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ABSTRACT Detecting financial fraud to profile crimes and pinpoint system vulnerabilities is an essential
issue in the financial industry. Because of interpretability requirements and the lack of mass transaction
data due to privacy regulations, sophisticated handcrafted features have been adopted in much of the
literature for fraud detection. In addition to established recency, frequency, monetary, and anomaly fea-
tures, we propose behavior- and segmentation-type features based on statistical characteristics belonging
solely to (non-)fraudulent accounts informed by financial expertise. Our proposed features are difficult
for automatic feature generators to synthesize, and provide transparent cause-effect relationships and good
prediction results. Features with time-inhomogeneous properties cause popular boosting classifiers such
as XGBoost and LGBM to produce unstable detection results. We use the Kolmogorov–Smirnov test to
detect and remove these features to improve XGBoost and LGBM detection performance and robustness.
The resulting performance shown in our experiments is better than that of other classifiers, such as SVM and
random forests. We examine the advantage of our technique by comparing it with several feature engineering
works on fraud detection and automatic feature generation methods. On the other hand, we also find that
generating training/testing sets with random sampling falsely eliminates such time inhomogeneity and results
in misleading assessments of the robustness of machine learning models. These time-inhomogeneous phe-
nomena also entail variousmodus operandi patterns, which influence the performance of different resampling
methods for addressing data imbalance in fraud detection. Improper linear interpolation of SMOTE-related
approaches leads to poor performance due to varying patterns of modi operandi. However, synthesizing
fraudulent samples with simple oversampling and GANs mitigates this problem.

INDEX TERMS Electronic fund transfer fraud detection, feature engineering, Kolmogorov-Smirnov test,
resampling, feature importance ranking.

I. INTRODUCTION
With the emergence of new information technologies and the
evolution of various financial services, the magnitude and
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variety of financial fraud have also grown. Common financial
frauds include credit card fraud, fund transfer fraud, insur-
ance fraud, mobile communication fraud, etc. Such frauds
lead to considerable economic losses and therefore incur high
fraud detection, management, and law enforcement costs. For
example, a malicious scammer could guide victims to transfer
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money from their accounts to a criminal gang’s account via
phone or social communication platforms, such as Facebook
and Line, and thereby commit a fund transfer fraud. In fact,
the total loss of fraud in 2019 was 28.3 billion USD with very
low clear-up rates as reported by the Communication Fraud
Control Association.1 Fund transfer fraud (FTF), such as
romance scams, buyer overpays, etc.,2 is difficult to prevent
and detect. Various fraud prevention acts have been enacted
throughout the world [2], including (in Taiwan) the Proceeds
of Crime Act, the Money Laundering Prevention Act, and the
Money Laundering Control Act.

Financial institutions must follow fraud prevention guide-
lines to detect crime, profile modi operandi, and identify
vulnerabilities in fund transfer systems. Rule-based models
are still widely adopted by Taiwan’s financial institutions
to identify suspicious accounts, but they generally fail to
recognize the complicated and time-varying characteristics
of modi operandi (i.e., the dataset shift problem [1]) com-
mitted by fraudulent actors [3]. For example, the rule-based
model provided by our partner bank (Bank L hereafter) pro-
duces an extremely low recall rate (5.56%) with a poor pre-
cision rate (40%). This incurs huge management costs and
infringes on normal users’ rights to access financial ser-
vices without actually preventing fraud. Thus, it is critical to
develop a high-performance fraud detection system with fair
interpretability.

Recent studies broadly apply machine learning to detect
FTFs. Although adopting automatic feature synthesis from
raw data has recently become popular, the lack of suffi-
cient transaction data limits its performance. Indeed, the
amounts of raw transaction data available for training a
machine learning model are limited due to privacy regula-
tions.Whitrow et al. [4] also point out the difficulty of feature
synthesis due to the high-dimensional nature of raw trans-
action data. In addition, automatic feature synthesis usually
does not satisfy interpretability requirements and may require
much running time, as verified in our experiments. However,
sensible reasons (generated from interpretable features) are
required to screen or freeze suspicious accounts. To address
the above issue, Bhattacharyya et al. [5], Bahnsen et al. [6],
and Whitrow et al. [4] study handcrafted features to retrieve
patterns from raw transaction data. Baesens et al. [7],
Zhang et al. [8], Xie et al. [9], and Bahnsen et al. [6] collect
the features generated by previous fraud detection studies.
Then they group these features into recency, frequency,
money, and (unsupervised) anomaly detection (abbreviated
as RFMA). Most of these features are constructed based
on mathematical or statistical properties and involve little
financial expertise. Baesens et al. [7] point out that data
engineering is of the utmost importance to improve fraud
detection performance even with simple machine learning
models. In light of the above observations, we extend our

1See https://cfca.org/wp-content/uploads/2021/02/CFCA-2019-Fraud-
Loss-Survey.pdf

2See https://www.worldremit.com/en/stories/story/2020/01/20/money-
transfer-scams

conference work [10] to develop two new feature categories,
namely, behavior and segmentation — generated based on
characteristics belonging solely to (non-)fraudulent accounts
informed by financial expertise. Such feature constructions
can capture cause-effect relationships betweenmodi operandi
and features to improve interpretability; our later experiments
show that the importance of these features ranks high, which
reflects their strong relationship. Behavioral features cap-
ture critical transaction patterns that are typically used only
by fraudsters (or normal users) and that cannot be prop-
erly captured by the construction guidelines of recency, fre-
quency, monetary, and anomaly raised in the literature. For
example, a fraudster seeks to withdraw as much as possible
before the freezing of the fraudulent account, and thus the
amount attempted to be withdrawn from an account is often
larger than the account balance. Such features are gener-
ally constructed based on financial expertise, which can be
interpreted as the knowledge base of an expert system. This
reveals that combining the last-generation AI (i.e., expert sys-
tems [11]) and the current-generation AI can produce better
classification results given limited amounts of training data.
Segmentation features are constructed by dividing the raw
transaction data according to classification rules and then
compiling summary statistics to extract meaningful phenom-
ena. For example, we first calculate the number of fraudu-
lent accesses to each ATM and note its owner bank. Next,
banks can be classified by the total number of fraudulent
ATM accesses; this is because the management and location
selection strategies of a bank may affect the likelihood of
fraudulent access. In addition to analyzing fraudulent behav-
iors, we follow the idea of Abdallah et al. [12], who use fea-
tures to capture the patterns of non-fraudulent behaviors. This
indirectly improves fraud detection performance by strength-
ening the ability to recognize normal accounts. For instance,
a user can assess over-the-counter services only by being
physically present at the bank branch; fraudsters are unlikely
to assess such services to avoid exposing their identities.
Then a new feature is created by analyzing 405 different
types of transactions to determine those that are used almost
exclusively by normal users.

To analyze the performance of our proposed features, we
first compare the performance of some feature engineering
works on fraud detection with our real transaction data from
Bank L. However, many proposed features in their works
depend on the specific properties of their data and are difficult
to apply to our data. This might explain the poor performance
in training with their feature sets. To make the comparison
fair, we collect and implement features from fraud detection
feature engineering works, such as [2], [4], [5], [6], [7], [9],
[13], [14], [15], [16], [17], [18], and [19]. Then, we train with
the features collected from past research and (or) behavior-
and segmentation-type features to compare the fraud detec-
tion performance of different classifiers, such as support
vector machines (SVMs), random forests, and extensions of
gradient boost decision trees like XGBoost and light gradient
boosting machines (LGBM). Although XGBoost and LGBM
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have the potential to yield the best detection results due to
their sophisticated boosting techniques, incorporating noisy
features could significantly deteriorate the prediction perfor-
mance. Specifically, the distributions of noisy features change
significantly with time, making a machine learning model
designed to fit the training set fail to detect fraud effectively in
the testing set. To identify features with time-inhomogeneous
characteristics, we propose a new scheme to measure the dif-
ference of a feature’s distributions in the training and testing
sets split by chronological order in terms of p-values gen-
erated by the Kolmogorov–Smirnov test (the KS test).3 The
aforementioned deterioration in recall and precision rates can
be addressed by removing features whose distributions vary
significantly (i.e., have low p-values). In addition, training
XGBoost/LGBM with only our features and with our fea-
tures in addition to those in previous works (except for noisy
features) yields comparable detection performance; however,
using our feature set requires less running time. Note that
generating training/testing sets via random sampling can mis-
takenly improve fraud detection performance significantly
because time-inhomogeneous characteristics in real data are
eliminated. Besides, such unstable prediction problems do
not occur in SVMs and random forests, possibly because
sophisticated boosting techniques are not used in these clas-
sifiers. In this case, the detection performance improves as
features are added, even for noisy features.

In addition to the handcrafted feature generation men-
tioned above, automated feature engineering is used
in Kanter and Veeramachaneni [21], Lucas et al. [18],
Esenogho et al. [22], and Ebiaredoh-Mienye et al. [23] to
detect fraud. Kanter and Veeramachaneni [21] use a deep
feature synthesis algorithm and substitute raw data via a
transform primitive to generate primitive features. These
features are then substituted into aggregation primitives that
use relations between database tables to store different types
of data elements to systematically generate aggregated fea-
tures. Lucas et al. [18] use multi-perspective hidden Markov
models to examine the amounts and recency of transaction
sequences from the histories of credit card holders/merchants.
Esenogho et al. [22] use long short-term memory (LSTM)
to capture temporal patterns from credit card transaction
data. Then, they train an adaptive boosting model with these
synthetic features to detect credit card fraud. Ebiaredoh-
Mienye et al. [23] use the stacked sparse encoder to generate
feature representation for each observation for predicting
credit card defaults. We train with features generated by
the above automatic feature generation models, but most
detection results are poor. One possible reason is that most
fraud detection works study credit card frauds, which provide
more aspects and larger amounts of transaction information
than bank accounts’ fund transfer data. Another reason might
be that existing automatic feature generators can generate

3 The KS test is also used to remove features that have the same distribu-
tions in the positive and negative observations as in [20]; note that this idea
is quite different from ours.

simple features, such as RFMA proposed in past literature,
but find it challenging to create sophisticated behavior or
segmentation features that require complex generation pro-
cedures and financial expertise. Our feature constructions,
in contrast, can provide new insight into automatic feature
generation given limited amounts of training data. In addi-
tion to extracting RFMA features from raw transaction data,
generating a statistical summary of labels (i.e., fraudulent
accesses) for raw transaction data with exogenously-obtained
categorization information could yield useful features. For
example, as mentioned above, we classify ATMs according
to their owner banks and then count the number of fraudulent
accesses for each bank to identify suspicious banks, as in
Table 4. Similarly, statistical summaries of fraudulent/normal
accesses classified by ATM branch (location) and transaction
type also produce useful features as detailed in Figure 2 and
Table 3, respectively.

The ratio of the number of fraudulent accounts to normal
accounts is usually extremely biased, namely, 1 : 250 in our
dataset. Such data imbalance can cause machine learning
models to predict all account observations as normal. How-
ever, it is generally more important to identify fraudulent
accounts (i.e., improve the recall rate) than to achieve high
prediction accuracy. Accordingly, we resample the training
dataset to balance the ratio of positive/negative observations.
We find that modus operandi patterns can be divided into
several subgroups as observed from a scatter plot projected
from high-dimensional feature vectors of accounts. Thus,
even through Vassallo et al. [27] suggest that SMOTE-NCL
is especially useful for dealing with financial data imbalance,
our experiments show that SMOTE-related approaches yield
degraded prediction for time-inhomogeneous fraud detection.
This is because interpolations adopted by SMOTE-related
methods can improperly place synthesized positive observa-
tions where negative observations are dense and/or change
the statistical properties of features belonging to positive
observations. This problem can be avoided by adopting naive
full/random oversampling methods orWasserstein generative
adversarial networks (GANs) (see [24]). Our experiments
show that GANs outperform oversampling methods, which
in turn outperform SMOTE-related methods.

In addition to predicting modi operandi, the ability to inter-
pret the predictions for summing up the patterns of modi
operandi is also essential for an FTF detection system to
pinpoint the vulnerabilities of the procedures of financial
services. Indeed, profiling modi operandi prevents fraudsters
from utilizing fund transfer systems (see [25]) and fulfill-
ing the ‘‘risk-oriented’’4 property asked for by the Financial
Action Task Force5 (see [26] and [27]). Our proposed behav-
ioral and segmentation features provide a clear cause-effect
relationship between features and fraudulent labels. Their
excellent qualities can be examined by showing that our
features generally rank high under the feature importance

4Efforts should be allocated where the fraudulent risk is likely.
5https://www.fatf-gafi.org/
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ranking procedure proposed in [28] published in a core
finance journal (Journal of Banking and Finance.)

We organize the structure of the remaining paper as fol-
lows. We first survey relevant fraud detection studies in
Section II. Section III describes the data format provided by
the partner bank. Section IV describes our feature engineer-
ing approach. The experiments in Section V are divided into
three parts: Section V-A compares the performance of various
machine learning models with the features suggested in the
literature and those in this paper. We also analyze how the
time inhomogeneity of input features influences the stability
of fraud detection. Section V-B addresses the data imbal-
ance by comparing the performance of various resampling
methods and analyzes their relationship to the distributions of
original/synthetic observations. Section V-C analyzes feature
importance, and Section VI concludes.

II. LITERATURE REVIEWS
Financial fraud includes credit card fraud [17], [19], [29],
phone fraud [30], online transaction fraud [31], instant pay-
ment fraud [32], etc. To ensure the interpretability of the
detection results, most conventional banks detect frauds by
rule-based methods. However, these methods generally fail
to capture complex, time-varying characteristics of modi
operandi; fraud detection performance thus tends to be poor.
In addition, fraudsters can easily bypass these fixed rules.

It is impractical to train a machine learning model with raw
transaction data due to data availability constrained by regula-
tions and the heterogeneous and high-dimensional nature of
transactions. Whitrow et al. [4] and Bhattacharyya et al. [5]
train machine learning models with features extracted from
aggregated raw transaction data to detect fraud. This pro-
cess generates a set of features to capture insightful prop-
erties of (non-)fraudulent accounts. Xie et al. [9] show that
many features generated in previous studies are generally
based on transaction frequency. However, capturing tempo-
ral properties without considering the characteristics of modi
operandi from other aspects hinders machine learning models
from recognizing a wider variety of fraudulent behaviors. For
example, chronological relationships in raw transactions are
difficult to capture by frequency features.We note in this con-
nection that fraudsters usually first do transactions with small
amounts to test the vulnerability of a transaction system,
and then do a large one. Xie et al. [9] argue that using inter-
pretable monetary features to capture patterns from trans-
actions of fraudulent accounts dramatically enhances fraud
detection results. Zhang et al. [8] suggest that the features
generated by recent fraud detection studies can be categorized
into recency, frequency, andmonetary (RFM) groups. In addi-
tion to RFM, Baesens et al. [7] propose another two groups:
anomaly detection and other feature engineering techniques.
They empirically compare the fraud detection results by train-
ing with the above features and show that excellent perfor-
mance can be achieved by adequately constructing feature
sets without using sophisticated machine learning models.
In light of the above research, we create new features by

carefully observing (non-)fraudulent behaviors and using
financial expertise to capture their patterns to propose two
feature categories: behavior- and segmentation-type features.

Advanced machine learning models such as graph-based
models are utilized due to the availability of certain types
of transaction information. Wang et al. [32] build a hetero-
geneous attribute graph to represent accounts’ social rela-
tions and frequently used locations of online merchants by
using semi-supervised graph embeddings to produce a low-
dimensional representation for each node. To detect instant
payment fraud with interpretable results, they use a hierar-
chical attention mechanism for each node to determine the
relations between neighbors or attributes. Li et al. [33] iden-
tify paths of fraudulent fund transfers through graph-based
models. Cheng et al. [17] extract RFM-based features from
temporal and spatial information embedded in raw transac-
tion data and detect credit card fraud by applying an attention
mechanism to extract important features. Zheng et al. [30]
aggregate transaction records (including transfer records
from the sending account to the receiving account(s) and the
receiving bank) from two banks to detect suspicious trans-
fers. A GAN (generative adversarial network) is then applied
with a denoising autoencoder to calculate the probability that
a cross-bank transfer is fraudulent. However, such detailed
spatial transaction data, social relationships, and cross-bank
transaction records are unavailable in our raw transac-
tion dataset. Hence, we do not consider such sophisticated
methods.

Methods for detecting anomalies like fraudulent accounts
generally face significant data imbalance problems; that
is, the distribution of the training dataset is biased, with
few/many observations in minority/majority classes. To mit-
igate the resulting learning bias toward majority classes,
resampling procedures are used to alter the ratio of pos-
itive to negative observations (usually to be closer to
1) by oversampling, undersampling, or hybrid methods
as categorized in [34]. Oversampling methods increase
the number of observations in the minority group (e.g.,
fraudulent accounts in our case) by replicating or synthe-
sizing new ones. Undersampling methods filter out observa-
tions from the majority group (e.g., nonfraudulent accounts).
Hybrid methods combine oversampling and undersampling.
Ghorbani and Ghousi [34] and Hordri et al. [35] compare
different resampling methods, including SMOTE, borderline
SMOTE, SMOTE-ENN, SVM-SMOTE, SMOTE-Tomek,
and random under/oversampling. Vassallo et al. [27] claim
that SMOTE-NCL is especially useful for dealing with finan-
cial data imbalance. We compare the above methods in our
experiments, and consider the Wasserstein GANs [24].

Addressing imbalanced binary classification problems,
such as fraud detection using machine learning methods,
has also been a recent focus in academic financial journals.
Khandani et al. [36] use generalized regression and classi-
fication trees to predict the delinquency and default rates
of credit card holders since interpretable decision logic can
be obtained from the rules of each tree node and the tree
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structure. They demonstrate significantly improved detection
rates and show that such interpretable analyses may have
important applications in forecasting systemic risk, that is,
the risk of major collapses, such as the financial crisis of
2007–2008. Butaru et al. [28] also show that decision trees
and random forests perform well in predicting credit card
delinquency for different banks. However, they criticize the
poor interpretability of these tree-based models, as the fea-
tures selected by these models vary with time and banks.
Moreover, the complex structure and high number of leaves
of the trees complicate the comparison of overall feature
selection results. To profile and compare the results of fea-
ture selection, they measure and rank the importance of each
feature by the number of occurrences, the occurrence posi-
tion (in the tree), and the information gain of each feature.
This measures the effectiveness of each feature and further
improves the interpretability and cause-and-effect of their
machine learning models. In Section V-C, we adopt the rank-
ing method of [28] to show the effectiveness of our proposed
features based on XGBoost. Addo et al. [37] build binary
classifiers based on different machine learning models to
predict the probability of loan default. They rank the ten
most important features and use them to assess the stabil-
ity and performance of prediction among different models.
They show that tree-based models outperform other mod-
els. Zhang et al. [38] compare major machine learning algo-
rithms and sampling techniques to detect money laundering.
They argue that decision trees are more flexible than paramet-
ric methods like logistic regression in capturing nonlinearity
and accounting for missing values and outliers. However,
decision trees suffer from overfitting and thus require stop-
ping rules, for instance, to limit the maximum depth of the
tree or the number of branches.

III. DESCRIPTIONS AND PREPROCESSING OF RAW
TRANSACTION DATA
Bank L has provided us with raw transaction data from
April 2018 to September 2019 and the records of fraudulent
accounts provided by the National Police Agency. This paper
proposes sophisticated features extracted from real raw trans-
action data that contain rich details of various patterns of nor-
mal and fraudulent behaviors, as shown in Table 1. Although
Kaggle provides public datasets for fraudulent detection,6 the
datasets are either generated by simulations or provide limited
disclosure information due to strict regulations of privacy.
These drawbacks limit the ability to profile the characteristics
of normal and fraudulent transaction behaviors by generating
interpretable features. Chen et al. [39] show that due to this
limitation, anti-fraud works such as [40] and [41] merely con-
sist of descriptions of methods without experiments. Hence,
our studies focus on real transaction data provided by Bank L.
Inputting the entire transaction record to train a machine
learning model to detect fraudulent transactions is unrealistic

6Like https://www.kaggle.com/ealaxi/paysim1 and https://www.kaggle.
com/mlg-ulb/creditcardfraud/home

TABLE 1. Transaction data descriptions.

FIGURE 1. Ratio of fraudulent accounts and aggregated transactions used
in training/testing datasets Ratio1: Ratio of fraudulent accounts executing
more than n transactions within the predetermined period Ratio2: Ratio
of aggregated fraudulent transactions used in training/testing datasets to
all transactions belonging to fraudulent accounts.

(see [4]) due to the high-dimensional nature and heterogene-
ity of the raw transaction data. Thus, the feature representa-
tion of each bank account is constructed by first aggregating
n transactions for that account that occurred within a pre-
determined period. Then these studies extract features from
aggregated transactions. This aggregate approach is widely
adopted in [2], [4], [5], [6], [7], [9], [14], [15], [16], [17],
[18], and [19]. However, determining the hyperparameter n
faces a dilemma since increasing (decreasing) n results in
more (fewer) aggregated transactions to describe the charac-
teristics of a bank account, but fewer (more) bank accounts
being included in the training/test dataset. Note that many
accounts are used infrequently and are removedwhenwe set a
large n. Such removals may significantly damage the training
of fraud detection systems because fraudulent accounts are
rare and many of them are infrequently used. To preserve a
fair percentage of fraudulent accounts for training without
sacrificing the number of aggregated transactions, we set n
to 9. As observed in Fig. 1, we observe that the ratio of
fraudulent accounts used for training drops rapidly when the
hyperparameter n is larger than 9. The percentage of aggre-
gated fraudulent transactions to all transactions of fraudulent
accounts is also higher for the n = 9 scenario.
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IV. CONSTRUCTION OF BEHAVIOR AND
SEGMENTATION-TYPE FEATURES
Whitrow et al. [4] and Bhattacharyya et al. [5] retrieve the
patterns of normal and fraudulent transactions by generating
the features from aggregated transactions. These features are
then used to train classification models to predict fraudulent
accounts. Much of the literature follows this approach, and
the features considered in the literature can be categorized
as recency, frequency, money, and anomaly detection tech-
niques (see [7]). This paper extends our previous conference
work [10] to collect the features that can be generated based
on our raw transaction data7 from [2], [4], [5], [6], [7], [9],
[14], [15], [16], [17], [18], and [19], as illustrated in the upper
part of Table 2. For ease of analyzing their effectiveness in
fraud detection, the set of all these features is denoted as
Other in the following experiments. Along with the newly
proposed features, we construct two novel feature categories:
behavior and segmentation, and denote the resulting feature
set as Proposed. The Proposed categories are illustrated in
the lower part of Table 2 and the feature constructions from
Proposed are discussed in the following two subsections.
Our experiments show that training gradient-boosting deci-
sion trees with the proposed features could yield good fraud
detection results. This echos the findings in [7] that careful
feature engineering without sophisticated machine learning
techniques can also achieve good performance.

Generally speaking, the literature on past fraudulent detec-
tion creates features mainly based on abnormal patterns of
modi operandi for identifying fraudulent accounts. Note that
fraudsters must execute illegal behaviors to commit crimes
even though their behaviors are generally similar to those of
normal account holders most of the time in order to cover
their identity. Thus, it is straightforward to identify fraudsters
to pinpoint ‘‘what fraudsters do’’. However, we find that pro-
filing certain normal behaviors avoided by fraudsters is also
beneficial. This is because fraudsters avoid certain behav-
iors to prevent increasing the risk of disclosing their identity
or disturbances to their criminal plans. Accounting for both
‘‘what fraudsters do not do’’ and ‘‘what fraudsters do’’ helps
distinguish fraudsters from normal users with similar transac-
tion characteristics. Indeed, our improvements would reduce
the number of false alarms, hence the inconvenience for nor-
mal account holders and the associated labor costs to screen
or freeze the accounts [6]. Since the features constructed
according to the guidelines of ‘‘what fraudsters (don’t) do’’
cannot easily fit into RFMA proposed by Baesens et al. [7],
we add the categories ‘‘behavior’’ and ‘‘segmentation.’’

A. BEHAVIOR FEATURES
Features belonging to the behavior category profile char-
acteristics of (non-)fraudulent transactions. These features
cannot be easily categorized into RFMA but are critical to

7We ignore features such as the locations of transactions that are not
contained in our raw transaction data defined in Table 1. The definitions of
the features used in our experiments can be found in Table 4 of [10].

recognizing the modus operandi patterns of financial exper-
tise. We list the behavior-type features as follows.

1) IMMEDIATE_PAID_OUT
We count the occurrences of payment made from an account
immediately following the event of payment made into the
same account on the same day. Note that fraudsters want to
transfer funds before the police investigate and freeze the
account in question.

2) ATM_TRANSACTION
An ATM transaction is one of 405 types of transactions.
We focus on this transaction type since most FTFs utilize
ATMs to transfer or dispatch money, as it is convenient, safe,
and unlikely to disclose the identities of fraudsters. We count
the number of transactions using ATMs from all n aggregated
transactions of the same account defined in Figure 1. Note
that the 405 transaction types cause the one-hot encoding
to result in unnecessarily high-dimensional inputs and poor
fraud detection performance. Additionally, there is no natural
order for these 405 transaction types, making label encod-
ing unreasonable. In addition, target encoding is impractical
since the number of fraudulent accounts to normal ones is
extremely biased. Thus, we propose the following features to
aggregate information on transaction types.

3) LT_COUNT
We count the occurrences of ‘‘likely legal’’ transactions,
whose transaction types are frequently conducted by normal
users but typically avoided by fraudsters, from aggregated
transactions of an account. Some transaction types, such as
withdrawals or deposits on bank counters, increase the risk
of being identified or getting caught. Other types, such as
purchasing and redeeming investment products, are generally
irrelevant to the modi operandi. The five most frequently
used transaction types used by (non-)fraudulent accounts are
illustrated in Table 3; three of these are common to both
normal and fraudulent accounts. This shows that naively iden-
tifying high-frequency transactions used by (non-)fraudulent
accounts does not yield useful features. Our sophisticated
feature generation idea is useful since LT_count is found to be
the second most important feature, as will be discussed later
in Table 13.

4) LAST_PAID_OUT_LARGER_THAN_SAVINGS
This denotes a case in which the last amount paid out from
the account was larger than the balance of that account. Note
that fraudsters would try their best to transfer funds from
fraudulent accounts before these accounts are frozen.

5) FRAUD_FACTOR
It represents the likelihood of fraud as the product of several
fraud-related features:

( Last_paid_out_larger_than_savings ) / n
× ( Immediate_paid_out ) / n
× ( ATM_transaction ) / n,
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TABLE 2. Feature categories. Numbers in parentheses denote feature importance rankings proposed by Butaru et al. [28] that will be discussed later in
Table 13. ‘‘*’’ in parentheses denotes a feature importance of zero. We use red (black) color or ‘‘Proposed’’ (‘‘Other’’) to denote features used only in this
study (in past literature categorized by [7]).

TABLE 3. Utilization ratios and descriptions for top-5 most frequently
used transaction types for normal and fraudulent accounts.

where n denotes the feasible number of aggregated trans-
actions determined in Figure 1. This feature facilitates the
capture of coexisting occurrences of fraud-related features to
measure the likelihood of fraud.

B. SEGMENTATION FEATURES
Segmentation features are constructed by discovering useful
classification rules with summary statistics. We first label
each ATM machine or an account with its associated bank,
branch, or other meaningful classification and then analyze
their relationship to fraud. We list these features as follows:

1) SUSPICIOUS_ATM_BANK
We perform summary statistics for the number of fraudulent
accesses to each ATM and recognize its owner bank. Then we
calculate the lump sum of fraudulent ATM accesses for each
bank and label those with the top 5% (see the upper panel of
Table 4) of fraudulent accesses as ‘‘Suspicious ATM Banks.’’
Note that in significance tests, five percent is a prevalent sta-
tistical threshold. High fraudulent access to ATMs belonging
to a specific bank may result from the bank’s ATM location
selection or management policies.8 For example, ATMs near
train stations are frequently used by fraudsters.9

2) LATM_COUNT
This is the number of times an account has accessed ‘‘likely
legal’’ ATMs, defined as ATMs that have been used by fraud-
ulent users fewer than six times. We decided on six because
the number of fraudulent accesses of 95% (a frequently used

8For instance, a bank may deploy ATMs in branches of a chain store with
which it cooperates.

9See the news https://news.tvbs.com.tw/local/1415294

TABLE 4. Accumulated percentile of the number of a Bank’s ATMs (an
ATM) accessed by fraudulent accounts.

statistical threshold) of ATMs in our training set is fewer than
six times (see the lower panel of Table 4).

3) SUSPICIOUS_BRANCH
This specifies whether ATM transactions in an account are
executed where a lot of fraud occurs. Although actual ATM
locations cannot be extracted from the raw transaction data
(see Table 1), we instead identify each ATM’s owner branch
by comparing the serial number of the bank branch with the
serial numbers of its ATMs. Then we profile the area where
a branch office is located with its ATM transaction data since
ATMs owned by the same branch office are located close to
the office.We label the branches owningATMs that have been
accessed only by fraudsters as suspicious branches, as illus-
trated in Figure 2. Note that it does not imply that ATMs of
suspicious branches are accessed only by fraudsters, as we
have access to the transaction data of only Bank L accounts
within a limited period.

4) BRANCH_ID
This summarizes the branch to which (non-)fraudulent
accounts belong; it can also be used to generate the above
feature.
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Recently, studies of open-source tools for automatic fea-
ture synthesis have become popular, such as Featuretools.
This tool extracts features from raw data via primitives such
as averages, sums, minima, maxima, standard derivations,
and the skew of raw data. The aggregates of the primitives
of the raw data are then used to synthesize features, such as
average debit amounts and maximum account balance. Using
these primitive aggregation techniques is challenging to gen-
erate behavioral- and segmentation-type features. Neverthe-
less, our discussion of feature construction suggests a new
feature synthesis strategy. Specifically, many of the above
features are constructed by forming a statistical summary
of raw transaction data based on the labels (of normal and
fraudulent accounts) and exogenously obtained classifica-
tion information. For example, we can obtain ATM sequence
numbers only from raw transaction data. By labeling each
ATM sequence number with exogenous classification infor-
mation, such as the bank or branch location it belongs to,
we can construct a statistical summary as in Table 4. Using
fraudulent and normal access labels, we can form features
such as Suspicious_ATM_bank and Suspicious_branch to
mark banks or branches with many fraudulent accesses.
Given the wide variety of exogenous classification informa-
tion related to different attributes of raw transaction data,
it is not efficient to manually collect this information to
construct statistical summaries and features. Our findings
provide a possible development path for automatic feature
construction: various segmentation features could be effi-
ciently generated by using spiders to extract useful classifi-
cation information from the Internet in combination with a
statistical summary generator.

The following experiments compare fraud detection per-
formance using behavior and segmentation features analyzed
abovewith RFMA features and automatic feature engineering
methods proposed in previous work. We also analyze the
characteristics of noisy features that degrade detection perfor-
mance and examine the performance improvements obtained
by removing these features. The quality and interpretability
of our proposed features are attested by their high ranking in
terms of the feature importance proposed in [28] published in
a premium finance journal.

V. EXPERIMENTS
Note that banks are required to provide qualified and inter-
pretable fraudulent detection systems. To echo these require-
ments, we compare fraudulent detection performance under
different feature engineering and resampling techniques in
Sections V-A and V-B. Feature importance rankings in
Section V-C analyze the interpretability of the features pro-
posed in our paper and previous works.

A. ANALYSES OF FEATURE ENGINEERING TECHNIQUES
We first compare the fraud detection performance by training
popular classifiers, such as SVM, random forests, XGBoost,
and light GBM (LGBM), with different feature engineering
models and Bank L’s real transaction data. We collect our

FIGURE 2. Normal and fraudulent accesses of ATMs and locations of their
owner branches.

TABLE 5. Parameters of each machine learning model. The specification
of the computer: Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz with 32GB
RAM and RTX3070 graphics card.

proposed features and RFMA features surveyed in the past
literature as defined in Table 2 and train different combina-
tions of the features to compare the fraud detection perfor-
mance. We also study unstable fraudulent detection results
caused by time-inhomogeneous features and remove these
features using the Kolmogorov-Smirnov test. In addition, the
performance of automatic feature synthesis algorithms is also
compared in this section.

We sort all transaction accounts and their aggregated trans-
action information in chronological order. The first 60% (last
40%) of the data are used as the training (testing) set. We try
different parameter settings to optimize the fraudulent detec-
tion performance, and the best settings in our experiments
for each machine learning model are shown in Table 5. As
a severe data imbalance hinders the recognition of the char-
acteristics of minority samples (i.e., fraudulent accounts),
we use full oversampling to adjust the ratio of fraudulent to
non-fraudulent accounts to 1 : 1, where all minority observa-
tions are duplicated an equal number of times. The effects
of other resampling methods will be studied in Section V-B.
Then we use features proposed by credit card fraud detection
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TABLE 6. Comparison with features proposed by [9] and [7].

works [9] and [7] to predict fraudulent accounts with our
Bank L’s transaction data, as illustrated in Table 6. The pre-
diction results are poor, likely because many of their fea-
tures depend on specific information associated with their
data and cannot be retrieved from our transaction data (see
Table 1). Specifically, credit card transaction records include
extensive data such as consumption locations and merchan-
dise by which they generate meaningful features to improve
credit-card fraud detection performance. In our scenario, fail-
ing to retrieve these features fromBank L’s transaction dataset
degrades the performance of their models. To make compar-
isons of feature engineering fairer, we collect all features pro-
posed by [2], [4], [5], [6], [7], [9], [14], [15], [16], [17], [18],
and [19] that can be generated based on our raw transaction
data to form a feature set Others. Then we compared the
performance by training with ‘‘Others’’ and (or) our proposed
feature set Proposed, as shown in Table 7, to show the advan-
tage of our proposed features to solve the above heterogeneity
problem of raw transaction data.

Table 7 compares the performance for detecting fraudu-
lent accounts by training different machine learning mod-
els with different combinations of features, as listed in
the ‘‘Model+Data’’ column. Here, we first focus on gray
cells that split the data chronologically. Although gradient-
boosting classification models, such as LGBM and XGBoost,
can achieve strong detection performance if features are prop-
erly selected, the inclusion of noisy features can generate
unstable results. This echoes the finding of [42] that the clas-
sifiers mentioned above are sensitive to overfitting due to the
existence of noisy data. In fact, using our Proposed features
produces a good F1 score (73.95%) with a low training time;
recall rates and F1 scores deteriorate significantly with high
training times if we include all the features in Table 2 for
training. This confirms the argument in [7], namely, that care-
ful feature engineering improves the performance of machine
learning models, as we can use far fewer features (denoted
red in Table 2) to achieve good fraud prediction performance.
To determine the causes of the dramatic performance drop
in XGBoost and LGBM, we monitor the change in detection
performance using the leave-one-out feature selectionmecha-
nism; that is, we repeatedly single out a feature for all training
features. Significant performance deterioration is due to the
presence of two features from the (unsupervised) anomaly
detection category: LOF and KNN_distance. Simultaneously
dropping these two noisy features, as shown in the right

panel of Table 7, restores the XGBoost F1 scores, namely,
74.34% (w/ Other+Proposed w/o LOF & KNN_distance)
and 68.42% (w/ Other w/o LOF & KNN_distance). Com-
pared to the relatively low F1 scores of the random forest, the
nonlinear kernel SVM produces slightly worse performance
than XGBoost if noisy features are removed. Furthermore,
SVM performance increases steadily with increasing train-
ing features without deterioration in detection ability caused
by noisy features. However, a nonlinear kernel SVM cannot
easily rank feature importance to capture the patterns of modi
operandi or identify the weaknesses of the transaction proce-
dures. It also takes much more running time than other mod-
els in our experiments. Under interpretability and running
time concerns, the following experiments focus on improving
XGBoost for simplicity.10

To explore why detection performance deteriorates sig-
nificantly due to the presence of LOF and KNN_distance,
we repeated the above experiments by sampling the training
and testing sets chronologically and randomly with various
proportions of the training/testing dataset, as illustrated in
Table 9. We trained XGBoost with all Other and Proposed
features in these experiments. The percentage in the first
column denotes the proportion of data used as the training
set; the remaining data were used as the testing set. Recall
that each account can be represented as a vector composed
of its features; KNN_distance (LOF) profiles the statistical
properties of an account’s overall behavior, as it describes
the average distance from its feature vector to neighborhood
vectors (compared to the average density around the vectors),
as stated in [7]. Thus, we can determine whether the overall
behavior patterns of (non-)fraudulent accounts are similar
during the training and testing periods by calculating the
similarity of the cumulative distribution of KNN_distance
(LOF) by the KS test. The null hypothesis of the KS test
is ‘‘the two distributions are the same’’, which we reject to
adopt the alternative hypothesis—‘‘the two distributions are
different’’—if the p value is small.11 The p values to test the
features’ distributions of fraudulent and normal accounts are
listed in columns 6, 7, 8, and 9.

10Comparisons of LGBM are ignored for simplicity since its detection
performance is similar to that of XGBoost.

11The p value is the probability of obtaining test results that are more
extreme than the current result given that the null hypothesis is correct.
Intuitively, the size of the p value reflects the similarity of two distributions.
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TABLE 7. Fraudulent detection performance when data are split chronologically (gray cells) and randomly (white cells). To evaluate the stability of our
experiments, we conducted each experiment five times to ensure that the results do not vary significantly. The reported performance is the average of the
experimental results.

In Table 9, we observe that chronological sampling (gray
cells) yields highly divergent recall rates (1.49%–70.59%)
and F1 scores (2.94%–82.76%) with changes in the training
data size. These values seem to be highly correlated to the
similarity of the cumulative distributions of KNN_distance
and LOF proxied by the p values of the KS test. Specifically,
low p values of these two features of fraudulent accounts also
map to low recall rates, that is, the likelihood of detecting
fraudulent accounts. Recall rates increase (70.59%) when p
values increase. These relatively low p values are evidence
that the modi operandi vary widely; therefore, the patterns
captured from the training set may become invalid in the test-
ing set, resulting in low and unstable recall rates. However,
the p values of normal accounts are higher and more stable,
which suggests relatively stable behavior for normal accounts
and hence high precision rates (87.5%–100%). Note that the
relatively low precision of 87.5% also maps to a low p value
of 0.3% given a training set composed of 70% of the data.

The time inhomogeneous properties of the KNN_distance
and LOF features of fraudulent accounts disappear if the
training/testing sets are partitioned by random sampling
(white cells). As shown in Table 9, the p values in the chrono-
logical sampling cases are generally lower than those in the
random sampling cases. This is because generating training
and testing datasets by randomly sampling the raw trans-
action dataset results in similar cumulative distributions of
KNN_distance and LOF features across training and test-
ing sets. This further implicitly enables XGBoost to fore-
see the rapid changes in future modi operandi from the
training set, which clearly is impossible in real-world appli-
cations, as reflected in the unrealistically high detection per-
formance. The recall rates (86%–90%) and hence the F1
scores (88%–93%) all become high and stable regardless of
changes in the training data size. We further repeated the
experiments introduced at the beginning of Section V-A with
a 60%/40% random partition of the training and testing sets,
respectively, instead of a chronological split, also illustrating

TABLE 8. F1 Scores when distinguishing observations from
training/testing sets using discrimination learning.

the results of random partitioning in Table 7. We observe that
the presence of noisy features LOF and KNN_distance no
longer deteriorates the fraud detection results of XGBoost.
It can be observed that the F1 score is 86% for ‘‘XGBoost
w/ Other+Proposed’’ and 80% for ‘‘XGBoost w/ Other,’’
which outperforms the counterpart experiments removing
LOF and KNN_distance. Since changing modus operandi
patterns should not be foreseen, it is inappropriate to assess
a machine learning model with time-inhomogeneous data by
random sampling or cross-validation.

We also applied the KS test to all Other and Proposed
features as in Table 10 with the chronological data split of
Table 7 to examine the similarity of these feature’s cumulative
distributions in the training / testing datasets: the p values
of features other than LOF and KNN_distance are all high
for both fraudulent and normal accounts. This implies that
the distributions of these features in the training and test-
ing sets are similar, and explains why the detection perfor-
mance of XGBoost significantly improves when both LOF
and KNN_distance are removed, as illustrated in Table 7.
We examine the robustness of this finding by changing the
proportion of the training set, as illustrated in Table 9 (blue
cells). Excluding these two features stabilizes the recall rates
and F1 scores, which are generally higher than the results
in Table 9 (gray cells) regardless of changes in the training
data size. We also use the discriminative learning studied
in Bickel et al. [43] and Nair et al. [44] to show that remov-
ing noisy features makes the observations retrieved from
training/testing sets more indistinguishable, as in Table 8;
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TABLE 9. Training XGBoost with various training set sizes. All numerical results are the averages from training and evaluating XGBoost five times. Gray
and white cells denote data split chronologically and randomly, respectively, with all Other and Proposed features. Blue cells denote data split
chronologically with KNN_distance and LOF excluded. Columns 6, 7, 8, and 9 list the p values generated by the KS test. The running times listed in the last
column increase with the training set’s size.

TABLE 10. KS Test p values for each feature of (Non-)fraudulent accounts.

that is, fraud detection models become less likely to learn
time-varying patterns, which results in reduced predictability.
Because the F1 score of the discriminative learning experi-
ment is highwhen noisy features are not removed, the original
account transaction data do exhibit a significant dataset shift
problem. The F1 scores of the discriminative learning model
decline after removing noisy features, which indicates that
this problem has been alleviated. This explains why fraud
detection results improve after removing noisy features.

To verify that handcrafted feature generation is essential
when mass transaction data are not available under the con-
straint of privacy regulations, as in our case, we compare
several feature synthesis algorithms proposed by [18], [21],
[23], and [22], as illustrated in Table 11. Lucas et al. [18] gen-
erate features with multiperspective hidden Markov models
to learn the monetary and recency properties of the trans-
action sequences from the credit card transaction histories.
Kanter and Veeramachaneni [21] use a deep feature synthesis
algorithm to generate features. Ebiaredoh-Mienye et al. [23]
use the stacked sparse encoder to generate feature represen-
tation for each observation. We train the above three mod-
els with Bank L’s transaction data to create features. These

features are then used to train the classifier models listed
in the second column of Table 11. Most automatic feature
generation algorithms perform poorly, except that training
the random forest with the deep feature synthesis algorithm
yields good detection results. The performance of training
gradient-boosting classificationmodels with these algorithms
is poorer than that of training with our proposed features.
In addition, Esenogho et al. [22] use long-short term mem-
ory (LSTM) to capture temporal patterns from credit card
transaction data. Then, they train an adaptive boosting model
with these synthetic features to detect credit card fraud. How-
ever, the fraudulent detection performance in our experiment
is also poor. This might be because most of these works
study the detection of credit card fraud, which provides more
aspects and large amounts of transaction information com-
pared to the fund transfer data of banks’ accounts detailed
in Table 1. In addition, it might be a challenge for auto-
matic feature generators to generate sophisticated behavior
or segmentation features that require complex generation
procedures and financial expertise in contrast to the simple
RFMA features proposed in the past literature. Besides, these
automatic feature generators typically require more computa-
tional resources, reflected in higher running times.

B. ADDRESSING DATA IMBALANCE
To visualize the dataset imbalance12 and the accounts’
pattern features, each observation in our dataset is repre-
sented by a high-dimensional vector composed of the Other
and Proposed features analyzed in Section IV except for
KNN_distance and LOF. We used a 60%/40% chronolog-
ical split for the training and testing datasets, respectively.
We used principle component analysis (PCA) to project the
observations represented by high-dimensional vectors to a
two-dimensional plane, as illustrated in Figure 3. There are
significantly fewer fraudulent observations (denoted by blue
spots) than non-fraudulent ones (orange spots). Fraudulent
observations are clustered in several subgroups, suggesting
various modi operandi in the training dataset.

To mitigate learning bias toward the majority class due
to data imbalance, we compared the resampling methods
analyzed in [34], [35], and [27] with a Wasserstein GAN
(see [24]). The ratio of fraudulent to non-fraudulent obser-
vations was rebalanced from 1 : 250 to 1 : 1 in the train-
ing data. Scatter plots for after-resampling training data are
shown in Figure 3, and the corresponding fraud detection

12The ratio of fraudulent to non-fraudulent accounts in our dataset is
1 : 250.
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TABLE 11. Comparisons with automatic feature engineering works.

TABLE 12. Comparisons of resampling methods. The results were obtained by training XGBoost five times with Other and Proposed features excluding
KNN_distance and LOF. The ratio of non-fraudulent to fraudulent accounts was adjusted to 1 : 1 by resampling. The first 60% (last 40%) of the data were
split chronologically into training (testing) set data. The means of all standardized features’ means and variances of the original data are the same as
those of full oversampling. The running times are listed in the last column.

TABLE 13. Feature importance ranking in model ‘‘XGBoost with Other+Proposed without LOF & KNN_distance’’. Features with an importance of 0 are not
listed here. The white cells correspond to features that belong to the proposed behavior or segmentation categories. The gray cells denote features
belonging to the categories proposed in [7].

performance is presented in Table 12. Full oversampling and
random oversampling yield better F1 scores (74.34% and
73.87%) and higher areas under the curve (AUC) of the

precision-recall curve (0.7689 and 0.7559) than other resam-
pling methods since these two methods do not change the
subgroup pattern of the modi operandi, as observed in
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FIGURE 3. Scatter Plot of 2-Dimensional PCA projection of high-dimension resampled data. Orange and blue dots represent non-fraudulent and
fraudulent observations, respectively. The name for each resampling method is listed in the lower part of each subfigure. The x- and y-axes represent the
first and second PCA components, respectively.

Figures 3(b) and 3(c). Random undersampling produces the
worst F1 score (41.67%) and AUC (0.6394), as it removes
excessive non-fraudulent observations due to the extreme
imbalance in the dataset, in which only 0.4% of accounts
are fraudulent. Such removal harms the pattern learning of
non-fraudulent accounts and reduces precision considerably.
However, it also provides higher recall rates and uses less
running time than other methods.

Unlike oversampling methods, which produce minority
observations directly by replication, SMOTE-related meth-
ods produce observations by synthesizing new samples via
linear interpolation. Our experiments in Table 12 suggest

that these methods all yield lower F1 scores than the
full / random oversampling methods. Figure 3 shows that
SMOTE linear interpolation harms the learning of sub-
group patterns of fraudulent accounts. Specifically, SMOTE,
ADASYN, SMOTE_ENN, and SMOTE_TOMEK add syn-
thesized fraudulent observations in places densely populated
by non-fraudulent observations since these methods perform
linear interpolation across all fraudulent observations. The
resulting noise clearly reduces the ability to distinguish fraud-
ulent accounts from normal ones. Borderline_SMOTE and
SVM_SMOTE, however, perform linear interpolation selec-
tively, and synthetic observations are added to the left part
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of the subfigure where fraudulent observations are dense,
as shown in Figures 3(f) and 3(g). However, these two meth-
ods produce even lower F1 scores and AUCs.

The above problem might be explained by the argument
in [45] that ‘‘SMOTE does not change the expected value
of the (SMOTE-augmented) minority class but it decreases
its (minority class’s) variability’’ due to linear interpolation.
Note that the decrease in the variability in fraudulent obser-
vations due to the use of SMOTE-related methods inhibits
fraud detection models from identifying different fraud pat-
terns. To estimate in greater detail how resampling methods
influence the distributions of observations, we calculate the
means of all standardized features’ means and variances
after applying different resampling procedures, as illustrated
in columns 7 and 8 of Table 12. Applying full/random
oversampling and random undersampling does not alter
the means of features’ means and variances, but applying
SMOTE-related models could significantly reduce the mean
of features’ variances, especially for Borderline_SMOTE and
SVM_SMOTE, because all synthetic observations are added
to the tight area crowded with fraudulent accounts; that is, the
left part of Figures 3(f) or 3(g). This phenomenon aggravates
the effect of decreasing variance. Such unbalanced obser-
vation insertions (compared to other SMOTE-related meth-
ods) also decrease the mean of minority samples. The sig-
nificant changes in the statistical properties could explain
why these two SMOTE methods produce the poor detection
results shown in Table 12. In conclusion, we suggest that
SMOTE-related methods perform more poorly than simple
oversampling methods if minor observations form several
subgroups with severe data imbalance; this result is consistent
with the findings in [46].

Furthermore, unlike the methods mentioned above, which
use oversampling or linear interpolation to synthesize fraud-
ulent observations, WGAN refines its synthetic samples via
interaction between the generator and discriminator networks
and does not insert improper observations, as illustrated in
Fig. 3(l), nor does it decrease the means of features’ means
and variances, as in Table 12. Additionally, it somewhat pre-
vents classification models from overfitting since synthetic
observations are not exact replicas of the original observa-
tions. Thus, WGAN outperforms all other resampling meth-
ods in terms of the F1 score and AUC of the precision-recall
curve, as illustrated in Table 12.

C. INTERPRETABILITY AND FEATURE IMPORTANCE
The interpretability of fraudulent detection models is critical,
as unreasonable false accusations and missed arrests could
have serious legal ramifications. (Non-)fraudulent behav-
iors can also be profiled with interpretability to improve
existing fraud detection rules and to sketch the cause-effect
relationship of the model’s fraud detection process. Cur-
rently, banks are required to abide by anti-money-laundering
(AML) guidelines by screening transaction records accord-
ing to specified rules. However, the rule-based model of our
partner bank yields poor precision (40%) and recall (5.56%)

rates. Training XGBoost with sophisticated handcrafted fea-
tures based on the transaction patterns of (non-)fraudulent
accounts and financial expertise can improve fraud detec-
tion results and capture cause-effect relationships to abide
by AML guidelines. Feature importance reflects the strength
of a relationship between a modus operandi and the fea-
ture. Table 13 measures and ranks the importance of the
features defined in Table 2 (except for KNN_distance and
LOF) by following the method proposed by Butaru et al. [28]
published in a premium finance journal. All 10 features
in our behavior and segmentation categories have nonzero
importances, whereas 3 of the 30 RFMA features (see [8]
and [7]) have an importance of 0. In addition, the two most
important features belong to the behavior or segmentation
categories. The experiments in Table 7 also suggest that train-
ing XGBoost with Proposed features outperforms XGBoost
with Other features (with/without) KNN_distance and LOF.
These results confirm the argument in [7], namely; namely,
that good fraud detection can be achieved by careful feature
engineering techniques even with simple classifier models.

VI. CONCLUSION
Due to the limited amount of available transaction data
and strong interpretability requirements, much of the lit-
erature addresses financial fraud detection by training a
machine learning model with sophisticated handcrafted
features instead of raw transaction data or automatic syn-
thesized features. Handcrafted features generated in the lit-
erature can be divided into categories of recency, frequency,
monetary, and anomaly (RFMA). This paper proposes behav-
ior and segmentation-type features describing non-RFMA
characteristics belonging solely to (non-)fraudulent accounts.
Behavior-type features are generally constructed based on
financial expertise, which can be interpreted as a knowledge
base of an expert system. Segmentation-type features can be
constructed based on statistical summaries of the classifica-
tions of raw transaction data, as in Tables 3 and 4, providing
a good hint in future designs of automatic feature generation.
We compare the performance to train popular classifiers, such
as SVM, random forests, XGBoost, and LGBM,with features
generated by automatic generation algorithms or proposed in
the past fraud detection literature and in this paper to show the
superiority of our proposed features. We analyze the features
that causeXGBoost and LGBM to produce unstable detection
results. These noisy features are time-inhomogeneous and
are detectable using the Kolmogorov-Smirnov test. Accord-
ing to the experimental results, although SVM and random
forest produce stable predictions without suffering from this
unstable detection problem, XGBoost and LGBMyield better
fraud detection results with fair interpretability by removing
noisy features. In addition, the presence of noisy features
reflects the time-inhomogeneous nature of themodi operandi.
Improperly assessing the robustness of a machine learning
model by generating training/testing sets with random sam-
pling eliminates such time inhomogeneity and falsely pro-
duces good performance. To address data imbalance due to
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the small number of fraudulent accounts, we examine mul-
tiple resampling methods and WGAN. Because SMOTE-
related methods apply improper linear interpolations on dif-
ferent modus operandi patterns, they decrease the variability
of overall fraudulent observations and generate low-quality
fraudulent observations. However, full (random) oversam-
pling and WGAN avoid these problems and improve the
detection results. The quality of our proposed features (cate-
gories) is verified by showing that the features in the proposed
categories rank high according to themethod proposed in [28]
published in a premium finance journal.
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