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ABSTRACT The collaborative mission capability of multi-UAV has received more and more attention in
recent years as the research onmulti-UAV theories and applications has intensified. The artificial intelligence
technology integrated into the multi-UAV collaborative decision-making system can effectively improve the
collaborative mission capability of multi-UAV. We propose a multi-agent reinforcement learning algorithm
for multi-UAV collaborative decision-making. Our approach is based on the actor-critic algorithm, where
each UAV is treated as an actor that collects data decentralized in the environment. A centralized critic
provides evaluation information for each training step during the centralized training of these actors.
We introduce a gate recurrent unit in the actor to enable the UAV to make reasonable decisions concerning
historical decision information. Moreover, we use an attention mechanism to design the centralized critic,
which can achieve better learning in a complex environment. Finally, the algorithm is trained and experi-
mented in a multi-UAV air combat scenario developed in the collaborative decision-making environment.
The experimental results show that our approach can learn collaborative decision-making strategies with
excellent performance, while convergence performance is better compared to other algorithms.

INDEX TERMS UAV, multi-UAV, collaborative decision-making, multi-agent reinforcement learning.

I. INTRODUCTION
Unmanned aerial vehicles (UAVs) are playing increasingly
important roles in military missions [1]. Compared with
manned aerial vehicles, UAVs have outstanding advantages
in performing boring, dirty, and dangerous tasks [2]. In recent
years, due to the rapid development of technologies such as
computer technology, electronic technology, and information
technology, UAV technology has been greatly improved, and
UAV has a stronger autonomous ability. Although the capa-
bilities of individual UAVs have improved significantly, the
number of tasks that a single UAV can accomplish alone
remains limited due to themission attributes, flight platforms,
sensors, and other factors.
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Multiple unmanned aerial vehicles (multi-UAV) are
expected to be more capable than a single powerful UAV,
which offers significantly enhanced flexibility and robustness
[3], [4]. The multi-UAV approach leads to redundant solu-
tions offering greater fault tolerance and flexibility includ-
ing reconfigurability in case of failures of individual UAV
[5]. In the suppression of enemy air Defenses (SEAD) mis-
sion [6], for example, even a high-performance UAV can-
not attack multiple long-range targets at the same time. A
multi-UAV formation, on the other hand, can carry more
weapons and attack multiple targets at the same time, making
it more efficient than using a single high-performance UAV
to perform the mission. At the same time, if the electronic
jamming UAVs are in the formation, the cooperation between
the two types of UAVs can not only complete the mission
efficiently but also reduce our losses. Therefore, it is of great
importance to research the collaboration decision-making
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strategy between multiple UAVs, to obtain higher operation
efficiency [7].

Multi-UAV collaborative decision-making methods can
be divided into two types: centralized and distributed.
In a centralized system, there is a central node respon-
sible for the decision-making of the multi-UAV system.
On the contrary, there is no central node in a distributed
system, where members are equal to each other and com-
plete the decision-making through negotiation. The cen-
tralized decision-making methods were developed earlier.
J. Capitan et al. designed a centralized multi-UAV coopera-
tive target surveillance algorithm by combining a partially
observable Markov decision process model with an auction
algorithm [8]. Huang et al. proposed a cross-entropy-based
collaborative task assignment method for multiple UAVs,
applying cross-entropy to the constrained task assignment
problem [9]. Bai et al. proposed a collaborative multi-UAV
trajectory planning method based on the hybrid algorithm
of the artificial bee colony and A∗ [10]. In the centralized
multi-UAV collaborative decision-making method due to the
existence of a central UAV, as soon as when this UAV is
destroyed or incapacitated, the UAV formation cannot work
properly. To solve this problem, Xu et al. designed a dynamic
selection method for the collaborative decision center of
multi-UAV [11]. This approach achieves adaptive selection
of the best decision center in deception and interference envi-
ronments through information interaction between UAVs and
the use of cloud models. Ma et al. proposed a Double Oracle
combined with a neighborhood search algorithm, which was
used to solve the occupancy positions problem in cooperative
multi-UAV out-of-visual-range air combat [12]. By analyzing
the influence of the UAV occupied position on the advantages
and threats of both sides, the problem is described as a
zero-sum matrix game. By solving the zero-sum games, the
UAV position with the least threat is obtained. Although the
centralized system is better coordinated, it is less real-time,
scalable, and robust.

Many researchers have been conducted on distributed algo-
rithms to cope with the highly dynamic characteristics of
multiple UAVs. O. Ilaya proposed a distributed model pre-
dictive decision algorithm for the formation of decision-
making of multi-UAV in an electronic jamming environment
[13]. The algorithm couples neighboring UAVs using an
aggregate cost function and coherence protocol by superim-
posing individual and group tasks linearly, using a neigh-
borhood structure for decentralization. To achieve coherence,
a decentralized control scheme based on a decentralized
model predictive control strategy is developed and imple-
mented. Zhen et al. proposed an intelligent self-organizing
algorithm based on an improved distributed ant colony
algorithm, which uses a distributed structure to decompose
multi-UAV collaborative mission planning into multiple local
optimization problems [7]. Based on the distributed partially
observable Markov decision architecture, Zhao designed a
multi-UAV cooperative target tracking decision algorithm by
taking the state of a multi-UAV consistent target by a joint

multi-objective probability distribution as the optimization
objective [14].

Recently, Deepmind’s AlphaStar and OpenAI’s OpenAI
Five beat top human players in their respective game
domains. It shows the broad prospect of multi-agent
reinforcement learning. The exploration of multi-agent rein-
forcement learning has been carried out in the fields of power
systems [15], intelligent transportation [16] and communica-
tion [17]. Meanwhile, Multi-UAV systems as typical multi-
agent systems, many scholars have done a lot of research
on the application of multi-agent reinforcement learning
algorithms in this field, as in the literature [18], [19], [20],
[21], [22].

In this paper, the Multi-agent Transformer-based Actor-
Critic algorithm is designed to solve the collaborative
decision-making problem of multi-UAV. The algorithm has a
shared critic network andmultiple actor networks with shared
parameters. To speed up the convergence of the algorithm
we design a dual experience playback mechanism. Finally,
we validate our algorithm in a multi-UAV coordinated air
combat environment. The contributions of this paper are as
follows:

1) The introduction of Transformer in the centralized
critic allows the UAV to better notice the impact of
environmental changes and thus rationally assess the
actions currently taken.

2) The gate recurrent unit (GRU) model is added to Actor
to enable UAVs to use historical decision information
as the basis for current decisions. To reduce the policy
estimate variance, we designed a new method for com-
puting the multi-agent advantage function.

3) We designed an air combat scenario of multi-UAV
based on a collaborative decision-making environment.
In this scenario, we completed the training of our
method and obtained the air combat strategy. We test
the strategies obtained by our algorithm and the strat-
egy of the other three methods respectively. The results
show that the strategy obtained by our algorithm is
better than other algorithms.

This paper is organized as follows, in the second section,
a collaborative decision-making simulation environment is
established, which includes the UAVmodel and attackmodel.
In the third section, we design a multi-agent reinforcement
learning algorithm called MATAC. In the fourth section,
we validate our algorithm with a multi-UAV air combat sce-
nario and analyze the obtained strategies. Finally, we con-
clude the paper and give an outlook on future work.

II. COLLABORATIVE DECISION ENVIRONMENT
In this section, we describe a multi-UAV collaborative deci-
sion environment, which consists of a UAV model and an
attack model.

A. UAV MODEL
We describe the motion of the UAV in space using a sim-
ple three-degree-of-freedom model. We define the absolute
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FIGURE 1. Three-degree-of-freedom motion model of the UAV in
Earth-fixed reference. (og,xg, yg,zg) is the Earth-fixed reference frame Fg,
(ob, xb,yb, zb) is the body reference frame Fb of UAV.

motion of the aircraft in an Earth-fixed reference frame Fg
and introduce the body reference frame Fb. Denoting the
origin and the coordinate axes of Fg by (og, xg, yg, zg), where
ogxg is chosen northward, ogyg points eastward and ogzg is
directed to the ground. This frame is useful for describing the
position and orientation of the UAV. Fb is a reference frame
in which the origin is the mass center of the UAV and the axes
direction is as shown in Figure 1. The equation of the UAV
motion in the Fg is shown in (1):

ẋ = v cos θ cosψ
ẏ = v cos θ sinψ
ż = −v sin θ

(1)

where ẋ, ẏ, and ż represents the change rate of position on
the axis of ogxg, ogyg, and ogzg respectively. v represents the
UAV’s speed in the Fg reference system. θ and ψ represent
pitch angle and yaw angle respectively.

It is assumed that there is no sideslip during the motion of
the UAV, the engine thrust is forward along x-axis direction
of the UAV, and the UAV is flying in a no-wind environment.
The overload of the thrust and aerodynamic forces acting on
the UAV in flight can be decomposed into tangential and
normal overloads. The dynamic equations for the center of
mass of the UAV are shown as (2).

v̇ = g (nx − sin θ)

θ̇ =
g
v
(nz cosφ − cos θ)

ψ̇ =
gnz sinφ
v cos θ

(2)

where nx and nz represent the tangential overload and normal
overload of the UAV. g is the gravitational acceleration. v̇, θ̇ ,
and ψ̇ denote acceleration, pitch rate, and yaw rate respec-
tively.

B. ATTACK MODEL
We design a probability-based attack model that enables
UAVs to lock, attack, and destroy targets using weapons. The
UAV attack area is a cone in the nose direction, and the attack
determination condition is that the target must be within the

UAV attack area. Given that the target’s position under the Fb
reference system is P (x, y, z), the attack azimuth angle ψP
and attack elevation angle θP are shown in (3).{

ψP = atan2(Py,Px)

θP = atan2(Pz,
√
P2x + P2y)

(3)

The attack condition can be expressed as follows:
|ψP| ≤ ψfiremax

|θP| ≤ θfiremax√
P2x + P2y + P2z ≤ Dfiremax

(4)

where ψfiremax , θfiremax , and Dfiremax represent the maximum
attack azimuth angle, elevation angle, and distance set by the
simulation, respectively.

We use a hit noise cone based on Gaussian distribution to
determine whether the attack hits or not, and the probability
of hitting depends on the distance and the relative position
between the UAV and the current target. By adding a Gaus-
sian noise εfire ∼ N(0, 1) to the azimuth and pitch angles,
as shown in (5), we can obtain the conditions for destroying
the target. 

∣∣ψP + εfire∣∣ ≤ π · exp(− r
Dhit

)∣∣θP + εfire∣∣ ≤ π · exp(− r
Dhit

)
(5)

where Dhit is the effective attack distance.

III. METHODS
In this section, we propose a new multi-UAV collaborative
decision-making method called Multi-agent Transformer-
based Actor-Critic (MATAC) with the structure shown in
Figure 2. The MATAC contains a centralized critic, multiple
distributed actors, and a reply buffer. It learns the decision
strategy through centralized training, while the execution is
distributed. The training process is divided into two parts:
data collection and algorithm update. The data collection
process is represented by the blue connecting line, where
eachUAVgenerates data by interactingwith the environment,
which is analyzed and stored in the replay buffer. Thewinning
data is copied to the won data set. When the data reaches
a specified quantity the update of the UAV strategy starts,
at this time a batch of data is taken out from the replay buffer
to update the critic and actor respectively according to the
update formula. The update process is represented by the
green connecting line. When the algorithm is executed, each
UAV obtains the current situation information based on its
sensors and data link, where the data communication mode
is broadcast. The process is the same as the data collection
process, except that there is no data storage operation.

A. MARKOV GAMES
We focus on policy learning in fully cooperative multi-
agent tasks, which can be modeled as decentralized partially
observable Markov decision processes (Dec-POMDPs) [23].
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FIGURE 2. The MATAC algorithm architecture contains a multi-UAV co-simulation environment,
a centralized critic, multiple distributed actors, and a reply buffer. The data collection process is
shown by the blue connecting line, and the algorithm update process is shown by the green
connecting line. Observation data can be shared between UAVs through a data link.

We consider an infinite-horizon Dec-POMDP G, defined by
the tuple G = (S,A,P,R,Z ,O,N , γ ), in which s ∈ S
describes the true state of the environment, N ≡ 1, . . . , n
denotes the finite set of agents and γ ∈ [0, 1) is the discount
factor. The observation function Z (s, i):S × N → p (O)
represents the probability distribution of the observations oi ∈
Oi for each agent i ∈ N . At each time step, each agent i selects
its action ai ∈ Ai based on its local observation oi according
to its policy πi:Oi×Ai → [0, 1], and joint action u ∈ A
consisted of all the action ai. The state transition function
P (st+1 | st) : S × A × S → [0, 1) represents the probability
of the next state st+1 ∈ S given the current state st ∈ S
and joint action ut ∈ A. The environment emits a bounded
reward R : S × A → [Rmin,Rmax] on each transition. Each
agent learns a stochastic policy πi (ai | Oτi) or a deterministic
policy ui (τi), conditioned only on its local action-observation
history τi∈Z × A. The joint policy π induces a joint action-
value function: Qπ (st , ut) = Est+1:∞,Ut+1:∞ [Rt | Ost , ut ],
where Rt =

∑
∞

i=0 γ
irt+i is the discounted return. The advan-

tage function is written as Aπ (s, a) = Qπ (s, a) − Vπ (s).
In this paper, we study a full-cooperative environment where
all agents have the same reward function, aiming to maximize
the expected reward shown in (6).

J (π ) , Eat ,st [
∑

t
γ tR(st , at )] (6)

B. CENTRALIZED TRAINING AND DECENTRALIZED
EXECUTION
Multi-intelligent reinforcement learning is divided into three
architectures: centralized, distributed, and centralized train-
ing and decentralized execution (CTDE) [24], [25]. In dis-
tributed architectures, each agent is trained independently of

the other agents and its policy network outputs the actions
to be taken based on local observations. Each agent in the
distributed architecture views the other agents as part of
the environment, which causes the transfer function in the
environment to change when the policies of the other agents
changed. Hence the system is dynamic and non-Markovian.
The centralized architecture can solve the non-stationarity of
the environment by learning a joint policy of all the agents. Its
input is the joint observation of all the agents and its output is
the joint action of all the agents. However, it has the problem
that the input and output space is huge and difficult to adapt
to large-scale multi-agent systems.

To solve the above problems, the current dominant multi-
agent reinforcement learning(MARL) methods adopt the
framework of CTDE, such as MADDPG [26] and COMA
[27]. The centralized manner is used during training, and
after the training, the agent solely makes decisions based
on its local observation utilizing the trained policy network.
In CTDE, each agent during training maintains a centralized
critic that takes the joint state-action as the input and outputs
the estimation of the expected reward. Thus, the agent can
obtain the other agents’ information, which avoids the chal-
lenge of non-Markovian and non-stationary environments
during training. Meanwhile, it learns a decentralized policy
that only depends on the local state for execution. The pol-
icy does not require the information of other agents, which
helps to mitigate the problems of the large-scale agents. This
makes CTDE an effective framework for applying MARL
and successful applications have been achieved in many real-
world tasks. As a result, CTDE is an effective framework for
multi-agent reinforcement learning and has been successfully
applied in many practical tasks.
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C. ATTENTION MECHANISMS
Attention mechanisms have become an integral part of neu-
ral network models that capture global dependencies. The
operating principle of the attention mechanism is similar
to a differentiable key-value memory model. Self-attention
calculates the response of a specific position in the sequence
by paying attention to all positions in this sequence [28].
Vaswani et al. designed a transformer model based on atten-
tion and self-attention mechanism, which achieves state-of-
the-art performance in the field of natural language process-
ing [29]. Attention has three matrices, K , Q, V representing
a set of keys, queries and, values respectively. The attention
is computed as follows:

Attention(Q,K ,V ) = softmax(
QKT
√
dk

)V (7)

where dk is a scaling factor equal to the dimension of the key.
The attention model has only one attention head which

can’t represent information of all positions. Compared with
the attention model, multi-head attention allows the model
to jointly focus on information from different representation
subspaces from different positions. The multi-head attention
is computed as follows:

MultiHead(Q,K ,V ) = Concat(head1,. . . ,head2)W
o,

where

headi = Attention(QWQ
i ,KW

k
i ,VW

V
i ) (8)

where W o, WQ, WK , and WV are parameters of the Concat
function, Q, K , and V respectively.

D. MULTI- ACTOR-ATTENTION-CRITIC
Multi-actor-attention-critic (MAAC) [30] applies an atten-
tion mechanism to the CTDE framework. The main idea of
MAAC is to learn centralized critics with an attention mech-
anism that helps agents understand which other agents they
should pay attention to. Attention critics can dynamically
select which agents to attend to at each time during training,
improving performance inmulti-agent domainswith complex
interactions. In addition, MAAC has an input space linearly
increasing with respect to the number of agents, it improves
scalability by lowering the impact of increasing the number
of agents.

In MAAC, all critics are updated by minimizing a joint
regression loss function using off-policy temporal-difference
learning. This joint regression loss function takes the follow-
ing form:

LQ(ψ) =
N∑
i=1

E(o,a,r,o′)∼D

[
(Qψi (o, a)− yi)

2
]
,

where

yi = ri + γEa′∼πθ (o′)
[
Qψ̄i (o

′, a′)− α log(πθ̄i (a
′
i

∣∣o′i ))] (9)

where ψ , ψ̄ , and θ̄ are the parameters of the critic, target crit-
ics, and target policies respectively. The temperature param-
eter α determines the balance between maximizing entropy
and maximizing rewards. Qψi denotes the critic of the agent i
which receives observations and actions for all agents.

The individual policies are updated by ascent with the
following gradient:

∇θiJ (πθ )

= Eo∼D,a∼π [∇θi log(πθi (ai |si ))
(−α log(πθi (ai |oi ))+ Q

ψ
i (o, a)− b(o, ai− ))] (10)

where θ is the parameters of the policy, b (o, a) is the
multi-agent baseline used to calculate the advantage function,
the subscript i− indicates all agents except agent i.

E. TRANSFORMER-BASED CENTRALIZED CRITIC FOR
MULTI-AGENT REINFORCEMENT LEARNING
In this section, we propose an approach called Multi-agent
Transformer-based Actor-Critic (MATAC) that uses a cen-
tralized critic and multiple distributed actors to learn the
collaboration decision strategy of multi-UAV. We start by
introducing the structure and the idea of learning about the
transformer-based central critic. We then discuss our dis-
tributed actor and its learning principles. Finally, we describe
the dual experience replay mechanism.

1) TRANSFORMER-BASED CENTRALIZED CRITIC
we design a centralized critic based on the transformer struc-
ture, which is shared by all agents. To obtain the Q-value
function Qψi (o, a) for the agent i, the critic receives the
observations o = (o1, . . . ,on), and actions a = (a1, . . . ,an),
for all agents indexed by i ∈ {1, . . . ,n} . Solving the
Q-value function of the agent i can essentially be viewed as
a regression problem. Devlin designed the BERT [31] based
on the transformer-encoder, which has achieved state-of-the-
art performance in the field of natural language processing
and demonstrated the great potential of the transformer in
regression problems.We designed the critic network structure
based on the transformer-encoder, as shown in Figure 3. The
centralized critic includes embedding, transformer-encoder,
and multilayer perceptron (MLP). Among them, embedding
and MLP are composed of forward fully connected layers.
The transformer-encoder is composed of a stack of N iden-
tical layers, each of which has two sub-layers. The first is
a multi-head self-attention mechanism, and the second is a
simple fully connected feed-forward network. We represent
observation and action embedding of agent i as ei = f (oi, ai),
and all agents except i as ej = f

(
oj, aj

)
. We denote the

embedding layers as R, where Ri = {(e}I, ej).

Qi,Ki,Vi = FQ,K ,V (Ri)

C = Multihead(Qi,Ki,Vi) (11)

where the functions F are used to compute K, Q, and V .
Then we use the function g to map the last transformer layer
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FIGURE 3. Calculating Q for each UAV i. Each UAV encodes its
observations and actions that are sent to a transformer-encoder model,
which then receives an evaluation of the current action ai.

C = {c1, . . . , cn} to the output space of the value
function Qψi .

Qψi (o, a) = g(c1) (12)

To reduce the training cost of our algorithm, we refer to
deep Q-learning (DQN) [32], where the action of agent i is
removed from the input of critic, and output is a Q-value for
each action of agent i. All critics are updated in the same way
as MAAC, by minimizing a joint regression loss function,
as shown in (9).

2) POLICY
The actor consists of a situational awareness layer, a decision
layer, and an action coding layer. The decision layer consists
of a GRU network, two MLPs, and a layer of SoftMax
functions, denoted by πθ , as shown in Figure 4. The decision
network obtains st and outputs the action at in that state,
which can be expressed as πθ j (a

j
t |s

j
t ). The action coding layer

converts the actions generated by the model into the actions
required by the environment.

In this paper, we focus on the collaborative decision-
making problem of homogeneous UAVs, so we use the shared
intelligent body decision layer network parameters to avoid
the emergence of lazy individuals in the collaborative game.
The decision network that performs well in the test is selected
as the seed network after every 100 updates, and its param-
eters are synchronized to other individuals. The Actor is
updated by (13):

∇θiJ (πθ ) = Eo∼D,a∼π [∇θi log(πθi (ai |oi ))
(−α log(πθi (ai |oi ))+ Ai(o, a))], (13)

where

Ai (o, a) = Qψi (o, a)−
∑
a′i∈Ai

π (a′i |oi )Q
ψ̄
i (o, (a

′
i, ai− ))

FIGURE 4. Calculating the action ai for each UAV i. Each UAV sends to the
actor for its observation and previous moment action, then receives the
action that should be taken in the current situation.

where the subscript i denotes the agent i and α is the tem-
perature coefficient used to balance the maximum entropy
and the payoff. Like MAAC, Ai denotes a advantage function
using a baseline that can help solve the multi-agent credit
allocation problem [30]. Instead of MAAC, we use the target
critic network to compute the advantage function, which can
increase the algorithm stability.

3) DOUBLE REPLAY BUFFER
The multi-UAV collaborative decision problem is a long-
period continuous decision problem. Due to the high com-
plexity of this problem, the environmental returns are sparse,
thus making it difficult for the algorithm to obtain effective
returns at the early stage of training which leads to poor
convergence. Therefore, a dual experience replay mechanism
is used in this paper to alleviate this problem. We design
two experience pools, which are the won data experience
pool Bw and the general experience pool B. Among them,
the won data pool stores the experience data of winning
trajectories during data collection, and the general experience
pool stores all data. In the early stage of algorithm training,
data are collected from the won data experience pool, and the
weight of data collected from the won data experience pool
is gradually reduced with the training process. The weighting
relationship is shown in (14).

n = sw+ s; sw ∈ Bw, s ∈ B (14)

where n represents the amount of data in the batch, sw, and s
are given by (15).

sw =

0; if m ≤ n

n · exp
(
−
4(x − b)

a

)
; if m > n

(15)

where m represents the number of trajectories in the priority
experience pool, a represents the total sampling length during
the training process, and b represents the number of genera-
tions sampled when the data in the won data pool is greater
than n.
The MATAC algorithm operation flow is shown in

Algorithm 1.
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IV. EXPERIMENTS
To test our decision-making method, we designed a 4Vs4
multi-UAV coordinated air combat environment. Algorithm
training was completed in this environment, and we also
compared our algorithm with MAAC, COMA, and MAD-
DPG for experiments, where we modify the MADDPG to
accomm- odate the discrete action space. Finally, we analyze
the adversarial strategies generated by our method.

Algorithm 1 Agent Training
Initialize environment with N agents
Initialize replay buffer, D and Dw

Initialize parameter vectors ψ, ψ̄, θ, θ̄
for episode = 1,M do
Reset environments, and get initial oI for each agent i
for t = 1, T do

Select action ai ∼ πi (· | oi) for each agent i
Send actions to environments, get r and each agent
observation o′i
Add step to buffer D

end for
if won then

Store episode in Dw

end if
Sample minibatch B from 〈D,Dw〉
ψ ← ψ − λQ∇ψLQ (ψ)
θ ← θ − λπ∇θJ (πθ )
ψ̄ = τ ψ̄ + (1− τ) ψ
θ̄ = τ θ̄ + (1− τ) θ

end for

A. EXPERIMENTAL SCENARIOS
We have set an engagement area with a diameter of 20 km,
which contains the red side and the blue side. Both the red
side and the blue side have four isomorphic UAVs, as shown
in Figure 5. The UAVs on both sides have the same flight
performance and attack capability, the difference is that strat-
egy of the red side is generated by our decision algorithm
and the blue side is a fixed rule strategy. Both sides aim to
destroy the UAVs on the other side. Each UAV tries to launch
an attack by taking advantage of a favorable attack posi-
tion through maneuvering cooperation between teammates.
The attack model then determines the attack conditions and
calculates whether this attack destroys the opponent’s UAV.
In our algorithm training process, the UAVs of the red camp
randomly appear in the left half of the engagement area, and
the UAVs of the blue camp randomly appear in the right half
of the engagement area. The environment parameters are set
as shown in Table 1.

B. ACTION SPACE
The actions of UAVs can be divided into continuous and
discrete actions, where continuous actions are mainly flight
control-related parameters of UAVs, such as pitch control,
roll control, and thrust control. Discrete actions are mainly

FIGURE 5. The 4Vs4 multi-UAV air combat simulation scenario.

TABLE 1. Environmental parameters.

intermittent control commands, such as firing weapons and
switching radar. In the 4V4 adversarial environment, we only
control the flight and attack of the UAV. We use an attack
model to provide an attack strategy for the UAV and calculate
whether this attack destroys the opponent’s UAV.Meanwhile,
we discretize the flight control quantity of UAV to form a
discrete action space.

The flight control quantities of the UAV are desired yaw
angle ψe, desired pitch angle θe, and desired speed ve, which
are calculated as shown in (16). The [ψe, θe, ve] is converted
into the control quantities [φ, nz, nx] of the UAV model by
the designed PID controller.

ψe = max(ψmin,min(ψmax , ψ +1ψ))
θe = max(θmin,min(θmax , θ +1θ ))
ve = max(vmin,min(vmax , v+1v))

(16)

where ψmax and ψmin are the maximum and minimum roll
angles of the UAV, θmax and θmin are the maximum and
minimum pitch angles of the UAV, and similarly vmax and
vmin are the maximum and minimum speeds of the UAV,
respectively. 1ψ , 1θ , and 1v represent the increment of
desired yaw, desired pitch, and desired speed respectively.
The [1ψ,1θ,1v] is discretized as shown in Table 2, where
the discretized action is used as the output of the actor
network.

C. OBSERVATION SPACE
To describe the dominance or disadvantage relationship
between our UAV and the target UAV, we reference several
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TABLE 2. Discretized action apace.

FIGURE 6. The geometric relationship between the aerial relative
positions of the red UAV and the blue UAV.

definitions from the geometry of air combat [33]. These are
aspect angle (AA), antenna train angle (ATA), horizontal
crossing angle (HCA), height angle (HA), and distance of two
UAVs r , which are shown in Figure 6. AA shows the position
of the red with respect to the blue. During the battle, zero AA
means that the red is right on the tail of the blue. In other
cases when the AA is 90◦ or −90◦, the location of the blue
is right-wing or left-wing side of the red. On the other hand,
ATAmeans the angle between the heading of the redUAV and
the line connecting the positions of the red and blue UAVs
projected in the horizontal plane. Finally, HA indicates the
angle between the line of the red and blue UAV positions and
the horizontal plane. To attain air superiority, AA, ATA, and
HTA should all be minimized to zero in the ideal case. Zero
AA, ATA, and HTAmean that the red UAV is chasing the blue
UAV aircraft from the tail.

In our simulation environment, the red UAV can detect all
the blue UAVs and red UAVs through radar, as well as obtain
information about the red UAVs’ actions through communi-
cation. Similarly, the blue UAVs can also obtain information
about the red UAVs.We refer to the radar and communication
of the red UAV as the situational awareness module.

Hence, the observation space will contain all the infor-
mation of both sides’ UAVs, and the observation function is
defined as shown in (17).

si =

 (pe, v, φ, ψ, θ)i
(pb, v,AAb,ATAb,HAb)i−
(pb, v,AAb,ATAb,HAb)j

 (17)

where the subscript i denotes UAV i on the red side, subscript
i− denotes all UAVs on the red side except UAV i, and
subscript j denotes all UAVs on the blue side. SI represents

FIGURE 7. Algorithm performance comparison: the red, green, blue and
yellow lines indicate the average scores of MATAC, MAAC, COMA and
MADDPG algorithms during the training process, respectively.

the observation of red UAV i. pe is the position of UAV i in the
reference system Fg. pb denotes the position relative to UAV i
under the UAV i body reference system Fb. AAb,ATAb,HAb
denote AA, ATA, HA respectively between the red UAV i and
the blue UAV.

D. REWARDS FUNCTION
In reinforcement learning, the agent optimizes intending to
obtain the maximum reward, so the design of the reward
function should reflect the optimization direction we expect
for the agent. In this paper we want the red camp to eliminate
all UAVs in the blue camp with minimum loss. We consider
numerous principles to achieve this purpose. numerous prin-
ciples to achieve this purpose.

First of all, the reward function should have the global
maximum value in the reward space. The reward function
should take the maximum value when the red has no losses
and the blue is destroyed. Otherwise, the red will not optimize
its strategy towards eliminating the blue while reducing its
losses.

Secondly, the reward function should be continuous in
the reward space. Actor and critic network optimization is
achieved by continuously exploring the state-action space.
Additional exploration of the state-action space is required if
the reward values do not converge to the target state. There-
fore, a small number of rewards are used to guide the strategy
to converge to the target strategy to improve the convergence
speed of the training process. Nevertheless, the proportion of
guidance rewards in the reward function should be carefully
determined. Since, if the guidance reward is large enough
to drown out the target strategy reward, then the agent will
collect the guidance reward instead of collecting the target
strategy reward in the long run. Therefore, the size of the
guidance reward should only be sufficient to guide the agent
to achieve the basic guidance purpose.

Finally, the reward function should have a penalty term.
If the agent takes an impermissible or unrealistic action, the
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reward for that action should be the opposite of the expected
value of the current strategy for that action. The actual reward
should be negative, for instance, when the red side is shot
down in combat. The red UAV will reduce the probability of
taking that action in that state by changing the expectation of
the corresponding state-action.

Consequently, our reward function is divided into three
parts.

1) If a red UAV i shoots down a blue UAV, it scores
+10 points and the blue UAV is removed from the
simulation. Conversely, if the redUAV i is shot down by
a Blue UAV, it scores−10 points and UAV i is removed
from the simulation.

2) To avoid UAVs flying out of the battlefield area,
a penalty is applied to this behavior. If a UAV flies
out of the flight airspace, it scores −10 points and is
removed from the simulation.

3) To avoid too slow training convergence caused by
sparse reward and also to guide the red UAVs to learn
to attack, we set an angle reward. When a red UAV i
puts a blue UAV within attack range by maneuvering,
it scores+0.01 points. Conversely, if the red UAV i was
placed within the attack range of the blue UAV it scored
−0.01 points.

E. STRATEGY OF THE BLUE CAMP
We design a simple but effective attack strategy for the blue
UAV. Briefly, each blue UAV will select the nearest red UAV
as its target, solve the attitude angle and speed expectation
from the target position and speed information, and start the
attack when the firing conditions are available. The blue UAV
will continuously detect the change in the red UAV’s posture
and automatically switch the target to the current closest tar-
get when the closest target changes. This strategy effectively
concentrates the Blue’s firepower advantage, especially when
the Red UAV is alone, and ensures a local advantage.

F. AGENT TRAINING AND TESTING
In the MATAC, the number of hidden units per layer in the
actor is 256. In the critic, the transformer encoder parameter
embedding is set to 256, the attention head is set to 2, and the
depth is set to 2. Both of them use Adam as the optimizer,
where the learning rate of the actor is 0.0003 and the critic is
0.0001. The discount factor γ is set to 0.99, the size of the
replay buffer is 106, the training batch size is 32, the tem-
perature parameter α is 1/15, the target smoothing coefficient
τ is 0.001 and the ReLU is used as the activation function.
The CPU of the algorithm training platform is AMD Ryzen 9
5950X and the GPU is Nvidia GTX 2080s.

In the training, a total of 11 million steps of air combat
simulation data were collected. As shown in the Figure 7,
our algorithm trends upward for the first two million steps
after which it gradually converges. At one million steps, the
average reward reaches near 0, which indicating that the
red side already have the ability to fight with the blue side.
It converges at three million steps, and the final score is

FIGURE 8. The average victory rate of MATAC, MAAC, COMA and MADDPG
was obtained after 300 tests.

stable at about 20. We also trained the MAAC, COMA, and
MADDPG algorithm, as shown in Figure 7. The score of
MAAC algorithm continues to increase in the first 4.5 million
steps. In the middle of 4.5-7 million steps, the score is stable.
The final average score is around 5. The average reward
of COMA converges after 4 million steps, with the final
reward fluctuating around−13. The reward of the MADDPG
continues to grow between 0 and 6million steps, rising to near
−10 at 6 million steps. After that it slowly rises and finally
fluctuates around−5. It is show that the data utilization of the
MATAC algorithm is very efficient.

We also tested the strategies obtained from the training.
The strategies of MATAC, MAAC, COMA, and MADDPG
algorithm were tested simultaneously for 300 respectively.
The actual performance of those strategies is obtained by
counting the rate of victory in the test. Each round in this
test has different random seeds to ensure the randomness of
the test. When the test, we obtained the winning rate of each
algorithm, as shown in the Figure 8. It can be seen that the
MATAC algorithm has a win rate of 87%, MAAC has a win
rate of 68%, COMA has a win rate of 35%, and MADDPG
has a win rate of 63%. Therefore, MATAC, MAAC, and
MADDPG algorithms can obtain effective strategies.

G. STRATEGIES ANALYSIS
We replay the obtained strategies and could find that MATAC
was able to learn several effective strategies: pursuit strategy,
maneuver strategy, and baiting strategy.

1) Maneuver strategy: when the red UAV is being chased
by the blue UAV during the combat, the red UAV
should realize that it is being chased and maybe at
a disadvantage position in the next moment. At this
point, the red UAV should take timely maneuvering
strategies to avoid the blue UAV’s pursuit or even
occupy a favorable attack position through maneuver-
ing. Figure 9 shows that the red drone is able to master
the maneuvering strategy.
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FIGURE 9. When the red UAV in the center of (a) senses that it is being chased by the blue UAV, it breaks away from the blue UAV chase by fast
maneuvering, while making its teammates occupy a superior position relative to the blue UAV, as shown in (b) and (c).

FIGURE 10. The red UAVs choose to pursue the blue UAVs based on the acquired position of the blue UAV. The red UAV on the left in (a) gets the
position of the blue UAVs, so it turns its nose direction to maneuver towards the blue UAV’s location, as shown in (b).

FIGURE 11. From (a) to (c) shows a red UAV deliberately guiding a blue UAV to attack itself, thus allowing its teammate to take a favorable attack
position.

2) Pursuit strategy: the red side UAV must first learn to
track the blue side UAVs. Only when it can continu-
ously track the blue UAV can it have the opportunity
to occupy the attack position to launch an attack. From
Figure 10, we can see that the red UAVs have been able
to track the blue UAVs quickly.

3) Baiting strategy: By one red UAV attracting the atten-
tion of the blue UAVs, other red UAVs take advantage
of the opportunity to occupy a favorable attack position.
Shown in Figure 11, a red UAV rapidly approaches
the blue formation from the right flank of the blue
UAVs, guiding the blue UAVs to follow that red UAV.
The other red UAVs maneuver to occupy a favorable
attack position on the left flank. This strategy can effec-
tively eliminate the blue UAVs while minimizing their
losses. At the same time, this strategy demonstrates that
MATAC can control multiple aircraft to explore and
enable complex warfare.

V. CONCLUSION
To solve the multi-UAV collaborative decision-making prob-
lem, we designed a multi-agent reinforcement learning
method MATAC based on a multi-agent Markov decision-
making architecture with centralized training distributed
execution, which has a centralized critic incorporated into
Transformer and multiple GRU-based actors. We build
a multi-UAV collaboration simulation environment and
develop a multi-UAV collaborative air combat scenario in
this environment. We performed algorithm training in this
scenario and compared the results with MAAC, COMA, and
MADDPG. The results show that both MATAC, MAAC, and
MADDPG can learn effective air combat strategies and their
performance is better than that of COMA. The convergence
of MATAC is faster and more effective than MAAC,
MADDPG, and COMA. However, we have only studied the
collaborative decision problem in discrete action space, in the
next step, we hope to apply MATAC to the collaboration
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decision problem of multiple UAVs in continuous action
space.

REFERENCES
[1] K. Fregene, ‘‘Unmanned aerial vehicles and control,’’ IEEE

Control Syst. Mag., vol. 32, no. 5, pp. 32–34, Oct. 2012, doi:
10.1109/mcs.2012.2205474.

[2] V. Roberge, M. Tarbouchi, and G. Labonté, ‘‘Fast genetic algorithm
path planner for fixed-wing military UAV using GPU,’’ IEEE Trans.
Aerosp. Electron. Syst., vol. 54, no. 5, pp. 2105–2117, Oct. 2018, doi:
10.1109/TAES.2018.2807558.

[3] S.-J. Chung, A. A. Paranjape, P. Dames, S. Shen, and V. Kumar, ‘‘A survey
on aerial swarm robotics,’’ IEEE Trans. Robot., vol. 34, no. 4, pp. 837–855,
Aug. 2018, doi: 10.1109/tro.2018.2857475.

[4] Z. Yao, M. Li, Z. Chen, and R. Zhou, ‘‘Mission decision-making method of
multi-aircraft cooperatively attacking multi-target based on game theoretic
framework,’’ Chin. J. Aeronaut., vol. 29, no. 6, pp. 1685–1694, Dec. 2016,
doi: 10.1016/j.cja.2016.09.006.

[5] Y. Zhou, B. Rao, and W. Wang, ‘‘UAV swarm intelligence: Recent
advances and future trends,’’ IEEE Access, vol. 8, pp. 183856–183878,
2020.

[6] P. Ogren and M. Winstrand, ‘‘Combining path planning and target assign-
ment to minimize risk in SEAD missions,’’ in Proc. AIAA Guid., Navigat.,
Control Conf. Exhibit, Aug. 2005, p. 5865.

[7] Z. Zhen, D. Xing, and G. Chen, ‘‘Cooperative search-attack mis-
sion planning for multi-UAV based on intelligent self-organized algo-
rithm,’’ Aerosp. Sci. Technol., vol. 76, pp. 402–411, May 2018, doi:
10.1016/j.ast.2018.01.035.

[8] J. Capitan, L. Merino, and A. Ollero, ‘‘Cooperative decision-making
under uncertainties for multi-target surveillance with multiples UAVs,’’
J. Intell. Robotic Syst., vol. 84, nos. 1–4, pp. 371–386, Dec. 2016, doi:
10.1007/s10846-015-0269-0.

[9] L. Huang, H. Qu, and L. Zuo, ‘‘Multi-type UAVs cooperative task alloca-
tion under resource constraints,’’ IEEE Access, vol. 6, pp. 17841–17850,
2018.

[10] X. Bai, P. Wang, Z. Wang, and L. Zhang, ‘‘3D multi-UAV collabo-
ration based on the hybrid algorithm of artificial bee colony and A,’’
in Proc. Chin. Control Conf. (CCC), Jul. 2019, pp. 3982–3987, doi:
10.23919/ChiCC.2019.8866197.

[11] J. Xu, Q. Guo, and Z. Li, ‘‘Dynamic selection method for cooperative
decision-making center of multi-UAV system based on cloud trust model,’’
in Proc. IEEE 3rd Adv. Inf. Technol., Electron. Autom. Control Conf.
(IAEAC), Oct. 2018, pp. 922–926.

[12] Y. Ma, G. Wang, X. Hu, H. Luo, and X. Lei, ‘‘Cooperative occupancy
decision making of multi-UAV in beyond-visual-range air combat: A
game theory approach,’’ IEEE Access, vol. 8, pp. 11624–11634, 2020, doi:
10.1109/ACCESS.2019.2933022.

[13] O. Ilaya, C. Bil, and M. Evans, ‘‘Distributed and cooperative decision
making for multi-UAV systems with applications to collaborative elec-
tronic warfare,’’ in Proc. 7th AIAA ATIO Conf, 2nd CEIAT Int. Conf. Innov.
Integr. Aero Sci., 17th LTA Syst. Tech. Conf., Followed 2nd TEOS Forum,
Sep. 2007, p. 7885.

[14] Y. Zhao, X. Wang, C. Wang, Y. Cong, and L. Shen, ‘‘Systemic design
of distributed multi-UAV cooperative decision-making for multi-target
tracking,’’ Auto. Agents Multi-Agent Syst., vol. 33, nos. 1–2, pp. 132–158,
Mar. 2019, doi: 10.1007/s10458-019-09401-5.

[15] D. Cao, W. Hu, J. Zhao, Q. Huang, Z. Chen, and F. Blaabjerg,
‘‘A multi-agent deep reinforcement learning based voltage regulation
using coordinated PV inverters,’’ IEEE Trans. Power Syst., vol. 35, no. 5,
pp. 4120–4123, Sep. 2020, doi: 10.1109/TPWRS.2020.3000652.

[16] T. Chu, J. Wang, L. Codecà, and Z. Li, ‘‘Multi-agent deep rein-
forcement learning for large-scale traffic signal control,’’ IEEE Trans.
Intell. Transp. Syst., vol. 21, no. 3, pp. 1086–1095, Mar. 2020, doi:
10.1109/tits.2019.2901791.

[17] C. Xu, S. Liu, C. Zhang, Y. Huang, Z. Lu, and L. Yang, ‘‘Multi-agent rein-
forcement learning based distributed transmission in collaborative cloud-
edge systems,’’ IEEE Trans. Veh. Technol., vol. 70, no. 2, pp. 1658–1672,
Feb. 2021, doi: 10.1109/TVT.2021.3055511.

[18] Z. Sun, H. Piao, Z. Yang, Y. Zhao, G. Zhan, D. Zhou, G. Meng,
H. Chen, X. Chen, B. Qu, and Y. Lu, ‘‘Multi-agent hierarchical policy
gradient for air combat tactics emergence via self-play,’’ (in English)
Eng. Appl. Artif. Intell., vol. 98, Feb. 2021, Art. no. 104112, doi:
10.1016/j.engappai.2020.104112.

[19] J. Yang, X. You, G. Wu, M. M. Hassan, A. Almogren, and J. Guna,
‘‘Application of reinforcement learning in UAV cluster task scheduling,’’
Future Gener. Comput. Syst., vol. 95, no. 1, pp. 140–148, 2019, doi:
10.1016/j.future.2018.11.014.

[20] W. Zhao, H. Chu, X. Miao, L. Guo, H. Shen, C. Zhu, F. Zhang, and
D. Liang, ‘‘Research on the multiagent joint proximal policy optimization
algorithm controlling cooperative fixed-wing UAV obstacle avoidance,’’
Sensors, vol. 20, no. 16, p. 4546, Aug. 2020.

[21] X. Wei, L. Yang, G. Cao, T. Lu, and B. Wang, ‘‘Recurrent MADDPG for
object detection and assignment in combat tasks,’’ IEEE Access, vol. 8,
pp. 163334–163343, 2020, doi: 10.1109/Access.2020.3022638.

[22] H. Qie, D. Shi, T. Shen, X. Xu, Y. Li, and L. Wang, ‘‘Joint optimization
of multi-UAV target assignment and path planning based on multi-agent
reinforcement learning,’’ IEEE Access, vol. 7, pp. 146264–146272, 2019,
doi: 10.1109/access.2019.2943253.

[23] F. A. Oliehoek and C. Amato, A Concise Introduction to Decentralized
POMDPs. Berlin, Germany: Springer, 2016.

[24] F. A. Oliehoek, M. T. J. Spaan, and N. Vlassis, ‘‘Optimal and approximate
Q-value functions for decentralized POMDPs,’’ J. Artif. Intell. Res., vol. 32,
no. 1, pp. 289–353, 2008, doi: 10.1613/jair.2447.

[25] L. Kraemer and B. Banerjee, ‘‘Multi-agent reinforcement learning as
a rehearsal for decentralized planning,’’ Neurocomputing, vol. 190,
pp. 82–94, May 2016, doi: 10.1016/j.neucom.2016.01.031.

[26] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch,
‘‘Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 30, 2017,
pp. 1–12.

[27] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson, ‘‘Coun-
terfactual multi-agent policy gradients,’’ in Proc. AAAI Conf. Artif. Intell.,
2018, vol. 32, no. 1, pp. 1–9.

[28] A. P. Parikh, O. Täckström, D. Das, and J. Uszkoreit, ‘‘A decomposable
attention model for natural language inference,’’ 2016, arXiv:1606.01933.

[29] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ Presented at
the 31st Int. Conf. Neural Inf. Process. Syst., Long Beach, CA, USA,
2017.

[30] S. Iqbal and F. Sha, ‘‘Actor-attention-critic for multi-agent
reinforcement learning,’’ in Proc. Int. Conf. Mach. Learn., 2019,
pp. 2961–2970.

[31] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ 2018,
arXiv:1810.04805.

[32] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, and S. Petersen, ‘‘Human-level control through deep
reinforcement learning,’’ Nature, vol. 518, pp. 529–533, Feb. 2015, doi:
10.1038/nature14236.

[33] P. Bonanni, The Art of the Kill. Alameda, CA, USA: Spectrum HoloByte,
1993.

SHAOWEI LI was born in Hebei, China, in 1991.
He is currently pursuing the Ph.D. degree in air-
craft design with Beihang University, Beijing,
China. His research interests include multi-UAVs
collaborative decision making, mission planning,
and multi-agent reinforcement learning.

VOLUME 10, 2022 91395

http://dx.doi.org/10.1109/mcs.2012.2205474
http://dx.doi.org/10.1109/TAES.2018.2807558
http://dx.doi.org/10.1109/tro.2018.2857475
http://dx.doi.org/10.1016/j.cja.2016.09.006
http://dx.doi.org/10.1016/j.ast.2018.01.035
http://dx.doi.org/10.1007/s10846-015-0269-0
http://dx.doi.org/10.23919/ChiCC.2019.8866197
http://dx.doi.org/10.1109/ACCESS.2019.2933022
http://dx.doi.org/10.1007/s10458-019-09401-5
http://dx.doi.org/10.1109/TPWRS.2020.3000652
http://dx.doi.org/10.1109/tits.2019.2901791
http://dx.doi.org/10.1109/TVT.2021.3055511
http://dx.doi.org/10.1016/j.engappai.2020.104112
http://dx.doi.org/10.1016/j.future.2018.11.014
http://dx.doi.org/10.1109/Access.2020.3022638
http://dx.doi.org/10.1109/access.2019.2943253
http://dx.doi.org/10.1613/jair.2447
http://dx.doi.org/10.1016/j.neucom.2016.01.031
http://dx.doi.org/10.1038/nature14236


S. Li et al.: Collaborative Decision-Making Method for Multi-UAV

YUHONG JIA received the Ph.D. degree in
aircraft design from Beihang University. She is
currently a Professor and a Ph.D. Supervisor at
Beihang University. Her research interests include
aircraft design, mechanical design, aircraft landing
gear design, and active control technology.

FAN YANG was born in 1997. He is currently
pursuing the master’s degree in aircraft design
with Beihang University. His current research
interests include intelligent air combat and deep
reinforcement learning.

QINGYANG QIN was born in Shandong,
Liaocheng, China, in 1998. He is currently pursu-
ing the master’s degree with Beihang University.
His research interests include intelligent decision,
intelligent air combat, and reinforcement learning.

HUI GAO was born in Henan, China, in 1995.
He is currently pursuing the Ph.D. degree in air-
craft design with Beihang University. His research
interests include dynamic obstacle avoidance and
intelligent path planning for UAVs.

YAOMING ZHOU is currently an Associate
Professor and a Ph.D. Supervisor at Beihang Uni-
versity. His research interests include intelligent
decision-making of UAV, UAV path planning, and
intelligent UAV design.

91396 VOLUME 10, 2022


