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ABSTRACT The automotive industry has started its transformation towards Software-Defined Vehicles.
This transformation is driven by the rise of the number of vehicle features, the high complexity of these
features and their constraining availability requirements which affect all the players (Original Equipment
Manufacturers, Tier1 and Tier2) of the sector. In the context of this transformation, our target, from
functional safety point of view, is to, inter alia, provide an easy-to-use and safety-compliant execution and
development flow and simplify the development and argumentation for safety by providing a) a pre-certified
execution environment with safety design patterns and best-in-class safety measures and b) processes
and tooling to minimize the system integrator’s effort. Therefore, in this work we propose a top-down
approach where we first define a New Generation In-Vehicle Network, NGIVN, capable of fulfilling
the performance (e.g. high bandwidth, low end-2-end delay), safety-related availability (e.g. Autonomous
Driving / Advanced Driver-Assistance Systems (AD/ADAS) up to SAE level 5) and safety requirements
of modern vehicles. Also, we illustrate the advantages of this approach by deriving the functional and safety
attributes of an Automotive Gateway SoC, named Elastic Gateway and destined to be part of the NGIVN.
Through the deployment of the Elastic Gateway functional safety concept we demonstrate the flexibility
provided by our approach with regards to the design of elements of the NGIVN.

INDEX TERMS AD/ADAS, automotive gateway SoC, fail-operational, functional safety, requirements,
software defined networking, software defined vehicles.

I. INTRODUCTION
The new trends in the automotive industry (connected vehi-
cles, autonomous driving (AD)) are making vehicles evolve
faster than ever from a technology perspective [1], [2]. Tra-
ditionally, vehicles were fully mechanical products, where
electronics were introduced as additions for specific func-
tionalities. Basically, for each new sensor or actuator with
electronic control integrated in the car (lights, windows,
infotainment system, etc.) an electronic control unit (ECU)
would be introduced [3], [4]. While being a simple approach
at the beginning, with the introduction of many more sen-
sors and actuators, this became difficult to handle [5], [6].
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In today’s vehicles, the In-Vehicle Network (IVN) is orga-
nized in a logical distribution, where sensors and actua-
tors are organized in functional groups or domains, i.e. the
body/comfort domain, the cockpit/infotainment domain, the
powertrain/chassis domain, etc. Each of these domains is
managed by a domain controller that handles the exchange of
information between the sensors and actuators of the domain,
and also to other domain controllers through a central gate-
way. This is known as domain-based architecture [7]. Each
domain has sensors and actuators all across the vehicle (e.g.
lights in front and rear), which means that cables need to be
laid out from front to back of the vehicle for each domain.

The vehicle software (SW) is also organized following
this logical distribution, mapping the software functionalities
to the related hardware that is present in the vehicle [8].
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However, we are seeing that this is changing due to the
increase in functionalities and their complexity, which usu-
ally involve different sensors and actuators from mixed
domains, requiring a paradigm shift. The trend we are see-
ing today is to move towards Software-Defined Vehicles,
where everything can be easily configured by the Original
Equipment Manufacturer (OEM) from software perspective
and without strict hardware (HW) dependencies [9], [10].
At the same time, this new concept is impacting on the
Electric/Electronic (E/E) architecture transitioning from a
domain-based approach (i.e., grouping of functions according
to logical criteria) to a zonal approach (i.e., grouping of those
functions according to physical/spatial criteria).

In the zonal approach, domain controllers are replaced
now by new ones named zonal controllers that embed
cross-domain functions in order to give service to all the
functions allocated in a given physical zone of the vehicle
[8], [11]. This means that the functions previously performed
by each domain controller are now remapped across the zonal
controllers interconnected through the IVN. Also, each zonal
controller hosts now functions corresponding to different
domains.

With this, we see that the current domain-based IVN
imposes some limitations in terms of configuration capa-
bilities and the deployment of new functionalities from a
software perspective. Furthermore, it brings a very high wire
harness cost and limits the scalability of the network [12].

Therefore, a new generation of In-Vehicle Networks
(IVNs), characterized by a multitude of data sources, includ-
ing Long-Range Radar, LIDAR, Cameras, Short-/Medium
Range Radar, and Ultrasound, easily amounting to more
than 100 sensors per car, is required for Software-Defined
Vehicles [13].

The New Generation IVN, or NGIVN, shall interconnect
sensors, in-vehicle processing units, actuators, and external
communication peers, i.e. the cloud and other vehicles. Data
must flow between the sensors and the other nodes at least
partly with real-time guarantees. Also, the NGIVN shall
support different types of sensors using different commu-
nication protocols, generating data with different rates and
characteristics, offering sensor data output at different fidelity
and raw sensor data as well as preprocessing to different
degrees [14], [15].

In addition to these functional features, when considering
new use cases such as autonomous driving, safety and reli-
ability aspects of the network become of utmost importance
[16], [17]. Today, the safety goals of item functions of the
vehicle are typically fail-safe, i.e. when a failure is detected,
the function enters into its safe state (e.g. low beams are
turned on as countermeasure to some failure, covering thus
the worst case scenario) [18], [16]. Other safety-goals are not
fail-safe, but the availability is only needed at actuation side
(e.g. Electric Power Assisted Steering performs a ramp-down
of steering assist in case of loss of communication with torque
sensor) [19]. However, going towards autonomous driving
this is not enough. The new requirement for Autonomous

Driving / Advanced Driver-Assistance Systems (AD/ADAS))
is that the vehicle must be fault-tolerant, i.e. it must continue
operation even in the presence of failure [20], [21]. Thus, the
NGIVN shall also migrate from being fail-safe to being fail-
operational. It shall detect faults in any of its components,
recover from it by either correcting it or by redirecting the
traffic, and notify the rest of the vehicle if necessary. All of
which shall be done without reducing the availability of the
vehicle’s features and without endangering the safety of the
traffic participants [18], [22].

Ensuring compliance with safety regulations and standards
such as ISO26262 [18], or SOTIF [23] is an arduous task,
which usually needs to be re-done when changes are made
to a subsystem of the vehicle. That is, today, the way to
prove safety compliance is to follow a bottom-up approach,
certifying first each component, and later its interactions
with the rest of the components of the network [24]. On the
other side, the vehicle development process is top-down.
An OEM defines a top-level item architecture and succes-
sively chooses subsystems, components and HW elements.
Given the increase in complexity of the NGIVN compared
to traditional IVNs, this bottom-up approach is non-scalable
and limits the flexibility to deploy new safety mechanisms in
the vehicle [25].

In this context, our work is focused on providing an easy-
to-use and safety-compliant design and development flow to
simplify the development and argumentation for safety in
modern vehicles. We propose to change the current bottom-
up approach for a top-down approach, able to provide a pre-
certified execution environment with safety design patterns
and best-in-class safety measures that allow for minimizing
the system integrator’s effort. The main contributions of this
work are listed below:

• C1. Top-down approach to develop different safety
concepts for NGIVN devices: Being the main contri-
bution of this work, we define the strategy and develop-
ment flow that permits to go from top to bottom of the
NGIVN ensuring that safety aspects are met by design
at all system levels. We also define a methodology that
allows for simplifying the integration of new safety
mechanisms into the network with minimum engineer-
ing effort and guaranteeing safety compliance.

• C2. Functional Safety concept NGIVN: We define the
NGIVN, identify the components of which it is com-
posed and the requirements to be met by each of them
from safety perspective. We also identify and define the
state-of-the-art and beyond state-of-the-art technologies
or safety mechanisms that constitute the backbone of the
safety concept of the different elements of the NGIVN.
With this, we are able to define the functional safety
concept of the NGIVN and, from this, to derive the
functional requirements of the different elements that
compose the NGIVN.

• C3. Demonstration of the flexibility and scalability
of the top-down approach through a case study: We
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show how the top-down approach allows to develop
new safety concepts for automotive devices in a flex-
ible and scalable manner. For this, we present a case
study focusing on the development of the functional
safety concept for a novel Automotive Gatewaying Sys-
tem on Chip (SoC) specifically designed to meet the
requirements of NGIVNs. We also provide background
information on this SoC referred as ‘‘elastic Gateway
(eGW)’’. We define the failure modes of the NGIVN
and the safety mechanisms that allow to overcome them.
Finally, we deploy the safety mechanisms in the eGW
ensuring that the safety requirements are met, and there-
fore guaranteeing that the safety goals of the NGIVN are
met as well.

The remainder of this paper is structured as follows: We start
in section II by providing a comprehensive overview of the
state of the art regarding safety mechanisms deployment in
automotive networking devices, including Automotive Gate-
way Controllers. We show that the current methods and
implementation are neither flexible enough nor optimized to
meet the stringent requirements of the Autonomous Driving
trend. In Section III we discuss new trends in automotive
FuSa solutions and the identified gap in the state of the
art as the motivation behind this work. In section IV we
present the NGIVN, analyzing first the components inte-
grated in it and their requirements, and deriving then the
functional safety concept for the NGIVN. In section V we
introduce the software defined strategy proposed in our solu-
tion. In section VI we present a case study of application
of this top-down approach to develop the safety concept of
an automotive network SoC. For this, we present our new
generation automotive gateway controller and its associated
safety concept which is derived from the NGIVN safety
concept. In Section VII we detail the steps required in our
top-down approach for the deployment of this safety concept.
Then, in Section VIII we elaborate on the flexibility of our
approach and its advantages with regard to defining the safety
concept of various gateway devices simultaneously. Finally,
we conclude the work in Section IX.

II. STATE OF THE ART ON AUTOMOTIVE FUNCTIONAL
SAFETY
A. FUNCTIONAL SAFETY PROCESS IN THE CONTEXT OF
AUTOMOTIVE INDUSTRY TODAY
The automotive industry is a huge and complex environment
where many different actors are involved. From Original
Equipment Manufacturers (OEMs) on the top of the supply
chain, to Tier-1 and Tier-2 players which provide vehicle sub-
systems, or components of these vehicle subsystems. In order
to guarantee a successful product development, the whole
ecosystem needs to be aligned, and the interfaces between
components and subsystems need to be clearly defined. For
this purpose, standardization plays a key role in driving direc-
tion for all the industry players. Regarding safety, the current
standard that defines the process and requirements needed
across the whole product lifecycle (from a safety perspec-

FIGURE 1. State of the art bottom-up approach for FuSa integration
within system development flow.

tive) is ISO 26262. Under this framework, Tier-2 companies
like semiconductor vendors design the gateway chipset that
enables internal communication within the vehicle. Each of
them equips the different products with functional and safety
features aligned with the needs of their customers, the Tier
1 and OEMs. However, it is important to highlight here the
fact that all these different devices developed by automotive
semiconductor vendors (e.g. Infineon, NXP, ST, Renesas) are
usually delivered by all those Tier-2 as a Safety Element out
of Context (SEooC) solution, i.e. they are delivered to the
Tier-1/OEM responsible for its integration in its particular
business case solution as a component equipped with safety
mechanisms without considering the context of their appli-
cation in a particular vehicle. Therefore, the responsibility in
terms of reaching a safety-compliant solution relies on the
automotive player who integrates such device in the context
where it is targeted. The Tier-1/OEM will configure and
program all the safety features provided in the device in order
to reach the safety compliance with the Automotive Safety
Integrity Level (ASIL) required by its solution.

As we can see, the typical approach followed towards
reaching the required FuSa compliance is a bottom-up
approach. This starts at the chipset level, where Tier 2 players
try to provide the best safety mechanisms according to their
expertise, by including isolated safety capabilities which then
need to be validated at both component and system level by
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Tier 1 and OEM, respectively. This approach is depicted in
Fig. 1. In the figure we identify three levels of abstraction
for the safety analysis of the IVN, typically corresponding to
different actors in each of the levels.

However, these levels can be merged through vertical
integration, as depicted in Fig. 2, simplifying the interfaces
between the different stages. In case of one actor taking
charge of the full system solution, this could be better opti-
mized and iterations at the three levels could be more agile.
Nevertheless, in this second figure, we can still see how the
three safety analysis levels are present: Chipset or SoC level,
GW or ECU at component level and system or IVN level.
Even when done by the same actor, nowadays the approach
is the same, going bottom-up, keeping the three safety anal-
ysis levels isolated, and usually taken charge by completely
different teams.

B. SAFETY MECHANISMS EMBEDDED IN IVN, ZONAL GW
CONTROLLER AND NETWORK SoC
In order to build a fail-safe, fault-tolerant or fail-operational
system, it is extremely important to design robust and reliable
system architectures able to withstand and accomplish such
target. That is, adopting the ‘‘safety by design’’ or ‘‘design
for safety’’ principle since the very beginning of the product
conceptualization is the right and only way to efficiently
architect and develop safety compliant solutions.

In this section, we collect all those technical aspects which
are part of the state-of-the-art today and break them down
into specific strategies and tactics that derive in safety mech-
anisms portable to the design of safe in-vehicle networks,
embedded in electronic control units (ECU) and taking into
account the diverse types of failures that can occur in a
network – from some transport delay in safety critical frames
to link failures in an ECU or even an entire node (ECU)
failure, among others. Next, we classify the networking safety
mechanisms according to different technical criteria and elab-
orate about them.

1) SYSTEM REDUNDANCY AND DIVERSITY
Redundancy, understood as a second path available in case
that a primary path is defective, is one of the strategies
for reliability in cyber physical systems. This second path,
moreover, is convenient to be implemented in a diverse way
compared to the first path in order to not be affected by the
same type of fault than the primary path.

Like this, diversity refers to implementing the redundant
solution in a different way or with a different technology than
the primary solution to avoid, by design, a single and common
source of failure for both primary and redundant solution.
Some strategies that exploit the redundancy and diversity
principles applicable into in-vehicle networks are described
next.

a: FRAME REPLICATION AND ELIMINATION FOR
RELIABILITY (FRER)
Given a network topology based on different nodes
interconnected, the ‘‘P802.1CB – Frame Replication and

Elimination for Reliability’’ standard [26] specifies proce-
dures, managed objects and protocols for bridges and end
stations that provide:

- Identification and replication of frames, for redundant
transmission.

- Identification of duplicate frames.
- Elimination of duplicate frames.

To achieve that, it is necessary to create and eliminate dupli-
cate frames, and this can be done in both end stations and
relay nodes (e.g., bridges or routers).

b: NETWORK CODING
Network coding was originally proposed for improving
throughput of multicast communications [27]. The key idea
is to allow intermediate nodes not only perform forwarding
operations but also to create new packets by combining two or
more packets from the incoming flows. Throughput enhance-
ment is just one of the possible applications of network
coding. Robustness, security and storage are other examples.
In wireless and cellular networks, network coding is typically
applied to improve throughput and robustness in scenarios
with relays, when base station transmissions are relayed at
least once before they can reach end users.

c: DUAL MODULAR REDUNDANCY (DMR)
Dual Modular Redundancy (DMR) is a technique that uses
a functionally identical secondary system to back up the pri-
mary system. It consists of logic duplication and a compara-
tor. The secondary system is additional like a spare solution
and does not monitor the main system. As example, lock step
execution is an extended use case of DMR [28]. Lockstep
systems are fault-tolerant systems that run the same set of
operations at the same time, in parallel. The redundancy (i.e.,
duplication) allows error detection: the output from lockstep
operations can be compared to determine if there has been a
fault.

d: TRIPLE MODULAR REDUNDANCY (TMR)
Triple modular redundancy (TMR) is an established tech-
nique for improving hardware fault tolerance. It is a process
that uses a form of triple redundancy to control faults.

A typical example of use is in single event upset (SEU)mit-
igation. If a single indication of a critical operation resulted
in an error, the entire mission would result in a disaster. How-
ever, a TMR design has three identical instances of hardware
with a voting hardware at the output. If some SEU affects one
of the hardware instances, the voting logic notes the majority
output and this operation masks malfunctioning hardware by
withstanding to it, therefore avoiding a system shutdown due
to a single error and providing both safety and availability to
critical missions.

e: PARTITIONING AND DECOMPOSITION
Partitioning (typically software-based) can be used for
fault containment to avoid cascading failures between
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FIGURE 2. In-vehicle network functional safety analysis decomposed in three levels of abstraction: vehicle/system level (IVN E/E architecture),
ECU/component level (HW/SW codesign) and chipset/SoC level. (HW network accelerators and peripherals design.)

software elements. It is a technique for providing isolation
between software components to contain and/or iso-
late faults. This method can be implemented in hard-
ware, software and a combination of hardware and
software [29], [30].

Decomposition is another strategy that can contribute to
effective deployment of safety solutions. Applications and
network communications are assigned Automotive Safety
Integrity Levels (ASILs) based on the ISO 26262 standard for
functional safety in automotive systems. ISO 26262 outlines,
for eachASIL, requirements on coverage of randomhardware
errors and systematic errors. Specific to systematic errors, the
ISO 26262 standard defines ASIL decomposition as a vehicle
to decompose functions into independent components, each
with a lower safety requirement than that of the original
function. Since the cost of a component is increasing with
its ASIL, decomposition can lower the total cost while still
meeting the original safety requirements [31].

f: NETWORK TOPOLOGY
Different topologies can be exploited: ring, double ring,
mesh, star, etc. Each of them provides different advan-
tages/disadvantages regarding safety in general, and redun-
dancy in particular. For example, a ring topology provides at
least two alternate paths for each node by construction, while
a star topology provides only one.

g: T-SHAPE INTERFACING
One strategy to achieve redundancy at node level is to provide
every node with at least three ports to different nodes in the
network in order to guarantee redundant paths.

2) TIME SYNCHRONIZATION
In time deterministic distributed systems, it is necessary that
all the processing nodes that compose the system share a
common notion of time or global time. To meet this goal,
a synchronization protocol which aligns the time of each node
to a global reference clock is required.

a: GENERALIZED PRECISION TIME PROTOCOL
The generalized Precision Time Protocol or gPTP standard
(IEEE 802.1AS [32]) was developed by the AVB Task Group
and released by the IEEE in 2011. The synchronization of
networked devices afforded by gPTP provides a common
time base needed for professional-quality clocking of audio
and video as well as time-sensitive streams, giving place to
distributed timing: gPTP nodes periodically exchange pack-
ets with embedded timing information with the end result
that all gPTP nodes are synchronized to the gPTP grand-
master. The gPTP grandmaster is a single device that is
either automatically selected with gPTP’s Best Master Clock
Algorithm or manually pre-assigned when so desired. Either
way, the end result is the same – precise synchronization
(+/- 500ns) of all gPTP nodes. This level of synchronization
is the underpinning that enables protocols built on gPTP to
subsequently synchronize media clocks of talkers and listen-
ers with uncompromised professional quality.

b: IEEE802.1AS
IEEE 802.1AS-2020 is the IEEE Standard for Local and
Metropolitan Area Networks – Timing and Synchronization
for Time-Sensitive Applications. Protocols, procedures, and
managed objects for the transport of timing over local area
networks are defined in this standard. It includes the trans-
port of synchronized time, the selection of the timing source
(i.e., best master), and the indication of the occurrence and
magnitude of timing impairments (i.e., phase and frequency
discontinuities).

3) FREEDOM FROM INTERFERENCE (FFI)
ISO 26262 defines freedom from interference as the absence
of cascading failures between two or more elements that
could lead to the violation of a safety requirement, where
‘‘element’’ is a system or part of a system including compo-
nents, hardware, software, hardware parts, and software units,
and ‘‘cascading failure’’ is a failure of an element of an item
causing another element or elements of the same item to fail.
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That said, ISO 26262 specifies three types of interference:
timing and execution, memory, and exchange of information.

- Interference in the time domain occurs when execution
of a safety-relevant software element is blocked due to a
fault in another software element. This type of problem
can be detected and handled by handshake mechanisms
like a watchdog.

- Interferences in the memory space domain occurs when
a software element accesses or modifies code or data
belonging to another software element. This type of
interference is related to corruption of memory content
and device configuration data. Such interferences are
typically detected at run-time by a hardware component
called the Memory Protection Unit (MPU).

- Interferences due to exchange of information are sender
and receiver related and are caused by errors such as:
repetition of information, loss of information, delay of
information, insertion of information, blocking a com-
munication channel, etc. These types of problems are
detected by handshake mechanisms provided with data
integrity checks.

a: SAFETY ISLAND
In order to isolate the subsystem that deploys the safety-
relevant functionality from the rest of the system (non-safety-
related) to avoid thus any kind of interference, the functional
safety subsystem is architected as a building block that guar-
antees the freedom from interference from any other external
source, independently of being this solution implemented in
hardware or software.

4) RELIABILITY
a: STATIC ROUTING
Static routing and dynamic routing are two methods used to
determine how to send a packet toward its destination. Static
routes are configured in advance of any network communica-
tion. Dynamic routing, on the other hand, requires routers to
exchange information with other routers to learn about paths
through the network. Static and dynamic routing are used
where appropriate, and some networks use both.

In reduced and non-changing networks like in a vehicle, the
use of static routing, or non-adaptive routing, contributes to
reduce complexity, especially in terms of orchestration. Static
routing uses small routing tables normallywith only one entry
for each destination. It also requires less computation time
than dynamic routing because each route is preconfigured.
Because static routes are preconfigured, administrators must
precompute upfront or manually reconfigure routes to adapt
to changes in the network when they occur. In the case of
automotive, it could be possible to reconfigure static routing
tables as response to certain types of failures.

b: SOURCE ROUTING
In alignment with Static Routing, source routing comprises
a viable approach to the reduction of forwarding state

[33], [34]. This state reduction can yield significant switch
Ternary Content Addressable Memory (TCAM) savings in
the Match&Action stage of the networking device, allowing
for cheaper switching hardware. In principle, source routing
encodes the path into each packet header, enabling switches
to forward packets using a minimal number of (nearly static)
flow independent forwarding entries. In particular, the path
is encoded as a set of labels which correspond (or may
even match) to the sequence of switch ports that each packet
needs to traverse. As such, there is no need for the switches
to maintain L2 or L3 forwarding entries to all destinations
within the network, saving a significant amount of TCAM
space.

c: ACTIVE QUEUE MANAGEMENT (AQM)
AQM schemes are strategies of interest in the field of con-
gestion control mechanisms [35]. They exploit the idea that
an incoming packet can be dropped by the networking device
even if there is some available buffering space in it as a
countermeasure to save space for safety critical frames to
come.

d: SMART QUEUEING
Another more conservative option instead of deciding to drop
a frame is to try to accommodate the ingress frame in the
appropriate space of the internal buffers of the device when
there is free space yet in order to avoid thus the retransmission
of frames by the sender, fact that would increase the traffic,
for instance in the case of dropped messages managed by
TCP/IP.

5) TIME DETERMINISM
Many applications deployed in a distributed cyber physical
system demand a bounded end-to-end delay or latency as
response, in alignment with some safety requirement. Several
mechanisms are developed and extensively used nowadays to
accomplish this type of time deterministic demands.

a: TRAFFIC SHAPERS
Traffic shaping is an adopted strategy in order to fit the traffic
of the network into time deterministic requirements targeting
specific end-to-end bounded delays. Many types of traffic
shapers are nowadays in place in many verticals and indus-
tries, also considered in the automotive field: Asynchronous
Traffic Shaper (ATS) [36], Time Aware Shaper (TAS) [37],
Credit Base Shaper (CBS) [38], Stream Reservation Protocol
(SRP) [39], Frame Preemption [40], etc.

b: WATCHDOG
A watchdog timer is a specialized timer module that helps a
microprocessor or cyber physical system in general to recover
from SW malfunctions. When a watchdog timer expires, i.e.,
it reaches the end of its counting period, it resets the entire
processor system. In order to prevent this, the microprocessor
that is monitored by the watchdog must perform some type of
specific action that refreshes the watchdog by restoring the
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timeout interval. Thus, a watchdog timer can be configured
such that it will reach the end of its counting interval only
if a processor failure has occurred, and by forcing a system
reset, the watchdog timer helps the processor to escape from
the failure mode and restart normal operation. There are
two types of watchdog mechanism: normal and windowed.
A normal watchdog causes a reset if the counter expires (i.e.,
not refreshed in time). A windowed watchdog is more strin-
gent in terms of accuracy of the microprocessor-watchdog
handshake and also causes a reset if the refresh occurs out
of the configured window, either too soon or too late of the
upper and lower time thresholds defined.

6) SELF-MONITORING
Fast failure detection is critical in many FuSa applications.
To achieve this goal, it is necessary to add monitoring strate-
gies able to detect failures and trigger the required safety
reaction.

a: BUILT-IN SELF-TEST (BIST)
The term Built-In Self-Test (BIST) is used to describe the on-
chip hardware mechanisms that can be used to detect latent
faults within an electronic device, e.g. SoC or microcontroller
unit (MCU) [41]. The BIST allows the device to conduct
periodic self-tests to identify faults. The results of these
self-tests can then be used by the device to handle the faults
and ensure that the system remains in a safe state. These self-
tests are usually performed in startup time but also triggered
periodically at run time. Some examples are memory BIST,
both flash and RAM.

b: DATA SCRUBBING
Data scrubbing is a technique used to reconfigure or repro-
gram a device, for instance a RAM-based FPGA. It can be
used periodically to avoid the accumulation of RAM errors
without the need to find them, but just eliminating them by
rewriting the right configuration, simplifying thus the detec-
tion and corrective process. The same strategy can be applied
to the configuration of RAM-based registers in a micropro-
cessor. Numerous approaches can be taken with respect to
scrubbing, from simply reprogramming the full device to
partially reconfiguring it. The simplest method of scrubbing
is to completely reprogram the device at some periodic rate
taking into account the effect of having an error present for
a given specific time (i.e., the selected period) before being
fixed and the consequences of it on the full system.

c: DATA POLLING AND EVENT-DRIVEN PROCESSING
Other classical ways of self-monitoring are data polling (i.e.,
periodic reading of inputs) or event-driven conditions derived
in hardware interrupts or software callback functions when
certain conditions are met.

d: DATA INTEGRITY CHECK
In networking, every transmitted frame is provided with a
field in the trailer to check the integrity of the data and ensure

that the frame is consistently created and transported from
end to end. Thismechanism is intended to detect errors in case
of frame inconsistency or data corruption due to some noisy
environment affecting the data transmission. Some examples
of algorithms used to check the data integrity are: Parity bit
(PB), checksum (CS) or cyclic redundancy check (CRC).

e: ALIVE COUNTER
A liveness strategy commonly used in networking is the use
of an Alive Counter built-in in the header of frames in order
for the receiver/listener to check that the sender/talker is alive
by increasing that counter in each transmitted frame. The fact
of incrementing the counter at every transmission is a proof
that the sender/talker remains in operation (i.e., its software
program flow is not lost).

7) FAIL SAFE AND FAIL OPERATIONAL RESPONSE
Guarantee-of-service demands self-healing strategies when
failures occurs. There exist several strategies applicable to in-
vehicle networking, as detailed next.

a: FAST FAILOVER
In-vehicle applications which are deployed and affected by
networks in autonomous and automated vehicles demand a
fail-operational behavior. The network components must not
only detect failures, but also reduce their effects in terms of
safety countermeasures. An in-vehicle network must safely
deal with transient and permanent failures that are critical
for passengers and the environment. For autonomous sys-
tems, safe operation even in the event of a failure (’’fail-
operational’’) is of great importance. A simple stop of the
system (’’fail-safe’’) is not possible in most cases and they
demand a fast failover solution [42].

b: FAST RE-ROUTE (FRR)
Most modern networks support different kinds of fast-reroute
(FRR) mechanisms which leverage pre-computed alternative
paths at any node towards any destination. When a node
locally detects a failed link or port, it can autonomously
remove the corresponding entries from the forwarding table
and continue using the remaining next hops for forward-
ing packets: a fast local reaction [43]. In FRR solutions
implemented on SoftwareDefinedNetwork (SDN) compliant
devices, the control plane is hence just responsible for pre-
computing the failover paths and when a failure occurs the
data plane utilizes this additional state to forward packets.
This reaction needs to be aligned with the fault tolerant
time interval (FTTI) or fault reaction time interval (FRTI)
determined for each safety goal.

c: LOAD BALANCING
Load balancing is one of the reliability strategies of dis-
tributed architectures such as cloud services [44] or auto-
motive IVN E/E architectures [45]. Existing load balancing
algorithms are mainly classified into two categories: static
and dynamic. Static load balancing algorithms allocate tasks
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with a fixed probability or order, regardless of the current
node states, such as the round-robin algorithm.

The static algorithms are simple, but they only work
properly in a system with a low variation of load and similar
processing capacity in each node. Dynamic load balancing
algorithms use real-time node load and health states to deter-
mine task distribution, such as the consistent hashing algo-
rithm, the least connection method, and the least response
timemethod. The dynamic algorithms improve node resource
utilization and avoid overload, but they usually lead to poor
throughput and long response latency due to the high algo-
rithm complexity.

d: RUN-TIME RECONFIGURATION
Another responsive strategy is the run-time reconfiguration of
the system as response to failures by reconfiguring on the fly,
either in SW or in HW, certain subsystem while the system
keeps in operation.

8) OTHER RELATED STANDARDS
Some automotive related standards incorporate also safety
and security approaches. Some of them are discussed next.

a: AUTOSAR
AUTOSAR (AUTomotive Open System ARchitecture) is a
worldwide development partnership of vehicle manufactur-
ers, suppliers, service providers and companies from the
automotive electronics, semiconductor and software industry.
The primary goal of the AUTOSAR partnership is the stan-
dardization of a common methodology, basic system func-
tions and functional interfaces. This enables development
partners to integrate, exchange, re-use and transfer functions
within a vehicle network and substantially improves their effi-
ciency of development. Having this goal in mind, AUTOSAR
pushes the paradigm shift from an ECU-based to a function-
based system design attempt in automotive software devel-
opment and enables the management of the ever-growing
software and E/E complexity with respect to technology and
economics. Many of the standardized aspects included in
AUTOSAR deal with safety and security measures, also for
the in-vehicle network [46], [47].

b: DDS
Data Distribution Service (DDS) is a middleware proto-
col and API standard for data-centric connectivity from the
Object Management Group (OMG). It integrates the com-
ponents of a system together, providing low-latency data
connectivity, extreme reliability, and a scalable architecture
that business and mission-critical applications need [48]. In a
distributed system, middleware is the software layer that lies
between the operating system and applications. It enables the
various components of a system to more easily communi-
cate and share data. Like this, most middleware works by
sending information between applications and systems. DDS
is uniquely data centric and data centricity ensures that all
messages include the contextual information an application

TABLE 1. Examples of FuSa related functions inside a vehicle [27], [26].

needs to understand the data it receives. The essence of data
centricity is that DDS knows what data it stores and controls
how to share that data. Furthermore, DDS uses a global data
space that lets applications share information with full control
of reliability and timing. That is, DDS middleware takes full
responsibility for both the distribution of data (from produc-
ers to consumers and from publishers to subscribers), as well
as the management of data (such as maintaining non-volatile
data for late-joining applications).

C. STATE-OF-THE-ART FUNCTIONAL SAFETY
DEPLOYMENT: SOFTWARE-CENTRIC APPROACH
Most of the state-of-the-art automotive FuSa solutions
applied in current vehicles are clearly SW-centric. Although
the ISO 26262 standard covers both HW and SW devel-
opment cycles, a high percentage of the FuSa related con-
tributions in terms of effective functionalities adopted by
the automotive electronics industry and synthesized in real
vehicles are software-based. That is, both the FuSa concept
of the solution and the integration and manufacturing of the
ECU that embeds such solution are sustained through the
implementation of safety mechanisms directly in SW.

Some example of the most relevant FuSa related functions
currently integrated in a vehicle, according to [49], are sum-
marized in Table 1. In this context, concerning HW contribu-
tions to the aforementioned SW-centric FuSa solution, this is
typically an automotive MCU or SoC device equipped with
particular ISO26262 features. For instance, CPU cores able
to run in lockstep as well as many other powerful features
in terms of built-in monitoring and diagnostic strategies (e.g.
watchdog, self-tests, etc.). As a reference design, we could
showcase a SW-centric solution dominated by AUTOSAR
Classic on a typical MCU/SoC, for instance ARM Cortex
R5, running code. Some examples are Infineon AURIX [50],
NXP S32G [51], or ST SPC5x [52].

In the next-generation E/E architectures, the functional
scope of the GW controller is being extended from only net-
working functions to now the combination of both network-
ing and power distribution functions per zone. That means
that this zonal controller takes major responsibilities in terms
of safety countermeasures affecting to the reliability of power
supply and its distribution across each zone.
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FIGURE 3. Safety architecture for electric power steering function as part
of a zonal GW controller decomposed in MCU+SBC+SPC.

In this direction, a typical safety architecture addressed for
these cases is shown in Fig. 3, applied to the specific use case
of the Electric Power Steering. This example shows a safety
concept distributed in HW through three key components:
(i) the system MCU, (ii) a second safety-related element
devoted to ‘‘Power Management and Safety Monitoring’’
functions and (iii) a Smart Power Controller (SPC) or Power
Switch device responsible for the control of the power supply
to an external load. The second element could be either a ded-
icated safety MCU or a System Basis Chip (SBC) –dedicated
chip equipped with safety measures like watchdog for super-
vision of the systemMCU and power monitoring system. The
third element, SPC, is also equipped with safety mechanisms
like self-diagnostic and monitoring, able to switch off by
its own the load in case of detecting abnormal conditions
like over temperature or overcurrent (e.g. electric shortcut on
the load). These three elements together compose the HW
architecture of the safety concept. Then, the safety solution
able to achieve the specific targeted ASIL level depends on
the SW strategy implemented through these three compo-
nents (i.e. program code running on the MCU including the
configuration of both smart devices, SBC and SPC). Many
of the SW strategies considered in the uses cases above
are standardized in AUTOSAR [46]. As deduced from this
architecture, the safety goals of the EPS are accomplished by
the concurrent deployment of some of the safety mechanisms
detailed previously in section II.B, like watchdog, BIST, data
polling, data integrity check or fast failover, among others.
Another comprehensive example of deployment of safety
process is the one elaborated by AUTOSAR for front light
management in [53].

III. NEW TRENDS IN FUNCTIONAL SAFETY
DEPLOYMENT: MORE HW-CENTRIC FUSA SOLUTIONS
As it is stated in [47]: ‘‘Functional safety is a system char-
acteristic which is taken into account from the beginning,
as it may influence system design decisions. Therefore,
AUTOSAR specifications include requirements related to
functional safety. Aspects such as complexity of the system
design can be relevant for the achievement of functional
safety in the automotive field. Software is one parameter that
can influence complexity on system level.

New techniques and concepts for software development
can be used in order to minimize complexity and therefore
can ease the achievement of functional safety. AUTOSAR

supports the development of safety-related systems by offer-
ing safety measures and mechanisms. However, AUTOSAR
is not a complete safe solution. The use of AUTOSAR does
not imply ISO26262 compliance. It is still possible to build
unsafe systems using the AUTOSAR safety measures and
mechanisms.’’

The authors of this case study, as researchers in the auto-
motive electronics domain, fully agree with the previous
AUTOSAR statement. In fact, we corroborate that in many
cases a HW-centric solution is safer and more trustable than
a SW-centric solution, especially in terms of aspects like
time determinism (i.e. clock cycles) and accuracy/control.
In complex systems like automotive, where many inherent
SW disturbance factors or sources coexist in the solution
(like multicore processing, arbitration or shared resources
- e.g. memory -, multithreading, OS and hypervisors, large
set of different and heterogeneous interrupt sources, physical
restrictions, etc.), the fact of making an estimation of when
a certain piece of code will be executed to guarantee certain
behavior in the vehicle is complicated ‘‘by construction’’. All
these aspects have even major relevance when they need to
coexist with critical safety functions or stringent quality-of-
service (QoS) requirements.

In this particular context, i.e. automotive use cases that
HW/SW developers –from any OEM/Tier-1/Tier-2 in the
automotive electronics industry– deal with on a daily basis,
there is another different trend –with less followers today but
that we expect will grow in the near future– consisting in
shifting part of the HW/SW FuSa related solution directly to
HW. Like this, HW-centric solutions often bring more con-
sistent approaches in terms of scientific rigor, simplicity in
proof, accuracy and time determinism than SW-centric solu-
tions. In other words, SW solutions are more unpredictable
and provoke more uncertainties whereas in HW solutions
some of these effects can be skipped and solved by design.

A. THE CASE FOR HW-CENTRIC FUSA SOLUTIONS IN
AUTOMOTIVE
There are several works discussing the advantages of HW
solutions for automotive systems such as [54] and [55],
and more specifically about safety and security HW based
solutions as in [56] and [57]. The New Era of Mobility
materialized through the visionary Autonomous-Connected-
Electric-Shared (ACES) vehicle is well-known by its motto
‘‘Software-Defined Vehicle’’ or SDV in short. However,
authors sustain the view that the SDV concept is not possible
without new emerging ASIC/SoC devices with dedicated net-
working hardware coprocessors inside, able to embed at least
part of the most stringent and high-demanding automotive
functional features, requirements and standards which are
seamlessly related to high performance, time determinism,
functional safety and cyber security. In other words, software
alone is not enough. New dedicated hardware coprocessors
are needed to support the ACES vehicle conception.

The authors strongly believe the solution shall come out
from the right balance of HW/SW codesign, giving rise to

VOLUME 10, 2022 91779



A. A. Kane et al.: Elastic Gateway Functional Safety Architecture and Deployment: Case Study

novel Network/System on Chip (NoC/SoC) devices equipped
with new HW-centric peripherals or coprocessors which inte-
grate advanced safety mechanisms able to contribute to the
monitoring, self-diagnostic, self-test and control of all those
safety-related and fault-tolerant subsystems of the vehicle.
The presence of these new HW-based coprocessors aims at
helping system architects and software developers to notori-
ously reduce the complexity of the safety solutions by trying
to displace safety-related functionality implemented in SW
towards deterministic and reliable HW-centric mechanisms.

In this regard, especially in the area of in-vehicle network-
ing and gatewaying, we start to see how new MCU/SoC
devices emerge in the market equipped with dedicated net-
working engines intended for offloading the system/host CPU
from those more stringent tasks which are now performed
directly by dedicated HW coprocessors. Some examples
already available or announced in the automotive electronics
industry about those more HW-centric networking solutions
are: NXP S32G Vehicle Network Processor with Packet For-
warding Engine (PFE) [51] or Infineon Aurix TC4x provided
with Data Routing Engine (DRE)) [50].

B. IDENTIFIED CHALLENGE: FUNCTIONAL SAFETY
DEPLOYMENT IN SOFTWARE DEFINED VEHICLES
Based on the previous state of the art and future trends
analysis, we identify a need for new strategies to deploy
functional safety mechanisms in software defined vehicles.
As stated before, the different components of the vehicle
are delivered to OEMs as Safety Elements out of Context
(SEooC) which they need to integrate in their designs. This
integration can be a very arduous task when done bottom-
up since changes to low level elements might imply a new
complete re-assessment of the whole product from a safety
point of view. On the opposite side, the software defined
vehicle philosophy is trying to escape from this, providing
a software oriented platform, fully portable regardless of the
HW below (HW agnostic).

What we see, is that a bridge between these two flows is
missing. To the best of our knowledge, there is no methodol-
ogy available in the state of the art that allows for integrating
different FuSa mechanisms in a Software Defined Vehicle
with the right level of flexibility, scalability and simplicity.
Such a methodology is a key factor in order to enable a new
generation of safety compliant SDVs. From our perspective,
this can be achieved with the right combination of HW and
SW features in low level devices that enable a reasonable level
of abstraction over the low level functionalities and safety
mechanisms.

On top of this, we propose a paradigm shift, moving from a
bottom-up approach to a top-down approach, and show how it
simplifies the deployment of new safety concepts for different
HW and SW platforms.

Our proposal is to start the safety concept analysis
at network level. We start by defining the NGIVN, its
components, signal groups and their safety goals. Then,
we map the safety goals to the different signal groups for

FIGURE 4. FuSa top-down approach proposed.

each component. By doing so, we are able to provide a
safety-compliant framework which guarantees the fulfillment
of the safety goals, i.e. ASIL compliance is guaranteed by
design. In our case study, we provide a definition of a possible
NGIVN, its components and their related signal groups. Then
we focus on one element of the NGIVN: the zonal GW
controller. We derive the safety requirements of the gateway
based on the safety goals and the definition of the NGIVN.
The last step is to identify the possible failure modes of
the gateway and to allocate the required safety mechanisms
that allow to fulfill the safety goals. For this analysis we
use our elastic gateway (eGW) concept, which is a new
generation GW architecture specifically tailored for the needs
of automotive networking devices. Through our case study
we show possible failure scenarios that could happen in the
NGIVN and select suitable safety mechanisms to overcome
them. The selected safety mechanisms shall guarantee the
fulfillment of the safety goals. Afterwards we allocate this
safety mechanisms to the eGW, ensuring thus full compliance
with the functional safety concept described at NGIVN level.
An overview of the proposed top-down approach is depicted
in Fig. 4.

Finally, we highlight the innovative contribution of our
approach which is its flexibility and elasticity when integrat-
ing new safety mechanisms in the NGIVN in a safety com-
pliant manner. Indeed, our process enables the specification
and design of a large variety of eGW safety concepts, each
answering to specific customer needs simply by adjusting the
safety goals allocated to the NGIVN, and, as a consequence,
the safety and availability capabilities of the eGW. This
implies the design of a family of gateway devices, where each
device is unique with regards to safety features and targeted
application with minimal additional effort.

IV. NEW GENERATION IN-VEHICLE NETWORK
The New Generation In-Vehicle Network, NGIVN, is a
system-level Safety Element out of Context (SEooC) as
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described in ISO 26262 Part 1. It means it is not an item or
item function but a system (made of multiple SW and HW
elements) used by various item functions of OEMs.

The main goal of the NGIVN is to connect elements of
the automated driving (AD) system [58]. In terms of func-
tionality, the NGIVN is a fault-tolerant network (called here-
after fabric) of interconnected new generation automotive
gateways (called hereafter VIUs for Vehicle Intranet Unit
or Vehicle Interface Unit) connecting various vehicle ECUs,
networked sensors, and high-performance CPUs, as depicted
in Fig. 5. The main advantage of the NGIVN compared to
classic gateways (that only perform gateway functions) is
the support to OEMs in fulfilling safety-related availability
requirements by supplying the following functions:

1. Fault-tolerant networking
2. Load balancing – in case of failure of High-Performance

CPUs (HPC), logical migration of functionality of faulty
HPC on the NGIVN.

The NGIVN does not directly access any sensors or actuators.
It is within the responsibility of the network peers.

The following list summarizes the main functions of
NGIVN:

1. Read-only gateway (no change of safety-related data)
2. Modifying gateway (a gateway that reads safety-related

data and processes/changes it)
3. Network redundancy (multiple IVNs with redundant con-

nections, with multiple transmission routes)
4. Network monitoring and node monitoring (detecting

issues like dead link, failure of a node, a failure of a given
TCP connection, or similar)

5. Network reconfiguration (changing the routing depending
on failures, in case of detected errors)

6. Redundant transmission over multiple links/paths
7. Load balancing/function migration: migration (from logi-

cal perspective) of function from High-performance CPU
onto NGIVN (in case of failure of High-performance
CPU).

Note that from a logical perspective, to realize the migra-
tion, it might be necessary to have, e.g., a hot standby soft-
ware running in NGIVN.

In the next section we can find the assumed stakeholder
requirements related to the main functions of the NGIVN.

A. NGIVN STAKEHOLDER REQUIREMENTS
This section defines top-level requirements to be fulfilled by
the NGIVN focusing only on the core IVN functions.
[STR_IVN_0001] Gatewaying of In-Vehicle Data
The NGIVN shall transmit (gateway) defined data by net-

work communication between the in-vehicle communicating
peers:

1. Sensor ECUs
2. Actuator ECUs
3. HPCs
4. Smart/networked vehicle sensors (e.g., Ethernet cameras)

5. Tools/devices connected over On Board Diagnostics inter-
face

The transferred data can be:

1. Application payload, data from sensor ECU to actuator
ECU, e.g., transfer of gear shifter position from gearbox
ECU to engine ECU

2. Software updates/image files
3. Logging/audit data

[STR_IVN_0002] Gatewaying of V2V and V2C Data
The NGIVN shall transmit (gateway) defined data by

network communication between the communicating peers
from/to the Internet, meaning:

1. Other vehicles (vehicle to vehicle (V2V))
2. Other systems on the Internet (vehicle to cloud (V2C) or

vehicle to infrastructure (V2I))
3. ECUs (network nodes) within the vehicle.

The transferred data can be:

1. Application payload, e.g., GPS position, the position of
other vehicles, driving situation, GPS maps (e.g., current
tile), traffic information

2. Software updates/image files
3. Logging/audit data

[STR_IVN_0003] Taking over of the Workload from HPCs
The NGIVN shall take over the workload of HPCs in

defined conditions by executing appropriate Adaptive appli-
cations.

For instance, in the case where an HPC was to perform
a reset due to a detected error, the NGIVN shall execute a
backup function. The backup function is either hot standby
or cold standby, depending on its real-time properties.

Taking over the workload can be considered a form of load
balancing, where the load (workload) is logically transferred
from an HPC to a VIU.

Note: By adaptive application, it is meant a C/C++ appli-
cation using POSIX and C++ interfaces and which does
not use any ‘‘classic’’ input/output peripheral access (e.g.,
PWM, Digital Input Output or Analog to Digital Converter).
However, it can use specific real-time network or hardware
features, e.g., Time Sensitive Networking (TSN) shapers
[59].

An adaptive application can be an AUTOSAR application,
ROS application, or similar.
[STR_IVN_0004] Hosting of Adaptive Applications
The NGIVN shall host defined Adaptive Applications on

VIUs and provide specific hardware features to support them.
For instance, the conversion of a PWM signal, received from
a wheel speed sensor over Ethernet, into a speed information
in [m/s].

Adaptive Applications may have any cybersecurity level
and any safety integrity level, including QM. Applications
need to comply with various limitations, e.g., they need SW
interfaces provided byVIUs,meaning there will be no periph-
eral access (just network input and outputs and inputs/outputs
from/to other applications).
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FIGURE 5. NGIVN context in vehicle architecture.

FIGURE 6. NGIVN deployment in ACES vehicle.

The architecture, topology of NGIVN, number of VIUs is
analyzed and evaluated in the next section. In particular, a
token-ring architecture is addressed.

B. NGIVN ARCHITECTURE OVERVIEW
In this section we describe the NGIVN architecture proposed
in this work. It is an Ethernet-based zonal network archi-
tecture, where sensors and actuators are connected to zonal
gateway controllers via different communication protocols,
while the zonal controllers and main computing units (High
Performance Computers, HPCs) are interconnected through
an Ethernet backbone. Figure 6 shows an overview of the
layout of such network in the vehicle. The zonal controllers
correspond with the Vehicle Interface Units (VIUs) in the fig-

ure, and the High Performance Computers are the three nodes
in themiddle: 1Vehicle Dynamics Controller, VDC, 1Mobile
Data Center, MDC, and 1 Software-Defined Network Con-
troller, SDNC. Each VIU contains a Node Supervisor (NS),
which is in charge of monitoring the status of the node and
exchanging informationwith the SDNC. This is a key element
of the network enabling the software defined paradigm for
safety related features, as explained later in Section V.

As introduced before, in order to keep up with the demands
of ACES and Software-Defined Vehicles, new strategies and
architectures need to be deployed in the area of in-vehicle
communication. One of these strategies is Software Defined
Networking, which is a necessary step in order to enable
Software Defined Vehicles. The management of the config-
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uration in Software Defined Networks, and also in vehicular
networks, is a hot topic under discussion in today’s commu-
nity. In [60] an overview of how SDN technology can be
interesting for the automotive industry and some use cases
are exposed. In [61] and [62] authors explore the benefits of
using SDN in IVNs. In [63] authors propose the use of SDN
in automotive CAN-based networks while [64] proposes an
SDN architecture for Ethernet-based automotive networks.

From standardization point of view, IEEE802.1Qcc [65]
defines means to perform the configuration of Time Sensitive
Networks. One of the options defined in the standard that
seems to make more sense for automotive networks is the
Centralized Network / Distributed User Model. This model
defines a Central Network Configurator that is in charge of
configuring and monitoring the network. Authors in [66] and
[67] explore the integration of TSN with SDN and propose
different strategies for this combination.

Regarding safety and security, an SDN controller for safety
applications is proposed in [68] and in [69] a fault tolerant
dynamic scheduling for TSN networks is introduced. In [70]
authors propose an SDN-based strategy for fast fail over
routes in the data plane.

Following this approach, one of the HPCs integrated in the
NGIVN is an SDN Controller (SDNC) which is in charge
of the configuration and status monitoring of the network.
This provides the required flexibility in terms of software
defined network configuration. This also enables compliance
of the NGIVN with TSN standards. As introduced before,
standardization is of high importance in automotive due to
the complexity of the environment and the amount of stake-
holders involved.

Additionally, the software defined approach also enables
the deployment of a Service oriented Architecture (SoA).
In a SoA applications are composed of services which can
be deployed in one processing unit or another. This means
that the NGIVN allows to shift the processing of one VIU
to another VIU, or even from one of the HPCs to a VIU in
some cases. A distributed SoA enables new functionalities
like sharing services or applications between the vehicle and
user smartphones as explored in [71], or the interaction with
the infrastructure for autonomous driving, as proposed in
[72]. In terms of safety, this software defined approach is key
in bringing new strategies to enable fault-tolerant behavior in
the NGIVN. For instance, in case of a node fail, another node
could take over the processing tasks allowing to continue
system operation regardless of the failure.

The detailed architecture of the NGIVN proposed in this
work, including sensors Signal Groups and application ser-
vices hosted in the different HPCs, is represented in Fig. 7.

As seen before, this network is composed of 4 VIUs inter-
connected in a ring topology, 1 Vehicle Dynamics Controller,
VDC, 1 Mobile Data Center, MDC, and 1 Software-Defined
Network Controller, SDNC. The VDC is in charge of Electric
Power Steering (EPS) and Automatic Emergency Breaking
(AEB), while MDC is in charge of Adaptive Cruise Con-
trol (ACC). All VIUs have a direct connection to the High-

Performance Computer Hub, HPC Hub, composed of the
SDNC and the MDC. The HPC Hub is, in turn, connected
to the VDC. The VIUs are also connected to sensors and
actuators modelled here as signal groups and to other ECUs
such as the TCU or the Infotainment Unit. The VIUs act as
zonal gateways but also as switches by forwarding the data
coming from the different signal groups to the relevant High-
Performance Computer, HPC. They are also capable of taking
over pre-specified functions of the HPCs in case of a failure of
an HPC. The next section defines all the network components
present in Fig. 5, and the path taken by the frames belonging
to the various signal groups.

C. NGIVN COMPONENTS DESCRIPTION
Table 2 describes the SoCs/ECU introduced in Fig. 7, and
Table 3 describes the signal groups depicted also in Fig. 7.

D. NGIVN SAFETY GOALS
This section describes a representative set of Safety Goals
defined in the context of the NGIVN. To derive this safety
goals, we define Item functions according to 3-5.5.1 in [18]
and perform a Hazard analysis and risk assessment (HARA)
report according to 3-6.5.1 in [18]. The safety goals pre-
sented here are created out of the HARA and allocated to the
items containing the NGIVN. These safety goals will then
be derived into functional safety requirements as we will see
more in detail later on.

1) NGIVN SAFETY GOALS CLASSES
The NGIVN is application-agnostic / application-
independent.

It can connect any network nodes that realize any vehicle
item functions, focusing on SAE [58] Level 0 to Level 5 func-
tions.

These item functions result in different functional safety
requirements that the NGIVN needs to fulfil. Therefore, the
item functions are described here and grouped/clustered by
classes.

• Class 1: Item Functions with no Safety Goals

These functions have no safety goals, no Fault Tolerant
Time Interval (FTTIs), no ASIL. The NGIVN can perform,
if needed, load balancing for these functions. There are
no safety goals for these functions, just QM requirements.
Table 4 shows some examples of item functionswith no safety
goals.

• Class 2: Item Functions with only Fail-Safe Safety
Goals

In this class of the item functions, there is a clearly defined
safe state set by the actuator HW or actuator ECU in case
of a system malfunction. It can be de-energize / power off
(e.g. flasher off) or energize / power on (e.g. brake light).
The NGIVN can switch to a defined fail-safe state for these
functions. Table 5 shows some examples.
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FIGURE 7. NGIVN architecture.

TABLE 2. ECUs specification table.

• Class 3: Item Functions with Safety Goals Requiring
Availability, with Availability Addressed at Actuator
Side

In this class of the item functions, we can find safety-related
availability requirements allocated to the item function, but
achieved at the actuator ECU side.

In other words, the rest of the systems realizing the function
are fail-safe. NGIVN can switch to a defined fail-safe state for
these functions.

Table 6 provides some examples.

• Class 4: Item functions with Safety Goals Requiring
Availability, with Availability Addressed at Multiple
Systems of the Item

In view of ISO 26262 [18], in this class of item functions,
safety-related availability requirements are allocated to the
item function, and they impact several systems realizing this
item function.

Also, in view of ISO 4804 [73], in this class of the item
functions, there are functions of fail-operational items and
functions of fail-degraded items. Fail-operation items must
provide the required level of performance even in presence
of failures, while fail-degraded items are allowed to reduce
or degrade performance to some extent for the sake of safety.

Here, the NGIVN cannot switch to a defined fail-safe state
for these functions, as a defined fail-safe state of the item
functions does not exist. For example, the NGIVN cannot
just stop sending messages or send an error message, as the
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TABLE 3. Signal groups specification.

TABLE 4. Examples of item functions with no safety goals (class 1).

TABLE 5. Examples of item functions with only fail-safe safety goals (class 2).

receiver ECUs require valid input data. Table 7 shows some
concrete safety goal examples all defined considering the
top-level goal ‘‘collision avoidance’’.

V. SDN CONTROLLER AND NODE SUPERVISOR
In this section we introduce the micro-architecture of the
main component of the SDNC: the node supervisor (NS).
The NS, located within each VIU (Fig. 6), is in charge of
monitoring the status of the VIU and exchanging information
with the SDNC.

A. NODE SUPERVISOR ARCHITECTURE OVERVIEW
The high level architecture of the node supervisor is depicted
in Fig. 8. As seen in the figure, the NS communicates
periodically with the SDNC allowing both the SDNC and
the VIU to report their own status, and to receive information
about the other components. Internally, the NS hosts a Finite
StateMachine (FSM) that takes as input the information from
the SDNC and from an internal error detection unit and,
based on this, decides the operation mode of the node and
determines thus the internal configuration of the node.
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TABLE 6. Examples of item functions with safety goals requiring availability, with availability addressed at actuator side (class 3).

TABLE 7. Examples of item functions with safety goals requiring availability, with availability addressed at multiple systems of the item (class 4).

FIGURE 8. Node supervisor block diagram.

B. NODE SUPERVISOR COMPONENTS DESCRIPTION
As we can see in the NS block diagram (Fig. 8), the following
modules are necessary to fulfil the functions of the NS.

• Error Detection Unit: Contains monitoring and error
detection mechanisms for detection of:

© Local node HW (permanent) failures
© Link failure (for links physically connected to the
node)

© Node congestion
© Queue overflow

This block can consist of a combination of already investi-
gated technologies such as:

© Network Health Monitoring [74]
© Load Management Layer [45]

The output of this block is an error signal which will be
transmitted to the Configurator Functional State Machine

This error signal is transmitted using an error signaling
protocol that distinguishes between three classes of errors:
High, medium and low criticality.
• Node Configurator: Static configuration of 8 signal
groups in 6 different functional modes. In each mode,
the node will be configured with a specific configu-
ration profile implementing different network manage-
ment algorithms such as:
© Credit Based Shaper [38]
© Time Aware Shaper [37]
© Hierarchical Link sharing [75]
© Active Queue Management [76]
© Low Latency Low Loss Scalable Throughput (L4S)

[77]
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© Combination of the above-mentioned configuration
profiles

The frames are gathered into signal groups of different prior-
ities and each signal group is associated with one profile.
• Routing Unit: This block contains the different (static)
routing tables corresponding to each state of the config-
uration FSM.

• Status encoder/decoder: This module enables to
exchange status information between the SDNC and the
NS. It encodes/decodes the status information into the
selected protocol for this communication. This commu-
nication protocol shall provide some safety mechanism
to ensure the validity of data, such as a CRC.

• Configurator Functional State Machine: The FSM
determines the status of the node based on the inputs
received and generates the error signal that enables the
other NS modules to configure the node in the corre-
sponding operation mode. Next, we describe the differ-
ent states considered within the configurator FSM.
© S0 Ü Nominal Mode

� Default state
� Driver is in the loop
� Sensors‘ data are used for L2 and below ADAS
functions (e.g. AEB, EPS)

© S1 Ü Highway mode
� Driver is out of the loop
� Sensor data are used for L3 and above AD func-
tion (e.g. Automated Lane Keeping Systems,
Adaptive Cruise Control, highway pilot)

© S2 Ü Parking mode
� Driver is out of the loop
� Sensors‘ data used for park space search,
autonomous parking and autonomous parking
exit

© S3 Ü Error State 0
� Degradated mode 0
� Bandwidth reduction
� Link or node affecting first priority applica-
tions faulty or not available resulting in a band-
width reduction (after compensation with avail-
able bandwidth of second priority application)
for first priority application

� Link or node affecting second priority applica-
tions not available which leads to a bandwidth
reduction for first priority applications (for com-
pensation reasons)

© S4 Error State 1
� Degradated mode 1
� Bandwidth reduction
� Link or node affecting first priority applica-
tions faulty or not available resulting in a band-
width reduction (after compensation with avail-
able bandwidth of second priority application)
for first priority application

FIGURE 9. Configurator finite state machine.

� Link or node affecting second priority applica-
tions not available which leads to a bandwidth
reduction for first priority applications (for com-
pensation reasons)

© S5 Emergency mode

� SDNC not responsive or specific node in the
system not functional

� If another fault appears, the system will not be
able to recover from it without losing signifi-
cantly in availability for first priority application

A state diagram describing the state transitions of the Config-
urator Functional State Machine is shown in Fig. 9, and the
conditions that trigger the different transitions are exposed in
Table 8.

In general, transitions from one state to another are trig-
gered either by a specific condition (error detected, manual
setting by user or environmental inputs) or by a specific
order from the SDNC. The latter has the highest priority,
i.e. when an instruction from SDNC indicates transition to
a specific state, this transition is performed regardless of the
other inputs.

In the case of detecting an error, the FSM selects the state
for transition based on the error criticality. Once the error is
recovered, the FSM goes back to the previous state. However,
there are some exceptions. For instance, after a high criticality
error, in case of no other errors present, only nominal mode
(S0) is allowed, i.e. the system should not go from a high
criticality error state to highway or parking mode.

It is important to note that the ‘‘ErrorRecovery’’ signal is
only assertedwhen no errors are present. Thismeans that after
a high criticality error, if there is a medium or low criticality
error in the system the new state will be S3 or S4 respectively,

VOLUME 10, 2022 91787



A. A. Kane et al.: Elastic Gateway Functional Safety Architecture and Deployment: Case Study

but never S0. Similarly, a medium criticality error will go
back to S0, S1 or S2 only if all errors are cleared. Otherwise
it would move to S3.

In normal operation, the FSM moves between S0, S1 and
S2 according to the user inputs and detected conditions when
AD features are enabled. Finally, it is also important to note
that there are some forbidden transitions, such as directly
changing from S2 (parking mode) to S1 (highway mode) or
vice versa.

VI. NEW GENERATION AUTOMOTIVE GATEWAY
CONTROLLER
In this section, we introduce the novel ‘‘Elastic Gateway
(eGW)’’ architecture, as a new generation automotive gate-
way controller. In this context, the role of the eGW is the
one of a VIU. We introduce the eGW as a necessary step
for the understanding of the following sections, where we
develop the functional safety concept of a VIU according to
the safety requirements already derived, targeting an eGW
device. We start by introducing the high-level functional
requirements of eGW. Then, we describe the high-level
architecture of the eGW and, afterwards, we introduce the
main building blocks and the strategy followed across them.
Finally, we deep dive in the FuSa concept for the novel eGW
architecture.

A. VIU FUNCTIONAL REQUIREMENTS
The proposed system architecture for the eGW aims at cov-
ering the wide variety of requirements that are applicable to
IVNs, and tries to remain as flexible as possible in order to
integrate future requirements. A summary of the technologies
and functionalities targeted by eGW is given in Table 9.

B. VIU ARCHITECTURE OVERVIEW
The architecture is composed of a set of HW IPCores that
conform a custom HDL library defined for GW design.
Similarly to the previous example illustrated in Figure 3,
the architecture of the eGW controller is shown in Fig. 10.
The eGW controller keeps as main blocks the host CPU,
memories, transceivers (physical layer) for communications,
SBC for power management and SPC for control and power
supply of the zonal loads.

Moving forward to the functional details, Fig. 11 presents
the main building blocks of the eGW SoC device. This SoC
plays the real role of brain of the eGW controller shown in
Fig. 10. As seen in the figure, eGW is composed of an ingress
stage, a processing stage and an egress stage. The ingress
stage consists of a normalization module that accommodates
the ingress frame to the internal datapath and generates the
initial metadata required for its processing. The processing
stage is composed of one single Match & Action stage that
allows to perform the required processing. Finally, the egress
stage handles the scheduling of frames and selects when to
send each frame to the egress ports. As seen in the figure,
there are two loopback paths, allowing to send frames back
after processing stage or egress stage. This allows to perform

further processing of frames when required, such as recursive
processing algorithms, providing the required flexibility and
scalability to accomplish the goals of the architecture in terms
of functionalities. Furthermore, it enables the reuse of HW
resources, allowing to optimize the HW cost.

All of the IPCores are connected to the system CPU which
is in charge of configuring the required parameters for the
operation of each of them. For example, it can configure
certain filtering rules to be implemented in the match or
filtering stage. This configuration does not need to be static,
i.e. it can change during the operation of the system, even
at run-time without interrupting the operation of the system.
The CPU can also intervene in the processing if required by
the HW-SW partitioning of each application. Additionally,
the main functional blocks receive the information of system
time that allows to have a detailed control of the time involved
in the processing of each frame.

C. VIU COMPONENTS DESCRIPTION
The architecture proposed for the high level HW IPCores
follows the SDN approach. Each HW IPCore is composed
of a control plane and a data plane, where the data plane is
configured by the control plane. The main characteristics and
functionalities of each of the IPCores are exposed below.

• FrameNormalizer: This block is intended to provide an
abstraction layer able to handle any incoming protocol
and generate an internal instruction frame format, com-
mon for all protocols, transporting the metadata required
for internal processing. To do so, a new normalization
concept is introduced, where metadata is transported in
parallel with the data frame, allowing the control plane to
decide what action should be taken for each frame. The
definition of this block, and the SDN approach followed
within the architecture, are described in [78].

• Filtering (Match): This block allows to perform filter-
ing on ingress frames based on a set of rules applied to
the frames’ header. It is composed of a Content Address-
able Memory that provides parallel processing of all the
rules in order to detect if the incoming frames match
any of the predefined rules. It implements also a regular
expression (RegEx) search engine applied to the frames’
payload.

• Processing (Action): This block performs any process-
ing or action to the frame that is required covering OSI
layers 2 to 7 acting not only on headers, but also on the
payload if needed. The Action or Processing block is
composed of a stack of parallel tasks that can operate in
parallel and over different frames at the same time. For
this, the processing controller handles the interconnec-
tion between the intermediate queues and the processing
stage allowing for interconnecting any queue with any
processing task, providing thus maximum flexibility in
terms of parallel processing. An example of how a safety
related feature (IEEE802.1CB) is deployed within the
eGW architecture is given in [79]. The output of the pro-
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TABLE 8. Configurator finite state machine transitions.

TABLE 9. Functionalities and technologies targeted by elastic gateway.

FIGURE 10. Block diagram of the eGW controller or VIU.

cessing stage can go to the egress stage, or back through
the loopback path, if further processing is required.With
this architecture, the pipelining or scheduling of tasks
is achieved by looping the frame through the available
loopback paths in a completely easy and flexible way.
As shown in Fig. 11, one loopback path is directly going
to the intermediate queues in order to go to the action
module again, and the other one is connected to the
ingress queues, allowing for performing a complete new
M&A processing over the frame. These two loopback
paths provide full flexibility to adapt to the needs of
the application processing and provide the minimum
latency possible, by allowing for connecting any path
to any required task and handling the priorities. The
loopback path for the processing stage is described in

detail in [80], together with an example of application
where it is beneficial. This stage hosts the previously
described Node Supervisor, as one of the available tasks
implemented in HW, as seen in Fig. 11.

• Traffic Shaping: This block provides control over
the output scheduling of the Gateway ports according
to the selected traffic shapers (Time Aware Shaper,
Credit Based Shaper, Asynchronous Traffic Shaping,
etc.). The architecture of the traffic shaping engine is
described in [81]. As seen in blue in Fig. 11, this
stage can also be extended with further processing
by means of another loopback path. The reasoning
behind this loopback path for the traffic shaping stage
together with some use cases where it is beneficial are
introduced in [82].
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FIGURE 11. eGW SoC high level architecture.

FIGURE 12. Common interface between blocks.

• Queuing: This provides the required buffering to
accommodate traffic going from input to output ports
without losses and effectively handle traffic congestions.

The architecture and strategy followed in the queueing
engine, are described in [83].

All IPCores share the same I/O interface allowing to flexi-
bly interconnect them. This interconnection flexibility is key
in accomplishing the scalability and flexibility objectives of
the design, allowing scalability of the GW as a product,
from entry level to premium versions, by selecting which
configuration is used for each of the HW IPCores in each
specific product implementation.

The interface used in order to interconnect all the IPCores
is depicted in Fig. 12. As seen in the figure, there is a host
CPU bus that has access to I/O interfaces of the IPCores, rep-
resenting the control plane communication within the SDN
approach followed in the architecture. This CPU bus consists
on a data line and a control line: (i) the data line carries
the information shared between the CPU and the IPCores;
(ii) the control bus supplements the data line information
providing further commands that encode specific function-

alities depending on the HW block. Apart from the CPU
bus, the common interface provides also a frame data bus
that, alike the CPU bus, consists on a data line that car-
ries the frame information and a control line that provides
commands to support the frame processing in the different
stages. This communication bus between the CPU and the
IPCores allows to deploy several safety relevant mechanisms,
monitoring functions and to have redundancy on certain
applications.

D. VIU FUNCTIONAL SAFETY CONCEPT
In this section, we derive the requirements (functional/non-
functional, safety/non-safety related) allocated to a VIU as
one of the elements of the NGIVN. These requirements are
based on Stakeholder Requirements (section IV.A) and Safety
Goals (section IV.B). They are organized into three sections:

1. A subset of Requirements for QM Functionalities – no
impact from Safety Goals

2. Functional Safety Requirements – derived from Safety
Goals

3. Non-Functional Requirements – requirements that are
non-functional.

1) REQUIREMENTS FOR QM FUNCTIONALITIES
The listed requirement are derived from Class 1 Safety Goals.
Note: This section is not supposed to be complete, as QM
requirements are not the document’s focus
[FUN_IVN_0001] Transmission of Non-Safety-Related

Data

2) FUNCTIONAL SAFETY REQUIREMENTS
The FSRs allocated to VIU are divided into three groups:

1. Requirements related to gatewaying
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2. Requirements Related toHosting of Applications and Tak-
ing Over

3. Requirements Related to Fault Tolerance

a: FSRs RELATED TO GATEWAYING
The listed FSRs are derived from Class 2, 3 and 4 Safety
Goals. The next sub-sections describe each FSR group in
detail.
[FSR_IVN_0002] Fail-Safe Transmission of Safety-

Related Data without Data Manipulation

[FSR_IVN_0004] Fault-Tolerant Transmission of Safety-
Related Data without Data Manipulation

[FSR_IVN_0005] Fail-Safe Transmission of Safety-
Related Data with Data Manipulation

VOLUME 10, 2022 91791



A. A. Kane et al.: Elastic Gateway Functional Safety Architecture and Deployment: Case Study

[FSR_IVN_0006] Fault-Tolerant Transmission of Safety-
Related Data with Data Manipulation

[FSR_IVN_0020] Non-Generation of Safety-Related Data

b: FSRs RELATED TO HOSTING OF APPLICATIONS AND
TAKING OVER
[FSR_IVN_0011] Taking over the Application Functions of
Faulty HPCs

[FSR_IVN_0028] Hosting of Applications
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c: FSRs RELATED TO FAULT TOLERANCE
[FSR_IVN_0007] Network Quality of Service

[FSR_IVN_0008] Network Node Monitoring

[FSR_IVN_0017] Redundancy

[FSR_IVN_0009] Error Handling and Recovery Mecha-
nisms
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[FSR_IVN_0018] Independence between HPCs and VIUs

[FSR_IVN_0010] Fault Tolerance of VIU

[FSR_IVN_0016] Detection of Partial Failure of Fault-
Tolerant Transmission

3) NON FUNCTIONAL REQUIREMENTS
[FSR_IVN_0029] Legal and Normative Requirements
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[FSR_IVN_0030] Safety and Security Standards

[FSR_IVN_0031] Environmental Conditions, Lifetime and
Quality Requirements

VII. DEPLOYMENT OF eGW FUNCTIONAL SAFETY
CONCEPT
The deployment of the eGW functional safety concept is
done by converting the FSRs listed in the previous sections
into hardware, respectively software, safety requirements,
thus, reaching a level of abstraction where specific safety
capabilities of the eGW are allocated to a given hardware,
respectively software, part of the eGW. At this stage, our next
target is to match each hardware/software safety requirement
with one or a combination of safety mechanisms (or safety
measures).

To ease this matching process, we proceed to the identifi-
cation, at NGIVN level, of the most relevant failure scenarios
where the eGW is involved in. As introduced before, in the
NGIVN architecture that we use as a reference, VDC is in
charge of EPS and AEB functionalities, while MDC is in
charge of ACC. This is enabled through the Service oriented
Architecture used in this deployment.

A. IDENTIFICATION OF FAILURE SCENARIOS AND OF
POSSIBLE FAIL-OPERATIONAL BACKUP PATHS
This activity consists of identifying the most relevant failure
scenarios and to define a backup path for the frames affected
by the failure. In this section we present a selection of link
failure scenarios and their impact on the network dataflow:

TABLE 10. New dataflow for SGs connected to VIU1 after failure
scenario #1

TABLE 11. New dataflow for SGs connected to VIU1 after failure
scenario #2

– Failure scenario #1which consists of a permanent fault
in the link C1, is shown in Fig. 13. Table 10 shows
the consequences of failure scenario #1 on the network
dataflow.

– Failure scenario #2 consists of a permanent fault in the
link L6 (Fig. 14). Table 11 shows the consequences of
failure scenario #2 on the network dataflow.

– Failure scenario #3which consists of a permanent fault
in the link C5 is depicted in Fig. 15. Table 12 shows
the consequences of failure scenario #3 on the network
dataflow.

B. IDENTIFICATION OF MATCHING SAFETY MECHANISMS
In order to cover these failure scenarios, we conceptu-
alized a combination of safety mechanisms at NGIVN
level. This combination of safety mechanisms has a direct
impact on the eGW hardware and software architec-
ture. It will contribute to the fulfillment of the eGW
FSRs. FSR_IVN_0010, and through it FSR_IVN_0007,
FSR_IVN_0008, FSR_IVN_00017, FSR_IVN_0018,
FSR_IVN_0009, shall be particularly targeted by the selected
combination of safety mechanisms.

The next sections describe the selected combination of
NGIVN level safety mechanisms and its implementation at
eGW level.

1) FAST FAIL-OPERATIONAL NGIVN RECONFIGURATION
The safety mechanism selected to cover the link failure
scenarios presented in the previous section is the Fast
Fail-Operational NGIVN Reconfiguration. This mechanism
enables a protocol-based reconfiguration of network com-
ponents. It is roughly based on the principle of the Soft-
ware Defined Networking (SDN) but extends and modifies
it for the purpose of safety-critical networks. Consequently,
as in SDN-based networks, it provides stream-based (or flow-
based) control with a dedicated protocol for reconfiguration
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FIGURE 13. Failure scenario #1.

FIGURE 14. Failure scenario #2.

based on communication between network nodes and a cen-
tral controller which introduces safe-mode changes [84].

Such a centralized arbitration based on the global state of
the network offers the following advantages:
• It allows to achieve very low re-configuration latencies,
when compared to decentralized protocols such as span-
ning tree protocol, where nodes must firstly agree on the
state of the network;

• It decreases the amount of logic in switches which is
necessary to handle reconfiguration, relatively simple
switches and a single complex controller;

• It has fine-granular and safe configuration adjustments
— only affected components are adjusted and the safe

re-configuration order is preserved for preventing spo-
radic overflows during mode changes;

Also, each permanent failure (of link or node) triggers an
error mode of the network where a working configuration
for the network is prepared, which allows fail-operational
behavior.

2) COMMUNICATION PROTOCOL BETWEEN SDNC AND
eGWs/OTHER NETWORK NODES
For the fail-operational network reconfiguration mechanism
to work, each end node must have a client whose task is to
detect errors locally, communicate them to the SDNC and,
if possible, request from the SDNC a transition to a specific
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FIGURE 15. Failure scenario #3.

TABLE 12. New dataflow for SGs connected to VIU1 after failure
scenario #3.

FIGURE 16. Node supervisor location within NGIVN.

state. This strategy is also required to meet [FSR_IVN_0008].
The enabler of this functionality is the Node Supervisor
introduced in Section V. One instance of the NS is located
in each VIU (and in each eGW, as a consequence, as seen in
Fig. 11). The SDNC acts as the NS of both the MDC and the
VDC. This is illustrated in Fig. 16.

The functions of the NS are the following:

• Error detection

• Node Configuration
• Frame routing

C. SAFETY MECHANISMS DEPLOYMENT
In order to achieve Fault-tolerance at network and VIU level,
the different safety mechanisms described in Section II.B can
be considered. The proposed methodology allows to select
different safety mechanisms and perform the deployment to
the network elements by matching the safety mechanisms
to the previously defined FSRs. In Table 13 we provide a
list of the possible safety mechanisms, specifying the level
of application within the network (NGVIN, SDNC or VIU),
the kind of functionality deployed at each level, how it is
deployed (HW/SW) and what FSRs are targeted by each of
them.

As seen above, the selected safety mechanism in our
use case (Fast Fail-Operational NGIVN Reconfiguration)
requires a combination of features deployed across the differ-
ent components of the NGIVN. In essence, it is a combination
of the Fast-Failover and Fast Re-Routemechanisms described
in Section II.B. Additionally, node monitoring capabilities
are required. The deployment of these safety mechanisms
within the NGIVN and eGW are highlighted in Table 13.
As seen in the table eGW provides HW support for these
safety mechanisms, allowing to achieve the required perfor-
mance and offloading the VIU CPU from this safety related
processing.

VIII. AGILITY OF THE TOP-DOWN APPROACH FOR
FUNCTIONAL SAFETY DEPLOYMENT
The novelty of our approach resides in the flexibility and
elasticity provided to integrate new safety mechanisms in
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TABLE 13. Safety mechanisms deployment – mapping from abstraction level to deployment strategy and corresponding FSRs.

the NGIVN in a safety compliant manner. That is, we are
able, with the process described in the previous sections,
to specify and design a large variety of eGW safety concepts,
each answering specific customer needs. Indeed, by adjust-
ing the safety goals allocated to the NGIVN, we can either
strip down or scale up the safety and availability capabilities
of the eGW. This way, we can, with a minimal additional
effort, design a family of gateway devices, each targeting
specific customer/application needs. The safety concepts of
the gateway devices belonging to the same family share the
same trunk and are all derived from the safety concept of
the superset device. For instance, we can specify a low-end
eGW by removing all the Class 3 and Class 4 NGIVN safety
goals and the FSRs and hardware/software safety mecha-
nisms derived from them. Similarly, we can specify amid-end
eGW by removing all the Class 4 NGIVN safety goals and
the FSRs and hardware/software safety mechanisms derived
from them. The high-end eGW considers all the four classes
of NGIVN safety goals.

This top-down approach also opens the door to safety
related updates of already on the road gateway products and
IVNs in general. Thus, enabling OEMs to provide additional

safety related features in a vehicle already on the road, with-
out having to go through the complete ISO 26262 cycle and
without additional assessments.

Highlighted lines correspond to the safety mechanisms
chosen for implementation in the use case showcased in
section VII.

IX. SUMMARY AND FUTURE WORK
In this work we proposed a method to generate the safety
concept and the specifications of SoCs/ECUs specialized for
gateway applications. In this top-down method, we put the
IVN in the center of the vehicle E/E architecture by defining
and classifying the safety goals and stakeholders’ require-
ments of a NGIVN. These safety goals and stakeholders’
requirements, after following the ISO 26262 requirements
for the specification and management of safety requirements
[18], will eventually evolve into safety mechanisms that can
be integrated on selected elements of the NGIVN as we
have shown in Section VII-C. Also, by repeating this process
multiple times, each time considering a different set of safety
goals and stakeholder requirements, we are able to maintain
a library of safety mechanisms with known characteristics
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and associated typical use cases. Such a library of safety
mechanisms and the followed process enables to generate the
safety concept of multiples elements of the NGIVN without
additional efforts. This work could be complemented by con-
sidering the cybersecurity aspects of the NGIVN.

Thus, we could also reiterate this process, this time con-
sidering only cybersecurity goals and their potential inter-
ferences with the safety goals. Furthermore, we could also
analyze the impact of the safety and cybersecurity goals of
the NGIVN on the vehicle’s power supply architecture.
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