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ABSTRACT Over the years, the evolution of face recognition (FR) algorithms has been steep and accelerated
by a myriad of factors. Motivated by the unexpected elements found in real-world scenarios, researchers
have investigated and developed a number of methods for occluded face recognition (OFR). However, due
to the SarS-Cov2 pandemic, masked face recognition (MFR) research branched from OFR and became a
hot and urgent research challenge. Due to time and data constraints, these models followed different and
novel approaches to handle lower face occlusions, i.e., face masks. Hence, this study aims to evaluate the
different approaches followed for both MFR and OFR, find linked details about the two conceptually similar
research directions and understand future directions for both topics. For this analysis, several occluded
and face recognition algorithms from the literature are studied. First, they are evaluated in the task that
they were trained on, but also on the other. These methods were picked accordingly to the novelty of their
approach, proven state-of-the-art results, and publicly available source code. We present quantitative results
on 4 occluded and 5 masked FR datasets, and a qualitative analysis of several MFR and OFR models on the
Occ-LFW dataset. The analysis presented, sustain the interoperable deployability of MFR methods on OFR
datasets, when the occlusions are of a reasonable size. Thus, solutions proposed for MFR can be effectively
deployed for general OFR.

INDEX TERMS Deep learning, biometrics, occluded face recognition, masked face recognition, face
biometrics, computer vision.

I. INTRODUCTION
Face recognition methods have evolved over time and are
now performing at a human level [1]. Despite the fact that
the evaluation of these methods relies on datasets captured
in the wild, this evaluation does not address challenges such
as occlusions because these datasets are mostly composed of
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clear images [2]. In real world applications, in fact, there are
no guarantees on capturing pictures that show the face free of
obstructions. Hence, the training and evaluation of thesemod-
els are somewhat lacking to include some of the challenges.
The recent SarS-Cov2 pandemic led to the mandatory usage
of facial masks, which became a frequent obstruction to face
images. For this particular occlusion, Damer et al. [3] have
shown that the performance degradation affects both humans
and face recognition systems.

86222 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-1333-4889
https://orcid.org/0000-0003-4516-9128
https://orcid.org/0000-0001-7910-7895
https://orcid.org/0000-0002-6685-2033
https://orcid.org/0000-0002-3760-2473
https://orcid.org/0000-0002-7184-2809


P. C. Neto et al.: Beyond Masks: On the Generalization of MFR Models to OFR

Parallel to the search for better face recognition models,
researchers have also been researching occluded face recog-
nition architectures. Frequently the latter are less discrimi-
native on clear images. Thus, these models also present a
trade-off between performance under occlusions and with-
out occlusions. It can already be mitigated by detecting
the presence of an occlusion, which, on the other hand,
increases the computational requirements. The variety of
potential occlusions is also growing as part of technological
advances. Examples of this evolution are the popularization
of smartphones and the usage of headphones. However, the
vast majority of the occlusions are either for aesthetics or
random elements, such as high brightness and hands in front
of the face [4].

FIGURE 1. Illustration of some occlusions that can highly increase the
difficulty of the face verification task.

Due to the pandemic, researchers have directed their focus
towards models capable of verifying the identity of someone
that is wearing a mask (i.e., masked face recognition). This
type of occlusion obscures the majority of facial features
below the periocular area. These efforts led to the publica-
tion of two competitions [5], [6] and several distinct models
based on diverse approaches [7], [8], [9], [10], [11]. Com-
pared to standard face recognition models, the majority of
the published models for masked face recognition (MFR)
advanced the state of the art. However, as seen in Figure 1,
masks are not representative of all the different occlusions.
Other types of occlusion might cover other parts of the face.
Hence, it remains to be seen if MFRmodels can also increase
the performance on general occluded face recognition. The
importance of models that are robust to both problems is
proportional to the growth of face recognition adoption across
different technologies and scenarios. For instance, it border
control it is necessary to prevent the increase in false posi-
tives due to specific occlusions, which could lead to security
issues. On the other hand, false negatives should remain low
in smartphone’s face recognition authentication so that the
users’ experience does not get negatively impacted.

In recent literature, researchers aimed to improve the cur-
rent robustness of general face recognition for masked face
recognition. Thus, knowing that masked faces are a uniform
type of face occlusion, the main question posed in this paper
is ‘‘can the solutions developed for masked face recognition
enhance the performance of face recognition for more general
occlusion?’’. Towards that goal, this paper presents several
contributions to both masked and occluded face recognition
fields. It mainly focuses on understanding the capabilities
of models trained for a specific occlusion (face masks) to
generalize to others. Validating the performance of a masked
face recognition approach in occluded datasets poses two
main contributions. First, since these algorithms are fairly
lighter than occluded face recognition methods, there is a
clear advantage regarding computational costs. Moreover,
since masked face recognition approaches leverage knowl-
edge existent in traditional face recognition methods, the
growth of traditional face recognition datasets might fuel
a performance increase in both masked and occluded face
recognition. The main outcomes of the paper show that there
is an interoperable deployability of MFR methods on OFR
datasets. In fact, MFR methods can be effectively deployed
for general OFR and achieve reasonable performance.

II. RELATED WORK
A. FACE RECOGNITION
Advances in face recognition models have been driven by
a combination of three elements. One of the elements is
the steep increase in computational power. Graphical pro-
cessing units (GPUs) potentiated the training of larger and
more complex models in a reasonable time [12]. This led
to deeper models capable of approximating the real function
with extraordinary precision. The other is the introduction
of novel architectures, such as ResNets [13], that pushed
the limits of the State-of-the-Art. Finally, an unprecedented
proliferation of the internet led to remarkable growth in the
data available and how it can be collected [14], with recent
works aiming at replacing such data with privacy-friendly
synthetic data [15], [16], [17].

Recently, the design of training losses, aiming at enhanc-
ing discriminative ability of the extracted face embeddings,
has assumed a preponderant role. Face recognition models
highly improved their accuracy and generalization capabil-
ities through the usage of contrastive losses. For instance,
triplet loss does not train the model to classify an iden-
tity; instead, it optimizes the model to have positive pairs
with smaller distances than negative pairs. However, these
types of losses have been outperformed by the recent angu-
lar margin-based softmax losses [18]. For instance, Center
loss [19] uses the learned centres of the features of each
identity to decrease intra-class variance. SphereFace [20]
(Angular Softmax) adds angular constraints to each identity
and normalize its weights, thus creating a hypersphere space.
CosFace [21] and ArcFace [18] propose variations of these
previous losses. The former introduces an additive margin
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for the cosine space, whereas the second presents an additive
margin for the angular space. MagFace [22] rethinks the
margin of loss to be given as a function of the quality of the
samples. Finally, ElasticFace [23] proposes a relaxation of
the margin constraint by randomly picking its value from a
Gaussian distribution.

B. OCCLUDED FACE RECOGNITION
As previously stated, the performance of state-of-the-art face
recognition models degrades significantly whenever a face is
occluded [4]. Research on how to deal with occlusions led to
two main directions: a) predicting the occluded features [24],
[25], [26], [27], [28]; and b) removing the occluded features.
The former paradigm approached deep learning for the first
time in a work proposed by Zhao et al. [24]. Their use of a
LSTM-Autoencoder to reconstruct the corrupted features led
to the loss of identity information, which degraded the results.
Ignoring the occlusions is a tough task for deep learning
systems due to the difficulty of locating them. To mitigate
this difficulty, the MaskNet, introduced by Wan et al. [29]
presented a middle branch to assign smaller weights to hid-
den units affected by the corrupted features. However, the
training of the middle branch is too relaxed, leading to the
inclusion of irrelevant information. The recent state-of-the-
art includes two related approaches. The first was proposed
by Song et al. [30] and it uses a binary mask to clean the
corrupted features. It learns a mapping of each block of
the face image (divided into K × K blocks) to the feature
mask. The detection of occluded blocks and the processing
of the image is conducted in two separate steps. FROM [31],
proposed by Qiu et al., removes the need for two different
inference stages for training and testing. Their Mask Decoder
predicts, in a dynamic fashion, the correct feature masks.
Hence, this method is much more efficient at training and
testing. Wang and Guo [32] proposed an approach to deal
with occlusions and pose variance. Their model, DSA-Face,
is based on sparse attention mechanisms. Their results indi-
cate a performance that is slightly above the one delivered
by traditional face recognition models. However, it is worth
noting that it presents a higher complexity than most known
models for face recognition. With a more direct application,
Biswas et al. [33] proposed a method to tackle Child Sexual
Exploitation Material. They state that abusers have their eyes
covered in the majority of the content and that traditional
face recognition systems fail at recognizing their identity.
Hence, they propose a model based on Perceptual hashing to
help solve this task and mitigate the humanitarian problem of
Child Sexual Exploitation.

C. MASKED FACE RECOGNITION
The effects of the COVID-19 pandemic were felt world-
wide. Concurrently, the obligation to use a face mask was
present in the majority of the developed countries [34]. These
masks occlude a vast part of the face. Hence, due to the
lack of those features and the change in the representation
nature, face recognition systems are unable to maintain the

performance [3], [35], [36]. This drove the research attention
towards developing face recognition solutions that aim at
maintaining face recognition performance despite the pres-
ence of masks. Such solutions were even part of perfor-
mance competitions organized to consolidate the reporting of
advances in this field [5], [6].

Anwar and Raychowdhury [37] showed the benefits
of adding synthetic mask augmentations to the training
data to increase the algorithm performance on real masks.
Boutros et al. [6], [7] proposed an efficient on-top solution
that can be integrated into any face recognitionmodel. In their
solution, when the person wears a mask, a neural network
attempts to unmask the embedding produced by the face
recognition system. This neural network is trained with a
self-restrained triplet loss that put more focus on the more
affected genuine pairs, in comparison to impostor training
pairs. Neto et al. [38] designed a model trained with a
modified triplet loss. However, the model performed poorly
and was later modified to a multitasking approach based on
the ArcFace loss [9]. This model feeds two versions of the
same image to the face recognition model. The first contains
a mask, whereas the second does not, and the network is
constrained to minimize the distance between the two embed-
dings produced. The multitask optimization for recognition
and mask detection was also present in other works [11],
while others include multitask learning for face analysis [39].

Geng et al. [40] present a generative model to augment the
current datasets with masked images. The proposed genera-
tive adversarial network (GAN) is specially crafted to retain
information regarding the identity of the subject in the image.
Mandal et al. [41] attempted to approach the problem with
a domain adaptation solution. Huber et al. [8] intended to
approximate embeddings produced bymasked and unmasked
images. Towards that, he used template level knowledge dis-
tillation to a student model, from a teacher model trained on
ElasticFace loss. Moreover, to further improve the results,
it includes an auxiliary term that relies on the ElasticFace
loss to retain identity information within the embedding.
Similarly, Li et al. [42] proposes a knowledge distillation
approach accompanied with image-level face completion.
The operation of other subcomponents of face recognition
systems has also been affected by mask wearing. Particular
attention was paid to presentation attack detection [43], [44]
and face image quality assessment [45].

With the raise ofmasked face recognition as an urgent chal-
lenge in face recognition, masked face recognition solutions
have evolved as a separate research direction from occluded
face recognition. This work tries to link these two conceptu-
ally similar research directions by probing the scope of their
interoperable deployability.

III. METHODOLOGY
The methodology followed in this document can be divided
into three main steps. As previously stated, one of the contri-
butions of this paper is the assessment of the performance of
MFR algorithms in OFR problems. Hence, in the first step,

86224 VOLUME 10, 2022



P. C. Neto et al.: Beyond Masks: On the Generalization of MFR Models to OFR

FIGURE 2. Several approaches can be followed in order to handle masks.
These are the three most common approaches: Unmasking the input
image, unmasking the template generated by a face recognition model,
or using a model that is robust to masks. Blue templates do not contain
mask information, whereas red templates contain mask information.
Models robust to mask usually have some mask information leaked into
their embedding, but in a low proportion when compared to the
non-mask information. (Best viewed in colour).

we evaluated the performance of these algorithms in both
masked and occluded face recognition datasets. The algo-
rithms used were carefully selected from recent literature.
Afterwards, we repeated this process with a state-of-the-art
occluded face recognition algorithm. To further understand
the need for both OFR and MFR algorithms, we repeated the
evaluation process with algorithms designed for general face
recognition.

A. FACE VERIFICATION BY MASKED FACE
RECOGNITION MODELS
In the last two years, the number of different models for
masked face recognition has grown exponentially. Therefore,
it is necessary to select a limited number of them. The selected
models must include sufficiently distinct approaches so that
the evaluation is diverse. Thus, in the experiments conducted
for this research, three masked face recognition models are
used. In the context of masked face recognition, models can
be evaluated for their performance on masked reference to
masked probe (M-M) or unmasked reference tomasked probe
(U-M) configurations. The former is when both the probe and
the reference have the masks, whereas the other has only the
probe masked. The different approaches that can be followed
for masked face recognition are illustrated in Figure 2.
The first model (FocusFace) [9] presents a multitask neu-

ral network that is contrastively optimized to create similar
embeddings for masked and unmasked images. FocusFace
achieved impressive results in the masked face recognition
competition [5] database on M-M face verification and beat
the baseline on U-M. The second model (KD) [8] approached
this problem through knowledge distillation at the template
level, from a teacher network (ElasticFace-Arc) [23], which
receives unmasked input, to a student network that receives a
mixture of masked and unmsaked faces of the same identities.

This enforces the student network to learn how to build
embedding from masked images similar to the embedding
constructed by the teacher network from unmasked images,
while maintaining the discrimination learned by the teacher
model on unmasked training data. It is complemented by
auxiliary supervision for identity verification through the reg-
ularization with the ElasticFace loss. Finally, the last model
(EUM) [7] presents a model that operates on top of pre-
trained face recognition systems. This model is trained with
the self-restrained triplet loss proposed also in [7]. It aims
to receive the embedding produced by a face recognition
model from a masked input, and map it into an embedding
that behaves similarly to the one produced by the same face
recognition model from an unmasked input. In other words,
it attempts to unmask face embeddings. The self-restrained
triplet loss makes sure to automatically adapt the loss so
that it puts more attention on the intra-class compactness
when required, as this is more affected by the masks as
demonstrated in [46]. We trained all the presented mod-
els on the MS1MV2 dataset [18], [47] with RGB images
aligned (through similarity transfer) and cropped to 112 ×
112, accordingly to the instructions on the original papers.
While FocusFace and EUMwere also previously testedwith a
ResNet-50 [13] backbone, in the latter a MobileFaceNet [48]
backbone, we decided to train and evaluate these models with
a ResNet-100 [13] backbone architecture. Hence, all three
models use the same backbone.

B. FACE VERIFICATION BY OCCLUDED FACE
RECOGNITION MODELS
Differently from masked face recognition, occluded face
recognition requires that its models generalize across occlu-
sions situated at diverse locations on an image. For instance,
a scarf can present a challenge similar to a mask. On the
other hand, sunglasses create a very different problem. These
nuances lead to models and architectures significantly differ-
ent from those described in the previous section. Research in
this field has been short if compared to the efforts dedicated to
masked face recognition over the past two years. Hence, the
evaluation of occluded face recognition models is focused on
a single model. It significantly outperforms others designed
for the same task. The selected model (FROM) [31] extends
the approach followed by the previous state-of-the-art model
PDSN [30]. They present a dynamic approach to correct the
feature masks, which they call Mask Decoder. This latter
mechanism removes the need for two different train steps
and greatly reduces inference time. Differently from previous
models, FROM receives aligned images cropped to 112 ×
96. The model’s backbone network is initially trained with
the CASIA-WebFace dataset for general face recognition.
Afterwards, the entire model is fine-tuned end-to-end with
the occluded version of the CASIA-WebFace dataset.

C. STATE-OF-THE-ART FACE RECOGNITION
For the evaluation of traditional face recognition algorithms,
three different models were chosen from the latest top
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performing models. They differ from each other by the
loss function used for the network optimization. The major-
ity of the other parameters, such as the training set and
the backbone network, remain the same. The backbone is
the ResNet-100 [13], trained with the MS1MV2 dataset
[18], [47]. ArcFace [18] presented a novel angular
margin-based softmax loss to increase the discriminative
power of the trained model; while it beats the previous State-
of-the-Art method, Boutros et al. [23] questioned the use
of a fixed margin. Hence, they proposed ElasticFace [23],
a loss that draws its margin at each iteration from a Gaussian
distribution. The ElasticFace has a version where the draw
from the Gaussian distribution is also regulated by the sam-
ples proximity to their class centers during training, namely
the ElasticFace+. Similarly, Meng et al. [22] focused their
attention on the margin of the loss. Their method, MagFace,
presents a novel approach to make the quality of the image
affect the margin parameter. All of these models were trained
with RGB 112 × 112 cropped and aligned images.

None of these methods was specifically designed to handle
occlusions. Hence, their performance can be expected to
decrease with the presence of the different occlusions. Their
use serves as a baseline for the performance of both the
occluded and masked face recognition methods. Masked face
recognition algorithms should have, at least, similar perfor-
mance to these models when confronted with occlusions.

IV. DATABASES
A. MASKED FACE RECOGNITION BENCHMARKS
For masked face recognition, we utilize the masked face
benchmarks (proposed in [8]) based on five of the most
widely used face recognition benchmarks. Hence, perfor-
mance comparisons between distinct models are direct and
straightforward. The used datasets are: Labeled Faces in the
Wild (LFW) [2]; Cross-Age LFW (CALFW) [49]; Cross-
pose LFW (CPLFW) [50]; AGEDB-30 [51]; Celebrities in
Frontal-Profile (CFP) [52].

1) LABELED FACES IN THE WILD (LFW)
introduced in 2007, this dataset has been widely used to
compare the performance of face recognition models on face

FIGURE 3. Examples of the occluded face verification datasets. The first
two rows correspond to Occ-LFW with synthetic occlusions, whereas the
third corresponds to the AR database with real occlusions. The first row
contains images from the Occ-LFW-1.0, and the second contains images
from the Occ-LFW-2.0.

FIGURE 4. Examples of the validation datasets (LFW, CALFW, CPLFW,
CFP-FP and AgeDB-30) augmented with face masks for masked face
verification. The approach followed for mask augmentation is described
by Huber et al. [8].

images in unconstrained environments. Moreover, it already
includes a protocol, which we strictly follow, for the eval-
uation of face verification performance on 6,000 image
pairs [2].

2) CROSS-AGE LFW (CALFW) AND CROSS-POSE LFW
(CPLFW)
are a more challenging version of the original LFW dataset.
They present themselves as a renovation of LFW, which is
already suggested by their ‘‘Cross-Age’’ and ‘‘Cross-Pose’’
prefix. CALFW introduces images with an age gap, whereas
CPLFW presents variations to the pose of the same individ-
ual; thus, these two versions increase the intra-class variation
to better simulate a real-world face verification scenario.

3) AgeDB-30
is a subset of the larger AgeDB [51]. While the latter has
no restrictions on the age difference between images of the
same individual, AgeDB-30 imposes a 30-year interval. It is
widely used for evaluating the age-invariant face verifica-
tion performance and contains 16, 488 different images of
568 identities. The evaluation protocol followed is also well
defined in the literature.

4) CELEBRITIES IN FRONTAL-PROFILE (CFP)
was created to improve the evaluation capabilities on frontal
to profile face verification ‘‘in the wild’’. In a sense, the
proposed evaluation can be considered similar to occluded
face recognition, since, in some extreme poses, many features
are completely occluded. It contains 500 subjects, each with
10 frontal and 4 profile images. There are twomain evaluation
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protocols, namely frontal to profile (FP) and frontal to frontal
(FF). In this article, only the first protocol is used.

As seen in Figure 4, these datasets were not used as orig-
inally proposed. They were modified with face masks as
proposed by Huber et al. [8] for performance validation on
masked face verification. The added masks follow the exact
protocol described in the original proposal, and its code is
publicly available.1

B. OCCLUDED FACE RECOGNITION BENCHMARKS
1) OCC-LFW DATABASE
Song et al. [30] presented an approach to synthesizing a
dataset of occluded faces with occluders that include sun-
glasses, scarf, face mask, hand, eye mask, eyeglasses, book,
phone, and cup.While it can be argued that these are everyday
items that can appear in front of a face, it can also be said
that the generated occlusions are not really close to being
natural. Nonetheless, it was also the approach followed by
Qiu et al. [31], hence, also followed in this paper. The images
are synthesized by adding a random occluder image on top
of a random location of a face. In some scenarios, the full
occluder might be absent from the image, since its centre
(location of the image selected to add the occlusion) might
have a smaller distance to the margin than the size of the
occluder.

For this paper, the dataset selected to be occluded is LFW,
since it was also used by Qiu et al. [31]. It originated three
different versions of the LFW. These variations differ from
each other due to the different scales of the occluder and the
percentage of the face occluded. According to the convention,
we name the datasets as follows: Occ-LFW-1.0, Occ-LFW-
2.0, and Occ-LFW-3.0. The first has, on average, >18% of
the images occluded. The first and the second have >40%
and >50% of occluded area, respectively. The same random
seed was used, and the code for generating the occlusions is
publicly available.2 Some of these images can be seen in the
first two rows of Figure 3.

2) AR DATABASE
The last dataset used is the AR Face Dataset [59]. It contains
more than 4,000 face images, which vary in facial expression,
illumination conditions and occlusions. These images are
from 126 individuals. It presents two different types of real
occlusions: sunglasses or a scarf. A person wearing a scarf is
more similar to wearing a face mask than a person wearing
sunglasses. Occluded images are part of the probe set and
the occluded face verification on this dataset is conducted
through two different protocols. Some examples can be visu-
alized in the last row of Figure 3.

V. EXPERIMENTAL SETUP
In this section, the performed experiments are presented in
detail, as well as the evaluation metrics used to assess the
performance of the different models.

1https://github.com/fdbtrs/Masked-Face-Recognition-KD
2https://github.com/haibo-qiu/FROM

A. EXPERIMENTS
Each experimental setup targets a specific dataset and task.
For instance, experiments on the AR dataset are targeted
for occluded face recognition. Each of these datasets has
well-defined protocols for evaluation, hence, the proposed
experiments already benefit from them. All the experimental
setups evaluate the verification performance of a plethora
of models. For occluded face recognition, the evaluated
models were: four distinct versions of ElasticFace [23],
MagFace [22], two versions of FocusFace [9], Knowledge
Distillation model(KD) [8], and Embedding Unmasking
Model (EUM) [7]. For masked face recognition, besides the
previously mentioned models, FROM [31] was also eval-
uated. FocusFace,3 ElasticFace,4 KD,5 EUM6 and FROM7

have their code publicly available.
The occluded face verification performance experiments

on the AR dataset were conducted on two different proto-
cols [29], [58]. Protocol 1 uses six images per person to
form the reference set, whereas protocol 2 uses only one.
This dataset includes several previous results published in the
literature and is considered to be saturated, especially after the
work by Qiu et al. [31]. For each protocol, the performance
of each method is evaluated individually for both scarves and
sunglasses. Thus, it is possible to infer the effect of each on
the method.

Experiments conducted on the Occ-LFW dataset are
reported individually for each scale value. The defined pro-
tocol uses clear images as reference and occluded ones as
probe. Further experiments were also conducted on the orig-
inal LFW dataset as a baseline for the model’s performance.
The order of the pairs remains the same for all the dataset
versions. The experiments conducted for this database are
similar to those conducted for the masked validation datasets.
The only difference remains in the fact that only unmasked to
masked verification was conducted. Due to the applicability
of masked face recognition algorithms, the most interesting
protocol and the one to be used in practice is when the refer-
ence is unmasked and the probe is masked. Hence, for masked
face recognition, the masked version of the LFW, CALFW,
CPLFW, CFP-FP and AgeDB-30 were used as defined in [8].

We further extend the experiments by selecting a couple
of pairs that were either misclassified by all the algorithms
or only by the occluded face recognition algorithm. To this,
we also add some pairs that were only correctly classified by
the occluded face recognition algorithm with the hope that
these can help to understand the difficulties and strengths of
each approach.

B. EVALUATION METRICS
The evaluation of the models’ verification performance is
reported accordingly to two different widely used metrics.

3https://github.com/NetoPedro/FocusFace
4https://github.com/fdbtrs/ElasticFace
5https://github.com/fdbtrs/Masked-Face-Recognition-KD
6https://github.com/fdbtrs/Self-restrained-Triplet-Loss
7https://github.com/haibo-qiu/from
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These metrics report a quantitative performance value. The
first metric is the accuracy:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(1)

where TP, TN, FP and FN are true positives, true negatives,
false positives and false negatives, respectively. However,
since the accuracy is somewhat lacking in scenarios where
false positives are worse than false negatives, the second
metric adopted is TAR (True Accepted Rate) under FAR
(False Accepted Rate), which is defined as:

TAR =
TP

TP+ FN
(2)

FAR =
FP

FP+ TN
(3)

We acknowledge the evaluation metrics in the ISO/IEC
19795-1 [60] standard, however, to enable the comparabil-
ity with previous works, we follow the evaluation metrics
defined in the utilized benchmarks.

VI. RESULTS
This section presents the quantitative results of all the con-
ducted experiences, and a discussion/interpretation of the
meaning and the reasons behind certain results.

A. AR FACE DATABASE
As one of the most used databases for research, it is pos-
sible to report the results of a myriad of methods over the
years. As seen in Table 1, the performance has been steadily
increasing for occluded face recognition models. However,

TABLE 1. Face verification accuracy(%) on the AR dataset under
protocols 1 and 2. ‘‘Sg’’ and ‘‘Sf’’ stand for ‘‘Sunglasses’’ and ‘‘Scarf’’,
respectively. The first group of methods represents general face
recognition models; the second group of methods represents occluded
face recognition models; the last group of methods represents masked
face recognition models.

recent general face recognition models have shown impres-
sive results, especially when considering that they were not
trained to handle occlusions. For instance, ElasticFace is only
surpassed by FROM, which achieves a perfect score. PDSN
is capable of achieving a better result, only on protocol 1, and
when the occlusion is a scarf.

While masked face recognition models achieve lower
results than FROM, they are highly competitive with PDSN
and surpass previous models trained for occluded face recog-
nition. Moreover, these models are lighter than FROM and
PDSN, in the sense, that they require less computational
resources and have fewer parameters. While these results can
be interpreted with optimism, the performance of general face
recognitionmethods is similar to the one displayed bymasked
face recognition models. Thus, it is still unclear how much of
this performance is due to an improvement of the former.

B. OCC-LFW DATABASE
The experiments of the various models on the original LFW
datasets show that the majority of masked and general face
recognitionmodels surpass the performance of FROM,which
was trained for occluded face recognition. As the best per-
formingOccluded Face Recognitionmethod, and considering
that it was also evaluated in masked face recognition datasets,
FROM is the ideal benchmark for the comparison with the
MFRmethods. These results are displayed in Table 2. Despite
the good performance of these methods, it is interesting to
note that some masked face recognition, such as FocusFace,
suffers from a higher degree of degradation than FROM on
general face recognition. FROM performance on the Occ-
LFW-1.0 dataset was not reported, hence, it was not included.
On the other methods, there is a small degradation in the per-
formance. Nonetheless, twomethods are capable of achieving
better performance on this dataset than the one attained by
FROM on the original LFW.

TABLE 2. Face verification accuracy(%) on the LFW and its occluded
versions. All the results, except for LFW, are reported for a verification
with clear references and occluded probes. Besides FROM, all the other
methods were evaluated for this paper.

The performance discrepancy is completely removed, and
FROM becomes the best performing method when evaluated
on the Occ-LFW-2.0 dataset. This is due to a faster degrada-
tion in the performance of general and masked face recog-
nition methods when the size of the occlusions increases.
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TABLE 3. Face verification TAR @ FAR = 1e − 3(%) on the LFW and its occluded versions. All the results, except for LFW, are reported for a verification
with clear references and occluded probes. Besides FROM, all the other methods were evaluated for this paper.

Nonetheless, ElasticFace and KD achieve unexpectedly good
results on a dataset with more than 40% of the image area
occluded.

To further understand how this performance degradation
affects the results in a real-world evaluation, we also collected
the TAR when the FAR was set to 1e − 3. Considering that
on a real application the false acceptance rate must be set to
a considerably low value, due to its impact on the practicality
of the system, the TAR measures how well it performs when
the threshold is selected to optimize the FAR value. Table 3
displays the results of each of the evaluated methods. It is
interesting to note that on this specific metric the perfor-
mance of a general face recognition method, ElasticFace,
surpasses both masked and occluded face recognition models
for Occ-LFW-1.0 and 2.0. The same remarkable performance
is attained by KD and EUM.

These impressive and unexpected results are enlightening.
In a sense, they argue against the need for models specifically
designed for occluded face recognition, since these have a
worse performance when the maximum number of false pos-
itives is limited. Moreover, the extra parameters, complexity
and requirements for these models diminish their interest.
On the other side, the success of masked face recognition
models indicates a potential research direction to be followed
by occluded face recognition methods.

C. MASKED FACE VERIFICATION
On the other hand, the diversity of different occlusions used
to train the occluded face recognition model, do not lead to
performance comparable to the performance of masked face
recognition models. Not only that, but the performance of the
general face recognition models is also superior on all the
five datasets tested as displayed in Table 4. One important
element to consider is that as seen in the previous sections,
some approaches that start from a pretrained general face
recognition model and are afterwards tuned for masked face
recognition perform well on bother masked and occluded
datasets. It is also independent of the tuning approach fol-
lowed.

Furthermore, the performance difference between occluded
masked face recognition models and the others is more
noticeable on CALFW and AgeDB-30. Hence, it shows that
either the model trained for face recognition under occlusions
is unable to handle large age gaps, or that the masks make that
task significantly harder for that model.

FIGURE 5. Study of the performance of the algorithms when exposed to
no occlusions, masks and general occlusions.

Despite the presence of occlusions similar to face masks
on the occlusion dataset, the performance of FROM drops
significantly on these masked benchmarks. Although it does
not vary by more than 1 percent point on the masked LFW
when compared to the original LFW, it is a much wider gap
than the other models. This performance drop is better seen in
Figure 5, which compares the performance of five algorithms
in three distinct databases, one for each task. It also shows
the impact of Occ-LFW-2.0 in the performance of these algo-
rithms. While the performance drop is significant, we argue
in the following sections that this version of the LFW dataset
includes unreasonable occlusions. Moreover, if we analyse
Figure 6, which studies the performance of the algorithms
on progressively more occluded datasets, it is possible to see
that the majority of MFR algorithms is comparable to FROM
in Occ-LFW-1.0. But as the occlusions increase in size their
performance decreases faster.
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TABLE 4. Face verification accuracy(%) the masked versions of LFW, CALFW, CPLFW, CFP-FP, AgeDB-30. All the results are reported for a verification with
unmasked references and masked probes. All the presented methods were evaluated for this paper. FROM evaluation was conducted on 96 × 112 images,
since it was trained on images with those dimensions.

FIGURE 6. Analysis of the performance variation of the algorithms in
several versions of the LFW dataset that include different intensity of
occlusion.

FIGURE 7. Some example pairs from the Occ-LFW-2.0 dataset that were
wrongly classified as positive by the following models: FROM, ElasticFace
- Arc+, KD - HG and EUM. Each couple of images placed horizontally
represents a pair.

D. RESULTS QUALITATIVE ANALYSIS
An analysis was made focusing on some of the misclas-
sified pairs of images, in order to qualitatively study the
performance of the algorithms. For this study, the following
models were used: FROM, ElasticFace - Arc+, KD - HG and
EUM.Only results fromOcc-LFW-1.0 and 2.0were assessed.
Figures 7 and 8 show some false positive and false negative
samples common to all the models considered. Regarding the
false positives, there was no single pair that was common to
all models on Occ-LFW-1.0. On 2.0, the two given samples
present a considerably difficult task. On the other hand, on the
false-negative pairs, on 1.0 the examples displayed indicated
a difficulty of all the models on pairs that comprise age gaps.

FIGURE 8. Some example pairs from the Occ-LFW dataset that were
wrongly classified as negative by the following models: FROM, ElasticFace
- Arc+, KD - HG and EUM. First row represents 1.0 dataset and the second
the 2.0 dataset. Each couple of images placed horizontally represents a
pair.

FIGURE 9. Some example pairs from the Occ-LFW dataset that were
wrongly classified as positive by the following models: FROM; correctly
classified as negative by the following: ElasticFace - Arc+, KD - HG and
EUM. First row represents 1.0 dataset and the second the 2.0 dataset.
Each couple of images placed horizontally represents a pair.

The second false-negative pair of the 2.0 dataset presents
a nonsensical occlusion, which can propel some discussion
regarding the validity of the decision, despite being correct
or wrong, in these samples.

Figures 9 and 10 show the false-positive and false-negative
pairs wrongly classified by FROM and correctly classified
by the remaining models. It is interesting to note that the
majority of the errors committed exclusively by the occluded
face recognition model include occlusions on the lower-face
area, similar to face masks. It indicates that the performance
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FIGURE 10. Some example pairs from the Occ-LFW dataset that were
wrongly classified as negative by the following models: FROM; correctly
classified as positive by the following: ElasticFace - Arc+, KD - HG and
EUM. First row represents 1.0 dataset and the second the 2.0 dataset.
Each couple of images placed horizontally represents a pair.

FIGURE 11. Some example pairs from the Occ-LFW dataset that were
wrongly classified as positive by the following models: ElasticFace - Arc+,
KD - HG and EUM; correctly classified as negative by the following: FROM.
First row represents 1.0 dataset and the second the 2.0 dataset. Each
couple of images placed horizontally represents a pair.

FIGURE 12. Some example pairs from the Occ-LFW dataset that were
wrongly classified as negative by the following models: ElasticFace - Arc+,
KD - HG and EUM; correctly classified as positive by the following: FROM.
First row represents 1.0 dataset and the second the 2.0 dataset. Each
couple of images placed horizontally represents a pair.

of masked face recognition models generalizes sufficiently
well for these synthetic occlusions. Nonetheless, in Figure 9
the occlusions generated are particularly tough and arguably
too much unrealistic.

Finally, we analyse Figures 11 and 12, which represent
the false positives and false negatives correctly predicted
by FROM and wrongly predicted by the other models. Dif-
ferently from the previous two figures, these indicate that
masked face recognition models are particularly ill against
occlusions on the ocular area or forehand. Nevertheless,
it must be noted that the number of samples wrongly clas-
sified by these models and correctly classified by FROM is
considerably small. Due to their training nature, this type of
error was already expected from the start. Figure 11 shows

a false positive between two images from persons of distinct
genders.

VII. CONCLUSION
In this paper, we studied the interoperable deployability of
two similar but still distinct research directions. We carefully
crafted a set of experiments, on masked face recognition and
occluded face recognition to analyse the performance of these
models in the other task. We aimed to learn the differences
between these models and the implications, positive and neg-
atives, of deploying them for a task that they were not trained
for. From the set of experiments conducted, it became clear
that the performance of the current masked face recognition
models is more generalizable, robust and uses fewer parame-
ters. This is an important finding since it shows that building
on top of the current face recognitionmodels is a viable option
that does not increase the complexity of the solution. These
experiments were conducted on datasets frequently used to
benchmark each of these two research directions.

The strong capabilities displayed by masked face
recognition models foreshadow the future of occluded face
recognition. The former, propelled by the urgency of the
pandemic, focused on increasing the robustness of current
models, which led to simpler, faster to train and more robust
solutions when compared to occluded face recognition. How-
ever, these findings should not stop researchers from pursuing
other research directions within occluded face recognition.
We believe that diversity in research and a variety of research
directions leads to better breakthroughs. Nonetheless, we still
provided sufficient findings to support the investment in
an unexplored research direction. Hence, it is possible to
conclude that not only masked face recognition models can
be used on other occlusions with improved results, but also
present a refreshing approach to the task of recognizing under
occlusions.
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