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ABSTRACT Recent studies have established the potential of classifiers designed using association rule
mining methods. The current study proposes such an associative classifier to efficiently detect dengue fever
using gene expression data. Labelled gene expression data has been preprocessed and discretized to mine
association rules using well-established rule mining methods. Thereafter, unsupervised clustering methods
have been applied to the discretized gene expression data to reduce and select the most promising features.
The final feature reduced discretized gene expression data is subsequently used to mine rules in order
to classify subjects into ‘Dengue Fever’ or ‘Healthy’. Two well-known association rule mining methods,
viz., Apriori and FP-Growth, have been used here along with various types of well established clustering
methods. Extensive analysis has been reported with performance parameters in terms of accuracy, precision,
recall and false positive rate using 5-fold cross-validation. Furthermore, a separate investigation has been
conducted to find the most suitable number of features and confidence of association rule mining methods.
The experimental results obtained indicate accurate detection of dengue fever patients at an early stage using
the proposed associative classification method.

INDEX TERMS Gene expression data, association rules, Apriori algorithm, FP-growth algorithm,
clustering.

I. INTRODUCTION

Dengue is one of the deadliest diseases of all times. In the
last few decades, dengue affected cases were manifold across
many countries worldwide. Several studies [1], [2] have esti-
mated that around 4 billion people globally are at risk of
dengue infection. Reported deaths in recent years have also
increased drastically. Hence, it is essential to work on this
disease to provide an efficient way to detect it. The microarray
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technologies, along with different tools from the domain of
Knowledge Discovery and Data Mining, have been helpful in
finding essential and correlated biological information from
an excessively colossal gene expression dataset.

Association Rule Mining (ARM) [3], [4] is a data min-
ing technique that is used in finding the relationship and
patterns among data items. Meanwhile, clustering is a
well-known technique in grouping similar types of data
together. A weighted ARM technique is proposed in [5] to
mine the itemsets with different weights. A database consist-
ing of only binary attributes is unsuitable for the weighted

VOLUME 10, 2022


https://orcid.org/0000-0001-6065-3087
https://orcid.org/0000-0002-3930-4699
https://orcid.org/0000-0003-3918-1892
https://orcid.org/0000-0001-7459-2043
https://orcid.org/0000-0001-6694-7289

D. Sen et al.: Associative Classifier Coupled With Unsupervised Feature Reduction for Dengue Fever Classification

IEEE Access

ARM. Hence, a new approach is proposed in [6] to overcome
the problem without the requirement of pre-assigning of
weights on the itemsets. A biclustering based ARM technique
is reported in [7] to establish the superiority of the ARM
algorithm over the models based on conventional classifiers.
The discovery of a set of newly predicted protein-protein
interactions is also mentioned. Another bi-clustering method
is introduced in [8] to generate unique types of rules by dis-
carding a large number of insignificant rules generated from
maximal frequent closed homogeneous itemsets. There is
another biclustering based ARM approach proposed in [9] to
predict the standard rules among HIV-1 proteins and human
proteins. The study can identify some viral protein interac-
tions with similar biological activity. Statistical analysis is
carried out to identify significant genes. Another weighted
rule-mining approach is proposed in [10] to reduce the num-
ber of generated rules using rank and weight-based measures.
It is reported that the proposed algorithm generates a more
significant number of essential association rules than the tra-
ditional Apriori algorithm. Ranking of the rules is also done
by using a Genetic Algorithm based method in [11] to develop
a rule-based classifier. In [12], the author focuses on the
ranking behaviour of the popular interestingness measures on
the generated rules from a large number of different datasets.
The analysis can identify less computationally expensive but
significant interesting measures which are mentioned in some
of the existing literature. Along with Apriori, the FP-Growth
algorithm [13] is also used in [14] to search biological
patterns in dense microarray data. It is concluded that the
process of mining all frequent itemsets is both space and
time-consuming. It is challenging to generate effective rules
from correlated gene expression data. To counter this prob-
lem, a rule discovery method, reported in [15], is found to
be highly successful even without the help of prior biological
knowledge.

The selection of appropriate clustering algorithms and the
number of clusters are the key factors to classify meaningful
genes. A supervised clustering method is suggested in [16]
to handle gene expression data and to identify significant
interdependent genes after removing the redundancy among
gene attributes. K-means is a widely used clustering algo-
rithm because of its simplicity and computational speed.
A modified and improved version of this algorithm named
K-means++ is developed in [17] to enhance the speed and
accuracy. A different approach to reduce the number of rules
using an Agglomerative clustering algorithm is presented
in [18]. The association rules are clustered based on their sim-
ilarity. The methodology is found to be helpful in extracting
a set of most significant genes. A survey on a large number
of biclustering approaches is carried out in [19], and the
performance of those clustering algorithms are evaluated by
using different metrics. An attempt to improve the quality
of clustering is made in [20]. The approach is found to be
successful in overcoming the dimensionality problem of gene
expression data. In [21], various traditional and new clus-
tering techniques are reviewed. It is revealed that the recent
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clustering methods such as tri-clustering, cluster ensem-
ble, dual-rooted MST are useful to avoid the drawbacks of
some traditional clustering methods. A comparative study on
several Agglomerative clustering techniques is carried out
in [22]. In [23], a semi-supervised cluster ensemble frame-
work is reported and is applied on cancer gene expression
data for feature selection. It is shown that the framework can
enhance the performance of the clustering algorithms adopted
by the authors.

An Artificial Neural Network (ANN), trained by Particle
Swarm Optimization (PSO), is adopted in [24] to classify
different types of Dengue fevers. The model can achieve
more than 90% accuracy while classifying the types. The
gene expression data comprised of a large number of gene
features in which appropriate feature selection without losing
information is a difficult task. To combat this challenge,
an approach is adopted in [25]. Here, ARM and differential
gene expression analysis are considered to identify essen-
tial and correlated associations of genes. It is reported that
multiple rules can share a common gene, unlike the cluster-
ing technique, where each rule is associated with only one
cluster. Discretization of raw data is crucial in making the
data suitable for mining. The quality of significant rules and
relevant patterns are greatly influenced by the choice of the
discretization approach [26].

A significant problem of the traditional ARM technique is
the generation of a large number of redundant rules, which
not only leads to costly computation but also causes the
overfitting of data [27]. By considering this, a new framework
of closed frequent itemsets mining is suggested in [28]. It is
reported that the model can minimize the number of irrelevant
rules in both real and synthetic datasets. Another study is
conducted in [29] to identify the relationship of PPIs using
a support-confidence framework. The approach uses correla-
tion measures to improve the performance of the framework.
In [30], a novel approach based on gene enumeration is
proposed to handle gene expression data. Instead of using
a matrix, an efficient tree data structure is used to store the
gene data in its binary representation format. The proposed
method can achieve a promising result in finding association
rules with high confidence and reducing memory usage while
keeping all the association rules. Another attempt to build
a classifier for gene expression data using ARM is made
in [31]. A Support Vector Machine (SVM) extracts significant
biological features with high accuracy in the study. Several
clustering analyses of gene expression data have been con-
ducted in past decades to study the biological functionality
of genomics. An investigation is made in [32] to analyse the
performance of the different clustering algorithms on gene
data. The study concludes that a single clustering algorithm
cannot be declared as the best because the uniqueness of
each algorithm makes them better than others in a particular
experimental setup. In most of the literature, the selection
criteria of the clustering algorithm are either static or based
on the choice of the researchers. In this context, a framework
is developed in [33] to establish it as a guiding tool to evaluate
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the comparative performance of clustering algorithms on any
datasets.

Managing high dimensional data like gene expression is a
difficult task. A study is made in [34] to highlight the chal-
lenges and resolution for cluster analysis to combat dimen-
sionality problems. The research on predictive classification
and identification of gene markers are also made in [35].
Class imbalance is a significant issue in the domain of data
mining. Most of the traditional classifiers do not produce
good accuracy for the data which suffers from this prob-
lem. In [36], a new framework is proposed by introducing a
new measure named Complement Class Support (CCS) for
imbalanced data. The model displays the improvement of
classification error rates against a regular model based only
on a support and confidence framework. Another model for
mining pattern of itemsets is proposed in [37]. The study
reflects an attempt to generalise the operational platform
between the data and the miner. A statistically backed up
probabilistic approach is also suggested in [38] to minimise
the number of frequent itemsets. It is reported that the model
can eliminate all of the redundant itemsets. To accomplish the
same objective, another study on self-sufficient itemsets [39]
is conducted. Another investigation on different measures
is made in [40] for pruning the important association rules.
It is reported that not more than 50% rules are required to
represent a cluster after pruning operation. An associative rule
mining classifier combined with a new measure is introduced
in [41] to handle both balanced and imbalanced data. It is
posited that the performance of the proposed method is vastly
superior to other associative classifiers, especially for imbal-
anced data.

An evolutionary optimization technique is proposed in [42]
for mining biologically significant rules using NSGA-II to
maximize the utility and interestingness of the sequential
rules from gene expression data. Traditional ARM technique
faces challenges while dealing with a large dataset. In
[43], a heuristic method is proposed to learn from important
gene-disease and gene-gene association rules generated from
microarray data. The proposed approach has been reported to
be more effective than traditional methods. It is known that
an imbalanced dataset carries the risk of generating an over-
fitted model, which displays unreliable predictability. In [44],
an unsupervised gene selection framework is proposed to
handle imbalance microarray datasets. The method, at first,
performs clustering of the genes and then identifies virtual
genes which carry the most similar information about their
respective clusters. Another study is conducted in [45] to
classify the samples of cancer gene-expression data from
several open-source datasets using simulated annealing.

The current work proposes an associative classifier based
framework for efficient detection of Dengue fever. Literature
survey reveals that reduction of unnecessary feature (gene)
from the dataset may be beneficial to find valuable rules.
Motivated by this, unsupervised feature reduction has been
applied wherein clustering algorithms are used to cluster
features and to eliminate similar features from the dataset
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keeping only the unique ones. The current study investigates
some of the most successful clustering algorithms for this
purpose. Next, the feature reduced gene expression dataset is
used to mine rules required to classify patients into two cat-
egories viz., ‘Dengue Fever’ and ‘Healthy’. Two well estab-
lished association rule mining algorithms viz., Apriori and
FP-Growth are used in the current study. After rule mining,
top rules with confidence more than a predefined threshold
have been selected to build the classifier. The performance is
evaluated in terms of accuracy, precision, recall and false pos-
itive rate. 5-fold cross validation technique has been used to
obtain statistically significant results. Furthermore, a separate
box plot based analysis reveals that the proposed associative
classifier framework is capable of detecting dengue fever
with satisfactory performance. Overall the contributions of
the current study are as follows:

1) Unsupervised clustering technique has been used in
finding the most promising genes for classifying
patients into ‘Dengue Fever’ and ‘Healthy’ category.

2) Associative classifier has been built by selecting the
most confident rules mined by applying well known
rule mining algorithms

3) Extensive experiments have been conducted to under
stand the performance of a wide range of clustering and
association rule mining techniques in the context of the
current study.

The remaining work is organized as follows: The descrip-
tion of the dataset used in the present work is provided
in section II. The proposed method is then introduced in
section III. While, Section IV reports experimental results
and the performance analysis. Finally, the conclusion of the
present work is included in section V.

Il. DATASET DESCRIPTION

In this article, the experiments have been carried out on the
dataset named “Acute Dengue patients: whole blood”. The
original dataset is available in the online link https://www.
ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS5093. It con-
tains a set of 54715 genes with expression values for
each of the 56 samples. The samples consist of 4 types
of classes: Convalescent Patient, Dengue Haemorrhagic,
Dengue Fever Patient, and Healthy Control. Among these
four classes, the samples belonging to the ‘Dengue Fever
Patient’ and ‘Healthy Control’ classes are selected for the
experiments. Here, ‘Dengue Fever Patient’ represents the
samples of Dengue affected patients, and ‘Healthy control’
represents the samples of the patients who are not affected by
Dengue. We have 18 ‘Dengue Fever Patient’ class sample and
9 ‘Healthy Control’ samples, thus making a total of 27 sam-
ples. Initially, the original dataset is transposed before per-
forming any experiment on it. Thus, the final gene expression
data matrix comprises 54715 gene columns, 1 class column,
and 27 rows of samples for our experimental purpose. Table 1
depicts the abstract view of the data set used in the current
experiment.
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TABLE 1. The abstract view of the original data set. Here, i th gene and j
th sample are denoted by g; and s; respectively. The expression value of
the i th gene for the j th sample is denoted by v; ;). The range of the
values of m and n are [1, 27] and [1, 54715] respectively. The class column
and the class of a sample s; is denoted by ¢ and c;, respectively.

91 g2 g3 e In c \
S1 V(1,1) V(2,1) U(3,1) U(n,1) &1

52 V(1,2) V(2,2) U(3,2) U(n,2) C2

Sm U(l,m) U(Q,m) U(S,m) v(n,m) Cm

ill. PROPOSED METHOD

A. DATA PREPARATION

At first each of the gene column data is normalized using
Z-score normalization. If u; is the mean and o7 is the standard
deviation of gene data g; then the Z-score value of v ;) is
calculated as Z(v(,») = v(’+l_“’ Here j is the index of j th
sample.

A 3-level discretization is now performed for each of the
Z-score normalized column data Zg,. Each column is split
into three equal ranges depending on the maximum and
minimum values in that column. If the Z-score values lie in
the lower range, discrete value —1 is set in place of those
values. Similarly, O and 1 are set for the mid and upper range
values. The categorical representation of the discrete values
—1,0and 1 are ‘low’, ‘mid’ and ‘high’. The algorithm for the
discretization process has been described in the algorithm 1.

Algorithm 1: Algorithm to 3-Level Discretize a Z-Score
Normalized Gene Column
Data: A Z-score normalized column data Zg
Result: A column data V with discretized value
p < max(Zy); /+* max() returns the maximum
value. */

q < min(Zy); /* min() returns the minimum
value. */
st

n < |Ze|; /* |Zg] is the cardinality of Z,
*/

i< 1;

while i < ndo

if Z,. € [q,q + k) then

| Vi -1,

elseif Z,, € [+ k, p — k) then
‘ Vi< 0;

else

‘ Vi < 1;

end

i<—i+1;

end
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B. UNSUPERVISED FEATURE REDUCTION

As our dataset contains a large number of features(genes),
it is essential to reduce the number by discarding the
non-significant ones. Hence, the popular clustering algo-
rithms like K-means, Optics, Average Agglomerative, Ward
Agglomerative and BIRCH have been chosen for this pur-
pose. The feature columns in the dataset represent the feature
vectors which are the data points for the clustering algo-
rithms. These clustering techniques produce a total kK number
of feature clusters. The significant k genes are chosen by iden-
tifying the closest gene to the k cluster centres. The algorithm
for the selection of potential genes has been described in the
algorithm 2. In this article, the different values of k are chosen
to be 5, 10 and 15. In our experiment, the clustering meth-
ods have been implemented using the scikit-learn package.
From the subsection III-B1 to III-B5, the methodologies of
constructing the clusters using the clustering algorithms have
been discussed.

Algorithm 2: Algorithm to Find the Significant Genes

Data: A set of feature vectors W

Result: A set of significant genes G

G < {h

C <~ f(W); /* Function f() implements a
clustering algorithm and returns the
cluster centres. C is the set of
cluster centres. x/

n<|Cl|; /* |C| represents the
cardinality of set C =/

1< 1;

while i < n do

id < min(d(Cy1, Cy), d(Cpz, Cy), d(Ci3, Cy), -+ +);
/+ Cj are the data points in the i
th cluster. C; is the cluster
centre of i th cluster. Function
d() retuns the euclidean distance
between Cj; and C;. Function min()
returns the index of closest
feature (gene) to C;j. */

G <~ GUWy;

i<—i+1;

end

1) K-MEANS CLUSTERING

K-means clustering [46] is one of the most efficient and sim-
plistic clustering techniques. It needs the value of K, which
denotes the number of clusters to be formed. This method
assigns a data point to the nearest cluster by calculating and
comparing the Euclidean distances between the data point
and each cluster centre. In each iteration, new cluster centres
are identified by calculating the mean of the data points in the
cluster. The algorithm stops when cluster centres remain the
same in two successive iterations.
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2) OPTICS CLUSTERING

In OPTICS Clustering [47], OPTICS stands for Ordering
Points To Identify Cluster Structure. The algorithm is pop-
ular for its flexibility on dense data-set. In this method, the
mean of all the feature vector points having the same cluster
labels is calculated, and after that, the cluster centres are
identified.

3) AVERAGE AGGLOMERATIVE CLUSTERING

It is a type of hierarchical clustering which follows a ‘bottom-
up’ approach to construct the clusters. Initially, this method
considers each data point as an individual cluster. The clos-
est clusters are then combined based on their distance. The
distance is computed by calculating the average distance
between all pairs of data points in those clusters. The optimal
set of clusters is formed after a series of unions between the
smaller clusters.

4) WARD AGGLOMERATIVE CLUSTERING

Ward Agglomerative clustering [48] is also a type of hierar-
chical clustering. This method defines the distance between
two clusters as the combined error sum of squares. In each
stage, the merger of a cluster pair occurs when it produces the
minimum change of this error. The smaller clusters are then
combined to create larger clusters by following this criterion.

5) BIRCH CLUSTERING

BIRCH (balanced iterative reducing and clustering using
hierarchies) is an unsupervised data mining algorithm used to
perform hierarchical clustering generally over large datasets
[49]. This algorithm initially produces a compact version of
the dataset from the original one without losing much of the
information. Finally, this smaller dataset is clustered instead
of the larger one.

C. FREQUENT ITEMSETS AND RELEVANT ASSOCIATION
RULE MINING

After the clustering phase, the experimental dataset con-
tains k£ gene columns and 1 class column. Each discretized
value in a gene column g; represents the gene’s correlation
level (high, mid, low) with a particular sample s;. The pro-
posed methodology considers each gene value s; as a set of
items. Suppose the correlation values of a random sample
s; for the set of genes and the class {g1, g2, ..., &n, ¢} are
{low, high, ..., mid, c1 }. Then the possible set of items from
si is {(g1, low), (g2, high), ..., (gn, mid), c1 }.

The set of samples s has been divided into training and
test dataset using 5 fold cross-validation. In this article, two
different algorithms, namely the Apriori and the FP-growth,
have been used on the training dataset to mine frequent item-
sets. A fixed support value of 25% has been used to identify
the frequent itemsets, and the association rules have been
generated based on the different confidence threshold values
such as 0.70, 0.80 and 0.90. Among all the generated rules,
only the association rules with the gene correlation values
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in the antecedent part and the class label in the consequent
part are selected for the experiments. For example a random
association rule can be like (g1, low), (g2, high) — c1.

D. CLASSIFICATION AND PERFORMANCE MEASUREMENT
The proposed approach applies the association rules on
the test dataset to perform the classification. For each test
sample, #;, the algorithm counts the number of rules hav-
ing the antecedent part as a subset of #. After this, the
weighted voting is performed to determine the class level
of t;.

Suppose ¢ {(g1, low), (g2, high), (g3, low), ..., c1} is
a test sample and 7 {(g1,low) — «c1}, n
{(g2, high), (g3, low) — c2}, 13 : {(g1, low), (g3, low) — c1}
and rq4 : {(g1, high) — ¢} are the rules. In this case the
antecedent part of r, r» and r3 are the subset of 7. As the
antecedent part of r4 is not a subset of ¢, the rule r4 is not
considered for further processing. It can be observed that the
consequent part of r; and r3 is the class ¢; and the consequent
part of r; is the class c¢;. By following the majority voting,
the algorithm predicts the class of sample 7 to be ¢;. On the
basis of this example, the approach has correctly classified
the test data . In case of a tie in the result of majority voting,
the benefit of the doubt is given to the most important class.
According to our experimental setup, the ‘Dengue Fever
Patient’ class has been given priority for the benefit of the
doubt.

To establish the effectiveness of the proposed classifier,
the performance metrics viz. precision, recall, accuracy and
false positive rate have been considered. The precision,
recall, accuracy and false positive rate (fpr) are defined as
below:

. TP
precision = ———
TP + FP
P
recall = ——
TP + FN
TP + TN
accuracy =
TP +TN + FP + FN
P FP
y = —
P = IN ¥ FP

Here TP, TN, FP and FN represents true positive, true neg-
ative, false positive and false negative, respectively. In our
experimental setup, if both predicted and original classes are
‘Dengue Fever Patient’, it is considered a true positive. If both
classes are ‘Healthy Control’, it is considered a true negative.
If the predicted class indicates ‘Healthy Control’, but the
original class indicates ‘Dengue Fever Patient’, it is a false
positive. Whereas if the predicted class indicates ‘Dengue
Fever Patient’, but the original class indicates ‘Healthy Con-
trol’, it is regarded as a false negative. To avoid the biasness
of the model, 5 fold cross-validation has been performed five
times to generate training and test datasets. The final result
has been obtained after averaging the results of all rounds of
experiments.

VOLUME 10, 2022



D. Sen et al.: Associative Classifier Coupled With Unsupervised Feature Reduction for Dengue Fever Classification

IEEE Access

FIGURE 1. Flow diagram for associative rule based classifier.

E. PROPOSED FRAMEWORK FOR ASSOCIATIVE RULE
BASED CLASSIFIER

In the current study, we have proposed a framework to predict
the class of a data sample. Association rule mining has been
employed to train it. The control flow diagram, presented in
Figure 1, depicts the modules of this framework.

The first module is dedicated for the preprocessing of
data. The column data is initially normalized using Z-score
normalization, and 3-level discretization is performed on that
data. The second module identifies the potential data columns
using a clustering algorithm. In the third module, the data
is divided into training and test data using five fold cross-
validation. The training data is used to generate the associ-
ation rules. Only the relevant rules having high confidence
values are selected. The fourth module includes the testing
phase, where the classes of test data are predicted using the
generated association rules. Performance measurement using
the metrics precision, recall and accuracy is done in this
phase.

The primary purpose of the proposed framework is to
classify the data samples into two classes, ‘Dengue Fever
Patient’ and ‘Healthy Control’, with high accuracy.

IV. RESULTS & DISCUSSION

A. ANALYSIS OF CLUSTERING AND ASSOCIATION RULE
MINING ALGORITHMS

In the current study, unsupervised methods like clusterings
have been employed to reduce the number of genes. We have
used five well-known clustering techniques like K-means,
Average Agglomerative, Ward Agglomerative, BIRCH and
OPTICS clustering to identify the critical genes. These clus-
tering algorithms have been used separately to form a differ-
ent number of clusters like 5, 10 (9 for OPTICS), and 15. Only
the gene nearest to the cluster centre is selected from each
cluster. For OPTICS clustering, as the number of clusters can
not be fixed initially, the optimal number of clusters nearest
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to 10 is coming out to be 9. It has been observed from the
current analysis that a lesser number of clusters produces
a comparatively more important set of genes. Identifying
potential genes is crucial for enhancing the performance of
the model. Each of the clustering algorithms returns unique
but overlapping sets of genes depending on their clustering
characteristics.

In the current framework, the quality of the association
rules is entirely dependent on the selected set of genes. While
performing the experiments, the frequent itemsets have been
mined using Apriori and FP-growth algorithms. The relevant
association rules with high confidence values like 0.7, 0.8 and
0.9 have been generated using those itemsets. The compar-
ative analysis of each clustering algorithm with a different
number of clusters in terms of accuracy, precision and recall
have been plotted in Figure 2, Figure 3 and Figure 4 respec-
tively. Each metric value plotted in these figures is obtained
from the average value of the results of all cross-validation
rounds of both itemset mining algorithms. Figure 2 depicts
the average accuracy of the proposed model while using a dif-
ferent number of clusters and clustering algorithms. In most
cases, the increasing number of clusters indicates decreasing
accuracy. This plot shows that BIRCH produces the most
consistent and Ward Agglomerative produces the least con-
sistent accuracy value when the number of clusters is varied.
From Figure 3, it is concluded that the average values of the
precision metric remain stable among the different number
of clusters if Average Agglomerative and BIRCH algorithms
are used for clustering. Whereas after analysing the average
values of recall metric in Figure 4, it is concluded that the use
of either BIRCH or K-means or OPTICS clustering leads to
consistent recall value.

B. EFFECT OF CLUSTER SIZE
In order to understand the effects of the number of genes
selected by using clustering algorithms, a separate study
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FIGURE 2. Performance of the proposed method in terms of average
accuracy while using a different number of clusters and clustering
algorithms.
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FIGURE 3. Performance of the proposed method in terms of average
precision while using a different number of clusters and clustering
algorithms.
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FIGURE 4. Performance of the proposed method in terms of average
recall while using a different number of clusters and clustering
algorithms.

has been conducted. Figure 5 reports the performance of
associative classifier based on Apriori in terms of accu-
racy, precision, and recall. The best performing clustering
algorithm BIRCH has been considered for this study. The
study considered size of clusters from 1 itself, however,
for cluster sizes 1, 2 and 3 no rules could be mined with
desired confidence. Thus, the plot reports performance from
cluster size 4. The plot reveals that the associative classifier
achieves best performance in terms of accuracy for cluster
size 5. However, in terms of precision cluster size 5, 7, 8, 12,
13 and 15 achieves best results. In terms of recall cluster size
5 obtained best performance. Overall, cluster size 5 has been
found to be the optimal number of clusters.

C. COMPARISON WITH STATE-OF-THE ART

The proposed associative classifier model has been compared
with state-of-the-art XGBoost model in terms of accuracy,
precision and recall. The comparison is conducted by con-
sidering the dataset after feature reduction. As evident from
Section I'V-B, the optimal number of cluster should be five.
Consequently, five genes have been selected using various
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FIGURE 5. Performance of Apriori with BIRCH based gene selection in
terms of accuracy, precision and recall for various cluster size.

TABLE 2. Performance of XGBoost Classifier for various clustering
algorithms in terms of accuracy, precision and recall.

Clustering Algorithm Precision | Recall | Accuracy
Average Agglomerative Clustering | 0.7181 0.818 0.652
BIRCH clustering - 0.77 0.54
K means Clustering 0.93 0.96 0.93
OPTICS clustering 0.969 0.939 0.936
Ward Agglomerative Clustering 0913 0.938 0.887

clustering algorithms and XGBoost classifier is trained and
tested with 5-fold cross validation method. The results are
reported in Table 2. The experiment reveals that the perfor-
mance of XGBoost when Average Agglomerative Clustering
is used for feature reduction is 0.71, 0.81 and 0.65 in terms
of precision, recall and accuracy respectively. From Table 3
it is observed that the performance of the proposed associa-
tive classifier is significantly better than XGBoost. In case
of BIRCH, with five genes, XGBoost incorrectly classified
all test samples to ‘Dengue Fever Patient’ class thereby no
precision value could be calculated whereas the recall and
accuracy is much inferior to associative classifier as evident
from Table 4. A similar trend can be observed for OPTICS
and Ward Ward Agglomerative clustering algorithms how-
ever, in case of k-means, the performance of XGBoost is
0.93, 0.96, and 0.93 in terms of precision, recall and accu-
racy respectively which is close to the proposed associative
classifier. Although, Table 5 reveals that the performance of
proposed associative classifier is 0.95, 0.96 and 0.94 in terms
of precision, recall and accuracy which is still better than
XGBoost.

D. PERFORMANCE ANALYSIS OF THE PROPOSED
METHOD AFTER APPLYING DIFFERENT UNSUPERVISED
FEATURE REDUCTION TECHNIQUES COMBINED WITH
APRIORI ALGORITHM

The current section focuses on the performance of the pro-
posed method when different clustering techniques followed
by the Apriori algorithm are used. The values of the perfor-
mance metrics have been tabularized from Table 3 to Table 8
on the basis of different number of genes and confidence
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TABLE 3. Performance of the proposed method while using Average Agglomerative clustering and Apriori algorithm.

Confidence of rules 0.7 0.8 0.9 Average
No. of Genes (Clusters) | Precision | Recall | Accuracy | Precision | Recall | Accuracy | Precision | Recall | Accuracy | Precision | Recall | Accuracy
5 1 0.926 93.05% 1 0.952 95.39 % N/A N/A N/A 1 0.939 94.22%
(£0.00) | (£0.07) | (£6.03%) | (20.00) | (£0.04) | (+4.60%)
10 0.986 0.928 92.64% 0.982 0.954 94.84% 0.976 0.986 97.02% 0.9813 0.956 94.83%
(£0.01) | (£0.07) | (£6.33%) | (£0.01) | (£0.04) | (£5.00%) | (£0.02) | (£0.01) | (£2.89%)
15 0.982 0.896 89.25% 0.984 0.926 92.34% 0.988 0.952 95.14% 0.9847 | 0.9247 | 92.24%
(£0.01) | (£0.07) | (£7.25%) | (£0.01) | (£0.06) | (£6.04%) | (£0.01) | (£0.04) | (£4.54%)
TABLE 4. Performance of the proposed method while using BIRCH clustering and Apriori algorithm.
Confidence of rules 0.7 0.8 0.9 Average
No. of Genes (Clusters) | Precision | Recall | Accuracy | Precision | Recall | Accuracy | Precision | Recall | Accuracy | Precision | Recall | Accuracy
5 1 0.978 97.8% 1 0.978 97.8% 1 1 100 % 1 0.985 98.53%
(£0.00) | (£0.02) | (£2.51%) | (£0.00) | (£0.02) | (£2.12%) | (£0.00) | (£0.00) | (£0.00%)
10 0.98 0.964 95.29% 0.978 0.978 96.65% 0.974 0.988 97.31% 0.9773 | 0.9767 | 96.42%
(£0.02) | (£0.03) | (£4.64%) | (£0.02) | (£0.01) | (£3.35%) | (£0.02) | (£0.01) | (£2.19%)
15 0.988 0.964 96.29% 0.988 0.97 96.98% 0.99 0.98 97.96% 0.9887 | 0.9713 | 97.08%
(£0.01) | (£0.03) | (£3.38%) | (£0.01) | (£0.02) | (£2.70%) | (£0.01) | (£0.02) | (£1.86%)
TABLE 5. Performance of the proposed method while using K-means clustering and Apriori algorithm.
Confidence of rules 0.7 0.8 0.9 Average
No. of Genes (Clusters) | Precision | Recall | Accuracy | Precision | Recall | Accuracy | Precision | Recall | Accuracy | Precision | Recall | Accuracy
5 0.956 0.968 94.39% 0.958 0.962 95.18% 0.936 0.966 92.89% 0.95 0.9653 | 94.16%
(£0.04) | (£0.03) | (£5.26%) | (£0.04) | (£0.03) | (£4.56%) | (£0.06) | (£0.03) | (£7.04%)
10 0.86 0.968 88.09% 0.824 0.988 87.86% 0.894 1 93.32% 0.8593 | 0.9853 | 89.75%
(£0.09) | (£0.03) | (£9.24%) | (£0.08) | (£0.01) | (£8.98%) | (£0.07) | (£0.00) | (£5.92%)
15 0.866 0.98 90.18% 0.816 0.984 86.36% 0.858 0.99 90.3% 0.8467 | 0.9847 | 88.94%
(£0.10) | (£0.01) | (£8.22%) | (£0.08) | (£0.01) | (£9.02%) | (£0.11) | (£0.01) | (+8.28%)
values of the association rules. All results in these tables have 100 ] S
been reported in (:l:.) standard deviation format. The number I R = T
of selected genes is the same as the number of clusters. 050 T ;
Boxplot of different performance metrics for each clustering ' — L]
. . . 3 0.85 4
methods have been depicted from Figure 6 to Figure 8. @
. . . 5 0.80
After applying Average Agglomerative clustering, the per- Q el l

formance of the proposed framework has been illustrated in
Table 3. The average precision, recall and accuracy values
are 1, 0.939 and 94.22%, respectively, when the number of
genes is 5. Meanwhile, the average values of those perfor-
mance metrics in the same order are 0.9813, 0.956, 94.83%
and 0.9847, 0.9427, 92.24% when the number of genes is
10 and 15, respectively. It has been revealed that the frame-
work has not generated any association rules with a high
confidence threshold value of 0.9 for a few genes like 5.
Hence, the values of those metrics have been displayed as
N/A (Not Applicable) in this case. The experimental result
also indicates that for a particular number of genes, the
accuracy of the proposed model gradually increases when
the confidence threshold of the association rules increases.
In terms of accuracy, having the set of 10 genes produces
slightly better results compared to having the set of 5 or
15 genes.

Table 4 depicts the performance of the proposed model
after employing BIRCH clustering. The average precision,
recall and accuracy values are 1, 0.985 and 98.53%, respec-
tively, when the set 5 genes are used. The average precision,
recall and accuracy values are 0.9773, 0.9767, 96.42% and
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FIGURE 6. Boxplot of the accuracy metric of the proposed framework
while using different clustering algorithms and Apriori algorithm.

0.9887, 0.9713, 97.08% when the number of selected genes
is 10 and 15, respectively. It has been observed that for
a specific number of genes, the accuracy of the proposed
model gradually increases when the confidence threshold
of the association rules increases. The average result of the
performance metrics for the set of 5 genes has been found to
be better than the result for a set of 10 or 15 genes.

Table 5 depicts the overall performance of the framework
while using K-means clustering. The average accuracy values
are 94.46%, 89.75%, 88.94% for the set of 5, 10 and 15 genes,
respectively. The best average precision value 0.95 and accu-
racy 94.46% have been obtained after using the set of five
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TABLE 6. Performance of the proposed method while using OPTICS clustering and Apriori algorithm.

Confidence of rules 0.7 0.8 0.9 Average
No. of Genes (Clusters) | Precision | Recall Accuracy | Precision | Recall Accuracy | Precision | Recall Accuracy | Precision | Recall | Accuracy
5 0.896 0.968 89.97% 0.938 098 | 94.34% 0.91 0.97 89.92% 0.9147 | 0.9747 | 91.41%
(£0.08) | (£0.03) | (£8.63%) | (£0.04) | (£0.01) | (£4.12%) | (£0.06) | (£0.01) | (£9.38%)
9 0.87 0988 | 91.46% 0.88 0.992 91.81% 0.938 0998 | 9537% 0.896 | 0.9927 | 92.88%
(£0.07) | (£0.01) | (£7.02%) | (&£0.08) | (£0.00) | (£8.04%) | (£0.05) | (£0.00) | (£4.19%)
15 0.708 0.99 87.83% 0.72 0.996 86.80% 0.71 1 87.19% 0.7127 | 0.9953 | 87.28%
(£0.18) | (£0.00) | (£11.77%) | (£0.22) | (£0.00) | (£12.42%) | (£0.23) | (£0.00) | (£11.62%)
TABLE 7. Performance of the proposed method while using Ward Agglomerative Clustering and Apriori algorithm.
Confidence of rules 0.7 0.8 0.9 Average
No. of Genes (Clusters) | Precision | Recall Accuracy | Precision | Recall Accuracy | Precision | Recall | Accuracy | Precision | Recall | Accuracy
5 0.926 0.896 | 93.07% 0.92 0.986 | 92.81% 0.946 0.996 | 9556% | 0.9307 | 0.9593 | 93.81%
(£0.07) | (£0.03) | (£6.49%) | (£0.06) | (£0.01) | (£6.84%) | (£0.05) | (£0.00) | (£3.48%)
10 0.564 0.864 60.99% 0.668 0.906 72.59% 0.924 0.98 91.06% | 0.7187 | 0.9167 | 74.88%
(£0.22) | (£0.13) | (£22.13%) | (£0.27) | (£0.09) | (£19.69%) | (£0.07) | (£0.01) | (£7.23%)
15 0.992 0.804 80.79% 0.996 0.872 87.48% 0.996 0.984 | 98.39% | 0.9947 | 0.8867 | 88.89%
(£0.00) | (£0.12) | (£12.38%) | (£0.00) | (£0.11) | (£10.55%) | (£0.00) | (£0.01) | (£1.41%)
of five genes and the set of ten genes is quite significant.
1.0 —_—T | — | . . . K .
— — - The possible reason for this difference lies in the qual-
094 T E— ity of selected genes. More non-significant genes display
T poor performance as these genes generate the association
c . .
208 rules with low confidence values. In the current result,
o it has been noticed that the combined performance has been
ju.
* 071 - improved when the confidence threshold of the rules has been
° increased. Table 8 reports the average false positive rate of
0.6 1 the proposed method after applying different clustering tech-
° niques combined with the Apriori algorithm. It is observed
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FIGURE 7. Boxplot of the precision metric of the proposed framework
while using different clustering algorithms and Apriori algorithm.
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FIGURE 8. Boxplot of the recall metric of the proposed framework while
using different clustering algorithms and Apriori algorithm.

genes. Meanwhile, the performance for the set of 10 and
15 genes are more or less identical.

It has been noticed from the result illustrated in Table 6
that after using the OPTICS clustering, the difference of
the highest and the lowest average precision value is quite
significant. In this case, the best average accuracy, 92.88%,
have been obtained after using the set of 9 genes.

Table 7 depicts the performance of the proposed model
after employing Ward Agglomerative clustering. It has been
observed that the difference in the performance for the set
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that Ward agglomerative clustering reports the maximum,
and Average agglomerative clustering reports the minimum
false positive rate among all. Figure 6 depicts the boxplot
of the accuracy metric after applying different clustering
techniques. The small size boxes for Average Agglomerative,
BIRCH, K-means and OPTICS clustering indicate the consis-
tent spread of accuracy values. The distribution in the case of
BIRCH clustering indicates higher chances for correct clas-
sification than other approaches. For Ward Agglomerative
clustering, the accuracy carries a low level of statistical sig-
nificance. Meanwhile, the distribution of precision and recall
have been illustrated in Figure 7 and Figure 8 respectively.
The boxes for Average Agglomerative and BIRCH clustering
suggests a high level of precision, and the boxes for BIRCH,
K-means and OPTICS clustering suggests a high level of
recall. Because of high skewness and multiple outliers,
the performance of Ward Agglomerative clustering lacks
reliability.

E. PERFORMANCE ANALYSIS OF THE PROPOSED
METHOD AFTER APPLYING DIFFERENT UNSUPERVISED
FEATURE REDUCTION TECHNIQUES COMBINED WITH FP
GROWTH ALGORITHM

In this section, the performance of the proposed framework
after employing different clustering techniques followed by
the FP Growth algorithm has been discussed. The values of
the performance metrics viz. accuracy, precision, and recall
have been tabulated from Table 9 to Table 14 based on a
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TABLE 8. Average false positive rate of the proposed method after applying different clustering techniques combined with Apriori algorithm. Here A.A
and W.A indicate average agglomerative and ward agglomerative clustering algoritm.

Confidence of rules 0.7 0.8 0.9
No. of Genes (Clusters) AA BIRCH | K-means | OPTICS W.A AA BIRCH | K-means | OPTICS W.A AA BIRCH | K-means | OPTICS W.A
5 N/A N/A 0.128 0.18 0.16 N/A N/A 0.094 0.08 0.197 N/A N/A 0.123 0.184 0.116
(£0.05) | (£0.07) | (£0.03) (£0.06) | (£0.05) | (£0.07) (£0.08) | (£0.05) | (£0.07)
10 0.117 0.155 0.158 0.148 0.188 0.117 0.125 0.164 0.139 0.228 0.148 0.146 0.193 0.125 0.248
(£0.03) | (£0.06) | (£0.06) | (£0.02) | (£0.08) | (£0.06) | (£0.04) | (£0.05) | (£0.07) | (£0.05) | (£0.06) | (£0.05) | (£0.03) | (£0.08) | (£0.04)
15 0.137 0.134 0.149 0.143 0.19 0.093 0.148 0.156 0.152 0.245 0.052 0.193 0.166 0.148 0.255
(£0.05) | (£0.05) | (£0.03) | (£0.08) | (£0.05) | (£0.06) | (£0.06) | (£0.08) | (£0.08) | (£0.06) | (£0.02) | (£0.05) | (£0.03) | (£0.05) | (£0.06)
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FIGURE 9. Boxplot of accuracy metric of the proposed framework while
using different clustering algorithms and FP growth algorithm.

different number of genes and confidence values of the asso-
ciation rules. All results in these tables have been reported in
(%) standard deviation format. Boxplot of these metrics for
each clustering methods have been illustrated from Figure 9
to Figure 11.

After employing Average Agglomerative clustering, the
performance of the proposed classifier has been presented
in Table 9. The best average accuracy, 93.91% and recall
0.9473 are obtained when the selected gene count is 10. The
best average precision value 1 is obtained when the set of
5 genes is used. It has been observed that the model has not
generated any association rules having a confidence threshold
value of 0.9 for the set of 5 genes. Hence, the precision,
recall, and accuracy values have been displayed as N/A (Not
Applicable). From the experimental result, it is concluded that
the rules with high confidence value perform better than those
with low confidence.

Table 10 illustrates the performance of the framework after
adopting BIRCH clustering. The average precision, recall and
accuracy values are 0.998, 0.982 and 98.07%, respectively,
when the set 5 genes are used. The average precision, recall
and accuracy values are 0.976, 0.9747, 96.29% and 0.952,
0.974, 97.37% when the number of selected genes is 10 and
15, respectively. Similar to Average Agglomerative cluster-
ing, the accuracy of the proposed model has been improved
when the association rules with high confidence have been
applied. In this case, the overall results for different sets of
genes are closer to each other.

Table 11 depicts the overall performance of the framework
while using K-means clustering. The average accuracy values
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FIGURE 10. Boxplot of precision metric of the proposed framework while
using different clustering algorithms and FP growth algorithm.
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FIGURE 11. Boxplot of recall metric of the proposed framework while
using different clustering algorithms and FP growth algorithm.

are 94.26%, 90.24%, 85.98% for the set of 5, 10 and 15 genes,
respectively. The best average precision value 0.9467 and
accuracy 94.26% have been obtained after using the set
of 5 genes. In contrast, the best average recall value of
0.9847 has been obtained after using the group of 10 genes.

The result illustrated in Table 12 indicates a significant gap
between the highest and the lowest average precision value
when OPTICS clustering is adopted. The highest and lowest
precision values have been obtained as 0.912 and 0.7447,
respectively. The best average accuracy, 94.35%, has been
obtained after using the set of 9 genes, whereas the accuracy
percentages are more or less the same after using the sets of
5 and 15 genes.

Table 13 depicts the performance of the proposed model
after applying Ward Agglomerative clustering. The best aver-
age accuracy, 93.87%, has been obtained when the number
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TABLE 9. Performance of the proposed method while using Average Agglomerative Clustering and FP Growth algorithm.

Confidence of rules 0.7 0.8 0.9 Average
No. of Genes (Clusters) | Precision | Recall | Accuracy | Precision | Recall | Accuracy | Precision | Recall | Accuracy | Precision | Recall | Accuracy
5 1 0.868 86.80% 1 0.904 90.40% N/A N/A N/A 1 0.886 | 88.60%
(£0.00) | (£0.06) | (£9.91%) | (£0.00) | (£0.03) | (£7.33%)
10 0.986 0.912 91.01% 0.976 0.942 93.29% 0.916 0.988 97.43% 0.9593 | 0.9473 | 93.91%
(£0.01) | (£0.06) | (£7.28%) | (£0.02) | (£0.05) | (£5.89%) | (£0.03) | (£0.01) | (£2.35%)
15 0.986 0.904 90.42% 0.978 0.94 92.79% 0.986 0.966 96.47% 0.9833 | 0.9367 | 93.23%
(£0.01) | (£0.09) | (£9.09%) | (£0.02) | (£0.04) | (£6.13%) | (£0.01) | (£0.02) | (£3.17%)
TABLE 10. Performance of the proposed method while using BIRCH Clustering and FP Growth algorithm.
Confidence of rules 0.7 0.8 0.9 Average
No. of Genes (Clusters) | Precision | Recall | Accuracy | Precision | Recall | Accuracy | Precision | Recall | Accuracy | Precision | Recall | Accuracy
5 0.994 0.962 95.80% 1 0.984 98.40 % 1 1 100% 0.998 0.982 | 98.07%
(£0.00) | (£0.03) | (£2.28%) | (£0.00) | (£0.01) | (£1.54%) | (£0.00) | (£0.00) | (£0.00%)
10 0.98 0.966 95.47% 0.974 0.978 96.20% 0.974 0.98 97.21% 0.976 0.9747 | 96.29%
(£0.01) | (£0.02) | (£3.03%) | (£0.02) | (£0.02) | (£3.66%) | (£0.02) | (£0.01) | (£1.83%)
15 0.988 0.962 96.49 % 0.988 0.98 97.79% 0.88 0.98 97.82% 0.952 0974 | 97.37%
(£0.01) | (£0.03) | (£3.20%) | (£0.01) | (£0.01) | (£1.25%) | (£0.01) | (£0.01) | (+1.84%)
TABLE 11. Performance of the proposed method while using K-means Clustering and FP Growth algorithm.
Confidence of rules 0.7 0.8 0.9 Average
No. of Genes (Clusters) | Precision | Recall | Accuracy | Precision | Recall | Accuracy | Precision | Recall | Accuracy | Precision | Recall | Accuracy
5 0.954 0.968 93.81% 0.952 0.97 94.48% 0.934 0.988 94.50% 0.9467 | 09753 | 94.26%
(£0.03) | (£0.02) | (£5.28%) | (£0.03) | (£0.02) | (£3.34%) | (£0.05) | (£0.01) | (£5.29%)
10 0.854 0.966 88.20% 0.846 0.988 89.57% 0.896 1 92.95% 0.8653 | 0.9847 | 90.24%
(£0.10) | (£0.03) | (£7.06%) | (£0.09) | (£0.01) | (£8.78%) | (£0.11) | (£0.00) | (£6.53%)
15 0.822 0.978 86.71% 0.772 0.978 82.78% 0.852 0.99 88.45% 0.8153 0982 | 85.98%
(£0.11) | (£0.02) | (£9.79%) | (£0.12) | (£0.02) | (£8.03%) | (£0.11) | (£0.01) | (£8.70%)
TABLE 12. Performance of the proposed method while using OPTICS Clustering and FP Growth algorithm.
Confidence of rules 0.7 0.8 0.9 Average
No. of Genes (Clusters) | Precision | Recall | Accuracy | Precision | Recall | Accuracy | Precision | Recall | Accuracy | Precision | Recall | Accuracy
5 0.85 0.956 85.96% 0.912 0.994 91.98% 0.878 0.988 87.57% 0.88 0.9793 | 88.50%
(£0.10) | (£0.08) | (£8.87%) | (£0.06) | (£0.00) | (£7.28%) | (£0.11) | (£0.01) | (£8.52%)
9 0.906 0.996 94.31% 0.92 0.996 94.62 % 0.91 0.996 94.11% 0.912 0.996 | 94.35%
(£0.07) | (£0.00) | (£5.19%) | (£0.05) | (£0.00) | (£4.87%) | (£0.06) | (£0.00) | (+4.08%)
15 0.72 0.992 84.89% 0.784 0.998 90.60% 0.73 1 88.59% 0.7447 | 0.9967 | 88.03%
(£0.12) | (£0.00) | (£8.42%) | (£0.14) | (£0.00) | (£5.54%) | (£0.12) | (£0.00) | (£6.47%)
TABLE 13. Performance of the proposed method while using Ward Agglomerative Clustering and FP Growth algorithm.
Confidence of rules 0.7 0.8 0.9 Average
No. of Genes (Clusters) | Precision | Recall Accuracy | Precision | Recall Accuracy | Precision | Recall Accuracy | Precision | Recall | Accuracy
5 0.92 0.98 92.31% 0.95 0.974 94.50% 0.944 0.988 94.81% 0.938 0.9807 | 93.87%
(£0.07) | (£0.01) | (£7.34%) (£0.03) | (£0.02) | (£4.09%) (+£0.04) | (£0.01) | (£5.31%)
10 0.598 0.914 66.45% 0.722 0.974 77.89% 0.798 0.966 79.37% 0.706 | 0.9513 | 74.57%
(£0.18) | (£0.06) | (£16.99%) | (£0.15) | (£0.02) | (£15.49%) | (£0.17) | (£0.02) | (£13.87%)
15 0.986 0.8 79.67% 0.994 0.888 88.84% 0.996 0.956 95.56 % 0.992 0.8813 | 88.03%
(£0.01) | (£0.07) | (+8.93%) (£0.00) | (£0.05) | (+6.91%) (£0.00) | (£0.02) | (+3.53%)

of genes is 5. In contrast, the best average precision is
0.992, and the best average recall is 0.9807 when the gene
counts are 15 and 5, respectively. The result indicates that
the overall performance for the set of 10 genes is relatively
poorer than the other set of genes. In the current result, it has
been observed that association rules with high confidence
positively impact the improvement of the overall performance
of the framework. Table 14 reports the average false pos-
itive rate of the proposed method after applying different
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clustering techniques combined with the FP Growth algo-
rithm. It is observed that Ward agglomerative clustering
reports the maximum, and Average agglomerative clustering
reports the minimum false positive rate among all.

The boxplot of the accuracy metric after applying different
clustering techniques is depicted in Figure 9. The smaller
box size for Average Agglomerative and BIRCH indicates
a greater and more consistent performance than other clus-
tering methods. The distribution of precision and recall have
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TABLE 14. Average false positive rate of the proposed method after applying different clustering techniques combined with FP Growth algorithm. Here
A.A and W.A indicate Average Agglomerative and Ward Agglomerative clustering algoritm.

Confidence of rules 0.7 0.8 0.9
No. of Genes (Clusters) AA BIRCH | K-means | OPTICS W.A AA BIRCH | K-means | OPTICS W.A AA BIRCH | K-means | OPTICS W.A
5 N/A 0.13 0.142 0.162 0.197 N/A N/A 0.119 0.141 0.127 N/A N/A 0.134 0.15 0.161
(£0.05) | (£0.03) | (£0.03) | (£0.09) (£0.02) | (£0.03) | (£0.04) (£0.04) | (£0.07) | (£0.11)
10 0.136 0.11 0.177 0.137 0.224 0.109 0.125 0.154 0.096 0.226 0.139 0.107 0.140 0.093 0.163
(£0.05) | (£0.07) | (£0.05) | (£0.07) | (£0.05) | (£0.03) | (£0.03) | (£0.02) | (£0.08) | (£0.07) | (£0.05) | (£0.04) | (£0.06) | (£0.06) | (£0.09)
15 0.093 0.116 0.139 0.175 0.212 0.16 0.124 0.131 0.106 0.215 0.076 0.197 0.179 0.132 0.252
(£0.05) | (£0.06) | (£0.04) | (£0.04) | (£0.08) | (£0.06) | (£0.05) | (£0.06) | (£0.08) | (£0.07) | (£0.04) | (£0.06) | (£0.07) | (£0.08) | (£0.09)

been illustrated in Figure 10 and Figure 11 respectively.
The boxes for Average Agglomerative and BIRCH clustering
suggest a high level of precision, and the boxes for BIRCH,
K-means and OPTICS clustering suggest a high level of
recall.

V. CONCLUSION

The current study proposes an associative classifier frame-
work to efficiently detect Dengue fever using gene expres-
sion data. However, not all genes are equally important in
detection of dengue fever. To identify most promising genes,
an unsupervised feature selection strategy has been adopted
by applying well known clustering algorithms. After obtain-
ing the most promising features (genes) the modified dataset
is used to mine rules for dengue fever detection. The rules
having only the target variable in the body, are kept for clas-
sification. To improve the classifier performance, rules with
higher confidence value are considered. This ensured that the
selected gene have a higher correlation with target variable,
thereby making the classifier more confident. A wide range of
clustering algorithms have been explored in the current study.
Experimental results have indicated that the performance of
BIRCH clustering algorithm is most promising in identifying
the important genes while using Apriori algorithm for min-
ing rules. In terms of accuracy the performance of Average
Agglomerative, K-means and OPTICS have been found to be
satisfactory whereas the performance of Ward Agglomerative
has been found to be poorest. In case of FP-Growth a similar
trend of performance is observed. Optimal number of gene
selection plays a vital role in deciding the performance of
the proposed classifier. As, in case of average agglomerative
algorithm no rules are mined while confidence threshold is
set to 0.9 and number of genes selected by feature selection
method is 5. Overall, the performance of the proposed model
has been found to be extremely satisfactory and statistically
significant in detecting dengue fever. Nevertheless, future
studies can be focused towards developing multiclass asso-
ciative classifiers for similar tasks.
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