com-
puter of the Host PC firstly pre-processes the input feature
map and generates the instructions required for the calcula-
tion, then connects to PCIe interface through XDMA, writes
the weights, quantization parameters, and feature maps to the
DDR through AXI interface, and writes the instructions to
the instruction group through AXI-Lite interface. The DMA
Group is controlled by the instruction to read the weights and
input feature maps from the DDR and send them to the CNN
Kernel for computation. The results of each layer are stored
in the on-chip buffer of the CNNKernel, and the DMAGroup
writes the final results back to the DDR after all layers have
been computed.

The CNN kernel consists of several modules, which on the
one hand select which module to execute through instruc-
tion control, and on the other hand feed the current state
to the instruction group in real-time. The instruction group
decides whether to execute the next instruction or to continue
waiting based on the status of the CNN kernel. After all the

FIGURE 3. CNN kernel architecture design.

instructions are executed, the detection heads of the last two
output feature layers will be sent to the Host PC through
PCIe for post-processing operations such as decoding and
non-maximum suppression.

B. CNN KERNEL ARCHITECTURE DESIGN
The CNNKernel is mainly developed based on operators, and
the convolutional neural network accelerator is implemented
by implementing various operators. Fig.3 shows the architec-
ture design of CNN Kernel, which is mainly composed of
on-chip buffers and various operator modules. The on-chip
buffers include input buffer, output buffer, and weight buffer
[16], which are represented by gray boxes in Fig.3. The input
buffer and output buffer for storing intermediate results are
implemented by URAM, while the weight buffer cannot be
implemented by URAM due to the inconsistent bit width of
input and output data, so we use BRAM for this purpose.
As can be seen in Fig.3, the data required for the calculation
of each operator module can be read either from the DDR or
from the input buffer. Similarly, the results generated by the
computation can be written either to the DDR or to the output
buffer. The selection of these paths is controlled through
instructions. To minimize the power consumption caused by
off-chip DDR accesses, wewrite only the computation results
of the first two layers in the YOLOv4-tiny network and the
final prediction results back to the DDR and write the compu-
tation results of all other layers to the output buffer. However,
since the weights are so large that they can only be stored in
the DDR, the weights are read from the DDR and written to
the weight buffer during each convolution calculation.

When starting the calculation, the input buffer and the
weight buffer send the data to the operator module for calcu-
lation, and the output result of each layer is saved in the output
buffer. After this calculation is completed, the data in the
output buffer is immediately sent to the input buffer to wait
for the next calculation to be read. After all calculations are
completed, the results are written to the DDR via the DMA
Group. The blue boxes in Fig.3 are the operator modules
implemented by the accelerator, including Conv2d which can
implement 3× 3 convolution and 1× 1 convolution, Concat,
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Split, Maxpool, and Upsample. These operators are based on
a parametric design and can be adapted to the most common
dimensions. This means that any convolutional neural net-
work can be inferentially accelerated by this convolutional
neural network accelerator, as long as its internal operators
are within the range of these operators and their dimensions.

In this architecture, the data are transmitted in the form
of AXI-Stream. When the calculation is performed, the data
stream is output from the input buffer and the weight buffer.
First, the data stream goes through a SWITCH (path selector)
to choose which module to enter according to the control
signal. If the data stream enters the Conv2dmodule, the calcu-
lation is started directly. If the data stream enters the Reshape
module, it will go through another SWITCH, and the control
signal is used to select one of the four operator modules of
Concat, Split, Maxpool, and Upsample for calculation. After
the calculation is finished, the result is written into the output
buffer through SWITCH.

IV. SYSTEM DETAILED DESIGN
A. Conv2d MODULE DESIGN
The Conv2d module is the most important operation for fea-
ture extraction in convolutional neural networks. This design
uses mainly 3× 3 convolution and 1× 1 convolution. Com-
pared with larger convolution operations such as 5 × 5 and
7×7, the 3×3 convolution operation can achieve better results
while reducing the number of parameters.

The Conv2d module is mainly used to perform the con-
volution operation of input feature maps and weights, and
the 8-bit quantization operation of the convolution results.
The required parameters include the parametersM , B, and Z
described in Section II-C in addition to the weights. As shown
in Fig.2, before the convolution calculation, the input feature
maps, weights, and all parameters required for the calculation
have been stored in the DDR. When each layer is calcu-
lated, the DMA Group reads the weights and the parameters
required for the calculation of this layer from the DDR and
puts them into the weight buffer of the CNN Kernel. The
input feature maps are only loaded by the DDR to the CNN
Kernel for computation in the first and second layers, while
the other layers are loaded from the output buffer to the input
buffer and then to the CNNKernel for computation.When the
calculation is performed, the input buffer inputs the data to
the internal Conv2d operator module, and Conv2d internally
reads the corresponding weights from the weight buffer and
performs the convolution calculation with the input feature
maps. For the convolution result, the parameters M , B, and
Z are also read from the weight buffer for 8-bit quantization
calculation and Leaky ReLU calculation, and the result is
written to the output buffer after the calculation is complete.

When performing the convolution calculation, this design
adopts the principle of channel priority, and the calculation
of the next pixel point is started only after all channels of a
pixel point of the output feature map have been calculated.
In the convolution operation of Fig.4, the input feature map

FIGURE 4. Conv2d convolution operation.

TABLE 1. Hardware parameters defined in this accelerator architecture.

dimension is H×W×C , the convolution kernel dimension
is K×K×C×N and the output feature map dimension is
H×W×N . The dimension of each sliding cube and weight
block is K×K×Pi. Table 1 lists all the hardware parameters
in this accelerator architecture.

The Conv2d module can be configured for regular
3× 3 convolution and PW convolution via instruction. For
the conventional 3× 3 convolution, this design selects Pi, Po
and Pp as 16, 8 and 9, respectively, after considering the DSP
resources of the VU9P board. For the PW convolution, since
it is a 1× 1 convolution, to maximize the resources occupied
by the nine pixels of the 3× 3 convolution, we split the input
channels of the PW convolution into eight parts and send
them sequentially to the resources occupied by the first eight
pixel points of the 3 × 3 convolution for computation, and
the other pixel is temporarily not used. In this case, the PW
convolution has Pi, Po and Pp of 128, 8, and 1, respectively.
In addition, since some PW convolutions have only 64 input
channels, this design also supports the case where Pi is 64.

The process of convolution is as follows: the input sliding
cube moves from the beginning to the end of the channel
dimension, each sliding cube is convolved with Po weight
blocks, and the temporary result of Pi input and Po output
is stored in a temporary buffer. Next, the sliding cube slides
along the channel direction, and each sliding cube is con-
volved with different Po weight blocks, and the obtained Pi
input and Po output results are accumulated with the tempo-
rary buffer and stored in the temporary buffer. Until the last
sliding cube of this input channel is calculated, the complete
Po channel calculation of the first pixel point of the output
feature map is calculated and output to the quantization mod-
ule for quantization processing. The next sliding cube returns
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FIGURE 5. Conv2d calculation process.

FIGURE 6. Data_Reuse architecture design.

to the starting pixel point of that channel and repeats the
above steps until the convolution operation is done with all
the convolution kernels, then all the N channels of the first
pixel point of the output feature map are computed. Then the
input sliding cube continues the sliding computation until the
last pixel point is computed.

Throughout the computation, this design maximizes the
reuse of input feature maps and weights. The input feature
maps are read repeatedly N /Po times, and the weights are
reused H×W times. Such a scheme is designed so that the
parameters read from the DDR and the input feature maps
read from the input buffer at each layer of the computation
are the smallest amount of data, thus reducing the power
consumption caused by frequent accesses.

In the Conv2d module, the convolution operation is only
the core part, and some other operations are needed to cooper-
ate with the convolution operation to complete the calculation
of the whole module. As shown in Fig.5, after the input
feature map enters the Conv2d module from the input buffer,
it first passes through the Padding module. PyTorch supports
four padding modes: zeros, reflect, replicate, and circular.
Since the purpose of the accelerator is target detection, the
default zeros mode is sufficient. This design mainly performs
padding operation on 3 × 3 convolution, padding a circle
of zeros around the channel dimension of the input feature
map can ensure that the convolution with a stride of one
can maintain the boundary information and keep the output
dimension consistent with the input. The function of the
Padding module is to pad a circle of zeros around the input
feature maps.

Then the data enters the Data_Reusemodule for data reuse.
In the convolution operation, pixels at the edges of the image
and pixels in the middle of the image are used multiple times.

The Data_Reuse module is to copy the input feature map
into multiple copies to meet the needs of the convolution
operation. The architecture design of the Data_Reuse module
is shown in Fig.6. The Data_Reuse module has one input
port and three output ports, and each output port corresponds
to a data path. The data stream must pass through Buffer_1
and Buffer_2 successively to reach port A, only after passing
through Buffer_1 to reach port B, and reaching port Cwithout
passing through the buffer. Each buffer can store one whole
row of data for the input feature map. When Buffer_2 is full
of the first row of data and Buffer_1 is full of the second row
of data, the read enable of the three ports is turned on at the
same time. This allows the same number of columns of the
three adjacent rows to be fetched in the same clock cycle. The
three adjacent rows of data are delayed by one clock cycle and
two clock cycles, respectively. The nine pixel points required
for the 3×3 convolution calculation can be obtained by taking
the values at the same time when delaying the second clock
cycle. The data from these nine pixel points are then sent
to the Conv_Compute module for computation in the same
clock cycle.

The calculation of the Conv_Compute module is the con-
volution calculation process shown in Fig.4. The result of
the calculation is 32-bit fixed-point data. The 32-bit fixed-
point convolution result needs to be quantized to 8-bit output
to be used by the next layer. The Conv_Quan module is
to do this quantization process, and its internal Bias, Scale,
and Zero_Point sub-modules correspond to the operations of
adding parameter B, multiplying parameter M , and adding
parameter Z in Equation (5), respectively. The quantized
result becomes 8 bits and then enters the Leaky ReLU mod-
ule. The coefficient of Leaky ReLU is chosen to be 0.125,
so that the floating-point multiplication operation can be
replaced by only a 3-bit right-shift operation in FPGA design,
saving computational cost. After the Leaky ReLU operation
is completed, the data completes the calculation of the whole
Conv2d module, and then the data is written to the output
buffer and waits for the next calculation.

B. CONCAT MODULE DESIGN
The Concat module mainly performs the stitching of the
two input feature maps in a certain dimension. Since the
torch.cat() function provided by PyTorch is floating-point,
it needs to be quantized to 8-bit for calculation output. In this
design, the two input feature maps are quantized first before
the stitching operation is performed in the channel dimension.
The quantization formula is shown in Equation (6):

s3(q3 − z3) = s1(q1 − z1) (6)

The meaning of each parameter is the same as in
Section II-C. Transform Equation (6) to get Equation (7):

q3 =
s1
s3
(q1 − z1 +

s3
s1
z3) (7)

By defining the parameters scale =
s1
s3
, bias =

s3
s1
z3 − z1,

the quantization result is obtained by simply adding bias to
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FIGURE 7. Concat architecture design.

FIGURE 8. Split architecture design.

the input feature map data and then multiplying by scale.
The parameters bias and scale are also parsed by the TVM
compiler and passed into the Concat module through the
instruction registers when performing Concat calculations.
The detailed module design is shown in Fig.7.

The two groups of data in AXI4-Stream format enter the
Concat module at the same time and enter Buffer_1 and
Buffer_2 respectively. First, all channel data of one pixel
point are read from Buffer_1, then bias1 is added to these
data, and then the result is multiplied by scale1, that is, the
quantization operation is completed, and the quantization
result is written to Buffer_3 via the multiplexer. Buffer_3
converts the data into AXI4-Stream format for output. After
all the channel data of one pixel in Buffer_1 is written into
Buffer_3, start reading data from Buffer_2, and then perform
the same operation. Similarly, after all channel data of a pixel
of Buffer_2 is written into Buffer_3, Buffer_1 is read again,
and so on, until all the data is processed, and the Concat
module is finished.

C. SPLIT MODULE DESIGN
The Split module is mainly used for channel splitting of the
input feature map, taking the first half of the channel data
or the second half of the channel data as the backbone part
for output, whether the first half or the second half of the
channel is taken is controlled by instructions. In this design,
the second half of the channel data is taken as the output, and
the first half of the channel data is discarded directly. The
module design is shown in Fig.8.

The data in AXI4-Stream format enters the Split module
first into the temporary buffer Buffer_1, and then the data
output from Buffer_1 goes through the multiplexer to select
the channel. No processing is done for the data of the first

FIGURE 9. Maxpool architecture design.

half channels of the input feature map, and only the data
of the second half channels are written to Buffer_2, which
converts the data into AXI4-Stream format for output, that is,
the output result of Split is obtained.

D. MAXPOOL MODULE DESIGN
The Maxpool module mainly performs the dimensionality
reduction operation on the input feature map, which can
reduce the number of parameters of the model, save the
model arithmetic power, and simplify the complexity of the
model. Average pooling also has the function of dimension-
ality reduction, but it focuses more on feature extraction of
background information rather than texture features that our
target detection focuses on, so we do not use average pooling
in our algorithmic network. Maxpool mainly partitions the
whole input feature map into several small blocks of the
same size according to the distribution of rows and columns,
compares within each block, takes the maximum value as the
output, and discards the rest of the values directly. This design
refers to the pooling solution proposed byNguyen et al. [17].
The input feature map is divided into small windows of
2× 2 according to the rows and columns, and a stride of
2 sliding to the right and sliding down is performed for com-
parison. The module design architecture is shown in Fig.9.

AXI4-Stream format data enters the Maxpool module and
starts to count channels, columns, and rows, and the data is
discharged in the order of channel first, then column and row.
Firstly, the data enters the column selector, and the column
selector puts the data of the odd-numbered column into the
temporary buffer Buffer_1, and after Buffer_1 is full of all
channel data of one pixel, it starts to enter the even-numbered
column, and the column selector directly outputs the data of
the even-numbered columns to the comparator, and at the
same time reads the data from Buffer_1 and outputs it to the
comparator. At this point, the corresponding channel data of
adjacent columns will start to be compared, and the larger
value will be output to the row selector in the next step,
while the smaller value will be discarded directly. After the
data reaches the row selector, the data of odd-numbered row
data are written to Buffer_2, and the data of even-numbered
row data directly to the comparator for comparison with the
output value of Buffer_2, and the comparison output result is
the final result of Maxpool module. In addition, the current
architecture also supports the average pooling operation, just
replace the first comparator with an adder and right-shift
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FIGURE 10. Upsample architecture design.

FIGURE 11. DSP optimized design.

operation, and replace the second comparator with an adder
to achieve average pooling.

E. UPSAMPLE MODULE DESIGN
The Upsample module is mainly used to expand the input
feature map, which can increase the sampling rate and the
frequency resolution to facilitate subsequent filtering opera-
tions. There are various operations of upsampling, and this
design uses the interpolation method of nearest-neighbor
interpolation. In contrast to the Maxpool module which takes
the maximum value along the aspect of the 2× 2 grid as the
output, the Upsample module copies a value as four values
along the aspect of the 2×2 as the output. The module design
architecture is shown in Fig.10.

The data in AXI4-Stream format first enters the Buffer_1
of the Upsample module, and Buffer_1 writes the data to four
buffers at the same time, thus realizing the copying of one data
into four copies. Next, a complete channel data is first read
from Buffer_2 and written to Buffer_6 via the multiplexer.
After writing, a complete channel data is then read from
Buffer_3 andwritten to Buffer_6, which converts the data into
AXI4-Stream format for output. Then we read Buffer_2 and
Buffer_3 back and forth until all the data in a row has been
read. We read Buffer_4 and Buffer_5 in the same way, and
read Buffer_2 and Buffer_3 again after all the data in a row is
read. We repeat this cycle until all the data are executed and
we get all the outputs of the Upsample module.

F. DSP OPTIMIZED DESIGN
In convolutional neural networks, the convolutional opera-
tions are mainly implemented by a series of multiplication
and addition operations. When the inference acceleration of
the convolutional neural network is performed on the Xilinx
FPGA devices, these massive multiplication and addition
operations are all performed by the DSP blocks. However, the

DSP resources are very scarce, so we need to make full use
of every DSP resource. The DSP48E2 used in this design can
implement up to 18 × 27-bit multiplication and up to 48-bit
accumulation operations in one clock cycle, while the convo-
lution calculation in this design is 8×8 bitsmultiplication. If it
is not optimized, the multiplication of 8× 8 bits will occupy
one DSP block, which will cause a large degree of waste of
DSP resources.

According to the optimization scheme proposed in [18],
this design uses a single DSP block to perform two 8× 8-bit
multiplication operations and subsequent accumulation oper-
ations simultaneously. In this design, two feature maps are
input for calculation at the same time, namely (a + b)c =
ac+ bc. As shown in Fig.11, a[7 : 0] is the data of a feature
map, and b[7 : 0] is the data of the same dimension of
another feature map, both of which are multiplied with the
same weight data c[7 : 0]. In the result of multiplication
calculation, both e[0] and e[1] are equal to bc[15], which
indicates the sign bit of bc. The obtained bc[15 : 0] is the
result of bc, while the result of ac needs to be adjusted by
adding the sign bit of the result of bc because it may be
affected by the low bit feed, i.e. ac = ac[15 : 0]+ e[1]. The
result obtained by the multiplication is then accumulated.

The optimized DSP block can perform two 8×8-bit multi-
plication operations and subsequent accumulation operations
simultaneously, saving half of the DSP resources by perform-
ing the same convolution operation.

V. INSTRUCTION GROUP AND HOST COMPUTER
SCHEDULING
A. INSTRUCTION GROUP
In this design, the execution of the convolutional neural net-
work accelerator is controlled by instructions, each of which
is 32 bits in length and contains different instruction registers
for controlling different operations. The host computer real-
izes the scheduling of the internal operators of the accelerator
through configuration instructions.

The host computer sends instructions to the instruction
group through the PCIe interface. The instruction group
parses each instruction to obtain each instruction register and
then sends these instruction registers to the corresponding
operator module through SWITCH to decide which operator
to perform and how to perform the computation.

Table 2 lists the instructions required for the calculation
of the Conv2d module. The four instructions Control, State,
Addr, and Num are used to accurately send the weights and
input feature maps to the Conv2d calculation module. REG1,
REG2, and REG3 are used to control the dimensionality as
well as the mode of the convolution calculation, including
the length and width of the input feature map, the number of
channels, whether to perform Padding, whether to perform
Stride, and so on. The accelerator performs the computation
methodically according to the order of the instructions until
the last instruction is executed, and then the accelerator stops
working.
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TABLE 2. Conv2d instruction group.

B. HOST COMPUTER SCHEDULING
The host computer is realized by the CPU, which mainly
includes three parts: pre-processing, task scheduling, and
post-processing.

In the pre-processing stage, first, we obtain the input
images, perform undistorted resize on the images, and convert
them to the 416 × 416 size we need. Then we perform a
simple quantization operation on these images and convert
the quantized results into the binary files needed for the
accelerator calculation.

Task scheduling is to schedule the three accelerators inside
the VU9P board, which sends feature maps, weights, and
instructions to the specified accelerator, and writes the final
calculated prediction results back to the host computer.
In this design, our three accelerators are all used to per-
form the same computation, so they share the same weights
and instructions. First, we write the weights and instruc-
tions to each of the three accelerators. Then we define
a startup function for each accelerator, which is mainly
responsible for sending feature maps to the corresponding
accelerator and enabling this accelerator. We pass each func-
tion object to a thread, and by multi-threading, the three
accelerators are started simultaneously. At the same time,
these startup functions are constantly listening for infor-
mation about the computation status of these accelerators
and write the computation results back to the host com-
puter as soon as they receive the signal that the computation
is complete.

The next step is the post-processing operation. Since the
prediction results produced by the above calculation do not
match the final predicted box position on the image, decoding
is needed to complete it. Decoding is to parse the prediction
results, get the important parameters and adjust them to get
the center, length, and width of the prediction box. This
gives the exact position of the entire prediction box. Many
prediction results may be obtained by decoding, so score
sorting and NMS filtering are needed to take out the box
and score with the largest score in each category. Since
each accelerator performs the computation of two images
simultaneously, the final detection head generated by each
accelerator also contains the prediction results of two images,
while both decoding and NMS are computed for one image.
Therefore, the first step of the post-processing operation is
to split the detection head containing the prediction results
of two images. We define a split function to perform the
split operation. We create three threads for the split function,
pass the detection heads of each of the three accelerators as
parameters, and then start a multi-threading. In this way, the
prediction results of the six images are obtained simultane-
ously. In the same way, we perform multi-threading decoding
and NMS operations on the prediction results of the six
images, and then the final prediction boxs of all six images
are obtained.

VI. EXPERIMENT AND RESULTS
A. EXPERIMENTAL ENVIRONMENT AND SETUP
This experiment adopts a CPU+FPGA design scheme to
accelerate the target detection algorithm YOLOv4-tiny,
and the data interaction is performed through PCIe. The
dataset used is the PASCAL VOC dataset. The dataset
has a total of 20 categories, where 16551 images from
VOC2007 and VOC2012 are used for training and val-
idation, and 4952 images from VOC2007 are used for
testing. The CPU adopts Intel core i7-4770 processor,
and the FPGA adopts the FX609QL accelerator card
from Hangzhou Flying Chip Technology, based on the
VU9P chip design of the Xilinx Virtex UltraScale+ series.
VU9P has rich on-chip resources, including 6840 DSPs,
2160 BRAMs, 960 URAMs, etc., evenly distributed in
three SLRs.

In the experiment, each SLR is designed as a separate
chip, while maintaining efficient communication between
each SLR, achieving full utilization of the board resources.
In addition, the experiments also use only a single SLR on the
VU9P board for a single accelerator design to make a fairer
comparison in terms of resources. The single accelerator
solution can be deployed on other FPGA boards with fewer
resources. This design is developed using Verilog HDL, syn-
thesized and placed, and routed through Vivado development
tools.

The operation and parameter configuration of each layer
of YOLOv4-tiny are shown in Table 3 and Table 4, where
Table 4 is the Resblock module in Table 3. The structure of
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TABLE 3. Parameter configuration of the YOLOv4-tiny model used in this
paper.

TABLE 4. Parameter configuration of the Resblock module.

the three Resblock modules is the same, and according to the
three different input feature maps, the Resblock with three
different parameter configurations from Layer3 to Layer5 in
Table 3 can be obtained.

Except for Layer1, Layer12, and Layer14, the parameters
used in this accelerator for each layer calculation are the same
as those listed in Table 3 and Table 4. For Layer1, since
the input channel parallelism used in this accelerator is 16,
and the input channel of Layer1 is only 3, the number of
channels of input feature maps and weights of Layer1 needs
to be supplemented to 16 for calculation. In addition, the
parallelism of the output channel of this accelerator is 8, while
the output channel of Layer12 and Layer14 is 75, which is not
a multiple of 8. Therefore, for the convenience of calculation,
80 output channels were calculated for these two layers, and
only the valid 75 output channels were taken for calculation in
post-processing.

In addition, our single accelerator is performing the com-
putation of two images at the same time, so in the configu-
ration parameters of the accelerator, we also have to add the
dimension of the image as 2.

TABLE 5. Performance comparison of different devices.

B. EXPERIMENTAL RESULTS ANALYSIS
According to the parameters used by the accelerator
described in Section VI-A, we can calculate the memory
access of the entire model, including the accesses to the
weights, the accesses to the quantization parameters M , B,
and Z , and the accesses to the feature maps. The accesses
to the weights and quantization parameters in the off-chip
DDR occur only in the Conv2d module, and wemaximize the
reuse of the weights and quantization parameters by reading
all the weights and quantization parameters from the DDR
only once, so we can calculate the accesses to the DDR for
the weights and quantization parameters to be 5.68 MB. The
accesses to the feature maps include the accesses to the DDR
for the first two layers and the last layer and the accesses
to the on-chip URAM for all other layers. We calculate the
number of output feature maps for all layers to get the access
memory of the feature map calculated for one image. Since
we calculate two images at the same time, the final access
memory of the feature map is 21.71 MB. Therefore, our
accelerator performs a complete computation with 27.39 MB
of access memory.

In our accelerator, each DSP block implements two
multiply-accumulate operations simultaneously, and our
accelerator runs at a clock frequency of 200 MHz. Therefore,
the peak throughput of a single accelerator is 2 × Pi ×
Po × Pp × 2 × Freq = 921.6 GOPS. And our
multi-accelerator scheme is composed of three single accel-
erators, and these three accelerators are executed in parallel,
so the peak throughput of the multi-accelerator scheme is
2764.8 GOPS.

In addition, we measured the computation time of the
single accelerator on the VU9P board to be 40.5 ms, and
since it computes two images simultaneously, the FPS is
49.38. Similarly, we obtained an FPS of 148.14 for the multi-
accelerator scheme.

C. COMPARISON OF EXPERIMENTAL RESULTS
YOLOv4-tiny is implemented by many operators. This
design implements all operators of the YOLOv4-tiny algo-
rithm and implements the inference of YOLOv4-tiny through
instruction control.

Table 5 shows the performance of the YOLOv4-tiny algo-
rithm for object detection on four different hardware plat-
forms. As can be seen from the table, the FPGA uses the
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TABLE 6. Compare results with similar designs.

INT8 format for computation, and its accuracy loss is within
an acceptable 3% range compared to the FP32, but it can
deliver several times the performance improvement at very
low power consumption. Although the RTX3060’s FPS is
much greater than that of the FPGA, its extremely high power
consumption makes it impossible to be used at the edge.
Compared to the Jetson nano, an edge-side GPU device, the
FPGA delivers as much as three times the FPS with a small
difference in power consumption. In addition, the experiment
also compares the computational performance of accelerators
by calculating the number of clock cycles required for an
inference process, even if their clock frequencies are different
due to the influence of platform choice. In this experiment,
fewer cycles mean better architecture [19]. It can be seen that
the accelerator we designed on the VU9P platform has the
least number of clock cycles, which indicates our accelerator
performs better.

Table 6 compares the single-accelerator and multi-
accelerator schemes of this design with the currently exist-
ing accelerators related to the YOLOv4-tiny algorithm. The
accelerator proposed in [20] uses far more resources than the
single accelerator of this design, and even more resources
than the multi-accelerator, but its FPS is only about 1/15 of
the single accelerator and about 1/45 of the multi-accelerator.
The resources used by the accelerator proposed in [21] are not
much different from that of a single accelerator, but our single
accelerator has 2.6 times the throughput and higher FPS.
This performance is inferior to that of a single accelerator
mainly for two reasons: one is that its operating frequency
is too low; the other is that it cannot make full use of DSP
because it uses 16-bit quantization for calculation. The accel-
erator proposed in [22] uses a lot of DSP resources, but its
throughput is less than 1/5 of that of a single accelerator,
and its FPS is also lower than that of a single accelerator.
In addition, the multi-accelerator is composed of three single
accelerators and they are executed in parallel. Although the
power consumption is higher, the performance is improved
by three times and the energy efficiency ratio reaches
93.15 GOPS/W.

VII. CONCLUSION
In this paper, a multi-die-based convolutional neural network
accelerator is designed to accelerate the YOLOv4-tiny algo-
rithm. The accelerator makes full use of on-chip resources,
deploys an accelerator in each SLR, and controls the three
accelerators through the host computer. By quantizing the
input feature map and weight to 8 bits, the calculation pres-
sure of the hardware is reduced, and the DSP block is opti-
mized at the same time. Two 8-bit calculations are performed
per clock cycle, which improves the efficiency of the DSP
block. In the calculation process, the design fully reuses the
feature maps and weights, and writes the intermediate results
of each layer to the on-chip buffer, which eliminates the
off-chip access of intermediate data, reduces the pressure on
bandwidth, and reduces power consumption. Furthermore,
an instruction group is designed, and the host computer real-
izes the control of the accelerator through the configuration
of the instruction group.

Tests have verified that the accelerator can achieve a frame
rate of 148.14 FPS and a peak throughput of 2.76 TOPS on
the YOLOv4-tiny algorithm, and the energy efficiency ratio
reaches 93.15 GOPS/W, which has achieved good results in
the field of real-time target detection.
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