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ABSTRACT In this study, the problem of multi-agent flocking with partially informed agents is investigated,
by considering the incomplete information factor in a flocking process. Incomplete information includes
two aspects: receiver and sender. One is resisted or distorted information by the agents when they receive
information from the virtual leader or others, and the other is passive loss of information sent by the virtual
leader or others to the agents. In a flocking process with a fraction of informed agents, to make informed
agents drive more uninformed agents to track the virtual leader, we first discuss the derivative of the potential
function in the flocking algorithm: the force function. The relationship between repulsion and attraction
among agents is directly shown. Subsequently, an improved flocking algorithm is proposed based on Morse
potential function. The stability of the algorithm is proved by using the Lyapunov stability theorem and
LaSalle’s invariance principle. Consider the initial distribution of agents with low connectivity and density,
based on the above modified algorithm, a novel method of selecting informed agents as propagandists is
presented. Propagandists are created in the vicinity of virtual leaders. Before flocking, propagandists move
regularly within an arbitrarily distributed group, disseminating information to other uninformed agents. This
approach can reduce the unfavorable effects caused by incomplete information. Eventually, the simulation
results show that even though only one informed agent is selected as the propagandist, most agents can track
the common objective.

INDEX TERMS Flocking, informed agents, potential function, incomplete information, propagandist.

I. INTRODUCTION
As we all know, flocking is a phenomenon in nature, such
as flocking of bacteria, schooling of fishes, grouping of
ants, crowding of people and so on [1], [2]. A great num-
ber of agents can organize a coordinated movement finally
by using simple rules and local environmental information.
The flocking movement has the characteristics of adaptabil-
ity, robustness, dispersion and self-organization. Thus, the
flocking of multi-agents has attracted widespread attention
from researchers in multiple fields [3], [4], [5], [6], [7], [8],
[9], [10]. Flocking is used in many control areas including
massive distributed sensor networks [11], unmanned aircraft
systems [12], [13], [14], and swarm robots [15], [16].
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In1986, Reynolds [3] proposed three heuristic rules to
simulate the flocking behavior of animals on a computer.
The three rules are shown below, in descending order of pri-
ority. 1) Collision avoidance: no collision between adjacent
companions; 2) Speed matching: match the speed of the sur-
rounding neighbors; 3) Cohesion: try to get as close to your
peers as possible. In 1995, Vicsek et al. [17] began to study
collective behavior from a theoretical perspective and then
proposed a simple mode of multi-agent of flocking. In 2003,
Jadbabaie et al. [18] revisited the Vicsek model without con-
sidering noise. By using graph theory and other knowledge,
it was proved that the Vicsek model is a stable linear sys-
tem, and the velocity can converge under certain conditions.
In 2006, Olfati-Saber [19] was a pioneer in cluster research,
providing the theoretical framework for three flocking algo-
rithms. The first algorithm is a concentrated embodiment
of Reynolds’ three rules. The results usually lead to the
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fragmentation of the agents and cannot achieve flocking,
while the second and third algorithms can implement flock-
ing. The second algorithm is a group of multi-agents that
move freely in space. The group of multi-agents tracks the
virtual leader by providing speed and position navigational
feedback mechanism to each agent. Based on the second
algorithm, the third algorithm sets up obstacles during flock-
ing. This flocking algorithm has an assumption, which guar-
antees all agents would have access to information about
the virtual leader. Such assumption requires each agent to
have the ability of navigation and positioning, which may be
difficult to achieve. However, the assumption does not exist
in nature. To overcome this constraint, in 2009, Su et al. [20]
further explored the flocking algorithm of Olfati-Saber.
Although a small number of agents are notified of loca-
tion and speed information of virtual leader during flocking
process, but flocking can also be achieved. The premise is
that the uninformed multi-agent is affected by the informed
agent in the process of flocking, and follows the informed
multi-agent to move at the expected speed, eventually form-
ing a larger group. However, during the flocking process,
there are still some agents unable to follow the virtual leader.
In addition, [21] and [22] discussed the multi-agent system
with switching topology.

In nature, it is normal that only a few individuals know
related information. For example, a few fish know migra-
tory route information. Recently, how to solve these prob-
lems, some studies have received substantial attention.
Yu et al. [23], based on observer navigation feedback, pro-
posed a time-varying distributed multi-agent dynamic system
flocking algorithm. In this algorithm, each informed agent
only knows location information about the virtual leader, but
the velocity can still converge. Su et al, to maintain initial net-
work connectivity, [24] presented a second-order consistency
algorithm. In the case, adaptive strategy is introduced to speed
navigation feedback weight and speed coupling strength.
The virtual leader can keep synchronization with the multi-
agents. Zhou et al. [25] combined the idea of virtual force
and pseudo-leader mechanism. A method to select informed
agents in weighted networks is proposed. Haeri et al. [26]
used the essential attribute of artificial potential field flocking
algorithm. Based on the agent’s initial location distribution,
the attribute is used to determine the optimal number of agents
to be informed, to reduce communication consumption.
Atrianfar et al. [27] described three methods for selecting
the number and initial location of informed agents. Select the
least number of informed agents, to maximize the number
of uninformed agents gathering towards the virtual leader.
Lou et al. [28] designed a new control algorithm based
on Olfati-Saber flocking algorithm. An adaptive controller
and a virtual leader feedback controller are added to the
algorithm. Even with only a few individuals in the flocking
process, all agents form large networks, maintain connec-
tivity and track virtual leaders. Wu et al. [29] introduced a
cohesion item to force the multi-agent to approach the center
of mass in the flocking algorithm. In terms of the initial

distribution of community structures, Ganganath et al. [30]
adopted Newman fast algorithm to select informed
agents.The comparison shows that this method is superior to
random and cluster-based selections of informed agents, and
can better realize large-scale agents tracking virtual leaders.

From the review of the above works with some informed
agents flocking, there are two main ways to maximize the
number of uninformed agents that track virtual leaders.
1) The informed agent is selected according to its initial
position [27], [30]; 2) Change the original flocking algo-
rithm [24], [28]. As far as the author knows, when people
choose informed agents according to the initial distribution
of agents, they usually consider the initial distribution of
agents with strong connectivity and high density, for example,
references [27], [28], [30]. So, it is meaningful to study the
flocking of partially informed agents with low connectivity
and low density in the initial distribution of agents, which is
the first motivation of this article.

It is worth noting that most of the above studies did not
take into account individual differences, as well as broad
characteristics between members of any group. Taking into
account the characteristics of each individual, [31] divided
multi-agent system into homogeneous and heterogeneous.
Wei [32] researched the different equilibrium distance dur-
ing the flocking process. To reduce communication losses,
only some agents know the information. Considering the
cooperative interaction and antagonistic interaction between
agents, [33], [34], [35] studied the bipartite consistency prob-
lem of linear multi-agent systems. For different situations,
different compensators are designed to estimate the state of
leaders. However, in most articles, people pay more attention
to the cooperative relationship between agents. In effect,
agents can choose cooperation or non cooperation in the
flocking process. As a society, individuals will have different
ideas on one thing due to different life experiences and educa-
tional levels. For example, two groups with common interests
will choose to cooperate, otherwise they may not cooperate.
Therefore, it is of great significance to show the cooperative
or non cooperative relationship in the agent flocking process,
which is the second motivation of this article.

Except for the heterogeneity of agents, incomplete
information in multi-agent systems is seldom concerned
in previous articles. Even few articles focused on incom-
plete information, their research backgrounds are different
from this paper. In addition, incomplete information also
includes fault detection approaches [36], [37], [38] and vari-
ous uncertainties in the real systems [39], [40], etc. In 2004,
Li et al. [41] converted incomplete information into complete
information to obtain the optimal solution of the model.
Basu et al. [42] reconstructed the system equations, and
allowed incomplete information to exist. Therefore, it is nec-
essary to consider incomplete information in the process of
multi-agent flocking, which is the third motivation of this
article.

Inspired by the above work, this paper studies the
flocking of partially informed agents under incomplete
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information. Firstly, an improved flocking algorithm is pro-
posed to achieve better flocking. Then, under incomplete
information, the flocking method of partially informed agent
is proposed. The main contributions of this paper are as
follows:

1) Based on the analysis of the derivative force function
of potential function, this paper improves the classi-
cal flocking algorithm. On the one hand, a better and
simple potential function can reduce the computational
complexity to some extent. On the other hand, it will
reduce the flocking time and produce better flock-
ing effect. Finally, in the flocking process of some
informed agents, there will be more uninformed agents
tracking virtual leaders.

2) This paper considers the non cooperative relationship
between agents, and the relationship between agents
and the virtual leader. Thus, influenced by opinion
dynamics [43], each agent is given different degrees of
resistance in the flocking process. These resistances are
generated randomly, and in order to be more realistic,
the degree of resistance of each agent will change
over time. At the same time, there will be passive
information loss between the unmanned aerial vehicles
and the unmanned aerial vehicles leader during the
mission.We also discuss the passive loss of information
between agents and virtual leaders during the flocking.
For the sake of brevity, the above two aspects are called
incomplete information.

3) This paper presents a method of flocking with only
one informed agent. This informed agent is called a
propagandist. The main function is to disseminate
information, and make uninformed agents get infor-
mation. This method solves the flocking problem of
partially informed agents with incomplete information
and low initial distribution density of agents.

The rest of the paper is organized as follows. Section II intro-
duces the relevant knowledge. Section III presents a novel
flocking algorithm with a fraction of informed agents, and
especially, the propagandist is selected as an only informed
agent. In Section IV, the stability of the improved algorithm
is analyzed by using LaSalle’s invariance principle and Lya-
punov stability theorem. Section V includes some simulation
results of flocking. Finally, some conclusions are presented
in Section VI.

II. PRELIMINARIES
A. GRAPH THEORY
A system consists of N mobile agents. G = (V , E , A)
represents the network topology. Where V = {1, 2, . . . ,N}is
a node (or vertex) set, and N is the total number. E = {eij =
(i, j); i, j ∈ V} represents all edges, which is also called
edge set. if (i, j) ∈ E is equivalent to (j, i) ∈ E , G is
called an undirected graph. Otherwise,G is called an directed
graph. In this paper, the network topology is considered as
an undirected graph. The adjacency matrix A = (aij)N×N
represents the interconnection between nodes. If (i, j) ∈ E ,

aij = 1, the two agents are connected. Otherwise aij = 0.
The Laplacian matrix L = D− A, a N × N positive
semi-definite matrix of network topologyG, has eigenvectors
of In = (1, . . . , 1)T , and the eigenvalues are 0.

B. FORMULATION
In a 2D Euclidean space with double integrator dynamics,
consider a set of N agents moving, which is described as:{

q̇i = pi
ṗi = ui

, i = 1, 2, . . . ,N (1)

where qi, pi ∈ R2 are the position vector, velocity vector,
respectively, ui ∈ R2 is the control protocol.
In a multi-agent system of this paper, without special

emphasis, all agents are equal under other conditions, such
as mass and size. In practical application, due to the limited
technology, the sensing range of the agents is limited. There-
fore, agents only interacts with other agents in the sensing
range. Then, the neighboring of agent i can be set to:

Ni = {j ∈ V : ||qj − qi|| < r} (2)

where Ni represents the set of all the neighbors of agent i
within the sensing range. ||qj − qi|| is the Euclidean norm.
The r (usually r > 0) is a limited sensing distance.
Furthermore, according to the flocking algorithm proposed

in [19], when the system is stable, there is a certain dis-
tance between agents, which should satisfy the following
constraints:

||qi − qi|| = de, i = 1, 2, . . . ,N (3)

where de is balance distance, and usually 0 < de < r .

III. FLOCKING CONTROL ALGORITHM
In 2006, Olfati-Saber proposed the classical flocking algo-
rithm [19]. The algorithm has laid the foundation for flocking
research. In this section, we have made some improvements
to the algorithm. The selection method of informed agent is
also introduced.

A. FLOCKING ALGORITHM
In [19], each agent has an equal control input and consists of
three components:

ui = f gi + f
d
i + f

γ
i (4)

where f di , f
g
i are the gradient-based term and velocity consen-

sus term, respectively. f γi is the navigational feedback term,
which can be defined as:

f γi = c1(qi − qγ )+ c2(pi − pγ ), c1, c2 > 0. (5)

In addition, by analyzing the classical potential func-
tions [19], [44], [45], an improved flocking algorithm is pro-
posed. Compared with other flocking algorithms, we simplify
the interaction rules, and ensure that the improved algorithm
can achieve flocking. The main difference is to change the
first term of the control protocol (4). The interaction rules
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between agents and their neighbors are: close-range repul-
sion and long-distance attraction. Going further, the control
protocol ui can be rewritten as:

ui =
∑
j∈Ni

fα(||qj − qi||)cij +
∑
j∈Ni

aij(pj − pi)− c1(qi − qγ )

−c2(pi − pγ ) (6)

where cij = (qj − qi)
/√

1+ ε||qj − qi||2, ||qj − qi|| is the

Euclidean norm, ε ∈(0,1) is a weighted unit vector, and aij is
the adjacency matrix.

aij(q) =

 ρh
(
||qj − qi||σ
||r||σ

)
, if j 6= i

0, otherwise
(7)

where, the σ -norm is defined as ||z||σ = 1
ε
[
√
1+ ε||z||2−1],

ε > 0. Then, the bump function ρh(z), h ∈ (0, 1), which is
defined as:

ρh(z) =


1, z ∈ [0, h)
1
2

[
1+ cos(π

z− h
1− h

)
]
, z ∈ (h, 1]

0, otherwise

(8)

In addition, the force function only considers the repulsion
and attraction between agents. Applying this force function
to the control protocol can effectively reduce the calculation
difficulties during the flocking process. The computational
complexity of this paper and paper [19] is O(n) and O(n2),
respectively. Finally, the force function fα(x) is defined as:

fα(x) =


k1(1− e−0.2(x−de))e−0.2(x−de) x ≤ de

k2
(x − de)(x − r)
d + r + 5− x

de < x ≤ r

0 x > r

(9)

where k1 and k2 are the coefficients of interaction between
agents. x is the Euclidean distance between two agents. The
potential function Fα(x) is defined as:

Fα(x) =
∫ x

de
fα(s)ds (10)

Note that the potential function is a nonnegative function.
Assume that the balance distance de is 5 and the sensing

distance r is 6. This force function is depicted in Figure 1.
The two agents will repel each other if they are within the

FIGURE 1. The force function fα(x) with a finite cut-off.

balance distance (0-5). It shows attraction in the range of
balance distance and sensing distance (5-6).

In [20], Su et al. modified flocking algorithm of [19].
In the process of flocking, assume that only a small number
of agents know the objectives of the group. Some agents that
know information about the virtual leader are called informed
agents. This information includes the location and velocity
of the group objective (or the virtual leader). Similarly, the
flocking algorithm (6) proposed in this paper is alsomodified.
Eventually the control protocol (6) is restructured as:

ui =
∑
j∈Ni

fα(||qj − qi||)cij +
∑
j∈Ni

aij(pj − pi)

− hi[c1(qi − qγ )+ c2(pi − pγ )]. (11)

Here, if the agents are informed hi = 1, otherwise hi = 0.

B. THE FORCE FUNTION
In this section, the potential functions are divided into three
major categories by analyzing the force functions. Through
analysis and comparison, the effectiveness of the algorithm is
illustrated in this paper. In the force function graph, repulsion
is negative value (blue line) and attraction is positive value
(red line). There is no force beyond the sensing distance
(green line). The first and second categories are shown in
Table 1(1) and Table 1(2), respectively. The value of the force
function at the balance position is 0 (de = 5). At the position
of maximum sensing distance (r = 6), the value of the
force function is equal to or greater than 0, respectively. The
third category is shown in Table 1(3). The value of the force
function is less than 0 at the balance position and greater than
0 at the sensing distance position. Generally speaking, when
the distance between two agents is equal to the balance dis-
tance, repulsion and attraction are equal. When the distance
is greater than the sensing distance, the force will disappear.
It is worth noting that in Table 1(3), when de = 5, the value
is less than 0, and it is repulsion. But at the balance distance,
the correct value is zero. Due to the above reasons, it has an
adverse impact on the multi-agent cluster. To illustrate the
validity of the function proposed in this paper, the definite
integral of the force function is calculated piecewise. The
repulsive potential can be obtained by Fα(x) =

∫ de
0
fα(x)dx.

On the condition that the repulsive of the two types of poten-
tial functions are equal, the force function in this paper has
a maximum value, and Morse force function has a maxima
value, and make the two value equal. As shown in Figure 2,
this paper has improved the attraction section of Morse force
function. Inmost cases, the force function image in this article
is above theMorse force function, accounting for 74.3 percent
of the total. Meanwhile, the result shows that the attraction
between agents is greater between the balance point and the
intersection point. This conclusion will be fully proved in
the next simulation. Therefore, this paper chooses to construct
the first type of potential function, which is helpful for flock-
ing of partially informed agents.

87072 VOLUME 10, 2022



J. Yuan et al.: Flocking With Informed Agents Based on Incomplete Information

TABLE 1. The force function and force function image.

FIGURE 2. Force function graph comparison.

C. A FLOCKING OF PARTIALLY INFORMED AGENTS WITH
PROPAGANDISTS
Random creation of informed agents does not inform all other
uninformed agents. The result is that some agents are not
affected by the virtual leader in the network. In order to over-
come this difficulty, many scholars have carried out relevant
studies, such as community-based informed agents selec-
tion [30] and cluster-based informed agents selection [46].
In this paper, the proposed method is different from other
studies. This paper mainly aims at the problems of low den-
sity and wide distribution of agents. So a flocking approach
based on partially informed agents is proposed. Informed
agents are called propagandists. The propagandist is the only
informed agent in the whole flocking process.

The method indication picture is shown in Figure 4.
A red cross mark virtual leader and a red dot represent

FIGURE 3. Interaction diagram between propagandist and neighbor.

a propagandist. The green square is the movement track of the
propagandist, and the arrows represent the direction. The blue
dotted line shows the propaganda radius. The black dotted
line indicates the initial distribution of uninformed agents.

We summarize the method as follows:
1) The virtual leader stays still and delivers the information

to the propagandist.
2) The propagandist moves along a certain route (green

track) and transmits information about the virtual leader to
uninformed agents. Eventually the propagandist returned to
the starting point. During this process, the uninformed agent
moves at a lower speed before being notified.
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FIGURE 4. The movement of the propagandist.

3) When the propagandist comes back, the virtual leader
starts to move. Then, agents track virtual leaders under the
influence of the propagandist.

It is worth noting that the propagandist not only has the
characteristics of ordinary agents (the balance distance de and
the sensing distance r), but also has a unique propaganda
radius p. In Figure 3 below, the propaganda radius will not
disappear during the whole flocking process. The propaganda
is still the only informed agent. To reduce the adverse effects
caused by incomplete information, we give the propagandists
autonomy. The control protocol is described as:

ui =
∑
j∈Ni

fα(||qj − qi||)cij +
∑
j∈Ni

aij(pj − pi)− c1(qi − qγ )

− c2(pi − pγ )− l
[
(qi − qγ )+ (pi − pγ )

]
(12)

IV. STABILITY ANALYSIS
In the previous section, we proposed an improved flock-
ing algorithm, which can realize the flocking of partially
informed agents. In this section, by giving the related theo-
rems of the flocking, Lyapunov theorem and LaSalle’s invari-
ance principle are used to prove the stability of the algorithm.

Theorem1: Consider N mobile agents in two dimensions.
Satisfy double-integrator dynamics equations (1) and control
protocols (11). Assume that in the initial state, the velocity
is random, and the positions of the agents are uniformly
distributed. The following statements apply:

(a) Agents will not collide with each other during flocking.
(b) Eventually all agents match the speed.
(c) All agents gather together and form a group to follow

the virtual leader.
Proof: Let q̂i = qi−qγ and p̂i = pi−pγ are position and

velocity error vector, respectively. Then, according to (1), the
double-integrator error dynamics equations of the agent i is
defined as: {

˙̂qi = p̂i
˙̂pi = ui

(13)

where i = 1, 2, . . . ,N . Let qij = qi − qj and q̂ij = q̂i − q̂j.
Clearly, q̂ij = qij. Hence, the control protocol (11) of agent i
can be rewritten as:

ui =
∑
j∈Ni

fα(||q̂ij||)cij +
∑
j∈Ni

aij(p̂j − p̂i)− hi(c1q̂i + c2p̂i)

(14)

According to [19], [20], the collective potential function is
modified as:

V̂i(q̂ij) =
∑
j∈v\{i}

Fα(||q̂ij||)

=

∑
j/∈Ni,j6=i

Fα(r)+
∑
j∈Ni

Fα(||q̂ij||) (15)

An energy-like Lyapunov function is selected as follows:

Q(q̂, p̂) =
1
2

N∑
i=1

(Ui(q̂)+ p̂Ti p̂i) (16)

where

Ui(q̂) =
N∑

j=1,j6=i

Fα(||q̂ij||)+ hic1q̂Ti q̂i

= V̂i(q̂ij)+ hic1q̂Ti q̂i (17)

and

q̂ =


q̂1
q̂2
...

q̂N

 , p̂ =

p̂1
p̂2
...

p̂N

 .
Obviously, Q(q̂, p̂) is a positive semi-definite function of
(q̂, p̂). Due to the symmetry of the potential function Fa(x)
and the adjacent matrix A(t), one has

∂Fα(||q̂ij||)
∂ q̂ij

=
∂Fα(||q̂ij||)

∂ q̂i
= −

∂Fα(||q̂ij||)
∂ q̂j

(18)

Then,

1
2

N∑
i=1

U̇i =
N∑
i=1

(p̂Ti ∇q̂i V̂i(q̂ij)+ hic1p̂
T
i q̂i) (19)

where U̇i = dUi/dt . Therefore, the derivative of Q is given
below:

Q̇ =
1
2

N∑
i=1

U̇i +
N∑
i=1

p̂Ti ˙̂pi

= −p̂T [(L(t)+ c2H (t))⊗ In]p̂ (20)

where

H (t) =


h1 0 · · · 0
0 h2 · · · 0
...

...
. . .

...

0 0 · · · hN


Due to L(t) and H (t) are positive semi-definite matrices.

Likewise, L(t)+ = c2H (t) is positive semi-definite matrices.
So, Q̇ ≤ 0 implies this is a non-increasing function over
time t . Thus Q(t) ≤ Q0 for all t ≥ 0. From Equations (16)
and (17), we obtain c1q̂Ti q̂i ≤ 2Q0 for agent i, which guaran-
tees the flocking. The part (c) is proven.
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FIGURE 5. Each agent has a fixed degree of resistance during the flocking. (a) t=0 step. (b) t=150 step. (c) t=250 step. (d) t=900 step.

Take into account Q(t) ≤ Q0, we define an invariant
set (21)

� = {(q̂T , p̂T )T : Q(t) ≤ Q0} (21)

According to LaSalle’s invariance principle, the state of all
agents will converge from � to the largest set �max =

{(q̂T , p̂T )T : Q̇(t) = 0}. From the equation (16), we obtain:

Q̇ =
1
2

N∑
i=1

U̇i +
N∑
i=1

p̂Ti ˙̂pi

= −p̂T [(L(t)+ c2H (t))⊗ In]p̂

= −p̂T (L(t)⊗ In)p̂− p̂T (c2H (t)⊗ In)p̂ (22)

The matrices L(t) and H (t) are positive semi-definite matri-
ces. Thus, the non-negative energy function is the small-
est. Q̇ = 0 is equivalent to p̂ =

[
p̂1, p̂2, · · · , p̂N

]T
≡

[0, 0, · · · , 0]T . The condition is satisfied only when P1 ≡ P2
. . .≡ PN . The part (b) is proven.

In view of the (16), Q is a non-increasing function over
time t . Thus Q(t) ≤ Q0 for all t ≥ 0. Assume that at least
two agents collide during flocking. Then,

Q(q̂, p̂) =
1
2

N∑
i=1

(Ui(q̂)+ p̂Ti p̂i)

=
1
2

N∑
i=1

(V̂i(q̂ij)+ hic1p̂Ti p̂i)+
1
2

N∑
i=1

p̂Ti p̂i

≥
1
2

N∑
i=1

V̂i(q̂ij) ≥ Q0 (23)

Which contradicts the conditionQ(t) ≤ Q0. Therefore, the
above assumption is wrong. The part (a) is proven.

V. SIMULATION RESULT
In this section, lots of simulation results are presented. The
effectiveness of the algorithm proposed in the third section is
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FIGURE 6. Each agent has a varying degree of resistance during the flocking. (a) t=0 step. (b) t=150 step. (c) t=250 step. (d) t=900 step.

proved. At the same time, the flocking method proposed in
this paper is verified.

A. FLOCKING WITH INCOMPLETE INFORMATION
Before the formal simulation, the flocking simulation under
incomplete information is briefly described. This will lay the
foundation for the following simulations. In this section, two
cases are discussed, in both cases, the virtual leader informa-
tion is randomly lost. First, each agent has a fixed resistance
(randomly generated) that does not change over time. Sec-
ondly, each agent has different resistance and changes over
time.

To better reflect the impact of incomplete information
on flocking, large-scale agents are not selected, and only
10 agents are selected in two-dimensional space for simula-
tion. At the initial moment, the positions of the agents are
randomly distributed in the box [−40, 40]×[−40, 40], and
satisfy the Gaussian distribution, as shown in Figure 5(a).

The initial velocities are randomly chosen from the
box [−1, 1]×[−1, 1] (corresponding to the velocity in the
x-axis and y-axis direction). The virtual leader is marked with
a red ‘‘×’’. The initial position qγ and velocity pγ are set as
qγ (0) = [0, 0]T and pγ (0) = [0.5, 0.5]T , respectively. Other
parameters are given in Table 2.

The initial conditions remain the same in both cases as
shown in Figure 5(a) and Figure 6(a). When agents track the
virtual leader, they do not collide with each other and keep
a certain distance. Eventually, in both cases, because each
agent has varying degrees of resistance and the lack of virtual
leader information, agents failed to track to the virtual leader.
Note the two agents marked with blue and green circles in
Figure 5 and Figure 6. Compared with other agents, the two
agents have relatively large resistance in Figure 5. Hence,
the two agents barely moved, and the distance between the
two agents and the virtual leader is the largest. Due to the
small degree of resistance of green agents, so the green agents
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TABLE 2. Parameters of the proposed algorithm.

FIGURE 7. Velocity curve of all agents. (a) x-axis direction. (b) y-axis
direction.

eventually exceeded the blue agents. In the end, the distance
between the remaining agents and the virtual leader is directly
proportional to the degree of resistance, shown in Figure 5(d).
In Figure 6, two agents (marked with blue and green circles)
have different degrees of resistance with other agents. As time
goes on, all agents gather together and form a small group.
Taking into account the real life, individuals will constantly
adjust and change themselves as the environment changes,
because information received by individuals from the outside
world is not always complete. On this account, the following
simulation is based on case 2.

B. RANDOM SELECTION OF INFORMED AGENTS AND
FLOCKING WITH INCOMPLETE INFORMATION
Figure 10 shows a flocking simulation with incomplete
information. Based on the control protocol (11), 100 agents
moving in two-dimensional space are simulated, including

FIGURE 8. Final flocking picture using Morse potential functions.

FIGURE 9. Final flocking picture using L-J potential functions.

10 informed agents and 90 uninformed agents. The ini-
tial position and velocity of both informed and uninformed
agents are distributed in the boxes [0, 100]×[0, 100] and
[0, 0.01]×[0, 0.01], respectively, as shown in Figure 10(a).
The initial position qγ and velocity pγ of the virtual leader
are set as qγ (0) = [10, 10]T and pγ (0) = [1, 1]T . Some
other parameters of the algorithm are given in Table 2. In this
section, the incomplete information is added in the simula-
tion. Related simulations with incomplete information are
described in section A.
In Figure 10(a), red triangles represent informed agents,

and blue triangles represent uninformed agents. Solid lines
indicate interconnections. The red ‘‘×’’ indicates the virtual
leader. The virtual leader moves diagonally in the coordinate
system. Figure 10(a) shows the initial state of the high dis-
connect. With the passage of time, the scale of the cluster
continues to increase. From Figure 10(b) to Figure 10(f),
more and more agents gather together and form a group with
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FIGURE 10. Flocking under incomplete information, including 10 informed agents and 90 uninformed agents. The number of informed
agents are selected randomly. The red triangle represents the informed agent, and the blue triangle represents the uninformed agent.
A red ‘‘×’’ denotes a virtual leader. Solid lines indicate the interconnection between agents. (a) t=0 step. (b) t=10 step. (c) t=50 step.
(d) t=100 step. (e) t=200 step. (f) t=350 step.
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FIGURE 11. Velocity curve of all agents. (a) x-axis direction. (b) y-axis
direction.

the same velocity. Finally, there are 81 agents in the group
(see Figure 10(f)). Figure 7 shows the velocity curve of the
agents during the flocking process. It is clear that the unin-
formed agent, which is not affected by the informed agent,
keeps moving at its original velocity. The velocity informa-
tion of the virtual leader is dynamically missing, leading to
the constant adjustment of the speed of the agents, but stable
within a certain range.

In order to better compare the effectiveness of the improved
potential function in this paper, the initial state remains the
same, as shown in Figure 10(a). The flocking process is
much the same as above. The results under different potential
functions are shown in Figure 8 and Figure 9. It is clear that,
using Morse and L-J potential functions, the final number of
clusters reached is 70 and 10, respectively. L-J potential func-
tions produces unfavorable results, which is not conducive to
flocking.

C. MULTI-AGENTS FLOCKING WITH PROPAGANDIETS
AND INCOMPLETE INFORMATION
In section B, flocking simulation is carried out based on three
different potential functions under incomplete information.
This proves the superiority of the proposed potential func-
tion. To further improve the adverse consequences caused by
incomplete information, in this section, multi-agents flocking
simulation based on propagandist is implemented, as shown
in Figure 14. The parameter settings involved in this section
are shown in Table 2. The difference is that 100 agents
are generated, including 99 uninformed agents and 1 pro-
pagandist (the informed agent). The initial distribution of

FIGURE 12. Final flocking picture using Morse potential functions,
propagandist is the only informed agent.

FIGURE 13. Final flocking picture using L-J potential functions,
Propagandist is the only informed agent.

uninformed agents satisfies the uniform distribution. The ini-
tial position and velocity of the propagandist (the red agent)
are [20, 20] and [2, 0], respectively. The position of the virtual
leader (the red cross) is [10, 10], as shown in Figure 14(a).

The propagandist radius of propagandist is 30. To begin
with, the propagandist receives orders from the virtual leader.
Then inform the uninformed agents. The movement track
of the propagandist is square, as described in section III.
Here there is no need to overstate it. The simulation pictures
are from Figure 14(a) to Figure 14(e). During this process,
the virtual leader stays still. In Figure 14(e), all agents have
already received the propagandist’s message. Most agents
gather around the virtual leader. At this point, the propa-
gandist has returned to the initial position [20, 20]. Most
agents are already connected and form a large network. The
virtual leader starts moving at [1, 1] speed. After that, it is
still the propagandist who knows the information about the
virtual leader (see Figure 14(f)). In the end, it is shocking
that the number of agents in this small group reached 100.
Similarly, under these conditions, Figure 11 indicates the
velocity curve during the flocking process. As the control
protocol of propagandist is improved, this group can success-
fully track the virtual leader. The method proposed in this
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FIGURE 14. Flocking under incomplete information, including 1propagandist (informed agent) and 99 uninformed agents. The red
triangle represents the informed agent, and the blue triangle represents the uninformed agent. A red ‘‘×’’ denotes a virtual leader.
Solid lines indicate the interconnection between agents. (a) t=0 step. (b) t=30 step. (c) t=80 step. (d) t=160 step. (e) t=240 step.
(f) t=350 step.
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FIGURE 15. Fraction of agents with desired velocity as a function of the
fraction of informed agents, under different potential functions with
incomplete information. Informed agents are randomly selected. The
estimated results are taken as the average of 50 simulation.

paper is that only one informed agent can realize interconnec-
tion of the whole network. The simulation results also benefit
from the influence of incomplete information. However, it is
worth noting that before the virtual leader movement, the
propagandist needs to take time to inform the uninformed
agents.

Similarly, the potential function in this paper is replaced by
Morse and L-J potential functions, respectively. The initial
states remain the same, as shown in Figure 14(a). Run the
simulation again. The results are shown in Figure 12 and
Figure 13 below. The number of eventually formed groups is
100 and 62. It can be seen from Figure 12 and Figure 13, even
with Morse and L-J potential functions, the results are good.
So this method plays a decisive role in solving the problem of
incomplete information. Compared with other methods [25],
[28], it shows the advantages of this method.

In order to further prove the feasibility of the improved
flocking algorithm and the effectiveness of the flocking
method proposed in this paper, more simulations were per-
formed. Based on the assumptions of the above simulation,
the initial positions are randomly selected form the box
[0, 100] × [0, 100]. The initial velocities are chosen form
[0.01,0.01]. The qγ and pγ of the virtual leader are set as
qγ (0) = [10, 10]T and pγ (0) = [1, 1]T , respectively. Other
parameter settings are the same as in Table 2.

We randomly select some informed agents from
100 agents. Figure15 presents the relationship between the
proportion η of agents that track the virtual leader and the
proportion δ of the informed agents. The simulation results
are taken as the average value of 50 times. This result is a
cluster of partially informed agents under incomplete infor-
mation. The three lines represent different potential functions,
which come from Table 1. Obviously, the potential function
in this paper is better than other potential functions. At the
same time, the validity of the potential function proposed in
this paper is illustrated again.

Since the propagandist is the only informed agent, there
is no need to set the proportion of informed agents. In the
same way, based on different potential functions under
incomplete information, 50 simulations were performed to

calculate the average value. The resulting values are 99.8,
99.5, and 44.9, corresponding to the potential function in
this paper, Morse, L-J, respectively. Compared with random
selection of informed agent [20], the results show that the
method presented in this paper is better.

VI. CONCLUSION
In this paper, firstly based on the consideration of reality,
flocking of informed agents is simulated under incomplete
information. In order to drive more agents to track virtual
leaders at the same speed, based on the analysis of the poten-
tial function, we improve the original flocking algorithm and
prove the stability of the algorithm. The conclusion of simu-
lation is that the potential function in this paper is beneficial
to the flocking of multi-agent. Secondly, this paper regards
a informed agent as a propagandist to spread information to
other agents. This method is superior to the method of ran-
domly selecting agents, and has a better flocking effect under
incomplete information. This method reduces the adverse
effects caused by incomplete information. Moreover, sim-
ulation results also verify the effectiveness of the above
approaches.

The method proposed in this paper has a certain lag. And
before the propagandist notifies the uninformed agents, the
uninformed agents move at a low speed. For future work,
we will consider how to generate flocking more quickly and
reduce the lag time. Meanwhile, it is better to reduce the
adverse consequences caused by incomplete information.
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