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ABSTRACT Ship detection plays a vital role in monitoring and managing maritime safety. Most recently
proposed learning-based object detection methods have achieved marked progress in detection accuracy,
but the size of these models is too large to be applied to mobile devices with limited resources. Although
some compact models have been presented in the previous study, they achieve unsatisfactory results in ship
detection, especially under extreme weather conditions. To address these challenges, this article presents a
lightweight convolutional neural network (CNN) called Light-SDNet to perform an end-to-end ship detection
under different weather conditions. In the proposed model, we introduce the improved CA-Ghost, C3Ghost,
and DepthWise Convolution (DWConv) into the You Only Look Once version 5 (YOLOv5) to reduce
the number of model parameters, while remaining its powerful feature expression ability. We use parallel
attention to highlight the features that contribute to the ship detection in the marine surveillance. To enhance
the adaptability of the proposed model, a hybrid training strategy with generating synthetically-degraded
images is proposed to augment the volume and diversity of the original datasets. The proposed strategy
enables Light-SDNet to improve the ship detection results under severe weather conditions such as haze,
rain, and low illumination. We compare Light-SDNet with other competitive approaches on a large-scaled
ship dataset called SeaShips. We show that Light-SDNet achieves a better balance between the detection
accuracy and the model complexity. The ship detection results on degraded marine images have proven the
superior performance of the proposed model in terms of detection accuracy, robustness and efficiency.

INDEX TERMS Ship detection, convolutional neural network, lightweight structure, attention mechanism.

I. INTRODUCTION
It is increasingly important to enhance maritime traffic safety
with the development of offshore economic activities and the
exploration of marine resources. In particular, ship collision
accidents occur frequently under extremeweather conditions.
The Automatic Identification System (AIS) [1] has achieved
remarkable results in maritime surveillance. However, the
Class A AIS that can send self-ship information is only
mandatory on ships that can load more than 300 tons, so it
may lead to omissions in the detection of small and medium-
sized ships.Meanwhile, some illegal ships deliberately turned
off related equipment in an attempt to evade detection and
surveillance. Thus, the video surveillance system is essential
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to further improve maritime supervision and security. The
maritime supervisors can obtain intuitive visual information
by observing surveillance video images, while their visual
fatigue caused by the long-term observation may result in the
neglect of important information.With the rapid development
of deep-learning technology, many advanced ship detection
methods have been proposed, which provides a strong sup-
port for building an intelligent maritime video surveillance
system.

Unlike traditional methods that require the hand-crafted
features and suffer from unpleasant detection results, the
progressive learning-based methods achieve an end-to-end
object detection and better performance by extracting use-
ful features automatically [2], [3]. Currently, learning-based
methods can be typically divided into two categories. One is a
single-stage framework such as SSD [4] andYOLO series [5],
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[6], [7], [8], [9], and the other is a two-stage framework such
as R-CNN [10], Fast R-CNN [11], and Faster R-CNN [12].
The former enables faster detection with lower computational
burden, while the latter tends to achieve more accurate results
in exchange of slower detection speed [13], [14]. The afore-
mentioned methods are not lightweight enough so that they
are unsuitable to be applied in themaritime video surveillance
systems with limited memory and computation power.

To address this problem, many efforts have been paid to
develop compact and efficient CNN models. EfficientNet
[15] adopts a compound scaling method, which markedly
reduces the model parameters and improves the classifica-
tion speed via scaling up any dimension of the network
(width, depth or resolution). MobileNetV3 [16] is a very
lightweight and low-latency model obtained by neural archi-
tecture search, whose modules used internally are inher-
ited from the depthwise separable convolution [17] and the
inverted residual structure with a linear bottleneck [18].
In addition, it uses a SENet [19] attention module after the
pointwise convolution to enhance important features. Con-
sidering the detection accuracy and processing speed, Shuf-
fleNetV1/V2 [20], [21] manages the exchange of information
between the groups via the channel shuffle operations. Ghost-
Net [22] uses the Ghost modules to extract more features
from cheap operations. The aforementioned infrastructures
are capable of the extraction of effective features, but in the
expense of decreased detection accuracy.

In reality, the visual quality of images captured from mar-
itime surveillance systems is generally affected by poor imag-
ing conditions, such as rain, haze, and low illumination [23].
Image deterioration adversely affects vessel traffic safety and
security, thus the accurate ship detection in the degraded mar-
itime images becomes intractable. To improve the accuracy of
ship detection under bad weather conditions (e.g., rain, fog,
low illumination), the degradedmaritime images are typically
recovered before ship detection using image restoration algo-
rithms [24], [25], [26]. However, using these restored images
tends to a decline of the accuracy and robustness of ship
detection due to the loss of detailed features.

To make ship detection more robust and accurate under
different weather conditions, a hybrid data training strategy is
introduced to enlarge the diversity and volume of the original
dataset. In addition, we propose a compact and efficient net-
work based upon improvedYOLOv5 for the ship detection on
the mobile or embedded devices. By combining the proposed
model and the hybrid data training strategy, there is a great
potential for the proposed method to obtain a reliable ship
detection with higher accuracy, efficiency, and robustness.
The contributions of this study can be summarized as follows:

(1) We propose a lightweight network for ship real-time
detection named Light-SDNet. To assign greater weights
to more valuable information, both the coordinate and par-
allel attention mechanisms are introduced into the pro-
posed lightweight network. Specifically, the attention-guided
CA-Ghost and the C3Ghost module extract features and fuse
features at the Backbone and Neck, respectively.

(2) Extensive experiments on the large ship dataset called
SeaShips show that the proposed Light-SDNet can achieve
higher detection accuracy with comparative model parame-
ters and computation burden, which is suitable for mobile
terminals or embedded systems with the limited computation
power and memory capacity.

(3) A hybrid data training strategy is proposed to solve
ship detection in adverse weather conditions. Experimental
results on degraded ocean images demonstrate the superior
performance of our proposed model in terms of detection
accuracy, robustness, and efficiency.

The remainder of the paper is organized as follows.
Section II briefly reviews existing ship detection methods.
Section III presents the proposed YOLOv5-enhanced ship
detection framework. Section IV describes the proposed
hybrid training strategy and exhibits extensive experimental
results on the SeaShips dataset. We finally summarize the
main contributions of this study in Section V.

II. RELATED WORKS
A. THE YOLO SERIES
In comparison with the region-based object detection meth-
ods, the end-to-end YOLO series [5], [6], [7], [8], [9] is
faster due to one time of input processing. To improve the
detection accuracy, YOLOv2 [6] adopts the K-means cluster-
ing technique for the model training. Moreover, DarkNet-19
was presented based upon the idea of ‘Network in Network’
[27]. Compared with ResNet [28], YOLOv3 [7] achieves
competitive detection accuracy with fewer model parameters
via using DarkNet-53 as the Backbone. In addition, YOLOv3
manages the object detection in the multi-scale feature maps
via up-sampling and fusionmethod similar to feature pyramid
networks (FPNs) [29]. YOLOv4 [8] achieves the state-of-the-
art detection results via combination of multiple optimiza-
tion strategies such as data augmentation (e.g., mixup [30],
mosaic.), network modules (Focus, SPP [31] and improved
PANet [32], CSPNet [33]), activation function (mish [34] and
swish [35]), and loss function (CIOU) [36].

YOLOv5 algorithm [9] adopts various enhancement tech-
niques at the input, such as mosaic, adaptive image scaling,
and adaptive anchors. The main purpose of the first convolu-
tion in the Backbone is to reduce model parameters, floating
point operations (FLOPs), and memory overhead, so that
the forward and backward speed is increased with marginal
effects on detection accuracy. By applying gradient change
to the feature map, the C3 module is capable of tackling
the issue of repeating gradients in the Backbone of a large-
scale neural network. Additionally, the network incorporates
Spatial Pyramid Pooling-Fast (SPPF) and Path Aggregation
Network (PANet) to enhance its feature fusion capabilities.

B. ATTENTION MECHANISM
The attention mechanism is a resource allocator that adap-
tively assigns weights to features via channel or spatial
modeling. SENet [19] captures cross-channel information
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with global average pooling, while extracting all channel
features may be inefficient and unnecessary. To improve
the cost-effective performance of network models, ECA-Net
[37] adopts a local cross-channel interaction, i.e., a one-
dimensional convolution is used to screen the strong inter-
channel dependencies. In this way, ECA-Net markedly
improves the network performance yet effectively reduces the
number of model parameters. However, they merely focus on
the relationship between channels, ignoring the significance
of spatial features. In contrast, BAM [38] and CBAM [39]
can extract the inter-channel relationship of features and the
intra-spatial relationship of features, so they obtain richer
high-level features for the vision tasks. In addition, coordinate
attention (CA) [40] helps to localize objects of interest more
accurately via embedding location information into channel
attention. The CA can also be flexibly inserted into themobile
network without any computational overhead.

C. SHIP DETECTION IN MARITIME SURVEILLANCE
SYSTEM
Ship detection plays an important role in maritime traf-
fic safety, so extensive efforts have been made in the
field of automatic detection of moving ships. For example,
Zhang et al. proposed a ship detection method based upon
discrete cosine transform (DCT) [41]. The detection method
primarily includes three stages, i.e., background modelling,
background subtraction and horizon detection, which can
achieve robust detection results under complex sea conditions
with surface waves. According to the visual attention model,
Shi et al. obtain the saliency maps for the ship detection
via fusing directional features, color features, and motion
features [42]. Chen et al. proposed a real-time ship detection
and tracking system based on mean shift, which is able to
achieve good automatic tracking performance [43]. However,
conventional ship detectors typically endure unsatisfactory
detection accuracy under severe marine imaging conditions
(e.g., haze, rain, and low-luminance), due to it being highly
dependent on hand-crafted features.

CNNs provide a new avenue for accurate and efficient
detection of the moving ships owing to its powerful feature
extraction capability. A number of CNN-based methods have
been recently developed for the ship detection in different
maritime environments. For example, Cui et al. improved
CenterNet with a spatial shuffling attentionmodule to achieve
a large-scale ship detection in the synthetic aperture radar
(SAR) images [44]. To address the issue of difficult deploy-
ment of the existing models on the edge devices with lim-
ited memory resources, Ma et al. proposed a lightweight
object detector via compressing YOLOv4 [45]. To effectively
identify ships with various scales in high-resolution optical
remote sensing images, Li et al. generated candidate ships
from the feature maps using a region-proposal network [46].
So far, most detection tasks are implemented in the SAR
and optical remote sensing images, while SAR and optical
remote sensing images typically endure low signal to noise

ratio (SNR), which results in the difficulty in detecting small
objects.

To address this problem, great attempts have been
undertaken to develop efficient CNN-based models for ship
detection in the natural images. For example, Shao et al
proposed a saliency-aware CNN framework to achieve an
accurate and real-time ship detection in the surveillance video
images [47]. The framework includes coastline priors, deep
features, and saliency maps. In addition, coarse-to-fine cas-
caded CNNs for ship detection and tracking have received
extensive attention, leading to autonomous maritime surveil-
lance [48]. To develop a robust ship detector under severe
weather conditions, an enhanced YOLOv3 is proposed with
data augmentation training, whose results demonstrate its
effectiveness for ship detection [49]. The existing CNN-based
ship detectionmethods have achievedmarked progress, while
they may be typically unsuitable for use on the embedded
devices andmobile terminals with limited computation power
and storage capacity because of their highly computational
complexity and large model size.

To achieve a better balance between the model complexity
and detection accuracy, we aim to develop a lightweight
CNN architecture for ship detection in the maritime video
surveillance via improvingYOLOv5 and introducing a hybrid
training strategy. We also provide an ablation study to show
the functions of critical components of light-SDNet, and
describe extensive results to verify its good performance in
the ship detection under different maritime environments,
especially under extreme weather conditions.

III. THE PROPOSED SHIP DETECTION FRAMEWORK
To solve the problems of low detection accuracy and difficult
deployment of redundant networks in maritime surveillance,
we propose a lightweight ship detection network (Light-
SDNet) based on YOLOv5s. In this section, we describe
the proposed method’s exploration trajectory and overall
framework.

A. EXPLORATION TRAJECTORY
We fine-tuned the YOLOv5s network in this part. On the
premise of ensuring detection accuracy, the network param-
eters are compressed to reduce the computation burden.
Figure 1 shows the exploration trajectory from YOLO5s to
Light-SDNet.

To achieve a lightweight and powerful network, the follow-
ing changes have been made to the original YOLOv5s:

(1) For extract better location features of the shallow net-
work, the Ghost module [50] with CA replaces the common
convolution module of the Backbone to perform 2× down-
sampling.

(2) DWConv replaces the convolution module used in the
Neck network, reducing computational bottleneck and mem-
ory overhead.

(3) The C3Ghost replaces the C3 module as the main
feature fusion module of the Neck network, guaranteeing
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FIGURE 1. We modernize YOLOv5s towards the design of the
Light-SDNet. The bars are model accuracies in the YOLOv5s FLOP regime.
There is no adoption of the modification if the bar is hatched. In the end,
our model can outperform YOLOv5s.

the lightweight nature and detection accuracy of the target
network.

(4) Parallel attention (PA) is additionally introduced to
further enhance the ability of Neck feature fusion.

In addition, the depth multiplier of the target network is
increased from 0.33 to 0.50 to enhance its learning ability.
The final architecture of the proposed model is shown in
Table 1 and Figure 2.

B. BACKBONE
In the Backbone network, the ship image first goes through
a convolution with a size of 6 × 6, a stride of 2, and a
padding of 2 to perform downsampling. Then it goes through
four stages, all of which contain the Ghost module with CA
and C3 module. The process is summarized as follows: the
CA-Ghost module performs 2× downsampling of the input
from the previous stage, and the C3 module performs feature
extraction to obtain a total of four feature maps with different
scales.

In the feeding process of feature maps in the Backbone,
scale compression and channel expansion lead to the gradual
transmission of spatial information to the channel. To com-
pensate for the loss of shallow features, the CA [40] is
introduced into the Ghost module to construct the CA-Ghost
module. We focus on the width and height of feature maps to
improve model performance at a low cost.

Figure 3(a) provides the four types of CA-based Ghosts
we designed based on the location of the embedded CA,
namely Ghost-a, Ghost-b, Ghost-c, and Ghost-d. Experi-
mental results show that we obtain the largest mAP when
integrating CA after DWConv in Ghost. Thus, we use Ghost-
c as CA-Ghost. Figure 3(b) depicts the structure of the CA
block. The input of the CA-Ghost module goes through two
branches: the left branch passes through DWConv to reduce
the size of feature maps, and then the convolution module
is used to double the channel; the right branch first performs
the convolution operation by the ghost module, and DWConv
is used under the guidance of CA for downsampling, and
then the ghost module doubles the channel again. Finally,
the two branches are directly added together as the output.
As shown in Table 1, the parameters of CA-Ghost module
are reduced bymore than two times over those of the ordinary
convolution, which reduces computation cost and reinforces
positional features.

C. NECK
When the feature map goes the Neck, the channel dimen-
sion reaches the maximum, while the resolution of network
reaches the minimum. The SPPF module then focuses on
spatial information to solve the problem of excessive changes
of object scales. As shown in Table 1, we also replaced
the common convolution of the Neck with DWConv. Unlike
traditional convolution, DWConv is a convolution kernel
responsible for one channel, convolving channel by channel,
which can markedly reduce the model size. However, this is
at the expense of some network fusion capabilities.

The specific structures of three types of C3 modules are
shown in Figure 4. As shown in Figure 4(c) and (d), the
ghost unit is used to replace the bottleneck (False), resulting
in a new C3Ghost module. The C3Ghost module is the main
feature fusion module of Neck, containing three convolutions
and multiple ghost units, where n represents the number of
embedded ghost units. The structure splits the gradient flow
into different network paths and integrates all changes into
the feature map. The ghost unit reduces computation cost
and compresses the model sizes by replacing the original
bottleneck (False)’s 3 × 3 standard convolution. In this way,
it ensures the fusion and extraction of features and optimizes
the accuracy and parameters.

To focus more on the features of the ships in the image,
we add a parallel attention mechanism after the C3Ghost
module. As shown in Figure 5, the parallel attention mod-
ule is implemented by combining BAM [38] with ECA-Net
[37]. That is, the spatial attention comes from BAM, and the
channel attention comes from ECA-Net. By combining the
channel attention Mc(F) and the spatial attention Ms(F) from
the two attention branches, we can generate the 3D attention
mapM(F) by taking the sigmoid function. To obtain a refined
feature map, this 3D attentionmap is element-wise multiplied
by the input feature map F and then added to the original input
feature map. Furthermore, the ablation study in Section IV
shows that the parallel structure of ECANet and BAM ismore
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FIGURE 2. Architecture of the proposed Light-SDNet. It mainly includes three parts: the Backbone network, the Neck network, and the Head. The
input ship image is extracted through the Backbone network. Multiscale features are further fused in the Neck. Finally, multi-scale object detection
is performed on the head. The area covered in blue is our main improvement module.

FIGURE 3. CA-Ghost module. (a) CA-based Ghost, where a, b, c, and d
denoted in red represent the positions of embedded CA. The testing
results indicate that Ghost-c performs best, so we select it as CA-Ghost;
(b) Structure of a CA block.

efficient than the sequential structure, so we adopt a parallel
design in the proposed attention module.

D. HEAD
In the detection Head, three sets of output feature maps
are detected to generate a final output vector with class

FIGURE 4. Three types of C3 modules are applied to the Backbone and
the Neck. (a) Original C3 module; (b) C3 module for feature extraction in
the Backbone of YOLOv5s; (c) C3 module for feature fusion in the Neck of
YOLOv5s; (d) C3Ghost module in the Neck of Light-SDNet.

probability scores, bounding boxes, and confidence scores.
According to the Non-Maximum Suppression (NMS), the
output of the three detection layers are screened to obtain the
final detection results.

The loss function of the proposed method consists of
three parts: classification loss (cls_loss), localization loss
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TABLE 1. Comparison of original YOLOv5s and Light-SDNet.

FIGURE 5. Structure of a parallel attention module. The attention module
is implemented by combining the ECA and the BAM spatial attention
blocks.

(loc_loss), and confidence loss (obj_loss), the formula is as
follows,

Loss = λ1Lcls+λ2Lloc + λ3Lobj (1)

where λ1, λ2 and λ3 are coefficients to weight the loss
contribution with values of 0.5, 0.05, and 1.0, respectively.

The confidence loss and the classification loss are calculated
by combining the BCE (Binary Cross Entropy) loss with
the logistic loss, and the CIoU loss is used to evaluate the
localization loss of the predicted box and the ground-truth
box.

IV. EXPERIMENTAL RESULT AND ANALYSIS
To assess the performance of Light-SDNet, we compare it
with other methods qualitatively and quantitatively. To get
good detection results in both normal weather and severe
weather conditions, we propose an end-to-end mixed-data
training strategy. The proposed training strategy has also been
implemented to demonstrate good performance under poor
imaging conditions.

A. IMPLEMENTATION DETAILS
1) DATASET DESCRIPTION AND SETTINGS
We use the public ship dataset named SeaShips [51] as the
original dataset. The dataset includes 7000 images that cover
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6 types of ships, such as ore carriers, bulk carriers, general
cargo ships, container ships, fishing boats, and passenger
ships. The maritime images originate from video camera
surveillance systems that track all ships near shore. Bad
weather conditions such as fog, rain, and low light, tend
to markedly deteriorate the quality of the images captured
by a marine surveillance system, so we constructed three
degraded datasets based on the classic SeaShips dataset. The
extended degradation datasets are shown in Section C. For the
SeaShips dataset and its degraded dataset, they are randomly
divided into training, validation, and test sets with a 3:1:1
ratio for the experiments. The SeaShips_fog dataset is used
to explore the model structure, while the SeaShips dataset
and its degraded one are used to measure the impact of severe
weather conditions on ship detection performance. The effec-
tiveness of the proposed hybrid training strategy is verified
below.

2) EXPERIMENTAL ENVIRONMENT AND PARAMETER
SETTINGS
Our ship detection experiments use Pytorch (1.8.0) software
library installed in Ubuntu 18.04. Specifically, all experi-
ments are performed on a computer with an Intel(R) Xeon
(R) Silver 4210R CPU @2.40 GHz and NVIDIA GeForce
RTX 3090 GPU. For the optimal hyperparameters used in
our network, the base learning rate, momentum and weight
decay are, respectively, set to 0.01, 0.937, and 0.0005. In all
experiments, the size of input images is 640 × 640 pixels,
epoch is set to 300, and the batch size is set to 16. All the
remaining parameters take the default values in the original
YOLOv5.

B. METRICS
We follow the same criteria as PASCALVOC [52] to evaluate
the performance of Light-SDNet.
Precision is used to evaluate whether the prediction of

ships is accurate, which reflects the proportion of actually
positive samples over all predicted positive samples. Recall
is used to evaluate whether all ships in the test dataset have
been predicted correctly, which reflects the proportion of
positive samples predicted correctly by the model over the
total positive samples. F1 score is the harmonic average of
precision and recall.mAP@0.5 andmAP@.5:.95 are compre-
hensive indicators to measure the precision and robustness of
ship detection. Correct detecting ratio (CDR) is the propor-
tion of correctly predicted samples over all samples. False
alarm ratio (FAR) is the proportion of negative cases that are
incorrectly classified as positive over all predicted positive
samples.

Besides the above evaluation indicators, we provide the
model parameters, FLOPs, and training time to verify the
advanced nature of Light-SDNet. The less model param-
eters and FLOPs are, the lower the cost of the detection
model is.

C. DATA AUGMENTATION AND THE HYBRID DATA
TRAINING STRATEGY
The complex maritime environments such as fog, rain, and
low light, typically enable the captured images to be blurred
and blocked, bringing the huge difficulties to automatic ship
surveillance. To explore the impacts of weather conditions
on ship detection, we synthetically simulated the degraded
images and constructed three degraded datasets that simulate
fog, rain, and low light environments based on the classic Sea-
Ships dataset. Great efforts would be devoted to the practical
application of ship detection under severe weather conditions
via this study. We also propose an end-to-end hybrid data
training algorithm aimed at achieving ideal detection perfor-
mance in normal and multiple severe weather conditions.

1) GENERATING SYNTHESIZED DEGRADED IMAGES
In the extended SeaShips_fog dataset, sea hazy images
are generated based upon the atmospheric scattering model
expressed as (2).

I (x, y) = J (x, y) · t (x, y)+ A · t(1− t(x, y)) (2)

where I (x, y) is a hazy image, J (x, y) is a haze-free image,
A is the global atmosphere light and t(x, y) is the medium
transmission map, decaying exponentially with the increased
distance, which is formulated as (3).

t(x, y) = e−βd(x,y) (3)

where β is the medium attenuation coefficient and d(x, y)
is the scene depth. Several synthetically-degraded samples
are shown in Figure 6. These hazy images with different
concentrations are generated via adjusting the atmospheric
light A and transmission map t . To simplify the process,
the hazy images are synthesized by randomly taking and
t ∈ Ê {0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50} and A ∈
{0.75, 0.80, 0.85, 0.90}.
The rainy images can be synthesized via superimposing

the simulated raindrop trajectories on a clear image. Thus,
a synthetically-degraded image Z (x, y) with rain streaks can
be formulated as follows

Z (x, y) = J (x, y)+ B(x, y) (4)

J (x, y) is a latent sharp image and B(x, y) is the raindrop
noise layer. As shown in Figure 7, different rainy images can
be synthesized by adjusting the lengths and angles of rain
streaks. In the experiments, the number of raindrops is set
to 800, the length of the rain streaks is ranged between 20 to
80 pixels, and the angle of the rain streaks is randomly chosen
between −50 and 50.

A low-light maritime image is synthesized based on the
Retinex theory, assuming an original image S is a product of
the reflection image R and the illumination image L, i.e.,

S (x, y) = R (x, y) · L(x, y) (5)

where R may be seen as the latent sharp image, L represents
the various intensities of light on the objects that are spatially
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FIGURE 6. The example images of haze-degraded produced using (2) in the SeaShips dataset. From top to bottom: original sharp images,
haze-degraded images with t = 0.50, t = 0.35, and t = 0.20(A is uniformly set to 0.9), respectively. Among them, t denotes the transmission
map, and A is the atmospheric light.

FIGURE 7. Examples of rain-degraded images in the SeaShips dataset. From top to bottom: original images, rainy images with (RL = 20,
RA = 0◦), (RL = 80, RA = 50◦), and (RL = 80, RA = −50◦), respectively. The rain streak length (unit: pixel) and angle (unit: ◦) are expressed as
RL and RA, respectively.

smooth. To synthesize the low-light maritime images, we first
convert the original RGB images intoHSV images. The ocean
images are visually degraded via multiplying the V layer
of the original images by different attenuation coefficients
ω ∈ (0, 1). As shown in Figure 8, the low-light images are
generated with ω = 0.1, 0.2, 0.3, 0.4 and 0.5, respectively.

2) THE HYBRID DATA TRAINING STRATEGY
Table 2 shows the results of Light-SDNet trained with three
degraded datasets synthesized artificially to evaluate the
impact of different imaging conditions on ship detection

(i.e., mAP@.5/mAP@.5:.95), including normal, hazy, low-
light and rainy conditions. The results shown in Table 2 reveal
that the precision of ship detection will increase markedly if
the imaging conditions of model training and testing datasets
maintain the same. Inspired by this [53], we propose a hybrid
data training strategy. Each image has a probability of 3/4 to
be randomly added with varying degrees of fog or rain or
be converted to a low-light image before being input to the
network for model training. To detect ships more effectively
in dense fog and very low light conditions, we generate a
wider range of fog concentrations and lower illumination
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FIGURE 8. Examples of low-light maritime images in the SeaShips dataset. From top to bottom: original images, low-light maritime images
with ω = 0.5, ω = 0.3, and ω = 0.1, respectively.

TABLE 2. The effects of different adverse weather conditions on ship detection. (mAP@0.5/mAP@.5:.95).

levels to simulate ocean scenes. A rainy scene is addition-
ally simulated to complete the task well in the rainy days.
In Algorithm 1, we describe the hybrid data training process
in detail.

D. QUANTITATIVE EVALUATION
To verify the effectiveness of the proposed Light-SDNet,
the quantitative evaluation was performed by comparison
with state-of-the-art (SOTA) algorithms, including the YOLO
series and the SOTA lightweight Backbone series. YOLO
series include YOLOv3-lite, YOLOv4-lite, YOLOv5n and
YOLOv5s, while popular lightweight Backbones include
GhostNet [22], EiffcientNet-lite [15], MobileNetv3s [16],
and ShuffleNet-v2 [21], specifically to replace the Backbone
of YOLOv5s. The performance comparison was carried out
on the synthetic Seaships fog dataset.

Figure 9 shows the curves of mAP, Precision, and Recall
for all detectors during model trainings. As shown in
Figure 9(a) and (b), Light-SDNet is better than other models
due to its slightly highermAP values, while Figure 9(c) shows
that the performance of YOLOv3-tiny and YOLOv4-tiny
is much lower than that of other models since YOLOv5
improves their feature extraction network and data augmen-
tation techniques. As can be seen from Figure 9, all curves
rise gently and converge rapidly, thereby indicating that the
model is well trained without overfitting.

Algorithm 1 Training Procedure for Light-SDNet
Input: Original image of ship detection
Output: Calibration results of detection in adverse weather conditions
Initialize Light-SDNet D ∧ θ with random weights θ .
Set the training stage: num_epochs = 300, batch_size = 16.
Prepare the normal dataset Seaships_trainval.
for i in num_epochs do
repeat

Take a batch images M from Seaships_trainval.
for j in batch_size do

if random.randint(0, 3) > 0 then
Generate the foggy image M (j) by (2) and (3), where A =
random. choice ([i/100 for i in range (60, 95, 5)]), t =
random.choice([i/10 for i in range(1, 6)])
//for foggy conditions
Generate the rainy-image M (j) by (4),
Where L = random.randint(20, 80), A = random.randint
(−50, 50) //for rain conditions
Generate the low-light image M (j) by (5),
where ω = random. choice ([i/10 for i in range (1, 6)])
//for low-light conditions

end if
end for
Update Light-SDNet D ∧ θ according to detection loss.

until all images have been fed into training models
end for

Table 3 shows that Light-SDNet achieves the best perfor-
mance among the YOLO series since it improves mAP per-
formance by 1.8% compared with the original YOLOv5s and
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FIGURE 9. Comparison of Light-SDNet with other models on the Seaships dataset. (a)mAP@0.5; (b)mAP@0.5:0.95; (c)Precision;
(d)Recall.

TABLE 3. Performance comparison on SeaShips dataset (mainly in YOLO series).

10.6% compared with YOLOv3-tiny. Moreover, the size of
Light-SDNet is only 4.93 MB, accounting for 68.1%, 83.7%,
and 56.8% of YOLOv5s, YOLOv4-tiny and YOLOv3-tiny,
respectively. As shown in Table 4, Light-SDNet achieves
detection accuracy higher than other lightweight Backbone
networks though its model size is not the least among the
comparative models. The comparison also reveals that the
detection accuracy of Light-SDNet is the highest for ship
detection in adverse weather conditions. For the detection
speed of the model, the inference time of Light-SDNet is

2.0 ms per image (500 fps) (fps, frames per second), indicat-
ing that Light-SDNet enables real-time ship detection. The
detection precision and computational burden of compara-
tive models are visualized in Figure 10. We can see that
Light-SDNet achieves the cost-effective performance better
than its competitors due to it using the multi-feature fusion
and channel-spatial parallel attention mechanism for ship
detection.

Table 5 shows the performance comparison between
Light-SDNet with the hybrid training strategy and its
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TABLE 4. Performance comparison on SeaShips dataset (mainly on the lightweight Backbone series).

TABLE 5. Comparison of the different ship detection algorithms.

FIGURE 10. Comparison of the proposed Light-SDNet with other models.
Each bubble’s area represents the total number of parameters.
GhostNet/EfficientNet-lite/MobileNetv3s/ShuffleNetv2 replaces the
Back-bone of YOLOv5s, respectively.

competitors. We can observe that compared with its com-
petitors, the proposed method achieves a marked improve-
ment on the precision of ship detections in the maritime
surveillance images. The reason is that Light-SDNet adopts
the CA-Ghost module and the C3Ghost module guided by
the attention mechanism, which achieves more fully shallow
feature extraction and effective multiscale feature fusion. The
hybrid training strategy is used to enhance the diversity of
the training data and improve the robustness of Light-SDNet,
which can further improve target detection accuracy.

E. QUALITATIVE EVALUATION
To qualitatively compare Light-SDNet with other models,
we conduct experiments on synthetic sea fog dataset. Results

are shown in Figures 11 and 12, where the rectangular boxes
in Figures 11-12 mark the ships detected by different detec-
tors. Special scenarios such as the simultaneous appearance
of multiple ships, large overlapping areas of ships, small
ships, and dense fog make it more difficult to detect ships,
resulting in unreliable monitoring of maritime traffic.

Figures 11-12 indicate that most of comparative models
achieves unsatisfactory results on ship detection under com-
plex conditions due to missed detections and false detections
occurring frequently. We can see that YOLOv3-tiny cannot
accurately identify bulk carriers when multiple ships appear
concurrently, and MobileNetv3s misidentifies bulk carriers
as ore carriers. Vessel detection in severe weather conditions
is a challenge. Bad weather markedly reduces the quality
of the image captured by maritime surveillance systems.
YOLOv3-tiny and YOLOv4-tiny cannot effectively detect
ships in dense fog conditions due to it being sensitive to
unstable imaging. Small ship detection is also a challenge.
The size of small ships in the original image is relatively
small, resulting in too few discriminative features. As a result,
the detector cannot identify these small target ships accurately
with blurred features after many convolutional layers. Water
surface reflections and ocean waves also cause confusion and
interfere with imaging due to the particular marine imaging
scene, increasing the difficulty of feature extraction for small
target ships. However, GhostNet and Light-SDNet show good
performance for small target ship detection because the Ghost
module embedded into the model compensates each other
for channel information and retains more underlying infor-
mation beneficial to the small target detection. As shown
in Figures 11-12, other models except YOLOv4-tiny exhibit
accurate detection of multiple ships with a suitable occlusion
rate. In contrast, Light-SDNet can achieve robust detection of
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FIGURE 11. Visual comparison of the proposed Light-SDNet with the light YOLO family. From top to bottom: respectively represent detection of
multiple ships, detection of ships with large overlapping areas, detection of small ships, and Ship detection in dense fog. The YOLOv3-tiny,
YOLOv4-tiny, YOLOv5n, and YOLOv5s generate inaccurate detection results, while Light-SDNet can yield more satisfactory results.

FIGURE 12. Visual comparison of the proposed Light-SDNet with four lightweight SOTA methods, in which Yolov5s’s Backbone is replaced.
From top to bottom: respectively represent detection of various ships, detection of ships with large overlapping areas, detection of small ships,
and Ship detection in dense fog. The comparative four models can achieve accurate ship detection in dense fog conditions, while they suffer
from false or missed detections in other complex environments.

moving ships under various surveillance conditions, provid-
ing strong support for maritime surveillance systems.

F. ABLATION STUDY
To find the effectiveness and efficiency of the proposed strat-
egy, we conducted the different experiments on the com-
ponents of the Light-SDNet architecture and the proposed
hybrid training strategy. Details of the experimental for-
mulations of the Light-SDNet architecture are presented in
Table 6.We can observe that the original YOLOv5s yields the
lowest mAP, resulting in unsatisfactory detection results. The
improvement of detection accuracy brought by DWConv is
not obvious, while the computational burden is reduced dra-
matically. As shown in Table 6, applying Ghost and C3Ghost

in YOLOv5s can improve the detection accuracy markedly
due to the optimization of feature maps. Moreover, the results
indicate that the appropriate increase of network Depth pro-
vides 0.6% improvement in mAP performance. The compari-
son also shows that coordinate attention and parallel attention
can improve the detection accuracy of the original YOLOv5s.
Further, Light-SDNet improves the mAP performance by
1.8% compared with the original YOLOv5s. Thus, the pro-
posed framework improves detection performance markedly
by integrating multiple functional modules with YOLOv5s
and appropriately increasing network depth.

To describe the impact of different types of ships on model
performance, the PR curve and F1-score curve of Light-
SDNet are shown in Figure 13 (a) and (b), respectively. It can
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TABLE 6. Comparison of ship detection performance of different modules.

TABLE 7. Comparison of ship detection performance of the hybrid data training strategy.

FIGURE 13. Effects of different types of ships on the performance of Light-SDNet: (a) The PR curve; (b) F1 score curve.

be derived from Figure 13 (a) that Light-SDNet is an optimal
detector since it reserves high precision values along with
increased Recall rate. Figure 13 (b) shows that Light-SDNet
acquire the highest F1 score on the container ship images due
to the salient characteristics of container ships, meanwhile,
it keeps reasonable F1 score on all classes of ship images
as confidence increases, especially on small fishing ships.
Thus, the proposed detector possesses good generalization
performance.

To validate the effectiveness of the proposed hybrid train-
ing strategy, the performance comparison of Light-SDNet
with and without the proposed training method were carried

out and the results are shown in Table 7. We can observe that
the AP index of each type of ships is significantly improved,
the recall rate is increased by 2.5%, and the mAP is increased
by 4.6%. Thus, the comparison indicates that the hybrid
training data strategy can improve the detection performance
of the proposed detector markedly.

To examine the robustness of the proposed method,
we conducted the experiments in different imaging environ-
ments, and results are shown Figure 14. It can be derived that
the proposed detector can detect the moving ships accurately
even if the visual quality is degradedmarkedly by badweather
conditions, due to the fact the proposed hybrid training
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FIGURE 14. Detection results of the proposed method (i.e., Light-SDNet and the hybrid data training strategy) under different imaging
conditions.

strategies with synthetically-degraded images could improve
the diversity of training datasets markedly. Thus, the learning
and generalization abilities of Light-SDNet are improved in
practice. It can be derived from Figure 14 that the proposed
method can achieve reliable, efficient, and accurate ship
detection under poor imaging conditions. The reliable detec-
tion of Light-SDNet contributes to tracking maritime objects,
and detecting abnormal behavior, leading to enhanced man-
agement in the intelligent maritime surveillance systems.

V. CONCLUSION
In this study, we proposed a lightweight CNN framework and
a hybrid training strategy for ship detection. The proposed
network makes full use of the shallow location features via
introducing CA-Ghost module to improve the feature extrac-
tion capability of the Backbone. And the C3Ghost module
guided by the attention mechanism has been introduced in
the Neck network to achieve more effective feature fusion.
In addition, we presented the hybrid training strategy to
enhance the diversity of the training data and improve the
robustness of Light-SDNet in the adverse weather conditions.
Compared with the recently proposed SOTA models, our
method achieves a balance between model complexity and
detection accuracy and can detect different types of moving
ships in real time with high detection accuracy. Extensive
experimental results have demonstrated good detection per-
formance of Light-SDNet under adverse weather conditions,
such as hazy, rainy, and low-light conditions. This study can
be extended in the following directions tomake ship detection
more reliable and robust.

(1) The proposed hybrid data training strategy directly
synthesizes degraded images by using a simplified image

generationmodel. However, the synthetic ocean images differ
from real ones in terms of the color and structure. The next
step will focus on the generation of more realistic degraded
images.

(2) Accurate detection of small moving ships in a maritime
surveillance system is still challenge for Light-SDNet. It is
hard for monitoring camera situated at a distance from the
ships to capture high-resolution maritime images, thereby
leading to unreliable detection in terms of robustness and
accuracy. We will promote small-scale ship detection via
increasing detection Heads for small target objects [55].

(3) Bad weather typically affects the quality of the images
captured by the marine surveillance systems, which causes
the difficulty for accurate multi-ship detection. Thus, there
is potential for imagery data combined with oceanographic
radar technology to detect and classify multiple targets [56].

Although the proposed method has huge space to further
improve its performance, it is still worth exploring as it can
realize the accurate detection of moving ships rapidly under
severe weather conditions while remaining its lightweight
nature, thereby achieving a better balance between the detec-
tion accuracy and model size. Light-SDNet has the potential
to be putted in practical applications to enhance maritime
safety and management.
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