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ABSTRACT In this paper, we propose a new distance metric for the K-means clustering algorithm. Applying
this metric in clustering a dataset, forms unequal clusters. This metric leads to a larger size for a cluster with
a centroid away from the origin, rather than a cluster closer to the origin. The proposed metric is based on
the Canberra distances and it is useful for cases that require unequal size clusters. This metric can be used
in connected autonomous vehicle wireless networks to classify mobile users such as pedestrians, cyclists,
and vehicles. We use a combination of mathematical and exhaustive search to establish its validity as a true
distance metric. We compare the K-Means algorithm using the proposed distance metric with five other
distance metrics for comparison. These metrics include the Euclidean, Manhattan, Canberra, Chi-squared,
and Clark distances. Simulation results depict the effectiveness of our proposed metric compared with the
other distance metrics in both one-dimensional and two-dimensional randomly generated datasets. In this
paper, we use three internal evaluation measures namely the Compactness, Sum of Squared Errors (SSE),
and Silhouette measures. These measures are used to study the proper number of clusters for each of the
K-Means algorithms and also select the best run among multiple centroid initializations. The elbow method
and the local maximum approach are used alongside the evaluation measures to select the optimal number
of clusters.

INDEX TERMS Canberra distance, chi-squared distance, clustering algorithm, distance metrics, Euclidean
distance, K-means algorithm, unsupervised learning.

I. INTRODUCTION
Clustering is an algorithm in unsupervised learning to clas-
sify data points into multiple groups based on points’
similarity. There are several clustering algorithms such as
K-means [1], K-medians [2], Mean-shift clustering [3],
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) [4]. K-means is the most widely used algorithm
for clustering.

K-means algorithm is used to classify points of a dataset
into K sub-groups, based on their similarities, in an itera-
tive approach. The K-means algorithm’s clustering results
depends on two factors, the initial centroid points and
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distance metric. The distance metric is the metric applied
to measure the distance between data points and cluster
centroids [5].

The choice of distance metric depends on the applica-
tion, dataset and the desired output. Datasets may con-
tain numerical or categorical values. For categorical data,
some researchers propose distance metrics to improve the
clustering algorithm’s performance [6] and [7]. On the
other hand, the Euclidean, Manhattan, Chebychev, Canberra,
Chi-Squared and some other distance metrics are used in
numerical data types.

A K-means algorithm with Euclidean distance as a met-
ric, sets the separation boundary between two adjacent clus-
ters, equidistant from the two centroids and form equal size
clusters. The Manhattan and Minkowski metrics, that can
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have equal size clustering results similar to the Euclidean
distance, have been evaluated in [5] and their performance
compared with the Euclidean distancemetric for the K-means
algorithm. These metrics are presented in the next section
with more details.

Creating unequal size clusters has been investigated in
some papers. In [8] the authors use the K-means clustering
algorithm and then by either merging or splitting the clusters,
formed unequal size clusters. They applied their proposed
clustering method in routing protocols of wireless sensor
networks for Internet of Things (IoT) applications. Unequal
length clustering for improved wind power prediction is stud-
ied in [9]. The Canberra distance proposed by Lance and
Williams in [10] is a common distance metric that can be
used in K-Means algorithm to form unequal size clusters. The
application of Canberra distance for clustering of different
databases is studied in [11].

Finding an appropriate distance metric for a K-means
algorithm to properly classify a dataset is challenging. Some
researchers have proposed the use of learning algorithms to
find the metric iteratively [1], [12], [13], [14], [15], [16].
In [12], Xing et al. propose a metric learning algorithm by
learning a scaling matrix. They use a training dataset to learn
similar sample relations and then find the coefficients of
their scaling matrix to re-arrange the dataset. This algorithm
separates the data points and reduces the data dimensions
if needed. Nguyen and De Baets in [1] propose a distance
metric learning method based on kernels in a non-linear
feature space. A learning method for semi-supervised clus-
tering using background information under prior knowledge
is proposed by Jing et al. in [13].
Although learning algorithms may find a proper distance

metric in some cases, they have some issues and limitations.
These algorithms need a training dataset to provide the algo-
rithm with similar and non-similar points. Then, they use
these training data to find the pattern and metric. Therefore,
they have a supervised learning phase to first determine the
metric. Providing a training dataset is not always a possible or
available option as there could be significant changes in the
input data characteristics. Moreover, learning imposes more
processing tasks that use up additional resources and could
increase the computational burden and time complexity.

Road users’ clustering has been investigated in some
papers to improve road efficiency, [14] and [15]. In [15],
authors cluster road users based on their speeds to predict
the traffic velocity more accurately. They use matrix fac-
torization of the observed speed matrix for user clustering
in space and time. In this study, their dataset consists of
the average velocity of 1190 road sections in Pittsburgh and
1091 segments in Washington, D.C. in five-minute intervals
for a month. Therefore, they only consider cars and cyclists,
not pedestrians and their average speed over a five-minute
time span, and not individual vehicles or bicycles separately.

In this paper, we propose a new distance metric to be used
in the K-Means algorithm to group numerical datasets with
unequal clusters. Unlike the K-Means with the Euclidean

metric which set the separate-boundary of two adjacent clus-
ters in the middle point of the imaginary direct line between
their cluster centroids, the K-Means with our new metric
sets the decision boundary towards the centroid closer to
the origin. In all the K-Means algorithms in this paper, the
centroid of each cluster is calculated using the arithmetic
means of the assigned data points in that cluster. Compared to
the Canberra metric, the proposed metric is computationally
more intensive because it has an extra square root in the
denominator. In terms of cluster sizes, our proposed metric’s
cluster areas get wider as the centroids get further away
from the origin compared with the Euclidean metric while
it is smaller than the Canberra metric. We use an exhaustive
search to demonstrate the validity of the proposed distance
metric. This metric can be used in autonomous vehicles’
wireless communication to distinguish low-velocity pedestri-
ans from fast-speed vehicles. Our main contributions are as
follows:

• Proposal of a new distance metric that can be used in
the K-Means clustering algorithm in applications such
as wireless networks and vehicular communications.

• Distance criterion has been investigated for the proposed
distance metric and proved as a valid metric.

• The performance of the proposed metric is investigated
and compared with similar metrics using generated
datasets and a model-based dataset through simulation.

• Investigation of three different evaluation measures for
selecting the appropriate number of clusters.

• Investigation of the Canberra, Clark, and Chi-Squared
metrics issues with opposite sign values.

The rest of this paper is organized as follows. Section II
presents the preliminary information about the K-Means
algorithm and different distance metrics used in this paper.
It also provides the basics of the three evaluation measures
including the Compactness, SSE, and the Silhouette crite-
rion. In Section III, the proposed distance metric is presented
and an investigation of the distance metric criterion is pro-
vided. Simulation results to compare the performance of our
proposed metrics and the Euclidean, Canberra, Manhattan,
Chi-squared, and Clark metrics are provided in Section IV.
Finally, the last section provides the conclusion of the paper.

A. NOTATIONS
X = {x1, x2, . . . , xI } denotes a data set of size I where each
component is of dimension N , that is, xi = {xi1 , xi2 , . . . , xiN }.
Also, let C = {µ1, µ2, . . . , µK } denote a set of K cluster
centroid positions where each centroid component value is of
dimension N , that is, µi = {µi1 , µi2 , . . . , µiN }. Ck is the k

th

cluster with Ik data points in it which is a subset of C .

II. PRELIMINARIES
Clustering and classification are both algorithms for grouping
similar points or objects. However, Classification is a super-
vised learning algorithm while clustering is an unsupervised
learning algorithm. Clustering algorithms are divided into
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five major groups named partitioning-based, hierarchical-
based, density-based, grid-based, and model-based meth-
ods. K-Means, K-Medoids, K-Modes, PAM, CLARANS,
CLARA, FCM, and CluStream are the main partitioning-
based algorithms.

K-MEANS
K-Means algorithm is a method for partitioning unlabelled
data points into K groups called clusters. This algorithm
consists of five steps that recursively searches for the local
optimum point for cluster centres also known as centroids as
listed below.

1) Select number of clusters K
2) initialize centroids
3) Distance calculation
4) point assignment
5) update centroid location

The number of clusters in some applications is predetermined
and the first step is already solved. However, in many other
applications, it is not fixed and a range of numbers is accept-
able for K . In these cases, using the clustering evaluation
metrics helps to find an efficient K based on the conditions
that are explained in the rest of this section.

After selecting the number of clusters, K centroids are
picked. There are multiple methods to select the start points
of centroids. These methods include randomly selecting
K points in an N dimensional space, randomly selecting
K data points from an input data set, or picking the K most
likely points for centroids and letting the algorithm adjust
them. The latter method applies in cases where there is knowl-
edge about the most expected starting point for centroids.
To avoid eliminating a cluster, these K points should not be
equal to each other at the initialization step. Since K-means
is a non-convex algorithm, it does not always guarantee the
optimal clusters. Therefore, it is recommended to initialize
the centroid points randomly, multiple times and run the algo-
rithm and then, select the best run according to the evaluation
metrics.

The K-Means algorithm uses a distance metric to calculate
the distance between each of the I input data points and each
of the K centroids and assign the ith point (xi) to the centroid
with minimum distance. The distance metric, in the majority
of the application, is the Euclidean distance and works fine.
However, in some applications, it is required to use a distance
metric that enhances the K-Means performance. The five
distance metrics that are used in this paper, are described in
this section.

After distance calculation between each data point and all
the centroids, the algorithm assigns each point to a cluster
with the minimum distance to its centroid. Hence, the selec-
tion of a proper distance metric plays an important role in
distance values, assignment of the points to each cluster, and
the overall size of each cluster.

The last step is updating the cluster centroids according
to the assigned data points in step four. In this step we find
the arithmetic mean of the assigned points and set it as the

updated centroid location. If there is insignificant difference
between all the centroids’ previous and new locations, the
algorithm has reached a stable condition. However, if there is
a significant difference between the last and updated location
of each centroid, the algorithm goes to step 3 and repeats the
process. So, the K-Means is a recursive algorithm that repeats
the last three steps till it converges to a stable condition.

A. DISTANCE METRICS
The most suitable distance metrics to compare our per-
formance with are the Euclidean, Manhattan, Canberra,
Chi-Squared, and Clark distances.

1) EUCLIDEAN
The Euclidean distance, also known as the Pythagorean dis-
tance, is a special case of the Minkowski distance with an
order of two (p = 2). The Euclidean distance between two N
dimensional points (x and y) is the square root of the sum of
squared errors in each dimension as presented in (1).

d(x, y) =

√√√√ N∑
n=1

(xn − yn)2 (1)

2) MANHATTAN
The Manhattan distance given in (2), is the sum of absolute
errors over all dimensions. It is known by many other names
such as taxicab, city block, or L1 distance.

d(x, y) =
N∑
n=1

|xn − yn| (2)

3) CANBERRA
This distance was first developed and modified by Lance and
Williams in 1966 and 1967 respectively without the absolute
values in the denominator. The current Canberra formula with
absolute values in the denominator was also presented in their
1967 paper and called it Adkins. However, in the literature,
the Canberra distance is defined as follows.

d(x, y) =
N∑
n=1

|xn − yn|
|xn| + |yn|

(3)

The Canberra distance has a problem with opposite sign
numbers along an axis (e.g., xn = |xn|, yn = −|yn|) and the
distance is always 1 over that dimension regardless of their
absolute values. Therefore, in an N dimensional space, for
any two points in opposite quarters with respect to the origin,
the distance isN . It also happens for a distance of any point to
the origin. Hence, the triangle inequality condition of a valid
distance is not satisfied for the Canberra distance and proves
that it is not a valid distance metric for opposite sign values.
This problem is further explained in Section IV.

4) CHI-SQUARED
The Chi-Squared distance or squared chi-Squared distance
is a distance metric that can form unequal size clusters.
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In this metric, the denominator slows down the increase in
the distance when the absolute values of x and y increase,
which results in uneven clustering when used in the K-Means
algorithm. This distance is defined as:

d(x, y) =
N∑
n=1

(xn − yn)2

xn + yn
(4)

The Chi-squared distance has an issue with two symmetric
points with respect to the origin and the distance go towards
infinity in these cases (x = −y+ ε). As a result, the triangle
inequality of a valid distance is not satisfied for opposite
signed values. Also, without an absolute value in the denomi-
nator, it violates the non-negative distance condition of a valid
distance.

5) CLARK
The Clark distance or the coefficient of divergence is the
square root of the sum of separate squared terms in Canberra
distance. In other words, it is the square root of the sum of
squared normalized errors over all dimensions as illustrated
in (5) according to [17].

d(x, y) =

√√√√ N∑
n=1

(
xn − yn
|xn| + |yn|

)2 (5)

Since each term of the Clark distance is the square of the
equivalent term of the Canberra distance, it has the same
issues as the Canberra distance.

B. EVALUATION MEASURES
In clustering algorithms such as the K-Means, mostly the
centroids are initialized randomly and on each run, the clus-
tering can end up with a different local optimum. To compare
the performance of an algorithm in various initializations
or to compare multiple algorithms’ proficiency, evaluation
measures are used. Compactness, Sum of Squared Errors
(SSE), and Silhouette are the internal measures methods that
are used in this paper to evaluate the results.

In many applications and datasets, the best choice of the
number of clusters is not easy to guess. Local maximum,
local minimum, and the elbow method are the rules to select
the number of clusters but each of them works for a set
of evaluation measures. The elbow method is used with the
compactness and the SSEmeasures while the local maximum
is used for the Silhouette to find the proper number of clusters.
In this paper, we use the elbow method and the local maxi-
mum to investigate the appropriate number of clusters for our
dataset.

1) COMPACTNESS
Compactness or cluster cohesion defined in (6), is a measure
that relies only on input variables without labels.

CMP =
1
K

K∑
k=1

Ik∑
i=1
xi∈Ck

d(xi, µk )
Ik

(6)

In (6), µk is the centroid location of the k th cluster (Ck )
and Ik is the number of points in Ck . The ultimate goal of the
clustering algorithm is to minimize the compactness value by
selecting the best location for the centroids.

2) SUM OF SQUARED ERRORS (SSE)
SSE is another evaluation measure that is similar to the com-
pactness but instead of the averages, it adds up the squared
distances. It should be noted that to keep the fairness among
K-Means with various distance metrics, we use the same
distance metric to measure the error accordingly.

SSE =
K∑
k=1

Ik∑
i=1
xi∈Ck

d2(xi, µk ) (7)

Similar to the compactness measure, in the clustering algo-
rithm that uses the SSE measure, the target is the minimum
value of SSE by selecting the optimal centroid locations.

3) SILHOUETTE
Silhouette is ameasure used to evaluate the integrity and qual-
ity of the clusters. The Silhouette equations are summarized
in (8)-(11).

SIL = mean(SIL(xi)) i = 1, 2, . . . , I (8)

SIL(xi) =
b(xi)− a(xi)

max {a(xi), b(xi)}
(9)

a(xi) =

∑Ik
j=1,j6=i d(xi, xj)

Ik − 1
(10)

b(xi) = min
1≤k ′≤K ,k ′ 6=k

{

∑Ik′
j=1,j6=i d(xi, xj)

Ik ′
} (11)

In (8), I =
∑

k Ik is the total number data points in
the dataset and Ik in (10), is the number of points in k th

cluster that xi exists. Also, Ik ′ is the number of data points
in k ′-th cluster to which xi is not assigned. According to (9),
the Silhouette measure calculates I values. Therefore, it is
difficult to compare two clustering algorithmswith Silhouette
measure while we have I values for each of them. In this paper
to have a single value for silhouette measure to compare the
different distance metrics, we use the average of silhouette
values of all the points according to (8).

III. PROPOSED DISTANCE METRIC
The proposed distance metric is the sum of absolute values of
the difference between two points divided by the square root
of the summation of their absolute values in each dimension
as shown in (12). This metric is obtained by adding a square
root in the denominator of each term in the Canberra distance,
which solves the issue of the Canberra distance as explained
before. Moreover, the proposed distance metric does not
have the issues of the Clark and Chi-Squared distances as
explained above. The addition of the square root also deceler-
ates the increase of the denominator while the numerator has
not changed. Therefore, the distance in our metric is bigger
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than the Canberra when the absolute value of the sum of
points is larger than one (|xin | + |µkn | ≥ 1). As a result,
clusters’ region of the K-Means with our metric are wider
than clusters with the Canberra distance for clusters close to
the origin.

Jik (xi, µk) =
N∑
n=1

∣∣xin − µkn ∣∣√
|xin | + |µkn |

(12)

The metric for one dimension is shown in (13).

d(x, y) =
|x − y|
√
|x| + |y|

∀ x, y 6= 0 (13)

Theorem 1: Equation (13) is a distance metric if on a given
set S, a function d , maps S × S → R, where R denotes
the set of real numbers. Also, d must satisfy the following
conditions:
• d (x, y) ≥ 0
• d (x, y) = 0 if and only if x = y
• Symmetric: d (x, y) = d (y, x)
• Triangle inequality: d (x, z) ≤ d (x, y)+ d (y, z)
In this paper, we consider x and y to be real numbers.

However, both of them cannot be zero at the same time {x, y ∈
S = R|x, y 6= 0}.

The mapping space from S to real numbers and proofs for
the first three conditions of a distance metric are provided in
Appendix V. Validity of the triangle inequality is investigated
below using a Brute-force algorithm.

A. TRIANGLE INEQUALITY
To prove the triangle inequality, we need to show that
d(x, z) ≤ d(x, y) + d(y, z) is true. However, the square root
in this distance metric, makes direct mathematical solution
tremendously difficult. Hence, we use an exhaustive search
approach to validate the triangle inequality through simula-
tions. We compute d(x, y) for all values of x and y qeuerated.
The distance between two corresponding values of x and y on
x-axis and y-axis is depicted along z-axis in Figure 1.
As expected, this distance metric is symmetrical with

respect to the x = y line which also confirms the third condi-
tion in Theorem 1 as we provided in Lemma 4 of Appendix V.
The distance values are always greater or equal to zero as
in the first condition of Theorem 1 and in accordance with
Lemma 2 of Appendix V. The most important feature is its
behaviour with increasing x and y. The growth rate of this
distance decreases with increasing x and y. Accordingly, the
edge of the plane bends downwards on the far right and far
left of Figure 1 which means less distance for larger numbers
compared to the Euclidean distance.

This characteristic can be used to confine the cluster size
for clusters closer to the origin. To clarify this feature, con-
sider a point with equal Euclidean-distance from two cen-
troids where one centroid is closer to the origin and the other
one is further away. With the Euclidean distance metric, this
data point can be assigned to each of these two clusters.
While, with our distance metric in (12), for a centroid closer

FIGURE 1. Distance between x and y according to the proposed distance
metric-II.

FIGURE 2. 4D plot of triangle inequality for the proposed metric with
three one-dimensional points x , y , and z . The color shows the value of
d (x, y )+ d (y, z)− d (x, z).

to the origin, the denominator is smaller as the value of µkn
is smaller. Hence, the distance between the data point and the
cluster closer to the origin is bigger than the other cluster,
so the data point will be assigned to the cluster further away
from the origin. Therefore, the cluster away from the origin
covers wider area than the closer one.

In Figure 2, the difference between the sum of two arbitrary
sides of an x-y-z triangle and the third side according to
the (14), based on the triangle inequality, is illustrated for
one million random points of x, y, and z. Without loss of
generality, each of x, y, and z points are randomly selected
in a range of −1000 to 1000 (x, y, z ∈ [−1000, 1000]). This
range can be generalized to any arbitrary ranges without neg-
atively impacting the validity of triangle inequality as proved
in Appendix V. Figure 2 also shows the values of (14) in
color where the darker color indicates smaller values. As the
colorbar on the right side of Figure 2 shows, there is no single
point with a negative difference in (14). This means that the
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FIGURE 3. 4D plot of triangle sides difference for three one-dimensional
points provided it is less than 0.1.

triangle inequality is always valid for the proposed metric.

d (x, y)+ d (y, z)− d (x, z) (14)

To further investigate the validity of the triangle inequality,
we focus only on areas in Figure 2 that have very small values.
Using the same concept as in Figure 2, we generate a 4D plot
where the values of (14) are constrained to an upper limit
of 0.1. This time, to increase the sample space, we generated
five million random numbers and only displayed results that
are less than 0.1 (close to zero) and the result shown in
Figure 3. Based on the proposed distance metric in (12) and
Figure 3, near zero values of (14) are around two hyperplanes
and small areas around their intersection. These two hyper-
planes are x = y and y = z.
We use Algorithm 1 for a broader range of numbers in

the above mentioned low difference areas in Figure 3. This
algorithm helps to further investigate the validity of the tri-
angle inequality for the proposed metric. To avoid unnec-
essary searches and increase the accuracy, this algorithm
only focuses on near zero areas described above and visually
investigated in Figure 3 with higher resolution.

Algorithm 1 Triangle Inequality Test Algorithm

for _ in range(1e9): do
x = rand(−1e8, 1e8);
if randn() > 0 then

y = randn() ∗ x ∗ 0.01+ x;
z = rand(−1e8, 1e8);

else
y = rand(−1e8, 1e8);
z = randn() ∗ y ∗ 0.01+ y;

end
if d(x, y)+ d(y, z) >= d(x, z) then

Continue;
else

print(‘‘Error ′′);
break;

end
end

In Algorithm 1, in the main for-loop, one billion data
points, uniformly distributed, are generated for x. Then, y
and z random values based on x around one of the two
planes of x = y and y = z are generated. This algorithm
also covers the areas around the intersection of these two
planes that could have small distance differences. Finally,
this algorithm checks the triangle inequality for each set of
points. If a set (x, y, z) of points exists that does not satisfy
the triangle inequality, the algorithm prints an error message
and breaks the loop. Implementation of Algorithm 1 using
Python programming language proved the triangle inequality
for the proposed distance metric with no error returned.

Since the proposedmetric satisfies the distance criteria pre-
sented in Theorem 1, using this metric in K-Means algorithm
with deterministic point assignment guarantees the conver-
gence of the algorithm.

IV. SIMULATION RESULTS FOR CLUSTERING
In this section, we compare the clustering results of the
K-means algorithm using our proposed metric and other
metrics such as the Euclidean, Manhattan, Canberra, Chi-
Squared, and the Clark metrics on various datasets represent-
ing the road users of a cellular network. Also, we evaluate
the clustering validity using three different internal cluster-
ing evaluation measures for all the distance metrics. These
evaluation measures are Compactness, Sum of squared error,
and Silhouette as explained in section II.

Since these metrics’ performance on clustering a dataset
are tightly similar to each other, using a real dataset can
not reveal and illustrate the differences very well. Moreover,
to the best of our knowledge, there is no dataset in our
targeted application that consists of all pedestrians, bicycles,
and cars of different velocities on a road and it is not pos-
sible for authors to collect such a dataset. Therefore, let us
first assume that speeds of cars, cyclists and pedestrians can
all be modelled as uniformly distributed random numbers.
We then generate a dataset with 10, 000 data points that are
uniformly distributed in a range of [−100, 100] to represent
road users’ speeds (in Km/h) on a two-way road in a very
busy condition. The positive range represents one direction
of movement (e.g., from left to right) and the negative range
represents the opposite direction (e.g., from right to left). The
10, 000 points are generated to span, without gaps, the entire
range [−100, 100]. It is difficult to find a road that has large
number of cars with speeds up to 100 Km/h, cyclists with a
wide range of speeds, and a big group of people moving at
various speeds in both directions of the road while the entire
dataset follow the uniform distribution. However, we shall use
such a scenario to test how the various metrics can cluster
these speeds.

One objective is to cluster into three groups (K = 3) with
lower speed users, such as pedestrians, low speed cyclists, and
stationary/slow cars, in any direction into one cluster while
higher speed users, such as fast driving cars and cyclists,
in opposite directions are clustered into two separate clusters.
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The second objective is to cluster into four groups (K = 4)
where slowmoving users such as pedestrians, stationary/slow
cars, and slow cyclists in opposite directions are clustered into
two separate clusters while fast moving objects, including
cars and cyclist, in opposite directions are clustered into two
separate clusters.

Figures 4 and 5 illustrate clustering results of the K-means
algorithm using six different distance metrics that cluster the
dataset into three and four clusters respectively. The clusters
are represented by the colors red, green, blue, and cyan.
In Figure 4, blue represents the cluster of points representing
high-speed users in one direction while red represents the
cluster of points for high-speed users in the opposite direc-
tion. Green represents the cluster of points for slow moving
objects. The centroid of each cluster is indicated with a black
vertical mark in the middle of each cluster. In Figure 5, cyan
represents the cluster of points representing high speed users
in one direction while red represents the cluster of points for
high speed users in the opposite direction. Blue represents
the cluster of points for slow moving objects in one direction
while green represents slow moving objects in the opposite
direction.

For the 3-cluster case in Figure 4, the proposed distance
(Figure 4-a), the Euclidean distance (Figure 4-b) and the
Manhattan distance (Figure 4-d) produce the desired clus-
ters, i.e., a cluster for both direction of slow moving objects
(the green cluster) and two clusters for high speed users
in each direction (the red and blue clusters). The Can-
berra (Figure 4-c), the Chi-Square (Figure 4-e) and the Clark
(Figure 4-f) metrics combine both slow moving and fast
moving cars, in the positive direction, into one cluster (the
blue), which is not as explained above. On the opposite side,
the red clusters of these threemetrics, cover high speed cars as
is desired while the green clusters are not acceptable because
they only cover part of slow-moving users.

Figure 5 shows the clustering results for the 4-cluster case,
as an only simulation with an even number of clusters in this
paper, to have a reference for all six metrics’ performances
for even number of clusters. In this figure, all the metrics
produce two clusters in positive values of X and two clusters
for negative values of X as desired. The Canberra and Clark
distances in Figures 5-c and 5-f respectively, have the smallest
clusters around the origin for low speed users (the green
and blue clusters). Whereas, the Euclidean and Manhattan
distances (Figures 5-b and 5-d) have largest clusters in the
middle. The proposed and the Chi-Squared distances’ clusters
for low speed users (in Figures 5-a and 5-e) are smaller than
the Euclidean and Manhattan distances and larger then the
Canberra and Clark distances. However, to separate slow-
moving road users such as pedestrians from fast-moving
objects like cars, an even number of clusters is not desirable
as we need all pedestrians in one group. A pedestrian can stop
or change direction at any moment and it is better to just put
them all in one group.

The cluster widths for all metrics are, however, different
in Figures 4 and 5. The proposed distance, Euclidean, and

FIGURE 4. One-dimensional data clustering using K-Means algorithm for
three clusters.

FIGURE 5. One-dimensional data clustering using K-Means algorithm for
four clusters.

Manhattan metrics are only metrics that have desired results
in both cases of an even and odd number of clusters. The pro-
posed metric produces smaller cluster around zero compared
with the other two metrics, which works well for applications
such as separating low speed users from high speed users. The
Euclidean and the Manhattan metrics produce wider clusters.
The Canberra and the Clark metrics’ clusters are shifted
considerably to one side with respect to the origin (for odd
number of clusters like in Figure 4) because of these metrics’
issue along any dimension in cases of either two points with
opposite signs or one point equal to zero and another point
taking on any other value. The problem with the Chi-Squared
metric in Figure 4-e, is also with negative numbers, which for
two points that have very close absolute values but different
signs (x = −y + ε), the distance tends towards infinity
and results improper clustering. The Chi-Squared metric has
another problem with negative numbers that can results in
negative distances, which happens if the denominator is less
than zero. For the simulations in this paper, we modified
the Chi-Squared metric by using the absolute value in the
denominator.

To better compare the clustering results of the K-Means
algorithmwith the proposed distancemetric and the other five
distance metrics, we generate a dataset, based on real models
of road users velocities investigated in the literature. This
dataset represent a short section of a road with 500 cellular
users in total which include pedestrians, cyclists, and cars.
Based on [18], human walking speed on a sidewalk follows
the normal distribution with mean values of 4.5 and 4.9 Km/h
and standard deviations of 1.5 and 0.75 Km/h in two different
sidewalks with different conditions. Therefore, we generate
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FIGURE 6. K-Means clustering of six metrics for three clusters.

FIGURE 7. K-Means clustering of six metrics for five clusters.

three groups of pedestrians with normal distribution (con-
sidering users that are not walking dedicatedly in a specific
direction) with mean values of 0.0, 4.5 and -4.9 Km/h and
standard deviations of 1.5, 0.75 and 0.68 Km/h respectively.
Two of these three groups are for pedestrians walking in each
direction of the road on sidewalks and the third group is for
people that are standing still or shopping. For cyclists, we use
models proposed in [19], [20] and we generate two groups of
data points for each direction of the road with normal distri-
bution and mean values of 19.3 and -19.8 Km/h and standard
deviations of 3.16 and 2.45 Km/h respectively. Based on the
model proposed in [21], cars velocity also follows normal
distribution. So for cars, we generate two groups of data
points with a normal distribution and mean value of 50 and -
55 Km/h and standard deviation of 5 Km/h. Therefore, the
dataset is created by merging the above mentioned seven
groups of data points together where each group has one-
seventh portion of the total 500 users (almost 71 users in each
group).

The objective is to separate and group users on the road
into three and five clusters. For three clusters (K = 3), the
objective is to group fast-moving users (cars and cyclists)
in opposite directions into two separate clusters while slow-
moving users (pedestrians) in either direction are combined
into one cluster. For five clusters (K = 5), the objective is
to group cars in opposite directions into two separate clus-
ters, cyclists in opposite directions into two separate clusters,
and pedestrians in any direction into one cluster. This ideal
clustering (the benchmark) is illustrated in Figure 6-g and

FIGURE 8. Clustering evaluation using Compactness method for K-Means
with six different metrics.

Figure 7-g for three and five clusters, respectively. We notice
that there are gaps between clusters in the generated dataset
and accordingly in the ideal results of the benchmark. This
is a result of the relatively small number of data points in
the generated dataset (500 users in total, that is, about 71 in
each group) that does not cover all speeds. However, if we
generated a considerably large number of data points, the
gaps between clusters will be filled.

The clustering results for the model-based dataset are
shown in Figure 6 for three clusters and in Figure 7 for
five clusters. In these simulations, we randomly initialize
the centroids for 50 times and select the best initializa-
tion based on the compactness evaluation measure. The
K-Means clustering results with the proposed distance metric
in Figures 6-a and the chi-squared metric in Figure 6-e are
accurate results and are the closest to the ideal results. The
Euclidean-based and Manhattan-based clustering, shown in
Figure 6-b and 6-d, combine the cyclists and pedestrians into
one cluster and cars in opposite directions into two separate
clusters, which is not the goal. Also, these two metrics group
part of the cyclists with the cars in the positive direction (the
small blue section attached to the right of the green group in
Figures 6-b and 6-d) that is not desirable andmakes problems.
The clustering results for the Canberra and Clark distances
in Figure 6-c and 6-f are also not desirable because of the
misclustered points around the origin.

In Figure 7 the clustering results for five clusters (K = 5) is
presented and the clustering results of the proposed distance,
Euclidean, and Manhattan metrics are the closest to the ideal
results. All three distancemetrics provide the desired clusters.
The Canberra and the Clark distance metrics have similar
clustering results. They both provide incorrect clustering
results for cyclists (shown in red) and pedestrians (shown
in green) in the negative direction. The clustering result of
the Chi-Squared distance is also incorrect for low speed
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FIGURE 9. Clustering evaluation using SSE method for K-Means with six
different metrics.

FIGURE 10. Clustering evaluation using Silhouette method for K-Means
with six different metrics.

users and it is not desirable. The above simulation results
and analyses confirm that the proposed distance metric can
improve the K-Means clustering performance in applications
with unequal cluster sizes like the road users’ example.

In Section II, the basics of evaluation measure and their
equations along with their applications were explained.
In Figures 8-10 we use these measures to investigate the
proper number of clusters for each of the six K-Means algo-
rithms. In these figures, the horizontal axis shows the number
of clusters K and the vertical axis is the evaluation measure
value. To generate these figures, we simulated 10,000 data
points according to the models used in Figures 6 and 7. The
number of initializations varies between 100 and 400 times
linearly changing for different K values (100 initializations
for two clusters that linearly increases to 400 initializations

FIGURE 11. Two-dimensional data clustering benchmarks for five and six
clusters.

for ten clusters). We also average the evaluation value over
the best six percent results for each number of clusters.

Figure 8 shows the compactness evaluation measure values
for K-Means clustering with six different distance metrics
including our proposed metric for a range of K from 2 to
10 clusters. Using the elbow method we can select the proper
number of clusters in each clustering algorithm in Figure 8.
In these figures, it is hard to find the elbow point because
the input data points are close to each other and it is difficult
to confidently select one value for the number of clusters K .
However, these figures are still useful to have an idea about
the proper value for K in each the clustering algorithms.

In Figure 8-a which is the evaluation result of the K-Means
with the proposed metric, five clusters can be considered
as the elbow point which satisfies the requirement of an
odd number of clusters. In K-Means with the Euclidean and
Manhattan distances in Figures 8-b and 8-d, three clusters is
a choice based on the graph but it still has a high evaluation
measure value with respect to the subsequent number of
clusters. For the Canberra, Chi-Squared, and Clark distances
in Figures 8-c, 8-e, and 8-f, four and six clusters are the two
elbow points. As was expected, their measures for an odd
number of clusters are relatively high and these two metrics
are not appropriate for these conditions.

Figure 9 shows the clustering evaluation results using the
SSE for the six K-Means algorithms in a range of two to
ten clusters. Using the SSE measure, the results are slightly
different from the compactness method. For clustering with
the proposed distance in Figure 9-a, the elbow point could
be either three or six but also four and five also could be
other good choices as the graph is almost linear between
three and six. For the chi-squared in Figure 9-e the elbow
point is three. The elbow for the Euclidean and theManhattan
distances is four in Figures 9-b and 9-d, whereas for the
Canberra and the Clark distances it could be considered as
six in Figures 9-c and 9-f.

Figure 10 illustrates the Silhouette measure results for the
K-Means algorithms in a wide range of clusters from two
up to ten clusters. As explained above, for the Silhouette
measure, the maximum point in the graph shows the proper
number of clusters for that dataset. The maximum point in
Figure 10-a occurs at three clusters and it shows that the
Silhouette measure is a proper measure for cases where a
low number of clusters are needed. In Figures 10-b and 10-d
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FIGURE 12. Two-dimensional data clustering using K-Means algorithm
for five clusters.

FIGURE 13. Two-dimensional data clustering using K-Means algorithm
for six clusters.

for K-Means with the Euclidean and Manhattan distances
the maximum happens at both three and seven clusters. The
proper number of clusters based on the Silhouette measure
for the Canberra and Clark-based clustering is four and for
the K-Means with the Chi-squared distance it has a few local
maxima but no global maximum.

To evaluate the clustering performance of the proposed
metric in a dataset with more than one dimension and com-
pare the results with the other five metrics, we generate
two two-dimensional datasets. For the first two-dimensional

dataset, we generate 10,000 data points in five equal num-
bered groups (2000 in each group). One of these five groups
is centred on the origin and the other four groups are almost
along the X- and Y-axis and nearly 50 units (the blue group
is five-unit deviated from the Y-axis) away from the origin
(in both directions of positive and negative). For the second
dataset, we also generated 10,000 data points in six groups
with an equal number of points in each group. Two of these
groups are alongside the X-axis and only 10 units away from
the origin. The other four groups, similar to the first two-
dimensional dataset, are along the X- and Y-axis with dis-
tances of 50 units away from the origin. Each of these groups
is generated by two independent normal distributions for each
dimension and put together to form a two-dimensional space.
The standard deviations are 3 and 8 units for the middle and
edge groups, respectively. These dimensions (X and Y axis)
could represent the velocities and scaled accelerations of
wireless users in our considered application in connected
autonomous industry. The benchmark for two-dimensional
dataset with five clusters is to have one small cluster around
the origin and four other larger cluster around the middle
cluster as shown in Figure 11-a. For the six-cluster dataset,
the goal is to have two small clusters close to the origin
with center points in (−10, 0) and (10, 0) and four larger
clusters around them, similar to the benchmark diagram in
Figure 11-b. The benchmarks in Figure 11 are generated
based on the current datasets but if the the dataset generator
is run for a significantly large number of times, it will fill the
gaps between each two groups.

The clustering results of the two-dimensional datasets for
five and six clusters are shown in Figures 12 and 13 respec-
tively. In these figures different colors represent different
clusters. For five clusters, the K-Means with the proposed
distance metric in Figure 12-a clusters exactly according
to the benchmark. The clustering results of the Euclidean
distance in Figures 12-b and the Manhattan distance in 12-d
have slightly different clustering results compared with the
benchmark as there are some red marks close to the side
clusters. The Canberra, Chi-Squared and Clark distances in
Figures 12-c, 12-e and 12-f have problems for clustering
around the origin and along the axis as described before. As a
result, the middle group of the data points are clustered in
different clusters and havemore than one color instead of only
red color which is not desirable.

The clustering results for the K-Means algorithm with
different distance metrics and six clusters are shown in
Figure 13. The proposed metric in Figure 13-a have the
closest results to the benchmark and only four points (three
red points and one yellow point) are misclustered. The
clustering result for the K-Means with the Euclidean and
Manhattan distances are shown in Figures 13-b and 13-d
respectively. Similar to the clustering results for five clusters,
there are some red and yellow color points close to other
clusters around the central clusters (green, cyan, and purple
clusters) that are not expected according to the benchmark
in Figure 11-b and these two metrics have slightly lower
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performance compared to the proposedmetric. The Canberra,
Chi-Squared, and the Clark metric in Figures 13-c, 13-e,
and 13-f have very different results compared to the bench-
mark in Figure 11-b. The issue of Canberra and Clark dis-
tances with two points with opposite signs caused two color
results for each groups around the origin and mixed colors
on the middle clusters. The Chi-Squared distance also has
a problem with two points with different signs while their
absolute values are very close to each other (x = −y+ε) that
cause very large distances as explained before. As a result of
this problem, the clustering result of the Chi-Squared distance
in Figure 13-e is not desirable.

Simulation results of this section show that the proposed
distance metric works well in forming unequal clusters that
can be used in autonomous industry and any other indus-
tries with similar requirement. In this section, we used both
one-dimensional and two-dimensional datasets (in total four
datasets) to compare the clustering results of the K-Means
algorithm with the proposed metric with the K-Means with
five other metrics. In these simulations, one dimension rep-
resents the road users velocities and the second dimension is
equivalent to the scaled acceleration of these users. Since the
proposed metric has special application in forming unequal
clusters, it is not expected to outperform other metrics on
every multi-features dataset. However, it can be applied to
higher dimensions in applications that require unequal clus-
ters specifically with both positive and negative values as
some distance metrics have fundamental issues in these cases
as discussed in this paper.

V. CONCLUSION
In this paper, we have presented a new distance metric that
can be used with the K-means clustering algorithm. Our met-
ric generates unequal cluster sizes with smaller clusters closer
to the origin and larger clusters for clusters’ centroids farther
away from the origin compared to the Euclidean distance.
We used both a mathematical prove and exhaustive search to
prove the validity of the proposed distancemetric.We showed
that the Canberra, Clark, and Chi-Squared distances violate
some distance metric criterion in case of negative values
which makes them invalid distances in this case. We com-
pared theK-means algorithm’s results with our proposedmet-
ric and five other metrics including the Euclidean,Manhattan,
Canberra, Chi-Squared, and Clark distance metrics in both
one- and two-dimensional datasets. The proper number of
clusters was also investigated with three evaluation measures
named Compactness, Sum of squared errors (SSE), and Sil-
houette measures. Simulation results show the effectiveness
of the proposed metric in applications with non-linear dis-
tance requirements such as clustering datasets with unequal
size cluster in wireless and autonomous networks application.

APPENDIX A
VALID DISTANCE METRIC CRITERIA INVESTIGATION
In this section, we provide the mathematical proof on
valid distance criterions (including the function space,

non-negative condition, coincidence condition, and symme-
try condition) for the proposed distance.
Lemma 1: Function space.
In this lemma, we prove the function space mapping

between inputs and an output of the proposed distance. Based
on the first assumption in Theorem 1 in Section III, both
x and y are real numbers. Therefore, the absolute value of
their differences (the numerator) is always a real number. The
denominator is also a real number as the sum of the sum of
the absolute values of x and y are always greater than zero.
Hence, the output of the proposed distance metric is always a
real number.

x, y ∈ R ⇒ |x − y| ∈ R,
√
|x| + |y| ∈ R

⇒ d(x, y) ∈ R (15)

Lemma 2: Non-negative condition.
The numerator of the proposed distance metric is always

greater or equal to zero and the denominator is always greater
than zero. Therefore, the distance can not be negative for any
case.

x, y ∈ R ⇒ |x − y| ≥ 0,
√
|x| + |y| > 0

⇒ d(x, y) ≥ 0 (16)

Lemma 3: Coincidence condition.
A valid distance metric can be zero only and only if two

points are at the same location and have equal values. In our
distance metric, the result is zero only and only if the numer-
ator is zero and that only happens if x is equal to y which
proves the third condition of a valid distance metric.

d(x, y) = 0 ⇔ |x − y| = 0

⇒ x − y = 0 ⇒ x = y (17)

Lemma 4: Symmetry condition.
According to the symmetry condition, there should not be

any priority and order in metric input points. In other words,
the distance between x and y must be equal to the distance
between y and x. In (18), we prove the symmetry condition
of the proposed distance metric.

d(x, y) =
|x − y|
√
|x| + |y|

=
|−(y− x)|
√
|y| + |x|

d(y, x) =
|y− x|
√
|y| + |x|

=
|−(y− x)|
√
|y| + |x|

⇒ d(x, y) = d(y, x) (18)

APPENDIX B
TRIANGLE INEQUALITY SIMULATION SCALING
To show that scaling does not affect the triangle inequality and
that Figure 2 can be generalized to any arbitrary large area,
we use a scaling factor A. Assume A is a positive arbitrary
real number and used as scaler for x, y, and z points. Based
on (20), although our simulations are limited to the range of
−1000 to 1000, it can be scaled to the entire space (A→∞)
and still stay valid.

d(Ax,Ay) =
|Ax − Ay|
√
|Ax| + |Ay|
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=
|A(x − y)|
√
A(|x| + |y|)

=
A|x − y|

√
A×
√
|x| + |y|

d(Ax,Ay) =
√
Ad(x, y) (19)

According to (19), the distance between scaled x (Ax) and
scaled y (Ay) is linearly related to the distance between x and
y with scale factor of

√
A. Therefore, scaling has no impact

on triangle inequality.

d(Ax,Ay)+ d(Ay,Az) ≥ d(Ax,Az)
√
Ad(x, y)+

√
Ad(y, z) ≥

√
Ad(x, z)

d(x, y)+ d(y, z) ≥ d(x, z) (20)

Simulations in Figures 2 and 3 plus implementation of the
Algorithm 1 in Section III, covered millions of random com-
binations of x, y, and z in range of −1000 to 1000 and
we proved that it can be scaled to any desired large region.
It should be noted that in case of arbitrary scales for each point
such as A1x, A2y, and A3z, we can use A = max(A1,A2,A3)
and it covers different scales on each dimension.

REFERENCES
[1] B. Nguyen and B. De Baets, ‘‘Kernel-based distance metric learning for

supervised k-means clustering,’’ IEEE Trans. Neural Netw. Learn. Syst.,
vol. 30, no. 10, pp. 3084–3095, Oct. 2019.

[2] Y. K. Rupesh, P. Behnam, G. R. Pandla, M. Miryala, and M. N. Bojnordi,
‘‘Accelerating k-medians clustering using a novel 4T-4R RRAM cell,’’
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 26, no. 12,
pp. 2709–2722, Dec. 2018.

[3] S. Zhang, Y. Wang, P. Wan, J. Zhuang, Y. Zhang, and Y. Li, ‘‘Clustering
algorithm-based data fusion scheme for robust cooperative spectrum sens-
ing,’’ IEEE Access, vol. 8, pp. 5777–5786, 2020.

[4] A. Bryant and K. Cios, ‘‘RNN-DBSCAN: A density-based clustering
algorithm using reverse nearest neighbor density estimates,’’ IEEE Trans.
Knowl. Data Eng., vol. 30, no. 6, pp. 1109–1121, Jun. 2018.

[5] A. Singh, A. Yadav, and A. Rana, ‘‘K -means with three different distance
metrics,’’ Int. J. Comput. Appl., vol. 67, no. 10, pp. 13–17, Apr. 2013.

[6] H. Jia, Y.-M. Cheung, and J. Liu, ‘‘A new distance metric for unsupervised
learning of categorical data,’’ IEEE Trans. Neural Netw. Learn. Syst.,
vol. 27, no. 5, pp. 1065–1079, May 2016.

[7] Y. Zhang, Y.-M. Cheung, and K. C. Tan, ‘‘A unified entropy-based distance
metric for ordinal-and-nominal-attribute data clustering,’’ IEEE Trans.
Neural Netw. Learn. Syst., vol. 31, no. 1, pp. 39–52, Jan. 2020.

[8] X. Feng, J. Zhang, C. Ren, and T. Guan, ‘‘An unequal clustering algorithm
concerned with time-delay for Internet of Things,’’ IEEE Access, vol. 6,
pp. 33895–33909, 2018.

[9] G. Wang and L. Jia, ‘‘Short-term wind power forecasting based on
BOMLS K -means similar hours clustering method,’’ in Proc. IEEE PES
Asia–Pacific Power Energy Eng. Conf. (APPEEC), Dec. 2019, pp. 1–5.

[10] G. N. Lance and W. T. Williams, ‘‘Mixed-data classificatory programs I.
Agglomerative systems,’’ Austral. Comput. J., vol. 1, no. 1, pp. 15–20,
1967.

[11] F. A. Sebayang, M. S. Lydia, and B. B. Nasution, ‘‘Optimization on purity
K -means using variant distance measure,’’ in Proc. 3rd Int. Conf. Mech.,
Electron., Comput., Ind. Technol. (MECnIT), Jun. 2020, pp. 143–147.

[12] E. Xing, A. Y. Ng, M. Jordan, S. J. Russell, S. Oyama, and K. Tanaka,
‘‘Distance metric learning with application to clustering with side-
information,’’ in Proc. 15th Int. Conf. Neural Inf. Process. Syst. (NIPS),
2002, pp. 521–528.

[13] X. Jing, Z. Yan, Y. Shen, W. Pedrycz, and J. Yang, ‘‘A group-based dis-
tance learning method for semisupervised fuzzy clustering,’’ IEEE Trans.
Cybern., vol. 52, no. 5, pp. 3083–3096, May 2022.

[14] J. Erman,M.Arlitt, andA.Mahanti, ‘‘Traffic classification using clustering
algorithms,’’ inProc. SIGCOMMWorkshopMining Netw. Data (MineNet),
vol. 1, 2006, pp. 281–286.

[15] T. V. Le, R. Oentaryo, S. Liu, and H. C. Lau, ‘‘Local Gaussian processes
for efficient fine-grained traffic speed prediction,’’ IEEE Trans. Big Data,
vol. 3, no. 2, pp. 194–207, Jun. 2017.

[16] M. Dong, Y. Wang, X. Yang, and J.-H. Xue, ‘‘Learning local metrics and
influential regions for classification,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 42, no. 6, pp. 1522–1529, Jun. 2020.

[17] H. A. A. Alfeilat, A. B. Hassanat, O. Lasassmeh, A. S. Tarawneh,
M. B. Alhasanat, H. S. E. Salman, and V. S. Prasath, ‘‘Effects of distance
measure choice on K -nearest neighbor classifier performance: A review,’’
Big Data, vol. 7, no. 4, pp. 221–248, Dec. 2019.

[18] S. Chandra and A. K. Bharti, ‘‘Speed distribution curves for pedestri-
ans during walking and crossing,’’ Proc. Social Behav. Sci., vol. 104,
pp. 660–667, Dec. 2013.

[19] J. Dill and J. Gliebe, ‘‘Understanding and measuring bicycling behavior:
A focus on travel time and route choice,’’ Oregon Transp. Res. Educ.
Consortium (OTREC), Urban Stud. Planning Fac. Publications Presen-
tations, Portland, OR, USA, Final Rep. OTREC-RR-08-03, Dec. 2008.
[Online]. Available: https://pdxscholar.library.pdx.edu/usp_fac/28/, doi:
10.15760/trec.151.

[20] S. Bernardi and F. Rupi, ‘‘An analysis of bicycle travel speed and distur-
bances on off-street and on-street facilities,’’ Transp. Res. Proc., vol. 5,
pp. 82–94, Jan. 2015.

[21] M. Hou, K. Mahadevan, S. Somanath, E. Sharlin, and L. Oehlberg,
‘‘Autonomous vehicle-cyclist interaction: Peril and promise,’’ in Proc. CHI
Conf. Hum. Factors Comput. Syst., Apr. 2020, pp. 1–12.

MOSTAFA RAEISI received the B.S. degree in
electrical engineering from KIAU, Karaj, Iran,
in 2009, and the M.S. degree in electrical engi-
neering from the Iran University of Science and
Technology (IUST), Tehran, Iran, in 2013. He is
currently pursuing the Ph.D. degree in electrical
and software engineering with the University of
Calgary, Calgary, AB, Canada.

From 2009 to 2018, he was working in telecom-
munication and electrical engineering, Tehran. His

research interests include the wireless communications, autonomous vehi-
cles, machine learning, big data, data science, and cloud computing.

ABU B. SESAY (Life Senior Member, IEEE)
received the Ph.D. degree in electrical engineer-
ing from McMaster University, Hamilton, ON,
Canada, in 1988. From 1979 to 1984, heworked on
various International Telecommunications Union
projects. From 1986 to 1989, he was a Research
Associate with McMaster University. In 1989,
he joined the University of Calgary, Calgary, AB,
Canada, where he is currently a Full Professor
with the Department of Electrical and Computer

Engineering. He was the Head of Department, from 2005 to 2011, and served
as the Acting Associate Dean for Graduate Studies. From 1989 to 2005,
he was a TRLaboratories Adjunct Scientist, where he conducted wireless
research for various sponsors, including Nortel and Lucent. He spent sab-
batical visits at Nortel Networks in Ottawa and Calgary. He has received
numerous best paper awards with his students most notably the 1996 Neal
Shepherd Memorial Best Propagation Paper Award for the paper ‘‘Effects of
Antenna Height, Antenna Gain, and Pattern Downtilting for Cellular Mobile
Radio,’’ published in the IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,
Vol. 45, No. 2, May 1996. His current research interests include cooperative
cellular wireless networks, orthogonal frequency-division multiple-access
and code-division multiple-access systems, multiple-input-multiple-output
systems, equalization, adaptive signal processing, and heterogeneous wire-
less network resource andmobility management, advanced signal processing
(including machine learning) for unmanned aerial vehicles (UAV) using
GNSS and 5G assisted autonomous vehicles, and relay networks for LTE
and 5G.

VOLUME 10, 2022 86297

http://dx.doi.org/10.15760/trec.151

