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ABSTRACT With the continuous development of electric vehicles (EV), large-scale distributed charging
piles have been deployed in the wild. Therefore, it is extremely essential to evaluate the risk state of EV
charging piles efficiently and effectively. This paper aims to measure the capability of supervised and
semi-supervised machine learning techniques in assessing the risk state of EV charging piles. We inves-
tigate 8 algorithms, including Support Vector Machine (SVM), Random Forest (RF), Adaptive Boosting
(AdaBoost), Gradient Boosting Decision Tree (GBDT), Self-Training based on SVM (ST-SVM), Self-
Training based on RF (ST-RF), Self-Training based on AdaBoost (ST-AdaBoost) and Self-Training based
on GBDT (ST-GBDT). We first collect data on normal and abnormal termination of charging services from
an actual Internet of Vehicles platform. The dataset consists of 17,773 recordings and 7 features generated
from the records, which are used for classification. According to the statistical times of 7 features, 20%
of recordings are labeled by knowledgable experts into three classes: low-risk, medium-risk and high-risk.
Experimental results indicate that ST-AdaBoost and ST-GBDT show more excellent overall classification
performance, compared with the other traditional supervised methods. We also apply ST-GBDT to predict
the risk state of the unclassified piles and produce the statistic of piles from different manufacturers.

INDEX TERMS AdaBoost, charging piles, gradient boosting decision tree, risk assessment, self-training.

I. INTRODUCTION
To control the global temperature increasing range below
2◦C, annual energy-related CO2 emissions still need to
decline by 2050 from 35 Gt to 9.7 Gt, a fall of more than 70%.
The imperative to reduce the emission of carbon dioxide and
achieve sustainable growth is strengthening the momentum
of the global energy transition. Renewable energy and energy
efficiency are the main two pillars of energy transition [1].
As a vehicle driven by renewable electric energy, electric
vehicles (EV) with the advantage of environment-friendliness
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and energy efficiency is considered to replace traditional fuel
vehicles [2].

With the increasing number of EVs, a large number of
distributed charging piles are being one of the most essential
infrastructures [3]. Charging piles are mostly deployed in
the wild with uncontrollable environmental factors, caus-
ing frequent charging faults. Therefore, effective analysis of
charging safety and comprehensive assessment of charging
piles have become practical problems [4], [5].

For charging safety, existing researches focus on eval-
uating the state of charging piles according to specific
indexes but fail to provide a feasible index system to eval-
uate the long-term operation of charging service providers.
In the assessment-index system for the electrical safety

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 86953

https://orcid.org/0000-0001-5232-6502
https://orcid.org/0000-0002-2975-8857
https://orcid.org/0000-0001-6925-6010


W. Wang et al.: ST Enabled Efficient Classification Algorithm: An Application to Charging Pile Risk Assessment

performance of EV charging equipment proposed in [6],
many internal factors are considered like the contact cur-
rent, insulation resistance, and impulse withstand voltage.
However, it is difficult, if it is not impossible, to distinguish
between charging equipment that has the same internal fac-
tors but has different actual performance. Since charging ser-
vice providers always purchase large quantities of charging
piles from onemanufacturer, the internal factors of these piles
are much the same. Furthermore, the raw data on internal
factors is hard to obtain for the providers. Li et al. [7] took the
failure rate of charging piles into account when establishing
the integrated safety-assessment-index system. The failure
rate can reflect the actual operation of charging piles, but it
ignores the different frequency and risk degree of each type
of failure because failure rate takes the total failure rate as an
evaluation metric. It is critical to establish an effective evalu-
ation system focusing on the long-term safety performance of
charging piles, which can provide suggestions on purchasing,
maintaining and managing charge piles,

As for assessment methods, Wei et al. [5], [6], [7] used
the analytic hierarchy process (AHP [8]) to calculate the
evaluation metric weights depending on expert experience.
However, when there are many elements in the same hierar-
chy, subjective evaluation becomes vague and untrustworthy,
and then the judgment matrix is prone to serious inconsis-
tency. In recent years, Machine Learning (ML) methods have
been becoming a research hotspot to state assessments in
many fields. Mangalathu et al. [9] proposed a methodology
for the rapid damage state assessment (green, yellow, or red)
of bridges utilizing various classification algorithms such
as K-nearest neighbors, random forests, and naïve Bayes.
Chen et al. [10] applied SVM to classify the risk levels of cus-
tomers. The inputs of the SVM classifier include nine assess-
ment features and the output is the risk level for customers.
Although there are various applications of ML technology in
risk state assessment, there is no such solution for the risk
state of charging piles.

In this paper, we propose to transform the risk assessment
task of charging piles into a classification task in order to
provide an effective approach for evaluating the long-term
risk state of charging piles. We investigate the capability
of various supervised and semi-supervised ML algorithms
in discriminating risk states into three categories (low-risk,
medium-risk, and high-risk).

FIGURE 1 presents a simplified workflow of our
paper, from which we summarize the following four main
contributions:

FIGURE 1. Workflow of this paper.

• We collect original long-term operation data of an
actual Internet of Vehicles platform from June to
December 2021 and make pre-processing by removing
data records with missing critical information (Module1
in FIGURE 1).

• We establish an assessment-index system by defining
risk levels of charging faults and construct the structured
dataset of risk assessment with manual expert knowl-
edge (Module2 in FIGURE 1). Section III shows the
details of building the dataset.

• We investigate the capability of ML algorithms in auto-
matically labeling a large amount of raw data with little
expert knowledge (Module3 in FIGURE 1). Specifi-
cally, we compare the performance of 8 representative
algorithms, including Support Vector Machine (SVM),
Random Forest (RF), Gradient Boosting Decision Tree
(GBDT), Adaptive Boosting (AdaBoost), self-training
based on SVM (ST-SVM), self-training based on RF
(ST-RF), self-training based on GBDT (ST-GBDT),
and self-training based on Ada-Boost (ST-AdaBoost).
We compare the classification performance of each
model, and we observe that ST-AdaBoost and ST-GBDT
perform the best. Hence, we apply ST-GBDT to
predict the risk state of the unclassified piles (see
Section IV.C and D).

• We carry out extensive statistical analysis to evaluate the
overall long-term risk state of charging piles manufac-
tured by various companies (Module4 in FIGURE 1).
To the best of our knowledge, we are the first to ana-
lyze the overall long-term risk state and fault rate of
charging piles (see Section IV. E). Notably, the existing
researches only focus on internal factors, such as con-
tact current, insulation resistance, and impulse withstand
voltage. They fail to reflect the actual long-term perfor-
mance such as risk state and fault rate.

The rest of the paper is organized as follows. Section II
presents the overview of classification algorithms. Section III
presents the construction of the dataset and the labeling.
Experiments and discussions are given in Section IV and V.
Section VI gives the conclusion.

II. OVERVIEW OF CLASSIFICATION ALGORITHMS
ML techniques can be classified into supervised learning,
semi-supervised learning, and unsupervised learning. Semi-
supervised learning is a method combining supervised learn-
ing and unsupervised learning. Its main idea is to use a small
amount of labeled data to predict the class of unlabeled data,
and merge it into a labeled dataset [11]. This paper adopted
SVM,RF, GBDT,AdaBoost, and a semi-supervised approach
using self-training. A brief overview of various algorithms is
provided in this section.

A. SUPPORT VECTOR MACHINE
Based on structural risk minimization principles, SVM
can handle problems of multi-category [12]. It aims at

86954 VOLUME 10, 2022



W. Wang et al.: ST Enabled Efficient Classification Algorithm: An Application to Charging Pile Risk Assessment

maximizing the margin between the two sides of a sepa-
rating hyperplane, of which either side separates two data
classes. When dealing with linearly separable data, SVM is
unaffected by the number of features. Nevertheless, SVM
may not be able to find a hyperplane successfully when
the training set involves non-separable instances. The prob-
lem can be addressed by mapping the data onto a feature
space with higher dimensions, where the optimum separating
hyperspace can be found [13].

B. RANDOM FOREST
RF is an ML algorithm that integrates multiple decision trees
based on the idea of ensemble learning. It takes advantage
of bagging and random feature selection. Random forest uses
bootstrap to extract multiple samples from the original data
set, trains the extracted samples with a decision tree, and then
combines these decision trees to obtain the final prediction
results through majority voting [14]. The steps involved in
RF are as follows:

(1) Generate N samples by bootstrap from the training set.
(2) Randomly select a subset of all features and obtain the

best split point by generating a decision tree fromN bootstrap
samples.

(3) Repeat the two steps above M times to generate M
decision trees.

(4) Combine the predicted output of each decision tree and
predict the output of the testing set.

C. AdaBoost
AdaBoost is one of the most excellent ensemble methods.
It has a solid theoretical basis and has made great success
in practical applications. In the iteration of Ada-Boost, a new
weak classifier is added in each round until a predetermined
small error rate is reached. Each training sample is assigned
a weight indicating the probability that it is selected into the
training set by a classifier. If a sample has been accurately
classified, its probability of being selected in the construc-
tion of the next training set will be reduced. Conversely,
if a sample point is not accurately classified, its weight is
increased. In this way, Ada-Boost concentrates on samples
that are difficult to classify. Ada-Boost is sensitive to noisy
data and abnormal data, it rarely over-fits comparedwithmost
other classification algorithms [15].

D. GBDT
GBDT is a Boosting algorithm proposed by Friedman in 2001
[16]. Composed of multiple decision trees, GBDT is trained
in sequence, and the conclusion of all trees adds up to the final
answer. The diagram of GBDT is shown in FIGURE 2. It can
be noticed that the residual of the previous decision tree is
taken as the input for the next decision tree, which is trained
by following the negative gradient direction of the previous
decision tree.

E. SELF-TRAINING
Self-training is a widely used method of semi-supervised
learning. The training process is shown in FIGURE 3. First,

FIGURE 2. Diagram of GBDT algorithm.

a small amount of labeled data samples is applied to train
an original classifier. Then the original classifier is used to
constantly predict labels for unlabeled data samples. Next,
the self-training model selects the most accurate unlabeled
data samples according to a threshold and merges them into
the training set. The training set is constantly updated and the
classifier is retrained until the iteration termination condition
is satisfied. Finally, a final classifier with high classification
accuracy and strong generalization is obtained [11].

FIGURE 3. The training process of the self-training model.

III. BUILDING A RISK ASSESSMENT DATASET
In this section, a dataset consisting of 17,773 recordings and
7 features is generated from records of normal and abnormal
termination of charging services. When a charging pile stops
providing service normally or abnormally, the reason for ter-
minating the charging service is recorded, which can reflect
the state of the piles. We analyze and process the records
collected from an actual Internet of Vehicles platform from
June to December 2021.

A flowchart of building the risk assessment dataset is
shown in FIGURE 4. The outline is given as follows.
Step 1: Separate the records with normal termination rea-

sons from abnormal reasons and count the number of records
for each pile as effective service times.
Step 2: Define three risk levels of faults from various

abnormal reasons. We remove the records caused by low-risk
faults and concentrate on medium-risk and high-risk faults.
Step 3: Classify the medium-risk and high-risk faults into

mechanical faults, electrical faults, and other faults.
Step 4: Define six assessment indexes of charging piles

through the combination of three fault categories and two
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FIGURE 4. Flowchart of building the risk assessment dataset.

risk levels. In addition, we add effective service times
into assessment-index system. Hence, we establish a risk-
assessment-index system consisting of seven features.
Step 5: By counting the features of each charging pile,

a structured dataset is obtained and 20% of recordings in
the dataset are selected for being labelled by knowledgable
expert, denoted as manual evaluation in this paper.

TABLE 1. Risk level definition of charging pile faults.

A. RISK ASSESSMENT INDEXES OF CHARGING PILE
To establish a risk-assessment-index system of charging piles,
first, the number of records for normal termination reasons
is counted as a metric, namely effective service times. Then,
34 types of faults in all records are divided into three risk
degrees for refining evaluation metrics. Due to the lack of
fault risk levels definition standards for these faults, three
fault risk levels are defined based on the impact degree
of faults on charging safety and the cost of maintenance. The
risk level definitions are shown in TABLE 1.

Owing to the small impact of low-risk faults, we remove
records caused by 7 types of low-risk faults, including offline
shutdown conditions are reached, the charging gun is not
properly inserted, etc. The evaluation metrics mainly origi-
nate from medium-risk and high-risk faults.

Among the remaining 27 types of faults, each type of fault
may occur in the long-term operation of charging piles, and
the occurrence frequency of some high-risk faults is rela-
tively low. For instance, AC circuit breaker failure occurred

TABLE 2. Common faults were classified according to three categories
and three risk levels.

284 times and power failure of the control loop occurred
53 times for all charging piles during 7 months. That is,
their influence on charging safety cannot be ignored, and
the frequency of these failures is essential for evaluating the
risk state of charging piles. Although the frequency of these
faults is not suitable as a single input to the ML model, the
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problem can be solved by classifying 27 types of faults into
three categories: mechanical faults, electrical faults, and other
faults. Namely, as shown in TABLE 2, 27 types of common
faults were classified into level II mechanical fault, level III
mechanical fault, level II electrical fault, level III electrical
fault, level II other faults, and level III other faults.

B. MANUAL EVALUATION
By counting 7 features of each charging pile, a structured
dataset is obtained. The dataset is sufficiently shuffled, and
20% of data records are selected randomly for manual
evaluation.

Manual comprehensive analysis is conducted to judge the
risk grade of charging piles by experienced professionals.
In general, there are three risk grades for charging piles:
• The data samples of charging piles at low-risk grade,
with health status and having consumed few mainte-
nance costs, were labeled as 2.

• The data samples of charging piles at medium-risk
grade, with unhealthy status and having caused some
maintenance costs, are labeled as 1.

• The data samples of charging piles at high-risk grade,
with poor status and having consumed large mainte-
nance costs, are labeled as 0.

Statistical results of manual labels are shown in TABLE 3.
And in TABLE 4, we present one example of a labeled data
sample in the risk assessment dataset. Pile number, 7 features,
and the label are used to train the ML classifiers. The work in
this section provided sufficient data samples for the learning
task to train and test the risk assessment models.

TABLE 3. Statistical results of three types of labels.

TABLE 4. One example of labeled data sample in the risk assessment
dataset.

IV. EXPERIMENTAL RESULTS & DISCUSSION
In this section, the performance measurement metrics are
given. Then, the dataset splitting and oversampling are pre-
sented. After then, the environment and hyper-parameters are
given. At last, we conduct extensive experiments to provide
statistical and experimental support for analysis.

A. PERFORMANCE MEASUREMENT
In the field of ML algorithms, researchers often use preci-
sion, recall, accuracy, F1-score, and AUROC (area under the
ROC curve) as performance metrics in classification experi-
ments [17], [18]. In this experiment, there is a big difference
in the number of data samples for three classes, which results
in an unbalanced dataset. Therefore, macro averaged scores
across categories are calculated to average the scores of all
three binary tasks. The macro averaged scores are called
macro averaged recall, precision, and F1-score respectively.
Besides, AUC was introduced which stands for ‘‘Area under
the precision-recall (PR) curve’’, for the PR curve is more
informative than ROC when evaluating classifiers on unbal-
anced datasets. The ROC curve can reflect the comprehensive
performance of the classifier. However, we pay attention to
the model classification performance on unbalanced data. It’s
more appropriate to use the PR curve which is more sensitive
to minority classes [19].

Regard class i (i = 0, 1, 2) as a positive category and all
other classes as a negative category. For each sample in the
dataset, there are four possible partitioning outcomes:

TPi (True Positive): Number of samples belonging to and
classified as a positive class;

FPi (False Positive): Number of samples belonging to a
negative category and classified as a positive category;

FNi (False Negative): Number of samples belonging to a
positive category and classified as a negative category;

TNi (True Negative): Number of samples in the negative
category and classified as negative.

The subscript in the formulas above represents the label,
taking 0,1 or 2. And then the precision, recall, and F1-score
of each class can be calculated respectively as follows:

precisioni =
TPi

TPi + FPi
(1)

recalli =
TPi

TPi + FNi
(2)

F1i =
2 · precisioni · recalli
precisioni + recalli

(3)

Macro averaged recall, precision and F1-score are defined
as follows:

precisionmacro =

∑n−1
i=0 precisioni

n
(4)

recallmacro =

∑n−1
i=0 recalli

n
(5)

F1macro =
2 · precisionmacro · recallmacro

precisionmacro + recallmacro
(6)

B. DATASET SPLITTING AND OVERSAMPLING
In this experiment, 3614 labeled data samples are randomly
shuffled, and divided into the training set and testing set
on a scale of 1:1, which is shown in TABLE 5. To com-
pare the performance of four supervised learning models
and four self-training models, every model is tested on
the same testing set. Only the training set is applied to
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TABLE 5. Splitting result of dataset.

TABLE 6. Environment and corresponding libraries.

TABLE 7. Hyper parameters.

TABLE 8. Performance metrics across various models.

the supervised learning model. As for the semi-supervised
learning model, more than 10,000 data samples are used as
unlabeled data in the process of training, in addition to the
training set.

An unbalanced dataset may be able to cause the predic-
tion of the minority class to be difficult and imprecise [20].
To alleviate this problem, the data samples of minority class
is up-sampled by random oversampling, which can make the
training set more balanced, and improve the model perfor-
mance on minority classes.

C. EXPERIMENTAL ENVIRONMENT AND PARAMETERS
In experiments, we use python of version 3.7.5 as the experi-
mental platform, and several essential libraries are utilized.
More details about the dependency of the experiment and
hyper-parameter of classifiers are presented in TABLE 6 and
TABLE 7. In fact, four self-training classifiers are respec-
tively built just on the four supervised models with the
same additional parameters, including criterion, threshold,
and max_iter.

D. RESULTS OF CLASSIFICATION EXPERIMENTS
To compare the performance of supervised and semi-
supervised models, first, we apply oversampled training
set to supervised classifiers namely SVM, RF, GBDT, and
Ada-Boost. Then we add 14,159 data samples without labels
to train four semi-supervised models based on different orig-
inal classifiers, including ST-SVM, ST-RF, ST-AdaBoost,
and ST-GBDT.

TABLE 8 depicts the accuracy and macro averaged scores
achieved by using each algorithm. The following conclusion
can be drawn as follows:

• The accuracy of SVM, RF, GBDT, and AdaBoost is
about 0.90, but the macro average precision, recall, and
F1-score are poor. It is the abundant data of low-risk
charging piles in the training set that makes the model
properly classify the low-risk charging piles in the test-
ing set. However, randomly oversampling the minority
class hasn’t effectively improved the classification per-
formance of the supervised model on medium-risk and
high-risk data samples, leading to the lowmacro average
metrics.

• Self-training outperforms the supervised model in terms
of accuracy, macro averaged precision, recall, and
F1-score. It is because unlabeled data samples pro-
vide some insights about charging piles at different risk
grades which are exploited during training.

FIGURE 5 compares the PR curve and AUC obtained
with the semi-supervised approach using self-training and
supervise approaches using SVM, RF, GBDT, and AdaBoost.
It can be observed in the figure that the self-training model
takes advantage of unlabeled data samples to improve AUC
greatly in classifying charging piles at medium-risk grades
and high-risk grades. It is concluded that ST-GBDT and
ST-AdaBoost algorithms perform better as compared to all
other algorithms.

E. COMPARING STATISTICS OF MANUFACTURERS
We apply ST-GBDT to predict the risk grade of unlabeled
data samples and then combine the predicted pseudo labels
with real labels to obtain a mixed dataset. Based on the
dataset, we analyze the statistics of risk assessment results
of charging piles produced by different manufacturers.

FIGURE 6 shows the percentage of charging piles from
different manufacturers in the dataset, and the statistic of
charging piles at three risk grades. The piles come from
five manufacturers, denoted by C1, C2, C3, C4, and C5.
We can observe that both high-risk andmedium-risk charging
piles assessed are mainly produced by C4. Specifically, 63%
of charging piles at high-risk grades are produced by C4,
and charging piles produced by C4 account for 81% of all
medium-risk piles, both ranking first. Nevertheless, charging
piles produced by C4 account for 43%, much smaller than the
two percentages.

Fault Rate =
#Fault Times

#Effective Service Times+ FaultTimes
(7)
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FIGURE 5. AUC and PR curve comparison of self-training and supervised
classifiers. (a) compares the AUC and PR curve of various supervised
approaches; (b) compares the AUC and PR curve of self-training models
based on various original classifiers.

FIGURE 6. Percentage of charging piles produced by five manufacturers.

To further compare the overall state of different manufac-
turers, we calculate the average effective service times and
fault times for every manufacturer. And the fault rate of each
charging pile is calculated by equation (7). Then the average
fault rate of charging piles for every manufacturer can be
obtained. All the results are shown in TABLE 9, and it is
presented that the average mechanical fault times for C4 is
about 31.834, obviously exceeding other manufacturers, even

FIGURE 7. Percentage of charging piles at different risk grades produced
by five manufacturers.

TABLE 9. Average effective service times, fault times, and fault rate.

matching its average effective service times, and resulting in a
high average fault rate.We speculate that frequentmechanical
failures are responsible for the relatively worse state of piles
from C4.

Among all manufacturers, the majority of charging piles
produced by C1, C2, and C3 are at the low-risk grade,
accounting for more than 95%, which is shown in FIGURE 7.
It is shown in TABLE 9 that the average effective service
times of the three manufacturers are high, exceeding 65,
and especially C1 reaches about 90. The average fault times
and fault rate of the three manufacturers are low, among
them, Evergrande has the smallest values, which reflects the
satisfactory safety state of the charging piles produced by
these three manufacturers from another perspective.

V. ANALYSIS
Different from existing works, the data in our work is
not internal factor data of charging piles used for factory
inspection, nor real-time operation data for real-time risk
monitoring. To improve economic benefits, charging service
companies need to know the long-term operation and per-
formance of charging piles. Therefore, our work is based on
the charging service records accumulated by charging piles
for more than half a year, which is helpful to evaluate the
long-term operation status and performance of charging piles.
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On the one hand, our results can provide advice for charg-
ing service companies to purchase and maintain charging
piles. In detail, when replacing or repairing old charging
piles in large quantities, the scope of investigation and trou-
bleshooting can be greatly reduced, andwhen purchasing new
charging piles in large quantities, some manufacturers are
preferable.

On the other hand, there’re several limitations to our work.
From the perspective of data, our risk assessment-index sys-
tem relies solely on termination records of charging service,
without considering other possible accumulated risk factors
and ignoring the different aging degrees of charging piles.
Moreover, due to the lack of dates in these records, we fail to
process multiple abnormal termination records caused by the
same fault in a short period. From the perspective of assess-
ment methods, our work only discusses the applicability of a
few machine learning algorithms on the established dataset.
Actually, providing a more complicated assessment dataset
including unstructured data, the current optimal method may
not be applicable. Another drawback is that our approach
must rely on expert evaluation, and thus it’s hard to carry out
the work without expert knowledge.

VI. CONCLUSION
This paper mainly studies the applicability of ML algorithms
in the evaluation system of electric vehicle (EV) charging
piles. For this purpose, based on establishing a feasible
risk assessment-index system for long-term operation and
performance, we build a risk assessment dataset and select
a small part of data samples to be labeled. One-half of
artificial comprehensive evaluation results are used to train
various supervised classificationmodels and semi-supervised
models, including SVM, RF, GBDT, AdaBoost, ST-SVM,
ST-RF, ST-GBDT, and ST-AdaBoost. Among these classifi-
cation models, ST-GBDT and ST-AdaBoost classify charg-
ing piles at different risk grades with the highest macro
averaged recall, precision, and F1-score, which show ideal
performance for assessing risk state. Self-training algorithm
performs better than representative supervised algorithms,
especially in classifying high-risk and medium-risk charging
piles, due to taking advantage of unlabeled data samples.

After predicting pseudo labels for unlabeled data samples
using ST-GBDT, we combine the pseudo labels with the
artificial evaluation results and conducted statistical analysis
for charging piles produced by different manufacturers. In our
statistical results, there exist obvious differences in the overall
state of charging piles among different manufacturers.
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