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ABSTRACT This paper presents a bimodal control strategy for transitioning between different topologies
of flocking and dynamic structures. The work is motivated by applications where agents must pursue and
close in on a target prior to carrying out more sophisticated tasks. Specifically, it builds on previous work
in consensus-based flocking to define a new type of dynamic target pursuit and capturing method called
dynamic enspherement. The problem is formulated in terms of the canonical Reynolds rules and overlapping
planes of encirclement using quaternions of arbitrary orientation. A new method for transitioning between
flocking and enspherement is presented, the smoothness of which is demonstrated mathematically. The
proposed approach is validated in a series of simulations on swarms of particles with double-integrator

dynamics.

INDEX TERMS Decentralized control, bio-inspired control, swarm robotics, drones, quaternions.

I. INTRODUCTION

The field of control is rich with biologically inspired strate-
gies for multiagent coordination and cooperation. The under-
lying problem of how to analyze and manipulate large groups
of distributed agents in computational tractable ways with-
out global knowledge is ubiquitous. Applications for such
strategies are far-reaching and include the domains of eco-
nomics, social science, biology, physics, and robotics. It is
no surprise, then, that it is in nature that we find inspiration
for the most elegant and efficient algorithms. An enduring
theme of multiagent control theory is that of emergent behav-
iors such as flocking. Whereas formation-based techniques
rely on convergence to a desired configuration [1], flocking
focuses on convergence of velocities and orientations; the
resultant configuration of the flock is an emergent quality.
The primary benefits of these emergent behaviour techniques
are their scalability and flexibility, due mainly to their dis-
tributed nature and reliance on local information. Distributed
approaches such as flocking are also more robust than leader-
follower-based approaches, since the integrity of the group is
generally not impacted by the loss of individual agents [2].

A. RELATED WORK
Early work in distributed multiagent control includes the
mechanical approaches in [3], collective motion in [4],
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and density-based techniques in [5]. The seminal work of
Reynolds in 1986 laid the foundation for a large body of
research based on heuristic rules of cohesion, alignment, and
separation [6]. Many studies have investigated the properties
of Reynolds rules of flocking when applied to agents as
particles [7] and in the two-dimensional case for reduced
complexity [8], [9]. Intuitively, there is an inherent conflict
between cohesion (the tendency to move towards other agents
in the flock) and separation (the tendency to avoid colliding
with other agents in the flock). Therefore, many studies focus
on specific subsets of the rules, such as the alignment problem
[10], [11].

Contemporary research has aimed at resolving the
three-dimensional case by importing distributed optimization-
based techniques [12] or consensus problems using network

topology and graph theory [13], [14]. An oft-cited theoretical
framework for consensus-based approach is found in [15],
which formulates a stable, leaderless, lattice-based flocking
strategy that avoids obstacles.

Somewhere between formation and flocking methods lies
a related body of distributed algorithms that we refer to as
structured swarming. Like flocking, these are velocity- or
alignment-based methods aimed at maintaining a dynamic
configuration around a target. Examples include surround-
ing control [16], cyclic pursuit [17], target capturing [18],
circumnavigation [19], and various other dynamic encir-
clement techniques [20], [21], and [22]. While operating in
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three-dimensional space, previous encirclement strategies are
based on forming a two-dimensional shape around a target.
In some cases, it may be desirable to increase coverage of
the target by forming a three dimensional structure, such as a
dynamic sphere [23].

In certain applications, it may be desirable to switch
between these different classes of multiagent techniques. For
example, a set of agents may transit towards a target as a flock
and then switch to a dynamic encirclement strategy. In such
cases, smooth transitions save energy and help preserve sta-
bility characteristics between different modes. Some work
has investigated the case for time-varying network topologies,
such as changing leaders [24], edges [25], or references [26].
In [27], the authors propose a decentralized technique for
switching between a fixed formation and dynamic encir-
clement based on the location of individual agents. In [28],
the authors propose a strategy for switching between con-
tinuously changing topologies. Similarly, in this work,
we investigate the case of continuously switching between
multiple discretely defined topologies in a decentralized
manner.

B. CONTRIBUTIONS

This work builds on the previous work in flocking [15],
structured swarming [22], and time-varying topologies [27]
by making the following contributions:

1) reformulation of dynamic encirclement strategies in
previous work for application in an arbitrary plane
using quaternion-based methods;

2) formulation of a dynamic encirclement algorithm that
embodies Reynolds rules of flocking;

3) formulation of a new type of quaternion-based struc-
tured swarming method that captures a target within a
dynamic sphere (enspherement); and

4) mathematical proof of smoothness for a bimodal con-
trol strategy that transitions between flocking and
enspherement.

While previous work has developed strategies for produc-
ing the individual behaviours above, to the authors’ knowl-
edge, this is the first to formulate provably smooth transitions
between them.

C. STRUCTURE

The remainder of this paper is structured as follows:
Section II presents preliminary information such as notation
and models; Section III provides an overview of the flocking
technique used; Section IV formulates the bimodal control
strategy for transitioning between flocking and ensphere-
ment; Section V presents a discussion about smoothness of
the proposed technique; Section VI presents experimental
results; and Section VII concludes the work.

Il. PRELIMINARIES

This section presents the notation used throughout the paper.
It also presents the double-integrator model used to define the
dynamics of the agents. Finally, a thorough description of the
various interactions between agents is provided.
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A. NOTATION
The following notation is used throughout this paper: z(¢)
denotes z is a function of 7; 7 is the time rate of change of z;
vector 7! is the transpose of z; ||z|| is the Euclidean norm;
Zi k 1s the position of a virtual agent derived from the positions
of agents i and k; and Z(y, x) is the angle between vectors y
and x.

In order to construct smooth collective potential functions,
we use the o -norm vector || - ||, defined in [15] as follows:

1
— _ 2 _
llzllo = Ly 1+ €llzl® = 1] ey

where parameter € > 0. We further define a bump function
on(+), which smoothly varies between 0 and 1, as follows:

I, z€[0,h)
@O=1tteosail) zemy @
= — COS(TT ——
Pr(Z > =" Z ,
0, otherwise

where parameter / € (0, 1).

Finally, in order to find the shortest path to encircle a
target within an arbitrary plane, we define the custom II(-)
function. Let us define quaternion p, which will be used to
describe the orientation of a desired plane of encirclement.
Let us consider any two points g1 and g; in a 3-dimensional
Cartesian coordinate system with orthogonal axes x, y, and z.
If an agent is rotating in an arbitrary plane defined by p at
location g1, we rotate this point about g» to orient the plane
in the horizontal using the Hamilton product of the inverse
quaternion as follows: §; = p~' (g1 —q2)p +¢2 [29]. We then
define a new point, I1(q1, g2, r, p), which is the point at
distance r from ¢ (i.e. the target of encirclement) in the plane
perpendicular to axes z rotated by p about g»:

rﬂ(E]l,x - q2,x) | q2.x
(g1, g2, 7, 0)=p | r=(qry —q2y) | P~ + | q2,y 3)
0 92,z

where the norm between g; and ¢ in the xy-plane ||gq x:y —
q2.xyll is used to define ry = r/||G1,x:y — g2,xyl|. In the
context of dynamic encirclement, the new point is the closest
point on a circle of radius r around target ¢» in the plane of
rotation defined by quaternion p (i.e. the desired setpoint for
an agent at g tasked to encircle the target).

B. AGENT DYNAMICS

We consider all vehicles as dynamic agents with position
(gi), velocity (p;), and acceleration inputs (u;) related by the
following equations of motion:

qi = pi
Pi = u @

where g; is expressed in 3-dimensional Cartesian coordinates
and u; = g; is the acceleration of the agent.

We consider the full network of agents as a graph
G = (V,&) with vertices V = {1,2,...,n} and edges
E < {G,)) :i,j € V,j # i}, where n is the total number
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of agents. The set of neighbors of the ith agent in space is
defined as [15]:

Ni={jeV:ia#0}={eV:(j) e} 5)

where a;; denotes an element of the symmetric adjacency
matrix A[a;;] of the graph. In practice, the agents interact with
a time-varying subset of neighbours in the space N;. Depend-
ing on the mission and state, the agents may be interacting
with any combination of the subsets defined in Section II-C.

C. INTERACTIONS
We describe any physical agent with the dynamics described
by (4) (i.e. the actual vehicles) as «a-agents [15]. Each
a-agent interacts with other physical and virfual agents in the
network, based on relative position. In the formulations that
follow, we describe inter-agent interaction with reference to
four types of agents:
« «-agents interact for flocking and are contained in the
set V,.
« f(-agents interact for collision/obstacle avoidance and
are contained in the set Vg.
« J-agents interact for maintaining angular separation in
a common plane of dynamic encirclement and are con-
tained the set Vy.
« y-agents interact for tracking a collective objective or
target and are contained in the set V,,.
For the purposes of flocking, the ith agent interacts with
neighbors j € V), (other «-agents) in order to maintain
separation distance ||g; — g;|| = d as follows:

Nf ={j€Vy:llgi —gqill <r} ©)

where r > d > 0 is the interaction range (typically
determined by sensor range). In order to avoid neighboring
obstacles, we define B-agents k € Vg with positions and
velocities (i k, pi k) and minimum separation ||g; x — gil| =
d’ as follows:

Nf ={k € Vg : l1gix —qill <71} )

where r < r’ is the interaction range for obstacles. Note that
gi.k is not the physical location of the obstacle; rather, it is a
virtual agent derived from the location and characteristics of
the obstacle. The precise definition of this virtual agent will
be further defined in Section I'V.

Finally, we present a special formulation for dynamic
encirclement (which is then extended for enspherement). The
goal of dynamic encirclement is for all agents in the formation
to form an evenly-spaced circle around the target at a desired
angular rate of speed 6,. We define the set of all agents in the
encirclement formulation with the ith agent as Nie such that
the desired angular separation A6y ; is as follows:

2w .
ANOgi=—Vie Vy )
ng
where ng is the total number of agents in the common plane of
dynamic encirclement (i.e. the number of agents in Vy). How-
ever, agents must form this circle with reference to neighbor-
ing agents only (i.e. without global knowledge). Therefore,
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let us define indices for the subset of local agents in the
larger formation (Nl-‘S € Nl-g) below. The ith agent encircling
target at position g, regulates its position with reference to
the agent immediately leading at angle «9[.+ € [0,2m] and
agent immediately lagging at angle 6, € [0, 2r]:

Let us define the agents leading (Ni5+) and lagging (fo)
agent i at steady-state as follows:

N =l eVy : Laia) =61
N ={leVy : Laa) =06}

1

where 0,7 = Z(gi, q) + Abq; and 07 = L(gi, q;) — N
and Nf = {Nl-8+, Nisf} € Nie. In practice, agent i regulates its
angular separation with reference to agents in N ia by minimiz-
ing a time-varying error term e;(¢). This is accomplished by
tracking an intermediary setpoint for desired angular speed,
9',,,-, the formulation for which is the topic of Section IV.

Il. FLOCKING AS A LATTICE
This section summarizes the main equations for flocking in
free space (free flocking) used in this paper. Specifically,
we use the distributed target tracking and lattice flocking
formulated in the seminal work [15]. The goal of this type
of flocking is for each «-agent to form a lattice pattern
with neighboring «a-agents while tracking a target. The lat-
tice involves a gradient-based positioning term and velocity
consensus term. Target tracking is achieved via a simple
feedback controller. Later, we integrate these equations with
the dynamic enspherement in a bimodal control strategy.

In free flocking, each agent i in the flock applies control
inputs as follows:

ui =u + uz/ 9)

where ' forms the lattice and uz/ tracks the target. The
geometry of the lattice is formed by solutions solving the
following constraints:

llgj — qill =d ¥ j € N}’ (10)

where d is the desired separation between agents in the lattice
(also known as the lattice scale). Let us further define the
elements of the spatial adjacency matrix as follows:

llgj — gillo

o

a;j(q) = ph< ) el0, 1, j#i (1D

where r, = ||7||s. As described in [15], the rules for lattice
flocking are defined as follows:

uf = S dolllgi — qilloInij
JEN;
+¢§ 2 ai(@)p; — pi) (12)
JEN]
where

G = pn(2/1a)P(z — do) (13)
1
¢(2) = 5[(0 +b)oi(z+¢) + (a — b)] (14)
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ny = qi — qi (15)
V1 ellg; — il
Z
01() = == (16)
1+z

and the parameters a, b, and ¢ in (14) are chosen such that
$(0)=0and0 < a < b,c =a— b//(4ab) [15].

The rule in (12) is insufficient to guarantee flocking behav-
ior, as it is susceptible to regular fragmentation. This is
resolved by incorporating a simple feedback control rule as
follows:

u! = —cloi(qi —qr) — (i —pr) (17)
Let us now use the structure of flocking used above as
inspiration for a dynamic enspherement strategy.

IV. SWARMING AS A SPHERE
In this section, we reformulate the 2-dimensional dynamic
encirclement strategy defined in [22] as a decentralized struc-
tured swarming algorithm with rules similar to the work of
Reynolds [6] and compatible with the framework in [15].
We then extend this to the 3-dimensional case, which we refer
to as enspherement.

For the ith vehicle in the swarm, the algorithm consists of
the following terms:

i = ud 4+l +ul (13)
¢
1
tracking term, and u? is the collision avoidance term. Note
that uf is derived with reference to local information only

where uf is the angular separation term, u; is the radial

(i.e. just leading and lagging agents) and uf only depends the
relative position of the target.

A. ANGULAR SEPARATION TERM
Let us consider an agent at (g;, p;) tasked to encircle a target
at (¢, pr) at a desired rate 6, in the plane normal to the Z-axis.
We denote axis z, as the rules that follow may be implemented
for encirclement about any arbitrary axis. Axes X, and y
denote the remaining orthogonal axes, which define the plane
in which encirclement occurs.

We first compute ¢, which is the result of a translation in
reference frame that places the target g, at the origin:

q;=4qi — qr (19)

Let A6;; define the angular difference between the ith and
Jjth agent as follows:

A6 =6;—6; € [0,2] (20)

Recall the desired angular difference between all agents
is A6y = 2m/ng, where ng is the total number of agents
encircling the target. Given a desired angular speed around
target centered at g, of ér, we define the a desired angular
speed for each vehicle in the x-y-plane as 9',,,'. The value
of 9',,5 differs from 6’, when making correction. The desired
emergent behavior over time 7 is as follows:

lim 6,; =6,¥i € N/

=00
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Let us consider ny agents traveling in a common plane
around the origin such that A6;(t) = 6;(t) — 6k (¢) is the angu-
lar difference between agent i and leading agent & at time 7,
AG;i(t) = 0;(t)—6;(¢) is the angular difference between agent i
and lagging agent j, A6, is the desired angular difference
between each agent, and 9, is the desired angular speed of
rotation in the plane. From the work in [22], we know that
setting the desired angular speed 9',, i(t) as follows:

30, + y(AB(t) — Ab;(1))
3

results in system that is Lyapunov stable with steady state
0,i(t)=6,()Vi € Nl andy > 0.

The approach above was inspired by the strategy for cyclic
pursuit investigated in [18] and [17], with minor modifica-
tions to incorporate feedback from both a leading and lagging
agent. In [22], the authors regulate position and velocity
using model predictive control (MPC) formulated in the polar
frame.

In order to leverage the relationship above for the dynamics
in (4), we formulate a new feedback control methodology.
Since the dynamics are in the Cartesian frame and (21) is
in the polar frame, we begin by defining the relationship
between these frames. We introduce an abbreviated trans-
formation ®(-) tailored for our application that links angular
speed 6 within the plane defined by quaternion p. The plane
of rotation is described as that which is normal to axis z after
it is rotated by p about g, using the Hamilton product [29]:

6,.i(t) = Vie N (1)

(g, 6, p) = (pBi)p~") x q (22)

where unit vector z = [0 0 1]7. Therefore, in order for agent i
to encircle the target with an angular speed 6, in a plane
rotated p; from the horizontal, we define control signal uf:

u; = —c{(pi — (g, 6r.i, ;) — pr) (23)

where ¢} is the agent position relative to the target, velocity p;
is the agent velocity, p, is the target velocity, 6, ; is computed
using (21), and c‘lS is a gain parameter. In short, (23) is the
controller that achieves the behavior in (21) for each agent
in the network. However, this is insufficient to achieve full
dynamic encirclement, as the radius must also be tracked.

B. RADIAL TRACKING TERM

In this section, we complete the encirclement behavior by
formulating a term for radial tracking. Recall the function
I1(-) which, given an point in 3-dimensional space, finds the
closest point on a circle of a given radius within an arbitrary
plane defined by quaternion rotation p;. Given agent i at
position g; tasked to encircle target at position ¢, at radius
rr in the plane normal to axis z after it is rotated by p;,
we compute control signal uf:

uf = _Ci(qi — H(Qi» qr, Ir, P,)) (24)

where —cf is a gain parameter.
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C. COLLISION AVOIDANCE

While the terms in Section IV-A and Section IV-B are suffi-
cient to perform to perform a dynamic encirclement maneu-
ver, they do not address the problem of collision avoidance.
The angular separation term in (23) has the effect of ensuring
agents in the swarm are separated (and hence partially serving
a collision avoidance function) but this does not address the
problem of agents outside V. Further, as will be discussed
later, a dedicated collision avoidance term will be useful when
we combine multiple decentralized encirclement swarms to
achieve enspherement.

In this section, we borrow from the work in [15] to integrate
collision avoidance into the dynamic encirclement strategy
above. Notation from this previous work has been preserved
where possible. Here we introduce a new set of virtual §-
agents Vg that are induced whenever an obstacle (such as
a neighbouring agent, a solid object in space, on an imper-
missible region) comes within the region defined by radius
r’ > 0 around the agent. More precisely, the indices for the
set of obstacles to be considered Nl.’3 is as follows:

NP =tk e Vst la —all <r') (25)
where g;x is the position of the B-agent induced by the
kth obstacle neighbouring agent at position g;. The constraint
to maintain a safe distance between agents and obstacles
(i.e. collision avoidance) is therefore defined as:

gix —qill =d' Vk e N (26)

where d’ is the desired separation and, generally, d’ < r’. The
full state of the B-agent, (§i k., i k) also depends on the nature
of the obstacle.

Let us define the S-agent induced by kth obstacle as having
one of two modes: the mode corresponding to a spheri-
cal obstacle (centered at position y,; with radius rg); or
the mode corresponding to a hyperplane boundary (passing
through point yj x with unit normal a;, ;). We then define the
B-agent using one of the following equations:

1) For Spherical Obstacle centered at position y, ; with

radius ry ¢, we define the S-agent as follows:

Gik = mgi + (1 — Wysk » pik = uPspi  (27)

where parameter i = ryx/||qi — ys.k|| and Py = I —
aka,{ is a projection matrix computed using unit vector
ar = (qi — ys,0)/1lgi — ys,kll-

2) For Hyperplane Boundary passing through point y, x
with unit normal @y, ., we define the 8-agent as follows:

Gik = Pngi + U — Pu)ynk, Ppik =Pupi (28)

where P, = I — ah,ka; & 18 a projection matrix com-
puted using the norm of the hyperplane boundary.
We also define the adjacency between agent i and these
neighboring B-agents as follows:

Gix — q:'”o)

bix(q) = Ph( a5 (29)
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where dg < rg givendg = ||d'||s and rg = ||r’||,. Similar
to the potential field approach pioneered by [30], we define a
repulsive function ¢4(z) to drive agents around obstacles:

bp(2) = m(di) Wz —dg)— 1) (30)
B

where o1(z) = z/+4/1 + ||z||%. Finally, we define a flocking
rule that achieves collision avoidance as follows:

W =cf T opllain — aillo)ii
jeN?
+c5 2 bir(@)Pix — p) (31)
jen?
where c'ls and cg are gain parameters and
i 44 (32)

V1+ellgix — qill?

D. DYNAMIC ENCIRCLEMENT AND ENSPHEREMENT

In summary, we combine the results from Section IV-A,
Section I'V-B, and Section I'V-C to form the flocking rules for
collision-free dynamic encirclement:

) = =} (pi — (g, 6,.ir ) — pr)

uf = —C%’(Qi — (qi, qr, rr, pl))
uf = 3 pp(lain — qillo)ii
jen?
+c§ Y bix(@) ik — pi) (33)
jen?

where we recall quaternion p; defines an arbitrary plane of
encirclement. In classical examples of dynamic encirclement,
all agents would encircle the target within a common plane
[20], [22] and, in fact, the goal is to control the agents
such that they remain in this plane. However, in some cases,
it may be desirable to encircle a target in more that one plane
of encirclement (enspherement) in order to improve sensor
coverage or concentrate effects.

The formulation above is easily extended to support vari-
ous overlapping planes of encirclement, forming a sparsely-
populated sphere. This is accomplished at implementation,
by defining planes of encirclement with different orienta-
tions p;. Let us define the set of all agents in such a sphere as
Va, composed of 1q planes of encirclement as follows:

Vo=V V5, ..., V)% (34)

where V917 Vg, R Vg < are planes of encirclement such that
Vé N Vé = OVi#je{l,2,...,nq}. This previous
statement enforces the physical constraint that no single agent
can be assigned to multiple planes of encirclement. There-
fore, we can define the indices for agents in the same plane
of encirclement of agent i as:

Ny ={meVa:p =p,) (35)

where we differentiate an enspherement (vice encirclement)
formation as one in which not all agents in Vg have the
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same values of p;. Note that these planes have overlapping
segments around the target. Therefore, the obstacle avoidance
term uf in (18) is vitally important, as it serves to avoid
collisions between agents at intersecting trajectories in these
overlapping planes.

V. SMOOTH TRANSITION
This section presents a method for smoothly transitioning
between the lattice flocking formation in Section III to the
dynamic enspherement formation in Section. IV. We begin
by defining a transition smoothing function t(-) bounded
between 0 and 1 by a continuous sigmoid function. The
function is dependent on the location of the agent g;, the
target g,, and some desired transition distance from the target
d; as follows:

T(z:(1) = T (36)

e~z ()

where

z(t) = (lgi = grlle —dv) (37)

varies with time ¢ based on the location of the agent relative
to the target and w,; modulates the rate of transition. Note that
we compute (37) using the o-norm ||-||, because, whereas the
Euclidean-norm || - || is not differentiable at g; — g, = 0, the
o-norm is differentiable everywhere. This will help formally
demonstrate the smoothness of the transition. The function is
depicted in Fig. 1 for different values of w;.

For convenience, let us drop the explicit notation for the
time dependence of z;(¢) and simply use z;. We combine (9)
and (18) to form a single, bimodal control algorithm that
autonomously and smoothly transitions between lattice flock-
ing and dynamic enspherement as:

ui=fi(Zr)(u?+M3/)+(1—fi(Zr))(M?-Fuf)-i-M,-ﬂ (38)

where 7;(-) is computed using (36) for the ith agent, u; is the
control signal, as described in (4), for the ith agent. Assuming
the agents start at a distance far from the target (i.e. ||q; —
qrll > dr), we see that 7(z;) starts with a value near 1.
When 7(z;) is near 1, the agents focus almost exclusively
on forming a lattice. As t(z;) approaches 0, the agents focus
more on enspherement. The desired transition distance from
the target d; occurs at 7(z;) = 0.5, during which time the
agents are midway through transitioning between formations.

It is desirable for the transition in (38), as governed by
the varying of t;(-) with time, to be continuous (or, smooth).
Striving for smoothness in agent motion is what motivates
the continuous sigmoid-based collective potential functions
in previous work [15]. Practically, a smooth transition reduces
necessary perturbations and energy consumption during the
transition between the stable tactics of flocking and dynamic
encirclement/enspherement. Here we formally demonstrate
the smoothness of the proposed technique.

In Theorem 1 we demonstrate that the proposed bimodal
swarming technique is smooth. We define function t(z;) to be
smooth if it is differentiable everywhere (i.e. all n derivatives
of the function j%,t(zr) exist).
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FIGURE 1. Depiction of transition smoothing function.

Theorem 1: Let us consider n agents with dynamics
described by (4) controlled by (38). If the transition between
controller modes t(z;(t)) is defined using (36), such that
the value of d, is fixed and positive real, then t(z;(t)) is
differentiable everywhere and hence smooth.

Proof: We begin by defining an expression for the
nth derivative t(z,(¢)) with respect to time ¢ using the gen-
eralized Faa di Bruno’s formula as follows [31], [32]:

d" n! am d z:\k
e =2 Kl kol @T(Z’)(EE>
d}’l Z kn
< (Gar) @)

where the sum is taken over positive integers {ki, ..., k,}

n
such that Y k; = m; ky + 2kp + - - - + nk, = n; and we use

compacteél Illotation z¢ for z;(t). Intuitively, Faa di Bruno’s
formula is essentially a generalization of the common chain
rule to n derivatives. As stated in the Assumptions for Theo-
rem I of [32], a necessary condition for (39) to be true is that
both 7(z;) and z; are differentiable everywhere. Therefore,
in order to show that (39) exists (and hence demonstrate
that 7(z;) is differentiable everywhere), we will show that all
derivatives of composite functions t(z;) with respect to z;
and z; with respect to ¢ exist.

Let us consider the first composite function, the derivatives
of t(z;) with respect to z; and compute its first derivative:

dt(z;) d 1
dz;  dz 14 e

d —zr\—1
= E(l + e %)
= —(L+e7) 72 (=)
e—Zr
(1+ e )2
1 e*Zr
l+es ldes
1 e +1-1

)

14+e % 1 +e %
_ 1 (1 +e % 1 )
S ltem l4em  l4e =
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1 1

= (1= —
l+e % ( 1+e_zf)

which is more compactly expressed as

dt(z7)
dz;

The explicit derivation of (40) reveals the convenient prop-
erties of the exponential function that underpin the smooth-
ness of (38); namely, that it is its own derivative ( o =€)
Drawing from related work - specifically, Lemma 9 from the
seminal work on sigmoid derivatives in [33] - we expand (40)
for the general case of the nth derivative of 7(z;) with respect
to z; as follows:

= 1(2¢) - (I = 7(z¢)) (40)

—r(za = Z( DO (@) — Ty
(41)

where coefficients C,E") are for different values of n given
in Table 1 of [33]. These results demonstrate that t(z;) is
differentiable everywhere with respect to z; and partially
satisfies the conditions for (39).

The remaining composite function is z;, which varies with
t and represents the dynamics of the agent. Recall from (4)
that these dynamics are, by definition, continuous. Also recall
that, as initially proposed for multiagent flocking in [15], z; is
computed using the o -norm rather than the Euclidean norm
in (37) to ensure it is differentiable everywhere. Therefore,
if we assume ¢g; evolves according to the continuous (i.e. dif-
ferentiable everywhere) double-integrator described in (4),
then z; is also differentiable everywhere.

Finally, since both t(z;) and z; are differential everywhere,
the nth derivate in (39) exists and the transition presented
in (38) is smooth. O

VI. RESULTS

The bimodal dynamic swarming technique described above
was implemented in two simulations. The agent dynamics
were simulated using the open-source Python NumPy library,
which provides a collection of common high-level mathemat-
ical functions for application on multi-dimensional arrays and
matrices. The swarming parameters common to all simula-
tions are summarized in Table 1.

In the results for the first simulation, we demonstrate
the positive benefits of blending the control inputs, as pro-
posed in (38), when transitioning between lattice flocking
and dynamic encirclement in a single plane. In the second
simulation, we present results for a transition from lattice
flocking to dynamic enspherement.

A. TRANSITION TO ENCIRCLEMENT

In this section, we present the results of blending the con-
trol inputs, as proposed in (38), when transitioning between
lattice flocking and dynamic encirclement in the xy-plane.
As shown in Fig. 2a, 7 agents were randomly distributed
around the origin with an initial goal of forming a lattice
with separation 5 m. The target was initiated at position
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TABLE 1. Parameters of the swarm.

Parameter \ Value

d 5
r 10
d 1
r’ 2
h 0.9
cf, c?, c‘f 2
s, cg, s 2.8
c'ly 1
Wr 0.5

(—15, —15, 2) and translated towards the origin at a constant
rate of 0.1 ms~!. The swarm was programmed to track the
target in a lattice formation and transition to encirclement
at a radius of 5 m around the target with d; = 10 m.
In Fig. 2b we see that, as expected, the lattice formation
gradually breaks away as t(z;) approaches 0.5 (i.e. the agents
gets closer to d).

Time = 6.38s Separation : 5 Tie Si121518 Separation : 5

Altitude

(b)
FIGURE 2. Simulaton 1- Lattice stage: (a) Lattice, (b) Transition from
lattice.

In Fig. 3a we see a gradual transition to encirclement as
7(z;) approaches O (i.e. the agents each pass d;). In Fig. 3b,
we see that the swarm has successfully adopted an encir-
clement formation around the target.

Time = 28.58 5 Separation : 5 Time = 36.38 5 Separation : 5

Centroid Distance : 1.0

Altitude

(b)

FIGURE 3. Simulaton 1- Encirclement stage: (a) Transition to
encirclement, (b) Encirclement.

The benefits of the smooth transition using t(z;) are illus-
trated in Fig. 4. Here, we compare the proposed blended
tactic against an instantaneous switched tactic like the one
used in [27]. Notice that at the center of the tactic change
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(approximately 12 s), the switched tactic produces a dramatic
spike in commands, whereas the blended tactic produces only
a minor change. As a result, the centroid of the entire swarm
arrives over the target more quickly while consuming less
energy in the transition.

Comparison of Tactics, 7 vehicles

—— Blended
——- Switched | 20

70 4 —— Blended
—-- Switched

60 4

50 4

T
-
o

,_.
°©
Centroid Proximity [m]

40

30 4

204

Sum of Commands [m/s?]

T
v

10 4

T T T T T T T T
[} 5 10 15 20 25 30 35
Time (s)

FIGURE 4. Comparison of blended versus switched tactics.

Time = 23185

Time = 38.98 s Lattice separation : 5
Centroid Distance : 0.7

Encircle radius : 7

28
26
24
22
20
18
16
14

Altitude

-28
-26

—24

=22

)r~direq/0 ;

20
-18
-16

©
FIGURE 5. Simulation results for the network: (a) Lattice, (b) Transition
between formations, (c) Enspherement.

B. ENSPHEREMENT

In this section, we present the results of blending the control
inputs, as proposed in (38), when transitioning between lat-
tice flocking and dynamic enspherement in arbitrary planes.
Recall from Section IV-D that enspherement is accomplished
by rotating the planes of encirclement for agent i by quater-
nion p;. Here, we defined two overlapping planes rotated by
% around the x-axis and —7 around the y-axis, respectively.

94494

As shown in Fig. 5a, 12 agents were randomly distributed
around the origin with an initial goal of forming a lattice flock
with separation 5 m between agents. The target was initiated
at position (—25, —25, 20) and translated towards the origin
at a constant rate of 0.1 ms~!. The swarm was programmed
to track the target in the lattice formation and transition to
enspherement at a radius of 7 m with d; = 15 m. In Fig. 5b
we see the agents break from the lattice flocking formation to
take up positions in a dynamic sphere.

In Fig. 5c, we see the swarm adopts dynamic enspherement
around the target. At the intersections between the planes,
we observe small perturbations from the ideal encirclement.
This is due to the collision avoidance term.

Agent Separation

—— Maximum r
— Minimum

204

)
&

Separation {m
=
o
L

T T T T T T T 1 T
o 5 10 15 20 25 30 35 40
Time (s)

FIGURE 6. lllustration of minimum and maximum separation between
vehicles throughout the experiment.

Fig. 6 presents a plot of the minimum and maximum sep-
aration between vehicles throughout the experiment. In the
maximum separation (upper portion of the plot), we see that
the agents settle at a separation of approximately 14 m (i.e. the
diameter of the sphere). Perturbations are observed when
collision avoidance was necessary. Vertical lines denote times
when two agents approached each other at intersection planes
and were forced to alter their trajectories. Note that this occurs
at times of minimum separation (lower portion of the graph).

VII. CONCLUSION

This paper presented a bimodal control strategy for smoothly
transitioning between different topologies of flocking and a
new structured swarming technique called dynamic ensphere-
ment. We built on previous work by formulating dynamic
encirclement for application in arbitrary planes using quater-
nions. We structured this formulation in terms of Reynolds
rules so that they could be integrated with common
graph-based flocking strategies. We formulated a new type
of structured swarming that captures a target within a
dynamic sphere by defining overlapping planes of encir-
clement. Finally, we implemented these new techniques in
realistic simulations that demonstrated the effectiveness of
enspherement and smoothness of the transitions between
formations. When compared to tactic switching techniques
found in previous work, the proposed approach brought the
centroid of the entire swarm over the target more quickly
while consuming less energy in the transition. This technique
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could prove useful in applications where agents must first
pursue and close in on a target prior to carrying out a mission.
Future work will focus on transitions between more sophisti-
cated, time-varying structures.
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