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ABSTRACT This paper presents a bimodal control strategy for transitioning between different topologies
of flocking and dynamic structures. The work is motivated by applications where agents must pursue and
close in on a target prior to carrying out more sophisticated tasks. Specifically, it builds on previous work
in consensus-based flocking to define a new type of dynamic target pursuit and capturing method called
dynamic enspherement. The problem is formulated in terms of the canonical Reynolds rules and overlapping
planes of encirclement using quaternions of arbitrary orientation. A new method for transitioning between
flocking and enspherement is presented, the smoothness of which is demonstrated mathematically. The
proposed approach is validated in a series of simulations on swarms of particles with double-integrator
dynamics.

10 INDEX TERMS Decentralized control, bio-inspired control, swarm robotics, drones, quaternions.

I. INTRODUCTION11

The field of control is rich with biologically inspired strate-12

gies for multiagent coordination and cooperation. The under-13

lying problem of how to analyze and manipulate large groups14

of distributed agents in computational tractable ways with-15

out global knowledge is ubiquitous. Applications for such16

strategies are far-reaching and include the domains of eco-17

nomics, social science, biology, physics, and robotics. It is18

no surprise, then, that it is in nature that we find inspiration19

for the most elegant and efficient algorithms. An enduring20

theme of multiagent control theory is that of emergent behav-21

iors such as flocking. Whereas formation-based techniques22

rely on convergence to a desired configuration [1], flocking23

focuses on convergence of velocities and orientations; the24

resultant configuration of the flock is an emergent quality.25

The primary benefits of these emergent behaviour techniques26

are their scalability and flexibility, due mainly to their dis-27

tributed nature and reliance on local information. Distributed28

approaches such as flocking are also more robust than leader-29

follower-based approaches, since the integrity of the group is30

generally not impacted by the loss of individual agents [2].31

A. RELATED WORK32

Early work in distributed multiagent control includes the33

mechanical approaches in [3], collective motion in [4],34

The associate editor coordinating the review of this manuscript and

approving it for publication was Moussa Boukhnifer .

and density-based techniques in [5]. The seminal work of 35

Reynolds in 1986 laid the foundation for a large body of 36

research based on heuristic rules of cohesion, alignment, and 37

separation [6]. Many studies have investigated the properties 38

of Reynolds rules of flocking when applied to agents as 39

particles [7] and in the two-dimensional case for reduced 40

complexity [8], [9]. Intuitively, there is an inherent conflict 41

between cohesion (the tendency to move towards other agents 42

in the flock) and separation (the tendency to avoid colliding 43

with other agents in the flock). Therefore, many studies focus 44

on specific subsets of the rules, such as the alignment problem 45

[10], [11]. 46

Contemporary research has aimed at resolving the 47

three-dimensional case by importing distributed optimization- 48

based techniques [12] or consensus problems using network 49

topology and graph theory [13], [14]. An oft-cited theoretical 50

framework for consensus-based approach is found in [15], 51

which formulates a stable, leaderless, lattice-based flocking 52

strategy that avoids obstacles. 53

Somewhere between formation and flocking methods lies 54

a related body of distributed algorithms that we refer to as 55

structured swarming. Like flocking, these are velocity- or 56

alignment-based methods aimed at maintaining a dynamic 57

configuration around a target. Examples include surround- 58

ing control [16], cyclic pursuit [17], target capturing [18], 59

circumnavigation [19], and various other dynamic encir- 60

clement techniques [20], [21], and [22]. While operating in 61
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three-dimensional space, previous encirclement strategies are62

based on forming a two-dimensional shape around a target.63

In some cases, it may be desirable to increase coverage of64

the target by forming a three dimensional structure, such as a65

dynamic sphere [23].66

In certain applications, it may be desirable to switch67

between these different classes of multiagent techniques. For68

example, a set of agents may transit towards a target as a flock69

and then switch to a dynamic encirclement strategy. In such70

cases, smooth transitions save energy and help preserve sta-71

bility characteristics between different modes. Some work72

has investigated the case for time-varying network topologies,73

such as changing leaders [24], edges [25], or references [26].74

In [27], the authors propose a decentralized technique for75

switching between a fixed formation and dynamic encir-76

clement based on the location of individual agents. In [28],77

the authors propose a strategy for switching between con-78

tinuously changing topologies. Similarly, in this work,79

we investigate the case of continuously switching between80

multiple discretely defined topologies in a decentralized81

manner.82

B. CONTRIBUTIONS83

This work builds on the previous work in flocking [15],84

structured swarming [22], and time-varying topologies [27]85

by making the following contributions:86

1) reformulation of dynamic encirclement strategies in87

previous work for application in an arbitrary plane88

using quaternion-based methods;89

2) formulation of a dynamic encirclement algorithm that90

embodies Reynolds rules of flocking;91

3) formulation of a new type of quaternion-based struc-92

tured swarming method that captures a target within a93

dynamic sphere (enspherement); and94

4) mathematical proof of smoothness for a bimodal con-95

trol strategy that transitions between flocking and96

enspherement.97

While previous work has developed strategies for produc-98

ing the individual behaviours above, to the authors’ knowl-99

edge, this is the first to formulate provably smooth transitions100

between them.101

C. STRUCTURE102

The remainder of this paper is structured as follows:103

Section II presents preliminary information such as notation104

and models; Section III provides an overview of the flocking105

technique used; Section IV formulates the bimodal control106

strategy for transitioning between flocking and ensphere-107

ment; Section V presents a discussion about smoothness of108

the proposed technique; Section VI presents experimental109

results; and Section VII concludes the work.110

II. PRELIMINARIES111

This section presents the notation used throughout the paper.112

It also presents the double-integrator model used to define the113

dynamics of the agents. Finally, a thorough description of the114

various interactions between agents is provided.115

A. NOTATION 116

The following notation is used throughout this paper: z(t) 117

denotes z is a function of t; ż is the time rate of change of z; 118

vector zT is the transpose of z; ||z|| is the Euclidean norm; 119

ẑi,k is the position of a virtual agent derived from the positions 120

of agents i and k; and 6 (y, x) is the angle between vectors y 121

and x. 122

In order to construct smooth collective potential functions, 123

we use the σ -norm vector || · ||σ defined in [15] as follows: 124

||z||σ =
1
ε
[
√
1+ ε||z||2 − 1] (1) 125

where parameter ε > 0. We further define a bump function 126

ρh(·), which smoothly varies between 0 and 1, as follows: 127

ρh(z) =


1, z ∈ [0, h)
1
2
[1+ cos(π

z− h
1− h

)], z ∈ [h, 1]

0, otherwise

(2) 128

where parameter h ∈ (0, 1). 129

Finally, in order to find the shortest path to encircle a 130

target within an arbitrary plane, we define the custom 5(·) 131

function. Let us define quaternion ρ, which will be used to 132

describe the orientation of a desired plane of encirclement. 133

Let us consider any two points q1 and q2 in a 3-dimensional 134

Cartesian coordinate system with orthogonal axes x, y, and z. 135

If an agent is rotating in an arbitrary plane defined by ρ at 136

location q1, we rotate this point about q2 to orient the plane 137

in the horizontal using the Hamilton product of the inverse 138

quaternion as follows: q̃1 = ρ−1(q1−q2)ρ+q2 [29].We then 139

define a new point, 5(q1, q2, r, ρ), which is the point at 140

distance r from q2 (i.e. the target of encirclement) in the plane 141

perpendicular to axes z rotated by ρ about q2: 142

5(q1, q2, r, ρ) = ρ

rπ (q̃1,x − q2,x)rπ (q̃1,y − q2,y)
0

 ρ−1 +

q2,xq2,y
q2,z

 (3) 143

where the norm between q̃1 and q2 in the xy-plane ||q̃1,x:y − 144

q2,x:y|| is used to define rπ = r/||q̃1,x:y − q2,x:y||. In the 145

context of dynamic encirclement, the new point is the closest 146

point on a circle of radius r around target q2 in the plane of 147

rotation defined by quaternion ρ (i.e. the desired setpoint for 148

an agent at q1 tasked to encircle the target). 149

B. AGENT DYNAMICS 150

We consider all vehicles as dynamic agents with position 151

(qi), velocity (pi), and acceleration inputs (ui) related by the 152

following equations of motion: 153

q̇i = pi 154

ṗi = ui (4) 155

where qi is expressed in 3-dimensional Cartesian coordinates 156

and ui = q̈i is the acceleration of the agent. 157

We consider the full network of agents as a graph 158

G = (V, E) with vertices V = {1, 2, . . . , η} and edges 159

E ⊆ {(i, j) : i, j ∈ V, j 6= i}, where η is the total number 160
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of agents. The set of neighbors of the ith agent in space is161

defined as [15]:162

Ni = {j ∈ V : aij 6= 0} = {j ∈ V : (i, j) ∈ E} (5)163

where aij denotes an element of the symmetric adjacency164

matrix A[aij] of the graph. In practice, the agents interact with165

a time-varying subset of neighbours in the space Ni. Depend-166

ing on the mission and state, the agents may be interacting167

with any combination of the subsets defined in Section II-C.168

C. INTERACTIONS169

We describe any physical agent with the dynamics described170

by (4) (i.e. the actual vehicles) as α-agents [15]. Each171

α-agent interacts with other physical and virtual agents in the172

network, based on relative position. In the formulations that173

follow, we describe inter-agent interaction with reference to174

four types of agents:175

• α-agents interact for flocking and are contained in the176

set Vα .177

• β-agents interact for collision/obstacle avoidance and178

are contained in the set Vβ .179

• δ-agents interact for maintaining angular separation in180

a common plane of dynamic encirclement and are con-181

tained the set Vθ .182

• γ -agents interact for tracking a collective objective or183

target and are contained in the set Vγ .184

For the purposes of flocking, the ith agent interacts with185

neighbors j ∈ Vα (other α-agents) in order to maintain186

separation distance ||qj − qi|| = d as follows:187

Nαi = {j ∈ Vα : ||qj − qi|| < r} (6)188

where r ≥ d > 0 is the interaction range (typically189

determined by sensor range). In order to avoid neighboring190

obstacles, we define β-agents k ∈ Vβ with positions and191

velocities (q̂i,k , p̂i,k ) and minimum separation ||q̂i,k − qi|| =192

d ′ as follows:193

Nβi = {k ∈ Vβ : ||q̂i,k − qi|| < r ′} (7)194

where r ≤ r ′ is the interaction range for obstacles. Note that195

q̂i,k is not the physical location of the obstacle; rather, it is a196

virtual agent derived from the location and characteristics of197

the obstacle. The precise definition of this virtual agent will198

be further defined in Section IV.199

Finally, we present a special formulation for dynamic200

encirclement (which is then extended for enspherement). The201

goal of dynamic encirclement is for all agents in the formation202

to form an evenly-spaced circle around the target at a desired203

angular rate of speed θ̇r . We define the set of all agents in the204

encirclement formulation with the ith agent as N θi such that205

the desired angular separation 1θd,i is as follows:206

1θd,i =
2π
nθ
∀ i ∈ Vθ (8)207

where nθ is the total number of agents in the common plane of208

dynamic encirclement (i.e. the number of agents in Vθ ). How-209

ever, agents must form this circle with reference to neighbor-210

ing agents only (i.e. without global knowledge). Therefore,211

let us define indices for the subset of local agents in the 212

larger formation (N δi ∈ N
θ
i ) below. The ith agent encircling 213

target at position qr regulates its position with reference to 214

the agent immediately leading at angle θ+i ∈ [0, 2π ] and 215

agent immediately lagging at angle θ−i ∈ [0, 2π ]: 216

Let us define the agents leading (N δ
+

i ) and lagging (N δ
−

i ) 217

agent i at steady-state as follows: 218

N δ
+

i = {l ∈ Vθ : 6 (ql, qr ) = θ+i } 219

N δ
−

i = {l ∈ Vθ : 6 (ql, qr ) = θ−i } 220

where θ+i = 6 (qi, qr ) + 1θd,i and θ
−

i =
6 (qi, qr ) − 1θd,i 221

and N δi = {N
δ+

i ,N δ
−

i } ∈ N
θ
i . In practice, agent i regulates its 222

angular separation with reference to agents inN δi byminimiz- 223

ing a time-varying error term ei(t). This is accomplished by 224

tracking an intermediary setpoint for desired angular speed, 225

θ̇r,i, the formulation for which is the topic of Section IV. 226

III. FLOCKING AS A LATTICE 227

This section summarizes the main equations for flocking in 228

free space (free flocking) used in this paper. Specifically, 229

we use the distributed target tracking and lattice flocking 230

formulated in the seminal work [15]. The goal of this type 231

of flocking is for each α-agent to form a lattice pattern 232

with neighboring α-agents while tracking a target. The lat- 233

tice involves a gradient-based positioning term and velocity 234

consensus term. Target tracking is achieved via a simple 235

feedback controller. Later, we integrate these equations with 236

the dynamic enspherement in a bimodal control strategy. 237

In free flocking, each agent i in the flock applies control 238

inputs as follows: 239

ui = uαi + u
γ
i (9) 240

where uαi forms the lattice and uγi tracks the target. The 241

geometry of the lattice is formed by solutions solving the 242

following constraints: 243

||qj − qi|| = d ∀ j ∈ Nαi (10) 244

where d is the desired separation between agents in the lattice 245

(also known as the lattice scale). Let us further define the 246

elements of the spatial adjacency matrix as follows: 247

aij(q) = ρh

(
||qj − qi||σ

rα

)
∈ [0, 1], j 6= i (11) 248

where rα = ||r||σ . As described in [15], the rules for lattice 249

flocking are defined as follows: 250

uαi = cα1 6j∈Nαi
φα(||qj − qi||σ )nij 251

+ cα2 6j∈Nαi
aij(q)(pj − pi) (12) 252

where 253

φα = ρh(z/rα)φ(z− dα) (13) 254

φ(z) =
1
2
[(a+ b)σ1(z+ c)+ (a− b)] (14) 255

VOLUME 10, 2022 94489



P. T. Jardine, S. N. Givigi, Jr.: Bimodal Dynamic Swarms

nij =
qj − qi√

1+ ε||qj − qi||2
(15)256

σ1(z) =
z

√
1+ z2

(16)257

and the parameters a, b, and c in (14) are chosen such that258

φ(0) = 0 and 0 < a ≤ b, c = a− b/
√
(4ab) [15].259

The rule in (12) is insufficient to guarantee flocking behav-260

ior, as it is susceptible to regular fragmentation. This is261

resolved by incorporating a simple feedback control rule as262

follows:263

uγi = −c
γ

1 σ1(qi − qr )− c
γ

2 (pi − pr ) (17)264

Let us now use the structure of flocking used above as265

inspiration for a dynamic enspherement strategy.266

IV. SWARMING AS A SPHERE267

In this section, we reformulate the 2-dimensional dynamic268

encirclement strategy defined in [22] as a decentralized struc-269

tured swarming algorithm with rules similar to the work of270

Reynolds [6] and compatible with the framework in [15].271

We then extend this to the 3-dimensional case, which we refer272

to as enspherement.273

For the ith vehicle in the swarm, the algorithm consists of274

the following terms:275

ui = uδi + u
ζ
i + u

β
i (18)276

where uδi is the angular separation term, uζi is the radial277

tracking term, and uβi is the collision avoidance term. Note278

that uδi is derived with reference to local information only279

(i.e. just leading and lagging agents) and uζi only depends the280

relative position of the target.281

A. ANGULAR SEPARATION TERM282

Let us consider an agent at (qi, pi) tasked to encircle a target283

at (qr , pr ) at a desired rate θ̇r in the plane normal to the z̃-axis.284

We denote axis z̃, as the rules that followmay be implemented285

for encirclement about any arbitrary axis. Axes x̃, and ỹ286

denote the remaining orthogonal axes, which define the plane287

in which encirclement occurs.288

We first compute q′i, which is the result of a translation in289

reference frame that places the target qr at the origin:290

q′i = qi − qr (19)291

Let 1θij define the angular difference between the ith and292

jth agent as follows:293

1θij = θj − θi ∈ [0, 2π ] (20)294

Recall the desired angular difference between all agents295

is 1θd = 2π/nθ , where nθ is the total number of agents296

encircling the target. Given a desired angular speed around297

target centered at qr of θ̇r , we define the a desired angular298

speed for each vehicle in the x̃-ỹ-plane as θ̇r,i. The value299

of θ̇r,i differs from θ̇r when making correction. The desired300

emergent behavior over time t is as follows:301

lim
t→∞

θ̇r,i = θ̇r ∀ i ∈ N θi302

Let us consider nθ agents traveling in a common plane 303

around the origin such that1θki(t) = θi(t)−θk (t) is the angu- 304

lar difference between agent i and leading agent k at time t , 305

1θij(t) = θj(t)−θi(t) is the angular difference between agent i 306

and lagging agent j, 1θd is the desired angular difference 307

between each agent, and θ̇r is the desired angular speed of 308

rotation in the plane. From the work in [22], we know that 309

setting the desired angular speed θ̇r,i(t) as follows: 310

θ̇r,i(t) =
3θ̇r + γ (1θki(t)−1θij(t))

3
∀ i ∈ N θi (21) 311

results in system that is Lyapunov stable with steady state 312

θ̇r,i(t) = θ̇r (t) ∀ i ∈ N θi and γ > 0. 313

The approach above was inspired by the strategy for cyclic 314

pursuit investigated in [18] and [17], with minor modifica- 315

tions to incorporate feedback from both a leading and lagging 316

agent. In [22], the authors regulate position and velocity 317

using model predictive control (MPC) formulated in the polar 318

frame. 319

In order to leverage the relationship above for the dynamics 320

in (4), we formulate a new feedback control methodology. 321

Since the dynamics are in the Cartesian frame and (21) is 322

in the polar frame, we begin by defining the relationship 323

between these frames. We introduce an abbreviated trans- 324

formation 8(·) tailored for our application that links angular 325

speed θ̇ within the plane defined by quaternion ρ. The plane 326

of rotation is described as that which is normal to axis z after 327

it is rotated by ρ about qr using the Hamilton product [29]: 328

8(q, θ̇ , ρ) = (ρ(θ̇ ū)ρ−1)× q (22) 329

where unit vector ū = [0 0 1]T . Therefore, in order for agent i 330

to encircle the target with an angular speed θ̇r in a plane 331

rotated ρi from the horizontal, we define control signal uδi : 332

uδi = −c
δ
1(pi −8(q

′
i, θ̇r,i, ρi)− pr ) (23) 333

where q′i is the agent position relative to the target, velocity pi 334

is the agent velocity, pr is the target velocity, θ̇r,i is computed 335

using (21), and cδ1 is a gain parameter. In short, (23) is the 336

controller that achieves the behavior in (21) for each agent 337

in the network. However, this is insufficient to achieve full 338

dynamic encirclement, as the radius must also be tracked. 339

B. RADIAL TRACKING TERM 340

In this section, we complete the encirclement behavior by 341

formulating a term for radial tracking. Recall the function 342

5(·) which, given an point in 3-dimensional space, finds the 343

closest point on a circle of a given radius within an arbitrary 344

plane defined by quaternion rotation ρi. Given agent i at 345

position qi tasked to encircle target at position qr at radius 346

rr in the plane normal to axis z after it is rotated by ρi, 347

we compute control signal uζi : 348

uζi = −c
ζ
1(qi −5(qi, qr , rr , ρi)) (24) 349

where −cζ1 is a gain parameter. 350
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C. COLLISION AVOIDANCE351

While the terms in Section IV-A and Section IV-B are suffi-352

cient to perform to perform a dynamic encirclement maneu-353

ver, they do not address the problem of collision avoidance.354

The angular separation term in (23) has the effect of ensuring355

agents in the swarm are separated (and hence partially serving356

a collision avoidance function) but this does not address the357

problem of agents outside Vθ . Further, as will be discussed358

later, a dedicated collision avoidance termwill be useful when359

we combine multiple decentralized encirclement swarms to360

achieve enspherement.361

In this section, we borrow from thework in [15] to integrate362

collision avoidance into the dynamic encirclement strategy363

above. Notation from this previous work has been preserved364

where possible. Here we introduce a new set of virtual β-365

agents Vβ that are induced whenever an obstacle (such as366

a neighbouring agent, a solid object in space, on an imper-367

missible region) comes within the region defined by radius368

r ′ > 0 around the agent. More precisely, the indices for the369

set of obstacles to be considered Nβi is as follows:370

Nβi = {k ∈ Vβ : ||q̂i,k − qi|| < r ′} (25)371

where q̂i,k is the position of the β-agent induced by the372

kth obstacle neighbouring agent at position qi. The constraint373

to maintain a safe distance between agents and obstacles374

(i.e. collision avoidance) is therefore defined as:375

||q̂i,k − qi|| = d ′ ∀ k ∈ Nβi (26)376

where d ′ is the desired separation and, generally, d ′ < r ′. The377

full state of the β-agent, (q̂i,k , p̂i,k ) also depends on the nature378

of the obstacle.379

Let us define the β-agent induced by kth obstacle as having380

one of two modes: the mode corresponding to a spheri-381

cal obstacle (centered at position ys,k with radius rs,k ); or382

the mode corresponding to a hyperplane boundary (passing383

through point yh,k with unit normal ah,k ). We then define the384

β-agent using one of the following equations:385

1) For Spherical Obstacle centered at position ys,k with386

radius rs,k , we define the β-agent as follows:387

q̂i,k = µqi + (1− µ)ys,k , p̂i,k = µPspi (27)388

where parameter µ = rs,k/||qi − ys,k || and Ps = I −389

akaTk is a projection matrix computed using unit vector390

ak = (qi − ys,k )/||qi − ys,k ||.391

2) ForHyperplane Boundary passing through point yh,k392

with unit normal ah,k , we define the β-agent as follows:393

q̂i,k = Phqi + (I − Ph)yh,k , p̂i,k = Phpi (28)394

where Ph = I − ah,kaTh,k is a projection matrix com-395

puted using the norm of the hyperplane boundary.396

We also define the adjacency between agent i and these397

neighboring β-agents as follows:398

bi,k (q) = ρh

(
||q̂i,k − qi||σ

dβ

)
(29)399

where dβ < rβ given dβ = ||d ′||σ and rβ = ||r ′||σ . Similar 400

to the potential field approach pioneered by [30], we define a 401

repulsive function φβ (z) to drive agents around obstacles: 402

φβ (z) = ρh

(
z
dβ

)
σ1((z− dβ )− 1) (30) 403

where σ1(z) = z/
√
1+ ||z||2. Finally, we define a flocking 404

rule that achieves collision avoidance as follows: 405

uβi = cβ1 6
j∈Nβi

φβ (||q̂i,k − qi||σ )n̂i,k 406

+ cβ2 6
j∈Nβi

bi,k (q)(p̂i,k − pi) (31) 407

where cβ1 and cβ2 are gain parameters and 408

n̂i,k =
qj − qi√

1+ ε||q̂i,k − qi||2
(32) 409

D. DYNAMIC ENCIRCLEMENT AND ENSPHEREMENT 410

In summary, we combine the results from Section IV-A, 411

Section IV-B, and Section IV-C to form the flocking rules for 412

collision-free dynamic encirclement: 413

uδi = −c
δ
1(pi −8(q

′
i, θ̇r,i, ρi)− pr ) 414

uζi = −c
ζ
1(qi −5(qi, qr , rr , ρi)) 415

uβi = cβ1 6
j∈Nβi

φβ (||q̂i,k − qi||σ )n̂i,k 416

+ cβ2 6
j∈Nβi

bi,k (q)(p̂i,k − pi) (33) 417

where we recall quaternion ρi defines an arbitrary plane of 418

encirclement. In classical examples of dynamic encirclement, 419

all agents would encircle the target within a common plane 420

[20], [22] and, in fact, the goal is to control the agents 421

such that they remain in this plane. However, in some cases, 422

it may be desirable to encircle a target in more that one plane 423

of encirclement (enspherement) in order to improve sensor 424

coverage or concentrate effects. 425

The formulation above is easily extended to support vari- 426

ous overlapping planes of encirclement, forming a sparsely- 427

populated sphere. This is accomplished at implementation, 428

by defining planes of encirclement with different orienta- 429

tions ρi. Let us define the set of all agents in such a sphere as 430

V�, composed of η� planes of encirclement as follows: 431

V� = {V1
θ ,V

2
θ , . . . ,V

η�
θ } (34) 432

where V1
θ ,V

2
θ , . . . ,V

η�
θ are planes of encirclement such that 433

V iθ ∩ V jθ = ∅ ∀ i 6= j ∈ {1, 2, . . . , η�}. This previous 434

statement enforces the physical constraint that no single agent 435

can be assigned to multiple planes of encirclement. There- 436

fore, we can define the indices for agents in the same plane 437

of encirclement of agent i as: 438

N θii = {m ∈ V� : ρi = ρm} (35) 439

where we differentiate an enspherement (vice encirclement) 440

formation as one in which not all agents in V� have the 441
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same values of ρi. Note that these planes have overlapping442

segments around the target. Therefore, the obstacle avoidance443

term uβi in (18) is vitally important, as it serves to avoid444

collisions between agents at intersecting trajectories in these445

overlapping planes.446

V. SMOOTH TRANSITION447

This section presents a method for smoothly transitioning448

between the lattice flocking formation in Section III to the449

dynamic enspherement formation in Section. IV. We begin450

by defining a transition smoothing function τ (·) bounded451

between 0 and 1 by a continuous sigmoid function. The452

function is dependent on the location of the agent qi, the453

target qr , and some desired transition distance from the target454

dτ as follows:455

τ (zτ (t)) =
1

1+ e−ωτ zτ (t)
(36)456

where457

zτ (t) = (||qi − qr ||σ − dτ ) (37)458

varies with time t based on the location of the agent relative459

to the target and ωτ modulates the rate of transition. Note that460

we compute (37) using the σ -norm ||·||σ because, whereas the461

Euclidean-norm || · || is not differentiable at qi − qr = 0, the462

σ -norm is differentiable everywhere. This will help formally463

demonstrate the smoothness of the transition. The function is464

depicted in Fig. 1 for different values of ωτ .465

For convenience, let us drop the explicit notation for the466

time dependence of zτ (t) and simply use zτ . We combine (9)467

and (18) to form a single, bimodal control algorithm that468

autonomously and smoothly transitions between lattice flock-469

ing and dynamic enspherement as:470

ui=τi(zτ )(uαi +u
γ
i )+(1−τi(zτ ))(u

δ
i +u

ζ
i )+u

β
i (38)471

where τi(·) is computed using (36) for the ith agent, ui is the472

control signal, as described in (4), for the ith agent. Assuming473

the agents start at a distance far from the target (i.e. ||qi −474

qr || > dτ ), we see that τ (zτ ) starts with a value near 1.475

When τ (zτ ) is near 1, the agents focus almost exclusively476

on forming a lattice. As τ (zτ ) approaches 0, the agents focus477

more on enspherement. The desired transition distance from478

the target dτ occurs at τ (zτ ) = 0.5, during which time the479

agents are midway through transitioning between formations.480

It is desirable for the transition in (38), as governed by481

the varying of τi(·) with time, to be continuous (or, smooth).482

Striving for smoothness in agent motion is what motivates483

the continuous sigmoid-based collective potential functions484

in previouswork [15]. Practically, a smooth transition reduces485

necessary perturbations and energy consumption during the486

transition between the stable tactics of flocking and dynamic487

encirclement/enspherement. Here we formally demonstrate488

the smoothness of the proposed technique.489

In Theorem 1 we demonstrate that the proposed bimodal490

swarming technique is smooth.We define function τ (zτ ) to be491

smooth if it is differentiable everywhere (i.e. all n derivatives492

of the function dn
dtn τ (zτ ) exist).493

FIGURE 1. Depiction of transition smoothing function.

Theorem 1: Let us consider η agents with dynamics 494

described by (4) controlled by (38). If the transition between 495

controller modes τ (zτ (t)) is defined using (36), such that 496

the value of dτ is fixed and positive real, then τ (zτ (t)) is 497

differentiable everywhere and hence smooth. 498

Proof: We begin by defining an expression for the 499

nth derivative τ (zτ (t)) with respect to time t using the gen- 500

eralized Faà di Bruno’s formula as follows [31], [32]: 501

dn

dtn
τ (zτ ) =

∑ n!
k1! · · · kn!

dm

dzmτ
τ
(
zτ
)( d
dt
zτ
1!

)k1
502

× · · ·

( dn
dtn

zτ
n!

)kn
(39) 503

where the sum is taken over positive integers {k1, . . . , kn} 504

such that
n∑
i=1

ki = m; k1 + 2k2 + · · · + nkn = n; and we use 505

compacted notation zτ for zτ (t). Intuitively, Faà di Bruno’s 506

formula is essentially a generalization of the common chain 507

rule to n derivatives. As stated in the Assumptions for Theo- 508

rem I of [32], a necessary condition for (39) to be true is that 509

both τ (zτ ) and zτ are differentiable everywhere. Therefore, 510

in order to show that (39) exists (and hence demonstrate 511

that τ (zτ ) is differentiable everywhere), we will show that all 512

derivatives of composite functions τ (zτ ) with respect to zτ 513

and zτ with respect to t exist. 514

Let us consider the first composite function, the derivatives 515

of τ (zt ) with respect to zt and compute its first derivative: 516

dτ (zτ )
dzτ

=
d
dzτ

(
1

1+ e−zτ
) 517

=
d
dzτ

(1+ e−zτ )−1 518

= −(1+ e−zτ )−2 · (−e−zτ ) 519

=
e−zτ

(1+ e−zτ )2
520

=
1

1+ e−zτ
·

e−zτ

1+ e−zτ
521

=
1

1+ e−zτ
·
e−zτ + 1− 1
1+ e−zτ

522

=
1

1+ e−zτ
· (
1+ e−zτ

1+ e−zτ
−

1
1+ e−zτ

) 523
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=
1

1+ e−zτ
· (1−

1
1+ e−zτ

)524

which is more compactly expressed as525

dτ (zτ )
dzτ

= τ (zτ ) · (1− τ (zτ )) (40)526

The explicit derivation of (40) reveals the convenient prop-527

erties of the exponential function that underpin the smooth-528

ness of (38); namely, that it is its own derivative ( de
x

dx = ex).529

Drawing from related work - specifically, Lemma 9 from the530

seminal work on sigmoid derivatives in [33] - we expand (40)531

for the general case of the nth derivative of τ (zτ ) with respect532

to zτ as follows:533

dn

dznτ
τ (zτ ) =

n∑
k=1

(−1)k−1C (n)
k (τ (zτ ))k (1− τ (zτ ))n+1−k534

(41)535

where coefficients C (n)
k are for different values of n given536

in Table 1 of [33]. These results demonstrate that τ (zτ ) is537

differentiable everywhere with respect to zτ and partially538

satisfies the conditions for (39).539

The remaining composite function is zτ , which varies with540

t and represents the dynamics of the agent. Recall from (4)541

that these dynamics are, by definition, continuous. Also recall542

that, as initially proposed for multiagent flocking in [15], zτ is543

computed using the σ -norm rather than the Euclidean norm544

in (37) to ensure it is differentiable everywhere. Therefore,545

if we assume qi evolves according to the continuous (i.e. dif-546

ferentiable everywhere) double-integrator described in (4),547

then zτ is also differentiable everywhere.548

Finally, since both τ (zτ ) and zτ are differential everywhere,549

the nth derivate in (39) exists and the transition presented550

in (38) is smooth. �551

VI. RESULTS552

The bimodal dynamic swarming technique described above553

was implemented in two simulations. The agent dynamics554

were simulated using the open-source Python NumPy library,555

which provides a collection of common high-level mathemat-556

ical functions for application onmulti-dimensional arrays and557

matrices. The swarming parameters common to all simula-558

tions are summarized in Table 1.559

In the results for the first simulation, we demonstrate560

the positive benefits of blending the control inputs, as pro-561

posed in (38), when transitioning between lattice flocking562

and dynamic encirclement in a single plane. In the second563

simulation, we present results for a transition from lattice564

flocking to dynamic enspherement.565

A. TRANSITION TO ENCIRCLEMENT566

In this section, we present the results of blending the con-567

trol inputs, as proposed in (38), when transitioning between568

lattice flocking and dynamic encirclement in the xy-plane.569

As shown in Fig. 2a, 7 agents were randomly distributed570

around the origin with an initial goal of forming a lattice571

with separation 5 m. The target was initiated at position572

TABLE 1. Parameters of the swarm.

(−15,−15, 2) and translated towards the origin at a constant 573

rate of 0.1 ms−1. The swarm was programmed to track the 574

target in a lattice formation and transition to encirclement 575

at a radius of 5 m around the target with dτ = 10 m. 576

In Fig. 2b we see that, as expected, the lattice formation 577

gradually breaks away as τ (zτ ) approaches 0.5 (i.e. the agents 578

gets closer to dτ ). 579

FIGURE 2. Simulaton 1- Lattice stage: (a) Lattice, (b) Transition from
lattice.

In Fig. 3a we see a gradual transition to encirclement as 580

τ (zτ ) approaches 0 (i.e. the agents each pass dτ ). In Fig. 3b, 581

we see that the swarm has successfully adopted an encir- 582

clement formation around the target. 583

FIGURE 3. Simulaton 1- Encirclement stage: (a) Transition to
encirclement, (b) Encirclement.

The benefits of the smooth transition using τ (zτ ) are illus- 584

trated in Fig. 4. Here, we compare the proposed blended 585

tactic against an instantaneous switched tactic like the one 586

used in [27]. Notice that at the center of the tactic change 587
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(approximately 12 s), the switched tactic produces a dramatic588

spike in commands, whereas the blended tactic produces only589

a minor change. As a result, the centroid of the entire swarm590

arrives over the target more quickly while consuming less591

energy in the transition.592

FIGURE 4. Comparison of blended versus switched tactics.

FIGURE 5. Simulation results for the network: (a) Lattice, (b) Transition
between formations, (c) Enspherement.

B. ENSPHEREMENT593

In this section, we present the results of blending the control594

inputs, as proposed in (38), when transitioning between lat-595

tice flocking and dynamic enspherement in arbitrary planes.596

Recall from Section IV-D that enspherement is accomplished597

by rotating the planes of encirclement for agent i by quater-598

nion ρi. Here, we defined two overlapping planes rotated by599
π
3 around the x-axis and −π4 around the y-axis, respectively.600

As shown in Fig. 5a, 12 agents were randomly distributed 601

around the origin with an initial goal of forming a lattice flock 602

with separation 5 m between agents. The target was initiated 603

at position (−25,−25, 20) and translated towards the origin 604

at a constant rate of 0.1 ms−1. The swarm was programmed 605

to track the target in the lattice formation and transition to 606

enspherement at a radius of 7 m with dτ = 15 m. In Fig. 5b 607

we see the agents break from the lattice flocking formation to 608

take up positions in a dynamic sphere. 609

In Fig. 5c, we see the swarm adopts dynamic enspherement 610

around the target. At the intersections between the planes, 611

we observe small perturbations from the ideal encirclement. 612

This is due to the collision avoidance term. 613

FIGURE 6. Illustration of minimum and maximum separation between
vehicles throughout the experiment.

Fig. 6 presents a plot of the minimum and maximum sep- 614

aration between vehicles throughout the experiment. In the 615

maximum separation (upper portion of the plot), we see that 616

the agents settle at a separation of approximately 14m (i.e. the 617

diameter of the sphere). Perturbations are observed when 618

collision avoidance was necessary. Vertical lines denote times 619

when two agents approached each other at intersection planes 620

andwere forced to alter their trajectories. Note that this occurs 621

at times of minimum separation (lower portion of the graph). 622

VII. CONCLUSION 623

This paper presented a bimodal control strategy for smoothly 624

transitioning between different topologies of flocking and a 625

new structured swarming technique called dynamic ensphere- 626

ment. We built on previous work by formulating dynamic 627

encirclement for application in arbitrary planes using quater- 628

nions. We structured this formulation in terms of Reynolds 629

rules so that they could be integrated with common 630

graph-based flocking strategies. We formulated a new type 631

of structured swarming that captures a target within a 632

dynamic sphere by defining overlapping planes of encir- 633

clement. Finally, we implemented these new techniques in 634

realistic simulations that demonstrated the effectiveness of 635

enspherement and smoothness of the transitions between 636

formations. When compared to tactic switching techniques 637

found in previous work, the proposed approach brought the 638

centroid of the entire swarm over the target more quickly 639

while consuming less energy in the transition. This technique 640
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could prove useful in applications where agents must first641

pursue and close in on a target prior to carrying out a mission.642

Future work will focus on transitions between more sophisti-643

cated, time-varying structures.644
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