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ABSTRACT Printed circuit boards are versatile and highly printed, which can be widely used in various
fields, and also provide new opportunities for the development of electronic information equipment.
However, it is difficult to detect defects and faults during the production and use of printed circuit boards.
In this paper, in view of the defects and fault detection of printed circuit boards, a deep learning detection
method GSC YOLOv5 that integrates light-weight network and dual attention mechanism is proposed. First,
GSC YOLOv5 is improved on the basis of YOLOv5. Ghost Conv and Ghost Bottleneck are used to realize
the lightweight of the algorithm structure, reduce the number of parameters and floating point arithmetic
(Flops) of the model. Second, the dual attention mechanism of Squeeze-and-ExcitationModule (SEModule)
and Convolutional Block Attention Module (CBAM) are introduced to optimize the performance of the
algorithm, while improves the detection precision and real-time detection efficiency. Last, the experimental
results show that compared with the original algorithm, GSC YOLOv5 reduces the amount of parameters
and Flops by 50.38% and 55.52%, respectively, and compresses the model volume by 50.26%. Furthermore,
the detection precision is increased by 2.41% and the recall rate is improved by 1.06%. At the same time,
a real-times detection performance of 89.4 FPS is achieved, it improves by 65.18%. Therefore, the proposed
algorithm is not only lightweight but also can achieve better performance, it can satisfy the detection
requirements of printed circuit board.

INDEX TERMS Deep learning, lightweight, dual attention mechanism, printed circuit board, defect
detection.

I. INTRODUCTION
With the development of electronic equipment and commu-
nication technology, printed circuit boards are widely used in
household appliances [1], industrial equipment [2] and mili-
tary facilities [3], [4]. For example, unmanned aerial vehicle,
intelligent logistics and distribution vehicles, man-portable
communication equipment, etc. The printed circuit board is
a high-tech and strategic emerging industry encouraged by
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‘‘Made in China 2025’’ and has a large market space and
development potential.

Printed circuit boards are smaller, fully functional and have
greater market advantages, but the defects detection in the
manufacturing process and troubleshooting during the use of
printed circuit boards are difficult and inefficient. With the
development of AI detection and computer vision, solving the
fault problem of circuit boards through deep learning target
detection algorithms has become the current key research
topic in quality inspection and troubleshooting.

At present, the commonly used deep learning algo-
rithms include SSD [5], YOLO [6], [7], [8], [9] and Faster
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R-CNN [10] etc. the combination of deep learning [11], [12]
andmachine vision is the development direction in the field of
object detection. In the field of printed circuit board detection,
Liu et al. [13] selected YOLOv4 as the basic framework
and proposed a new loss function based on the GIOU for
box regression, although recall rate of object detection and
detection performance is improved, the original YOLOv4
algorithm has redundant structure and large amount of cal-
culation. Zhang et al. [14] based on the standard ResNet,
propose a novel cost-sensitive residual convolutional neural
network model, which improved the detection accuracy and
reduced the classification error.

In [15], [16], and [17], based on the two-stage target detec-
tion algorithm, a deep learning classification algorithm for
circuit boards is proposed, which improves the accuracy of
the classification process and promotes the construction of
smart cities. In [8], the object detection model feature pyra-
mid network is applied to PCB defect detection, which proves
the effectiveness of the defect detection network. However,
in [18], the environmental factors are taken into account,
a deep reinforcement learning model based on the Ac-tor-
Critic algorithm is proposed, and it realizes the accurate
positioning and detection of the circuit board.

Deep learning algorithms are widely applied in the fault
diagnosis and defect detection of circuit boards. However,
the aforementioned deep learning-based detection algorithms
suffer from problems such as large and complex network
structures, low detection precision and slow real-time detec-
tion speed. To address these problems, this paper improves
and optimizes the YOLOv5 target detection algorithm and
proposes the GSC YOLOv5 that integrate lightweight net-
work and dual attention mechanism. The main innovations
and contributions of this paper are as follows:
• To achieve lightweight, Ghost Conv and Ghost Bottle-
neck [19] are used instead of traditional convolution
and bottleneck CSP modules respectively. It not only
reduces the number of model parameters and Flops, but
also compresses the model volume and network layers,
making the model structure simpler and lighter.

• The dual attention mechanism of SE module [20] and
CBAM [21] is introduced to adjust the tendency of
model feature extraction, improve model detection pre-
cision and real-time detection performance.

• Based on the integration of lightweight network and dual
attention mechanism, the model structure is adjusted by
ablation experiments, an algorithm model with higher
detection accuracy and better real-time performance is
obtained.

The remainder of this paper is organized as follows.
Section II offers an printed circuit board detection system.
In Section III, GSC-YOLOv5 network structure and its con-
stituent modules are presented. Sections IV introduce the
object detection performance evaluationmetrics, model train-
ing parameters and processes is provided, and analyze the
results of comparative experiments. Finally, conclusions and
future work are given in Section V.

II. PRINTED CIRCUIT BOARD DETECTION SYSTEM
Defects in themanufacturing process of printed circuit boards
affect product quality and qualification rate, and faults during
use affect the service life of electronic products. It follows that
the detection of the printed circuit board is crucial.

The traditional printed board detection accuracy is low and
the efficiency is slow, while the detection results need to be
manually marked, visualization is not obvious. In ‘‘Made in
China 2025’’, the development of the printed circuit board
industry is encouraged and the supporting related services are
improved. Therefore, the printed circuit board production and
overhaul industry came into being, which greatly promoted
the development of the electronic communication industry.

In the detection and maintenance task, the printed circuit
board structure is complex and not easy to find minor trou-
bles. Therefore, the detection of printed circuit board through
deep learning target detection methods has become a new
development direction for circuit board detection.

FIGURE 1. Printed circuit board detection system.

Fig.1 shows the printed circuit board detection system.
Deep learning-based printed circuit board detection system
can detect six types of defects, including missing hole, mouse
bite, open circuit, short, spur and spurious copper. In the
process of printed circuit board detection, high detection
precision and wide coverage are required, while excellent
data acquisition and image processing real-time performance
is also desired. Therefore, deep learning-based printed circuit
board detection has high requirements for the algorithm.

Based on the aforementioned practical situation and detec-
tion requirements, this paper proposes the GSC YOLOv5
algorithm, which not only compresses the model volume,
reduces the consumption of hardware resources and can meet
the needs of embedded development, but also improves the
detection precision, recall rate and real-time detection perfor-
mance, while the detection results are visualized, in line with
the detection needs of printed circuit boards.

III. GSC-YOLOv5 NETWORK STRUCTURE
A. YOLOV5 ALGORITHM
The YOLOv5 target detection algorithm directly trains the
model end-to-end, with excellent real-time performance and
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simple network structure. It is the more flexible in the current
one stage algorithm, which is extremely advantageous in the
field of multi-target detection and recognition.

FIGURE 2. YOLOv5 algorithm process.

Fig.2 show that the four components of the YOLOv5 target
detection algorithm, including input, feature extraction back-
bone network (Backbone), feature fusion network (Neck)
and prediction. The main contents of the YOLOv5 algorithm
include:

a. Input uses mosaic data enhancement to improve
the detection performance of small target objects,
and introduces k − mean clustering analysis algo-
rithm, which adaptively completes the statistics of the
detected object size.

b. The focus slicing module is used in the feature
extraction backbone network to reduce the number of
channels of the input images. At the same time, the
introduction of cross stage partial network [22] (CSP)
and spatial pyramid pooling [23] (SPP) not only effec-
tively prevents the vanishing gradient problem caused
by the deepening of the network, but also enables to
obtain more fine-grained feature information.

c. In the neck structure, the feature pyramid net-
work (FPN) module and pixel aggregation net-
work (PAN) module are used to better fuse the features
under different receptive fields, so as to output three
feature maps with different scales.

d. On the output prediction stage, localization coordi-
nates, classification information and confidence val-
ues are given by the obtained feature information,
and finally completes the target recognition and
positioning.

B. GHOST CONV AND GHOST BOTTLENECK
With the development of convolutional neural networks and
the demand for embedded devices, deploy more efficient
and lightweight neural networks with limited memory and
computational resources has become the future direction of
convolutional neural network development. Han et al. [19]
fully revealed the essential features of the potential infor-
mation of the feature map and proposed a more lightweight
convolutional model, Ghost Conv, by applying a series of

linear transformations with cheap cost using the redundancy
characteristic of the feature map.

Fig.3 show the difference between traditional convolution
and Ghost Conv. In the figure, Ghost Conv performs cheap
linear operations 8i(i ≤ m) based on a small amount of tra-
ditional convolution, which reduces the number of parameters
and Flops of the convolution process, so it has lower hardware
resource requirements and GPU usage for the convolution
process. Ghost Conv first generates m intrinsic feature maps
based on a custom convolutional kernel size. Subsequently,
the cheap linear operation is used to enhance the feature
extraction of m inherent feature maps, so that each intrinsic
feature map generates s− 1 new feature maps. Finally, the m
intrinsic feature maps generated by the traditional convolu-
tion and the s − 1 new feature maps generated by the cheap
linear operation are concatenated to complete the lightweight
convolution operation.

FIGURE 3. The convolution process of traditional convolution and ghost
Conv.

Suppose an input image x ∈ Rc×h×w, y ∈ Rh
′
×w′×ms is

the output feature map with ms output channels. Thus, the
amount of floating point operations required for traditional
convolution can be calculated as:

CT = c× k × k × ms× h′ × w′ (1)

where the number of input channels is c, k × k represents the
size of custom filters in the layer. h × w and h′ × w′ are the
height and width of the input and output image respectively.

To ensure that Ghost Conv can be used modularly, the sizes
of convolution kernels, convolution stride and padding should
ensure that the size of feature maps output by Ghost Conv is
the same as that for a traditional convolution. Therefore, the
number of computations required by Ghost Conv is

CG = c× k × k × m× h′ × w′ + m× k × k × (s− 1)

× h′ × w′ (2)

In Ghost Conv, c � s is usually satisfied, therefore,
the theoretical speed-up ratio (rs) and model compression
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ratio (rc) of Ghost Conv and conventional convolution are as
follows:

rs =
CT
CG

=
c×k×k×ms×h′×w′

c×k×k×m×h′×w′+m×k×k×(s−1)×h′×w′
(3)

rc =
c× k × k × ms

c× k × k × m+ m× k × k × (s− 1)

=
c× s

c+ s− 1
≈ s (4)

In this case, Ghost Conv can replace traditional convolu-
tion to reduce the number of parameters and compress the
size of the model, and the advantages of lightweight are
more obvious compared with traditional convolution. The
convolutional computation of Ghost Conv is about the 1/s
of traditional convolution, which greatly reduces the demand
of hardware resources for the convolution process and dras-
tically decreases the number of layers of the network and
training time.

FIGURE 4. Ghost bottleneck module.

At the same time, in order to ensure the universality and
convenience of the lightweight module, the lightweight mod-
ule Ghost Bottleneck is shown in Fig.4, which is stacked by
Ghost Conv and be taken as a plug-and-play component.

As Fig.4 shows, the Ghost Bottleneck module with
stride = 1 consists of Ghost Conv, batch normalization (BN),
down sampling and activation function. The input image is
expanded by the first Ghost Conv to increase the number of
channels, subsequently, reduce the number of channels by the
second Ghost Conv after the BN layer and ReLU activation
function to ensure that it matches the number of channels
before down sampling. The Ghost Bottleneck uses fewer
convolutional and BN layers compared to the CSP network,
so the number of model network layers is less, and the amount
of model parameters and Flops arithmetic are lower.

C. SQUEEZE-AND-EXCITATION MODULE
In convolutional operations, the desired information is
obtained by extracting or fusing channel features. The intro-
duction of the channel attention mechanism SE Module can
improve the relationship between channels. In the process
of feature extraction, it can adaptively adjust and correct the
feature weight, increase the sensitivity of feature information
and improve the saliency of the detected object.
Remarks: For any given transformation Ftr mapping the

input X to the feature maps U where U ∈ RH×W×C , where

H × W indicates the height and width of the input image,
C denotes number of channels. Ftr represent the transform
function.

FIGURE 5. SE module schematic.

As Fig.5 shows, the SE Module goes through two steps
of squeeze and excitation to access global information and
recalibrate filter responses. First, the dimension of the input
image is reduced by global average pooling. Second, the
global information is learned through feedforward networks
and the corresponding weights of each feature map are
obtained. Final, the obtained corresponding weights are mul-
tiplied with the original feature map to obtain the final feature
information.

In the squeeze compression stage, a feature map of H ×
W ×C is compressed to a size of 1×1×C by global average
pooling, thus a statistic z is generated by shrinkingU through
its spatial dimensions H ×W , such that the c-th element of z
is calculated by:

zc = Fsq(uc) =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j) (5)

where zc represents the output of compression operation,
Fsq denotes the compression function.

Subsequently, in the excitation stage, global information
obtained by squeeze compress is increase dimensioned by
nonlinear activation function and full concatenation opera-
tions, therefore, the excitation operation is as follow:

s = Fex(z,Q) = σ (g(z,Q)) = σ (Q2δ(Q1, z)) (6)

Q1 ∈ RC/r×C , Q2 ∈ RC×r/C (7)

where δ refers to the ReLU nonlinear activation function,
Fex is the excitation function, z represents the output of the
squeeze operation, which is also the input of the excitation
operation. Q represent the mapping relationship between
channels, where r is the reduction ratio of channel.
The final output of the SE module is obtained by rescaling

U with the activation s:

x̃c = Fscale(uc, sc) = scuc (8)

where X̃ = [x̃1, x̃2, · · · , x̃c] and Fscale(uc, sc) refers to
channel-wise multiplication between the scalar sc and the
feature map uc ∈ RH×W [20].
Therefore, SE module is able to accomplish adaptive

adjustment of feature weights, which is more beneficial to
obtain the required information.
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D. CONVOLUTIONAL BLOCK ATTENTION MODULE
CBAM is a simple and efficient feed-forward convolutional
attention model, which is able to sequentially infer the atten-
tion map along two separate dimensions [21], channel and
spatial. Suppose given an input intermediate feature map
F ∈ RC×H×W , CBAM will complete channel feature extrac-
tion and spatial feature extraction in turn, and generate a
1D channel attention map Mc ∈ RC×1×1 and a 2D spatial
attention map Ms ∈ R1×H×W , respectively. Thus the overall
attention process of channel feature extraction and spatial
feature extraction can be summarized as:

F ′ = Mc(F)⊗ F (9)

F ′′ = Ms(F ′)⊗ F ′ (10)

where⊗ denotes element-wise multiplication. F ′′ is the final
refined output.

Fig.6 shows the feature extraction process of CBAM. The
average pooling can maximize the aggregation of spatial
information, and the maximum pooling can obtain more
refined channel features. Therefore, the CBAM module uses
both average pooling and maximum pooling in the channel
attentionmodel, with the aim of improving the expressiveness
of the model.

FIGURE 6. Convolutional block attention module.

In the channel attentionmodel, first, the spatial information
of the feature map is aggregated by using both average pool-
ing and max-pooling operations. Subsequently, generating
two different spatial context descriptors [21]: Fcavg and F

c
max.

Last, the both descriptors will be transmitted to a shared
network of multi-layer perceptron (MLP) with one hidden
layer to produce a channel attention mapMc ∈ RC×1×1.

The channel attention model is similar in principle to the
SEModel, it uses the feature relationship between channels to
generate a feature map. Since the feature information of each
channel is considered and fused, the channel attention model
requires a large amount of calculation. In short, the channel
attention is computed as:

Mc(F) = σ [MLP(AvgPool(F))+MLP(MaxPool(F))]

= σ [W1(W0(Fcavg))+W1(W0(Fcmax))] (11)

where, σ denotes the sigmoid function, W0 ∈ RC/r×C and
W1 ∈ RC×C/r , W0 and W1 denote the weights after pool-
ing and sharing the network, respectively. r is the channel
reduction ratio, which aims to improve the computational
efficiency of the channel attention model by compressing the
spatial dimensionality of the input feature map.

The spatial attention model is a complementary to the
channel attention model, which can fully utilize the internal
spatial relationship of feature maps to generate spatial atten-
tion maps.

In the spatial attention model, to aggregate spatial infor-
mation, two 2D maps F savg ∈ R1×H×W and F smax ∈

R1×H×W are generated by applying max-pooling and average
pooling operations, and concatenate the two 2D maps along
the channel axis to generate an efficient feature descriptor.
Then apply a convolution layer to generate a spatial atten-
tion map Ms(F) ∈ RH×W . In short, the spatial attention is
computed as:

Ms(F) = σ [f k×k (AvgPool(F);MaxPool(F))]

= σ [f k×k (F savg;F
s
max)] (12)

where σ denotes the sigmoid function and f k×k represents a
convolution operation with the filter size of k × k .
Since CBAM is a lightweight and general model, it can be

integrated seamlessly into any convolutional neural network
structure without adding additional computational costs.
Meanwhile, both CBAM and YOLO algorithms are end-
to-end training models, so combining them with YOLO algo-
rithm can complete feature extraction more efficiently and
achieve more desirable results.

E. GSC YOLOV5 NETWORK STRUCTURE
Remarks: Focus is the slice module, Ghost Conv is the

lightweight convolution, and Ghost Bottleneck indicate the
lightweight module. SE and CBAM are the attention mech-
anism modules, SPP represents the spatial pyramid pooling
module, which can realize the fusion of multiple receptive
fields. Swish is the activation function with better perfor-
mance than Leaky ReLU.

Fig.7 shows the proposed lightweight network Ghost SE
CBAM YOLOv5 (GSC YOLOv5) structure. Based on the
YOLOv5 algorithm, GSC YOLOv5 uses Ghost Conv and
Ghost Bottleneck to replace part of the CBL and CSP mod-
ule in the original algorithm, which reduces the amount
of computation and Flops, making the network structure
more lightweight. In addition, dual attention mechanism is
introduced to enhance feature ex-traction, so that the model
can obtain better detection precision and real-time detection
performance.

As Fig.7 shows, the feature extraction backbone network
completes feature extraction by fusing the lightweight mod-
ule and the dual attention mechanism. SE and CBAM mod-
ules are used alternately after Conv and Ghost Conv, so that
the feature information obtained from different convolutions
can be fully utilized through weight adjustment. Al-so the
alternate use of Conv and Ghost Conv is able to maintain the
integrity of feature extraction as well as reduce the compu-
tation of the convolution process. In Neck, feature fusion at
different scales is accomplished by convolution, C3 residual
module and up sampling, which enables feature fusion to
contain both underlying fine-grained and high-level semantic
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FIGURE 7. GSC YOLOv5 algorithm network structure.

information, thereby improve the detection precision and
detail perception ability of the network model.

FIGURE 8. GSC YOLOv5 algorithm process and parameters.

As shown in Fig.8, after feature extraction and feature
fusion, GSC YOLOv5 generates three different tensors of

(256, na×(nc+5)), (512, na×(nc+5)) and (1024, na×(nc+
5)) through Conv2d at the output prediction, corresponding
to three different outputs of 80 × 80, 40 × 40 and 20 × 20,
respectively. Where 256, 512 and 1024 denote the number of
input channels. The number of anchors for each category and
the number of categories of detected objects are denoted by
na and nc, respectively. The four localization parameters and
one confidence parameter of anchor are represented by 5, and
(1, 1) represents the size and stride of the convolution kernel.

IV. MODEL TRAINING AND RESULT ANALYSIS
A. PERFORMANCE METRICS
The Performance metrics of target detection include Accu-
racy index, speed index and harmonic mean index.

1) ACCURACY INDEX
Accuracy index generally precision (P), recall (R), aver-
age precision (AP), and other indicators (mAP@0.5,
mAP@0.5 : 0.95).
Precision and recall are used to quantitatively evaluate the

reliability of model during training and detection. They are
calculated as follows:

P =
TP

TP+ FP
(13)

R =
TP

TP+ FN
(14)

where TP denotes the part of the target detection object that
is correctly predicted, and FP is the part of the background
that is mistakenly detected as the target object. The FN indi-
cates the part of the target detection object that is incorrectly
predicted.
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The R−P curve is drawn with P as the vertical coordinate
and R as the horizontal coordinate, it shows the change trend
of the P with the R during the training process. The AP of a
category can be expressed by the size of the integral of the
area under the R−P curve line of that category, and the value
of the integral is the AP of the category. Therefore the larger
the area under the R− P curve line, the higher the AP value.
The mAP@0.5 represents the average value of AP in N

categories when the intersection over union threshold is taken
as 0.5. Therefore, the mAP@0.5 is calculated as follows:

mAP@0.5 =
1
N

N∑
i=1

APi(IOUth = 0.5) (15)

The mAP@0.5 : 0.95 defines the accuracy index under
different values of the intersection over union threshold in N
categories. It can be expressed as follows:

mAP@0.5 : 0.95 =
1
N

N∑
i=1

∑
j
AP(IOUth = j) (16)

where j denotes the value taken during the change of the
threshold from 0.5 to 0.95 in a stride of 0.05.

2) SPEED INDEX
The real-time detection speed of the model reflects the com-
puting power of the algorithm, so the quality of the model is
often measured by the number of real-time processing frames
per second (FPS). The larger FPS, the better the real-time
performance of the model.

FPS =
n
t

(17)

where n denotes the number of frames of the detected picture
or video in time t . Generally, the real-time detection speed is
required to be greater than 30 FPS.

3) HARMONIC MEAN INDEX
The harmonic mean index F1 comprehensively considers P
and R, and is a harmonic average and trade-off between P
and R. It is calculated as follows:

F1 =
2× P× R
P+ R+ ε

(18)

where ε is a negligible minimum value, usually taken as e−16.

B. MODEL TRAINING
The experiments in this paper are carried out using
Python 3.8.5 environment and CUDA 11.3, under Intel Core
i9-10900k@3.7GHz, NVidia GeForce RTX 3080 10G and
DDR4 3600MHz dual memory hardware.

In this experiment, the dataset images of printed circuit
board are 693, of which 520 are used as training set, 150 are
used as validation set, and 23 are test set. Among the six fault
and defect detection types, missing hole, mouse bite and spur
have 115 images respectively, while open circuit, short and
spurious copper consist of 116 images respectively.

In this paper, the image input is 640 × 640, the learning
rate is 0.01, the cosine annealing hyper-parameter is 0.1, the
weight decay coefficient is 0.0005 and themomentum param-
eter in gradient descent with momentum is 0.937. A total of
1000 epochs and a batch size of 12 are used during training.

FIGURE 9. GSC-YOLOv5 algorithm printed circuit board detection process.

As shown in Fig.9, first, the pre-training preparation is
completed by determining the parameters and loading the
model. Second, during the training process, the required fea-
tures and their optimal weights are obtained through feature
extraction and feature fusion, the weight values are continu-
ously updated through iterative training, and the loss function
is gradually converged. Final, the model detection perfor-
mance is continuously improved, and the trained model is
used to complete the detection of printed circuit boards, so as
to achieve the location and identification of printed circuit
board defects and faults. Therefore, the training process of the
improved and optimized GSC YOLOv5 algorithm is shown
in Table 1.

C. COMPARATIVE EXPERIMENT
1) ABLATION EXPERIMENT
Ghost-SE YOLOv5, Ghost-CBAM YOLOv5 and GSC
YOLOv5 are improved on YOLOv5 algorithm, other
experiments are the experimental results of the above three
algorithms that are not ideal in the process of network restruc-
turing. Ghost-SE YOLOv5 and Ghost-CBAM YOLOv5 are
models that introduce the SE Model attention mechanism
and CBAM attention mechanism separately based on the
lightweight model. GSC YOLOv5 is a model that integrates
lightweight network and dual attention mechanism, which
achieves the tendency of feature extraction. In addition,
improves the detection accuracy and real-time detection effi-
ciency at the same time.

Defect detection and fault diagnosis of printed circuit
boards require precise identification, accurate position and
excellent real-time performance of the detection process.
Therefore, during the network structure adjustment and
model training, the ablation experiments are shown in Table 2.
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TABLE 1. Training process of GSC YOLOv5.

During the training of the printed circuit board detection
model, the total loss function is the sum of the localization
loss, confidence loss, and category loss. The lower the value
of the total loss function, the better the overall performance
of the model, and vice versa.

The total loss function convergence curves of GSC
YOLOv5, YOLOv5, Ghost-SE YOLOv5 and Ghost-CBAM
YOLOv5 are shown in Fig.10.

FIGURE 10. Loss function convergence curves.

As shown in Fig.10, compared with the original YOLOv5
algorithm, GSC YOLOv5 has a lower loss function conver-
gence value during themodel training process, so it has higher
detection precision and localization accuracy, as well as better
confidence and classification performance.

2) PRECISION AND RECALL
During the training process, the P and R improve contin-
uously with the increase of iteration times and eventually
converge. The P and R curves of the printed circuit board

FIGURE 11. Precision and Recall convergence curve.

detection model are shown in Fig.11 (a) and Fig.11 (b),
respectively.

GSC YOLOv5 in the printed circuit board detection pro-
cess, detection precision and recall rate of 97.0% and 95.0%,
respectively, which are improved by 2.41% and 1.06%
respectively compared with the original YOLOv5 algorithm.

During the training of the printed circuit board detection
model, the mAP@0.5 and mAP@0.5 : 0.95 accuracy curves
are shown in Fig. 12(a) and 12(b), respectively. It can be
observed that the accuracy curve of GSC YOLOv5 algorithm
is more ideal than other algorithms, not only the accuracy of
the model increases faster in the early training stage, but also
the final convergence value is higher than other algorithms.
Based on the original YOLOv5 algorithm, the GSC YOLOv5
algorithm mAP@0.5 is improved by 0.87% and mAP@0.5 :
0.95 is improved by 1.54%.

The R − P curve is an important performance indicator
of measure the reliability of a model. During the training
process of the model, the P and R show a negative correlation,
indicating the variation of thePwith theR. The larger the area
under the R− P curve, the higher the P of the model.

Fig.13 shows the R − P curves of different models during
the training process. As shown in the figure, the area under the
R − P curve of the GSC YOLOv5 algorithm is significantly
larger than that of YOLOv5, Ghost-SE YOLOv5 and Ghost-
CBAM YOLOv5, so APGSCYOLOv5 > APYOLOv5.
In summary, in the printed circuit board defect and fault

detection model training process, GSC YOLOv5 algorithm
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TABLE 2. Result of ablation experiment.

FIGURE 12. mAP@0.5 and mAP@0.5 : 0.95 convergence curve.

loss function convergence faster, and all accuracy indexes are
higher than the original YOLO algorithm, so, the proposed
algorithm can meet the practical requirements in the process
of printed circuit board detection.

FIGURE 13. R − P curves of different algorithm.

3) HARMONIC MEAN PERFORMANCE
The harmonic mean performance F1 comprehensively con-
siders P and R, and is represented by the harmonic mean
curve, it shows the change trend of the comprehensive per-
formance of the model at different confidence (conf ).
The detection of defects and faults of printed circuit boards

has equally high requirements for the detection accuracy and
recall, the higher the accuracy, the more precise for localiza-
tion and identification, and the higher the recall, the wider
for the detection coverage. Therefore, balancing accuracy and
recall in the detection process is an important prerequisite and
guarantee to verify the reliability of the proposed algorithm.

The harmonic mean curve of different algorithm is shown
in Figure 14, it can be observed that the original YOLOv5
algorithm obtains the maximum value of F1 = 0.94 at
conf = 0.252, while the GSC YOLOv5 algorithm achieves
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the maximum value of F1 = 0.96 at conf = 0.515, which is
improved by 2.0% compared to the original algorithm.

FIGURE 14. Harmonic mean curve.

It can be seen that in the process of trade-off between P
and R, the GSC YOLOv5 algorithm can show a stronger
harmonic advantage, while the confidence level of 0.5 is also
more scientific, so the proposed algorithm can show better
performance in the printed circuit board detection process.

4) RESULT ANALYSIS
Fig.15 shows the training process parameters comparison
between GSC YOLOv5 and the original YOLOv5 algorithm.
As the figure shows, the improved GSC YOLOv5 algorithm
reduces the number of parameters from 47.42 million to
23.53 million, which is a decrease of about 50.38%. Fur-
thermore, the Flops, model volume, network layers and GPU
occupancy are reduced by 55.52%, 50.26%, 39.68% and
25.75%, respectively.

It is obvious that in the case of introducing Ghost Conv and
Ghost Bottleneck, the proposed algorithm model achieves
lightweight.

Fig.16 shows the comparison of experimental results in
terms of P, R and F1. As the figure shows, the P of
GSC YOLOv5 is increased from 0.945 to 0.970, which
is 2.5% higher than that of YOLOv5 algorithm. At the
same time, the R and F1 are improved by 1.1% and 2.0%,
respectively.

The experimental results show that the introduction of the
dual attention mechanism improves the propensity of feature
extraction, increases the saliency of the detected objects, and
improves the model detection performance.

FIGURE 15. Parameters comparison of training process.

FIGURE 16. Comparison of experimental results.

In deep learning target detection, real-time detection per-
formance is required to be greater than 30FPS. Printed circuit
board defects and faults detection of the original YOLOv5
algorithm real-time detection speed of 54.12 FPS, but the
improved GSC YOLOv5 algorithm real-time detection speed
of up to 89.40 FPS, compared to the original algorithm to
improve 65.18%. Therefore, GSC YOLOv5 algorithm can
meet the requirements of real-time detection.

In summary, the GSCYOLOv5 algorithm not only reduces
the number of model parameters and network layers, but
also compresses the model size and GPU occupancy, achiev-
ing a lightweight effect. At the same time, the detection
accuracy, recall rate and re-al-time detection performance
all show advantages over the original algorithm, so the
effectiveness of the proposed algorithm is verified through
experiments.

The printed circuit boards in different scenarios were
selected for testing and validation, and a detection results of
different algorithms is shown in Fig.17. The experimental
results show that the GSC YOLOv5 target detection algo-
rithm is more accurate in the application of practical scenar-
ios, and the confidence level of detection and classification
is higher. In the defect and fault detection of the same circuit
board, the missing detection rate is lower and the comprehen-
sive detection effect is better of GSC YOLOv5.
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FIGURE 17. Comparison of test results.
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FIGURE 17. (Continued.) Comparison of test results.

From the test results in Fig.17 (a), it can be seen that
the detection results of missing hole in the same printed
circuit board are the same, and all the defects can be
detected, but the improved GSC YOLOv5 algorithm detects
the results with higher confidence compared to the original
algorithm.

From the test results in Fig.17 (b), it can be seen that the
original YOLOv5 algorithm has the case of missed detection,
while the introduction of a single attention mechanism has
the case of false detection. Compared to the GSC YOLOv5
algorithm, which has higher detection precision and is able to
detect all the fault points.

From the test results in Fig.17 (c) and (d), it can be seen
that the improved GSCYOLOv5 algorithm detects the results
with higher confidence compared to the original algorithm.

From the test results in Fig.17 (e), it can be seen that
the YOLOv5 algorithm misses a fault detection point.
After introducing the attention mechanism, the detection
result of CBAM is better than that of SE, which is due
to the fact that CBAM has one more spatially directed
feature extraction mechanism than SE, and therefore the
detection results are more accurate. However, among the
above detection results, the GSC YOLOv5 algorithm has
higher detection accuracy, fault coverage and confidence
level.

From the test results in Fig.17 (f), it can be seen that the
improved GSC YOLOv5 algorithm has a higher coverage of
detection and can detect more fault points.

V. CONCLUSION
In this paper, the GSC YOLOv5 lightweight neural network
algorithmwas proposed, which reduces the hardware require-
ments and achieves better detection effect by integrating
lightweight network and dual attention mechanism. In the
process of printed circuit board detection, more comprehen-
sive defects can be detected and higher detection confidence
can be given. Therefore, the GSCYOLOv5meets the demand
for high precision and high efficiency detection of printed cir-
cuit boards. On this basis, the effective combination of deep
learning and reinforcement learning algorithm to achieve a
more ideal effect is the next research direction.
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