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ABSTRACT Accurate process modeling is occasionally difficult. In such situations, auto-tuning meth-
ods enable the design of suitable controllers based on experimental data and predefined mathematical
approaches. Fractional order PIDs have recently emerged as a generalization of the standard PID controller,
but auto-tuning methods for these controllers are scarce. In this paper, three sine-test based methodologies
are presented from a control engineer’s perspective consisting of novel Sine-Test, FO-KC and FO-ZN
methods, with clear design and implementation guidelines. The approaches are exemplified on a highly
nonlinear experimental platform. An in depth comparison is performed based on experimental closed loop
system performance for wide operating areas, tuning effort and complexity, with a focus on the suitability
for industrial applications. The study aims at providing a solid foundation for practitioners that desire to
explore auto-tuning possibilities, presenting tuning workflows and implementation guidelines, while also
considering the challenges associated with real-life process.

INDEX TERMS Fractional order auto-tuners, auto-tuner comparison, nonlinear process, fractional calculus.

I. INTRODUCTION
It is without doubt that the PID controller is the king of
industrial control. A recent analysis [1] published by Global
Industry Analysts Inc., (GIA) states that the PID controller
industry is bound to reach a whopping $1.6 billion by
2026. Fresh perspectives on opportunities and challenges of
a post-COVID industrial marketplace are explored in the
report, for major end-use sectors such oil & gas, food &
beverage, power, chemical, etc. Customer demands for high
product quality, increasingly stringent safety regulations and
intensified global competition lead to industrial processes
operating under conditions that emphasize inherent nonlin-
earities. For large industrial plants, with highly coupled loop
interactions, obtaining an accurate process model is strenuous
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work, justifying the usage of auto-tuning methods to obtain
the controller’s parameters [2], [3], [4].

Recent trends in controller auto-tuning enhance
popular PID controllers with additional, fractional order
differ-integral operators. Fractional order PID controllers
are a generalization of the classical PID controller into
the fractional calculus domain and was first introduced
by I. Podlubny [5]. Numerous works prove the superiority of
fractional order PID controllers in terms of improved closed
loop system performance, increased stability and robustness
with the addition of two parameters, consisting of arbitrary
orders of integration and differentiation [6], [7], [8], [9]. Even
if tuning methodologies of fractional order PID controllers
are abundant [10], fractional order autotuning strategies are
scarce featuring various limitations.

One of the first fractional order auto-tuners was intro-
duced by [11], with controller design based on shaping
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a ’flat-phase’ around the gain crossover frequency lead-
ing to a controller similar to the classical PID, but with a
fractional component sλ. The relay test popular in integer
order PID controller design is used in [7] to obtain a frac-
tional order PI controller in series with a fractional order
PD controller with a filter. The procedure uses specifications
related to the gain crossover frequency, phase margin and
robustness implying great effort in obtaining the controller’s
parameters.

The most popular auto-tuning methodology is Ziegler-
Nichols, an easy approach that uses solely the process’s
critical gain associated to its critical frequency to deter-
mine integer order PID parameters. The method is known
to perform poorly for reference tracking, but the disturbance
rejection capabilities are good [2]. Several extensions of the
ZN method aim at addressing the limitations of this method-
ology. In [12], the proportional and integral gains of the
controller are computed using the popular Ziegler-Nichols
(ZN) method, while an initial derivative gain is computed
using Åström-Hägglund. A fine tuning method is employed
to determine the optimal derivative gain by solving a sys-
tem of two nonlinear equations built around a phase mar-
gin specification. The final tuning step is to determine the
fractional orders of integration and differentiation with an
optimization procedure. Again, the methodology is tedious
and consists of a heavy, multi-step approach, with a major
disadvantage in the optimization procedure which strongly
depends on its initial values. Another study [13] extends the
Ziegler-Nichols method in the fractional order domain, taking
into consideration the time delay τ and an estimated process
time constant T . A major limitation is that the methodology
can be used only on systems that have an S-shaped step
response. Other extensions of the ZN methodologies have
been published in [30], [31], and [32], but all of them prove to
be hard to apply to physical processes due to extensive tuning
efforts and limitation such as the S-shaped response of the
process.

Different approaches have been proposed by [18] through
the the Sine Test auto-tuner and in [19] which introduces
the FO-KC auto-tuner. In [18], the system is excited with
a single sine test performed at the gain crossover frequency
in order to measure the magnitude and phase of the output
signal. Novel filtering techniques are used on the phase data
to determine the phase slope. Nonlinear equations related
to gain crossover frequency, phase margin and robustness
through the isodamping property are solved using the exper-
imentally acquired information. The FO-KC methodology
introduced in [19] uses phase margin and isodamping fre-
quency domain specifications to determine a forbidden region
circle on the Nyquist diagram. A single sine test at the gain
crossover frequency is further used to estimate the phase and
phase slope of the process, as in the previously mentioned
paper. The actual tuning procedure consists in minimizing
the slope-difference between the loop frequency response
and the forbidden region circle border, leading to an optimal
fractional order PID controller.

A novel fractional order auto-tuner is proposed in [20],
the FO-ZN auto-tuner. The method is based on a similar
idea related to shaping the loop frequency response tangent
to a defined Nyquist circle. The method is an extension
to the Ziegler-Nichols approach based on a relay test that
determined the process critical frequency and gain. The main
benefit of the method is it’s ease of use, without needing
any kind of optimization procedures to obtain fractional order
PID controllers.

Currently, there are no studies available that compare
fractional order auto-tuning methodologies. However, some
works can be found such as [21] which compares 4 indus-
trial integer order auto-tuners (ECA, Honeywell, τ -tuner and
NOMAD) based on temperature experiments in a batch tank
and a quadruple tank. In [22], an integer order KC con-
troller is compared with SIMC, AMIGO and ZN ultimate
gain auto-tuners for an experimental coupled tanks process.
Again, only integer order methods are tackled. The abstract
of [23] states that Ziegler-Nichols, Kappa-Tau, IMC-PID
auto-tuning and data-based FRIT methods are compared with
a fractional order auto-tuned PID controller. However, the
paper is in Chinese and it is unclear what method was used to
tune the fractional order PID controller.

The methods from [18], [19] have been successfully val-
idated on multiple numerical examples. Since auto-tuners
should be used in the absence of a process model, experi-
mental validations are paramount in proving the importance
of the proposed design strategies, especially for the case of
nonlinear processes. The papers introducing these methods
focus on theoretical contributions and mathematical proofs.
Available experimental validations target a single process,
lacking clear implementation strategies from the control engi-
neer perspective. Currently, there are no experimental nor
numerical validations available for [20], except transfer func-
tions used in the original paper to validate the methodology.

The present study aims at offering a comparison between
auto-tuning strategies, together with step by step guidelines
on the practical design and implementation of the three meth-
ods from [18], [19], and [20] based on real-life challenges.
The chosen system is a highly nonlinear experimental plat-
form, exhibiting dynamics relevant for the mechanical field.
All three works are different than the approaches usually
encountered in auto-tuning literature, but similar among
themselves through the usage of a single experimental sine
test.

The novelty elements of the papers are: a ready to use
auto-tuning and implementation guideline for real-life pro-
cesses; comparisons between fractional order sine based
strategies based on experimental results, respecting the gen-
eral scope of auto-tuners; analysis on system performance,
controller tuning effort and total duration of the necessary
experiments. Furthermore, this work presents the first exper-
imental assessment of the auto-tuner from [20].

The paper is structured as follows: Section II briefly
presents the tuning strategies, summarizing essential infor-
mation that needs to be taken into consideration in the tuning
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procedure; Section III describes the experimental platform
with a nonlinear analysis, followed by step-by-step auto-
tuning procedures based exclusively on experimental data,
real-life challenges of tuning and implementing fractional
order controllers and possibilities to overcome them, while
Section IV compares the three methodologies from the closed
loop system’s perspective as well as tuning difficulty. Finally,
Section V concludes the paper.

II. SINE BASED AUTO-TUNERS - A CONTROL ENGINEER’S
OVERVIEW
Starting with an integer order PID controller given by

CPID = kp

(
1+

1
Tis
+ Td s

)
(1)

and generalizing it into the fractional order domain gives

CFOPID = kp

(
1+ ki

1
sλ
+ kd sµ

)
, (2)

where kp, ki, kd are proportional gains, Ti and Td are the inte-
gral and derivative time constants, and λ,µ are the fractional
orders of integration and differentiation, respectively.

The most popular tuning methodology for fractional order
controllers is based on imposing phase margin specifications
related to gain crossover frequency ωgc, phase margin ϕm and
robustness [10], [24], [25], [26], [27]. The latter is defined
based on a property known as isodamping, where a flat phase
is imposed around the gain crossover frequency. This ensures
that the system offers a certain degree of robustness for gain
variations. The resulting system of nonlinear equations that
give the parameters of a fractional order controller is

6 (C(jωgc)P(jωgc)) = −π + ϕm, (3)

|C(jωgc)P(jωgc)| = 1, (4)
d(6 (C(jω)P(jω)))

dω

∣∣∣∣
ω=ωgc

= 0. (5)

A. THE SINE TEST AUTO-TUNER
The method was initially introduced in [18]. The only exper-
imental validation available for the sine test auto-tuner is
presented in [28], where a fractional order PD controller is
computed for suppressing unwanted vibrations in a smart-
beam platform.

The base idea is to excite the process Pwith a sine wave of
amplitude Ai and the desired gain crossover frequency (ωgc),
denoted by u(t) = Aisin(ωgct). The generated output, y, is a
sine wave, with a different output amplitude Ao, the same ωgc
frequency and a time shift τ = ti − to. The magnitude M and
phase ϕ are given by

M = |P(jωgc)| =
Ao
Ai
, (6)

ϕ = 6 P(jωgc) = ωgcτ = ωgc(ti − to). (7)

Note that t denotes the time and j =
√
−1.

The novelty of this method lies in determining the
phase derivative because there is no trivial, straightfor-
ward procedure for doing it. The idea is to pass the out-
put through a second order filter to obtain another signal:

the output of the process derivative, followed by the phase
slope. Assuming an input signal is v(t) = tu(t) leading
to an output x(t), the following holds in the Laplace, s,
domain:

L {tu(t)}P(s) = X (s), (8)

leading to

−
dU (s)
ds

P(s) = X (s). (9)

If the initial input signal is applied to the derivative of the
process, the output ȳ is given by

dP(s)
ds

U (s) = Ȳ (s). (10)

The derivative of the output signal is

dY (s)
ds
= L {−ty(t)} H⇒

L −1
{
dY (s)
ds

}
= L −1

{
d(P(s)U (s))

ds

}
. (11)

The equation can be rewritten as

d(P(s)U (s))
ds

= Ȳ (s)− X (s), (12)

giving

−ty(t) = L −1{Ȳ (s)− X (s)}. (13)

A sinusoidal input signal has the Laplace transform

U (s) =
Aiωgc
s2 + ω2

gc
(14)

with it’s derivative
dU (s)
ds
= −

2Aiωgcs
(s2 + ω2

gc)2
, (15)

leading to

X (s) = −
dU (s)
ds

P(s) = −
2Aiωgcs

(s2 + ω2
gc)2

P(s)

=
Aiωgc
s2 + ω2

gc

2s
s2 + ω2

gc
P(s). (16)

Equation (14) and knowing that U (s)P(s) = Y (s) give X (s)
as

X (s) =
2s

s2 + ω2
gc
Y (s), (17)

meaning that x(t) can be computed by adding a second order
filter, from where the process derivative ȳ(t) can be computed
as the difference between x(t) and ty(t). The testing procedure
is depicted in Fig. 1.

The terms seen in the bottom of Fig. 1 are the complex
representations of the signals y(t) and ȳ(t)

M̄ =
Aȳ
Ai

(18)

ϕ̄ = ωgcτȳ = ωgc(ti − tȳ) (19)
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FIGURE 1. Experimental block scheme for the sine wave auto-tuner.

and the phase slope at gain crossover frequency is com-
puted as

d 6 P(jω)
jω

∣∣∣∣
ω=ωgc

=
dϕ
dω

∣∣∣∣
ω=ωgc

=
M̄
M
cos (ϕ̄ − ϕ) . (20)

a: CONTROL ENGINEER’s GUIDELINES
The following steps should be followed in the tuning
procedure:

1) Establish the desired gain crossover frequency ωgc and
phase margin ϕm based on the desired values for the
closed loop system’s settling time and overshoot

2) Excite the process with a sine test and register the input
and output signals, u(t) and y(t)

3) Compute ȳ(t) using (17). The filter can be implemented
in real-time directly on the process, or the registered
signals at Step 2 can be used in an environment such as
Simulink to generate the phase derivative.

4) Extract the modulus, phase and phase derivative of the
process using (6), (7), (18), (19) and (20).

5) Solve the system of nonlinear equations comprised
by (3), (4), (5) to determine the parameters of the
controller.

b: TUNING NOTES
Base the choice of ωgc and ϕm on realistic expectations of
the controlled process. The frequency should be chosen with
respect to the type of controller and the critical frequency
of the process (e.g. if the tuned controller is a fractional
order PI which introduces a negative phase and the chosen
frequency is equal to the critical frequency, the closed loop
system will be unstable). If the experimental system allows,
the input sine wave should have an amplitude of 1 for sim-
plicity of computations (Ai = 1.). If the output signal is
too noisy, an alternative to filtering is the usage of a pure
sine signal (with the same properties) to compute the phase
derivative. When solving the system of nonlinear equations
at Step 5, a graphical approach is a straightforward and easy
to implement solution, as opposed to complex mathematical
strategies. Always check that the obtained controller has
physical relevance (fractional orders belong in the (0 2) inter-
val and proportional gains are greater than 0 [29]).

B. THE FO-KC AUTO-TUNER
The methodology was firstly introduced in [19], with some
validations published in [30], [31], and [32] for a hemody-

namic cardiac output process, a robotic arm manipulator and
a dynamical transfer function, respectively. The controller
tuning has been performed on mathematical models of the
process, not on experimental data, defying the general pur-
pose of an auto-tuning method.

The strategy resembles the previous method by using the
same data related to the process: the modulus, the phase and
the derivative of the phase. The novelty of this approach lies in
defining a ‘forbidden region’ circle on the Nyquist diagram.
This region is based upon the gain and phase margins which
are related to the performance specifications that the closed
loop should achieve. The controller parameters should be
computed such that the open loop touches the forbidden
region’s border.

The main idea is described by Fig. 2, by moving a point
B from the process’s Nyquist plot to a new point A with the
help of the controller. The loop frequency response, denoted
by L(jω) = P(jω)C(jω), should be tangent to the forbidden
region circle, meaning that the slope of the tangent is equal
to the slope of L(jω). Point D is obtained with respect to an
imposed gain margin (GM), while E is based on the phase
margin (PM). Trigonometric equations inside the circle give
the forbidden region center C and radius R as

C =
GM2

− 1
2GM (GMcosPM − 1)

R = C −
1
GM

, (21)

which gives the slope of the forbidden region tangent in point
A with respect to the angle α

d Im
d Re

∣∣∣∣α = −Re+ CIm
=

cosα
sinα

. (22)

The slope of L(jω) can be computed with respect to the
derivative

dL(jω)
dω

= P(jω)
dC(jω)
dω

+ C(jω)
P(jω)
dω

=
d RePC
dω

+ j
d ImPC
dω

(23)

Equation (23) allows the computation of d ImPC
dω

∣∣∣
ω=ω̄

, where
ω̄ is the chosen test frequency. The following equation holds
for point A

MAejϕA = MPC (jω̄)ejϕPC (jω̄) (24)

which can be rewritten as

MA = MPC (jω̄) = MP(jω̄)MC (jω̄), (25)

ϕa = ϕPC (jω̄) = ϕP(jω̄)+ ϕC (jω̄). (26)

The modulus and phase can also be computed trigonometri-
cally as

MA =
√
C2 + R2 − 2CR cosα

tan (ϕC + ϕP) =
R sinα

C − R cosα
=

tanϕC + tanϕP
1− tanϕC tanϕP

H⇒ tanϕC =
Rsinα − tanϕP(C − Rcosα)
tanϕP R sinα + (C − Rcosα)

(27)
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FIGURE 2. Tuning principle for the KC auto-tuner.

P(jω̄), ϕP(jω̄) and dP(jω)
dω

∣∣∣ are computed according to [18]

resulting in d ImPC
d RePC

∣∣∣
ω=ω̄

. The design translates into a mini-
mization problem

min
α

∣∣∣∣∣∣∣∣ d Imd Re

∣∣∣∣
α

−
d ImPC
d Re

∣∣∣∣
ω=ω̄

∣∣∣∣∣∣∣∣ , 0 ≤ α ≤ 90◦. (28)

a: CONTROL ENGINEER’s GUIDELINES
The following steps should be followed for the FO-KC auto-
tuning procedure:

1) Select gain margin GM and phase margin PM values
to ensure the stability of the closed loop system and
desired performance.

2) Compute the forbidden region circle and α using (21).
3) Determine the slope of the forbidden region circle

using (22).
4) Select the frequency ω̄ and perform an experimental

sine tests on the process.
5) Compute the frequency response of L(jω̄).
6) Taking points on the circle’s border in small incre-

ments, compute the desired fractional order controller.
7) Search for the point where the loop frequency response

is tangent to the forbidden region circle using (28).
8) Determine the controller that corresponds to the point

found at Step 7.

b: TUNING NOTES
The methodology has been validated for PM=45◦ and GM=2.
It is a good idea to choose these values, especially for PM,
in order to work with a right triangle which considerably

reduces computational effort. The FO-KC method should
work for any ω̄, however all available validations use the
critical frequency for the sine tests. The minimization prob-
lem can be solved with a simple for loop, by taking alpha
in 1◦ increments and saving the best solution.

C. THE FO-ZN AUTO-TUNER
This is a novel auto-tuning strategy recently introduced
by [20]. There are no validations available, except for the
transfer functions used in the original paper to prove
the veracity of the proposed approach. The main idea of
this auto-tuner is to improve the standard fractional order
Ziegler-Nichols control strategy, by shaping the ‘‘direction’’
of the loop frequency response in a chosen point on the
Nyquist diagram. The method is similar to FO-KC auto-tuner
previously presented through the usage of loop shaping in the
Nyquist plot.

Exciting the system with a sinusoidal signal with ampli-
tude Ai and the critical frequency ωc generates an output
signal with amplitude Ao and time period Tc. According to
the classical ZN method, the integer order PID controller’s
parameters from (1) are

kp = 0.6
Ai
Ao
, Ti =

Tc
2
, Td =

Tc
8
. (29)

The following relations related to the magnitude and phase of
the process hold

ωc =
2π
Tc
,

M = |P(jωc)| =
Ao
Ai
,
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ϕ = 6 P(jωc) = −180◦,

P(jωc) = −
Ao
Ai
. (30)

Choosing the exact values from (29) and equating them
with the PID controller transfer function from (1) in the
frequency domain (s = jω) gives

CPID(s) = kp

(
1+

1
Tijωc

+ Td jωc

)
= kc(0.6+ 0.28j) (31)

leading to the loop frequency response

LPID(jωc) = −0.6− 0.28j. (32)

This results provides a stable working point that ensures
acceptable performance for the closed loop system such as
high overshoot (not desirable, but tolerable), reduced settling
time (highly desirable). A better insight is presented in Fig. 3.
Fig. 3b shows a process that is too close of the -1 point,

leading to less robustness, decreased stability and bad closed
loop system performance. The FO-ZN auto-tuner aims at
reshaping the response while keeping the operating point.
In addition, the fractional order of differentiation and inte-
gration are considered equal. Rewriting the fractional order
PID controller from (2) in the frequency domain in order to
keep the notations used in the ZN methodology gives

CFOPID(s) = kp

(
1+

1
Tisµ
+ Td sµ

)
. (33)

In the FO-ZN methodology, Td and Ti lose their meaning as
time constants, with the real time constants being τi and τd

Td = τ
µ
d , Ti = τ

µ
i = rµτd ,where r =

τi

τd
. (34)

The frequency domain specification of the controller
becomes

CFOPID(jω) = kp

(
1+

1
Ti(jω)µ

+
Ti
rµ

(jω)µ
)
. (35)

The following notations are introduced

R = rµ,

(±j)µ = cos
(
µ
π

2

)
± jsin

(π
2

)
= C ± jS,

X = Tiωµ. (36)

Rewriting (35) with respect to (36) gives

CFOPID(jω) = kp

(
1+ C

(
X
R
+

1
X

))

·

1+ j
S
(
X
R −

1
X

)
1+ C

(
X

R+ 1
X

)


= a
(
1+ j

b
a

)
, (37)

leading to the following quadratic equation(
b
a
C − S

)
X2
+

(
b
a
R
)
X + R

(
b
a
C + S

)
= 0. (38)

The quadratic equation above can be solved for any fre-
quency ω, with the constraint X > 0.

The particular case of the ZN auto-tuner from (29) gives
a = 0.6AoAi and b

a = 0.467. Consequently, the following
relations are obtained

kp

(
1+ C

(
X
R
+

1
X

))
= 0.6

Ao
Ai

H⇒ kp = α
Ao
Ai
, α =

0.6

1+ C
(
X
R +

1
X

)
X = Tiωµc = Ti

(
2π
Tc

)µ
H⇒ Ti = βTµc , β =

X
(2π )µ

Td =
Ti
R
H⇒ Td = γTi, γ =

1
R
(39)

The existence condition related to the phase of the con-
troller with respect to ZN is ϕ = atan (0.28/0.6) = 25◦. This
means that the fractional order PID controller should produce
a phase advance of 25◦, with amaximum value known for this
type of controller as 90◦, giving µmin = 0.28.

a: CONTROL ENGINEER’s GUIDELINES
The FO-ZN auto-tuning method can be applied through the
following steps:

1) Run multiple sinusoidal tests to determine the critical
frequency of the process.

2) Compute the critical gain Ai/Ao and the critical time
period Tc.

3) Compute α, β, γ using (39).
4) Select the value of r from (36) and µ > µmin.
5) Compute the values of C, S and R according on (36).
6) Impose the ZN loop frequency response from (32) and

compute the parameters a and b from (37).
7) Determine X by solving (38).
8) Compute α, β, γ from (39).
9) Finally, the controller’s parameters kp,Ti and Td can be

computed as shown in (39).

b: TUNING NOTES
One can select r = 4 at Step 4, corresponding to the
ZN example. In this case, the quadratic equation from (37)
becomes (0.467C − S)X2

+ 0.467RX + R(0.467C + S) = 0
where X > 0 is the desired solution. The phase advance
produced by the fractional order PID controller with λ = µ
is µ90◦. Base the choice of µ from step 3 on the desired
phase advance for the selected r , keeping in mind that
µ ≥ 0.28.
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FIGURE 3. Nyquist analysis of the ZN method.

FIGURE 4. Experimental tests on the VTOL unit.

III. WORKING EXAMPLE
A. THE EXPERIMENTAL UNIT
The auto-tuners presented in SectionII will be tested on a Ver-
tical Take-Off and Landing (VTOL) Platform from Quanser.
Fig. 4a shows a snapshot of the experimental setup, while
Fig. 4b presents a block diagram of the rotating beam.

The moving arm (in Fig. 4a with red) is equipped with a
balancing weight to the left and a variable speed fan to the
right. Feeding the ventilator with a voltage between [0 10]V
leads to the movement of arm, around a fixed point that is
placed at 1/3 from its total length. The output signal is the
angular position of the beam, measured by a high resolution
encoder as the angle between a vertical line and the moving
arm. Output values span in the [-26 60]◦ interval, with the 0◦

value corresponding to the horizontal position of the beam.
The process is highly nonlinear due to its construc-

tion, as shown in Fig. 4b. Experimental tests show that

the 0◦ position is obtained by applying 6.3V to the input.
Fig. 5a shows the response of the VTOL unit to step
inputs, exhibiting its nonlinear behavior. Fig. 5b presents
the response of the experimental unit when excited with a
sine wave of amplitude 1V and critical frequency 2.54rad/s
(equivalent to 0.4Hz), with an amplitude of 6.3V. First, the
platform reaches the horizontal position, followed at three
identical sinusoidal inputs starting at t = 14s.

The VTOL platform is connected to the NIElvis real-time
data acquisition and control board fromNational Instruments.
The data processing and controller implementation is done
using LabVIEW, a graphical programming language.

The goal of the controller is to guide the moving arm at its
reference position with minimum overshoot, reduced settling
time, zero steady state position error, while also offering
robustness. Since the platform is highly nonlinear, obtaining
an accurate process model is difficult for a large operating
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FIGURE 5. The experimental unit.

area, making fractional order auto-tuners ideal for determin-
ing the controller’s parameters in the absence of a mathe-
matical model. The zero steady state position error design
specifications justifies the usage of an integrator. Hence, only
fractional order PI/PID controllers are suitable to control the
system.

Determining a mathematical model for the VTOL system
is not needed, since all the controllers are tuned using exper-
imental data based on a sinusoidal input, without using a
concrete mathematical representation of the system.

B. CONTROLLER AUTO-TUNING WITH THE SINE TEST
METHOD
The VTOL critical frequency has been experimentally identi-
fied as 2.54rad/s. The system is marginally stable at the criti-
cal frequency, the phase is -180◦, leading to the phase margin
being 0◦. A fractional order PI controller introduces a phase
between [−90λ 0]◦. Therefore, ωgc should be chosen con-
siderably smaller than the critical frequency, compromising
settling time for stability. The gain crossover frequency has
been arbitrarily chosen as ωgc = 0.1 Hz = 0.62831 rad/s,
with a phase margin that ensures the closed loop system’s
stability ϕm = 95◦.
The next step implies applying the sine signal to the process

and registering the output data. As shown in the previous
subchapter, the VTOL process needs approx. 15 seconds to
reach the 0◦ position. Hence, a step signal of amplitude 6.3V
is applied for the first 15s, followed by a sine wave with
amplitude Ai = 1V and frequency ωgc = 0.62831 rad/s.
Fig. 6a shows the normalized input and output signals.

The process’s output is far from a perfect sine signal.
Hence, the output sine wave is recreated and fed to the filter
from (17). The generated output is the phase derivative ȳ,

also shown in Fig. 6a. The environment used for this step
is Matlab/Simulink. An alternative is computing the phase
derivative directly in LabVIEW with a prior filtering per-
formed real-time on the VTOL’s output. If the latter approach
is chosen, one must ensure that the real-time denoiser doesn’t
introduce delays in the signal that is fed to the second order
filter.

The magnitude is obtained with respect to the input (Ai)
and output (Ao) amplitudes of the signals as M (jωgc) =
10.757. Furthermore, the phase ϕ(jωgc) = −15.5043◦ is
determined by multiplying the frequency with the time differ-
ence between two consecutive zero crossings of the input and
output signals, respectively. Themagnitude and phase of ȳ are
¯M (jωgc) = 4.5764 and ¯ϕ(jωgc) = −3.1418 rad , leading to

d 6 P(jω)
dω

∣∣∣
ω=ωgc

= −0.4099 rad .

The last step is to solve the system of nonlinear
equations (3)-(5) in order to obtain the parameters of a frac-
tional order PI controller described by

CFOPI (s) = kp

(
1+

ki
sλ

)
. (40)

A simple graphical approach is employed, where λ is varied
between (0 2) (based on existence conditions of fractional
order controllers [29]). The integral gain ki is computed based
on the phase margin (4) and robustness (5) specifications
for every λ. The result is shown in Fig. 6b. The value of
ki = 2.0942 is at the intersection of the plots, for λ = 0.9572.
The proportional gain kp = 0.0267 is obtained by replacing
ki and λ in the magnitude equation from (3).

Finally, the Sine Test controller is obtained as

CSine−Test (s) = 0.0267
(
1+

2.0942
s0.9572

)
. (41)
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FIGURE 6. Controller tuning using the sine test auto-tuner.

C. CONTROLLER AUTO-TUNING WITH THE FO-KC
METHOD
This subsection aims at tuning a fractional order PI controller
with the transfer function expressed in (40). Choosing the
same ωgc = 0.1Hz and ϕm = 95◦ as for the Sine Test method
is unsuitable for this auto-tuner, since the loop frequency
response should intersect the forbidden region circle in the
3rd quadrant. Hence, the phase margin is limited between
the (0 90) interval. The gain crossover frequency ωgc =
0.185 Hz = 1.1623 rad/s (less than the critical frequency)
and ϕm = 80◦ (realistic phase margin expectation based on
the phase introduced by the fractional order PI controller)
have been chosen for the FO-KC auto-tuning.

The next step is to compute the forbidden region circle
C = 5.7587, R = 5.6713 and α = 10◦. The tan-
gent of the forbidden region circle in the working point
is tanα = 0.1763.
The experimental platform is fed with a sinusoidal signal

of amplitude 1V, frequency 0.185 Hz and offset 6.3V after
the moving arm reaches 0◦. The normalized input, output
and phase derivative values are shown in Fig. 7. The phase
derivative was computed using the same strategy as for the
Sine Test auto-tuner.

The magnitude and phase are obtained as M (jωgc =
12.8413) and ϕ(jωgc) = −0.6376 rad . For the output
derivative the following values are determined: ¯M (jωgc) =

6.577, ϕ̄ = −3.1698 rad , leading to d 6 P(jω)
jω

∣∣∣
ω=ωgc

=

−0.42 rad .
The last step is to solve the minimization problem

from (28). Several approaches can be used for this, such as
for loops and graphical approaches or directly using Matlab
built-in functions such as fmincon from the SystemOptimiza-
tion Toolbox.

The obtained FO-KC controller with the FO-KCmethod is

CFO−KC (s) = 0.031
(
1+

2.6048
s0.9651

)
. (42)

Running the Sine Test auto-tuner for the chosen gain
crossover frequency and phase margin gives a very similar
controller to (41).

D. CONTROLLER AUTO-TUNING USING THE FO-ZN
AUTO-TUNER
The last method involves performing a sine test with ampli-
tude Ai = 1V (for simplicity) and the critical frequency
ωc = 2.56 rad/s. The critical gain is identified as Kc =
Ai/Ao = 0.0692, while the critical period is Tc = 2.4546.
The input sine signal and the response of the VTOL are shown
in Fig. 8. This method doesn’t need the phase derivative,
simplifying the data processing operations.

The integral and derivative time constants ratio is selected
as r = 4 in order to keep the original ZN loop response.
The study introducing the FO-ZN methodology suggests that
the fractional order should be chosen based on the desired
process response. However, sine the other two methods gave
a fractional order of integration of approx. 0.95, this value
will be used further in order to perform a fair comparison.
Hence, the fractional order of integration and differentiation
is chosen as λ = µ = 0.95.
Theworkflow of themathematical computations is decided

by the priority of the intermediate variables in (39). The fol-
lowing values are obtained: b/a = 0.4667,C = 0785, S =
0.9969,R = 3.7321,X = 3.1006, α = 0.5502, β = 0.5420,
and γ = 0.2679. The FO-ZN fractional order PID controller
is

CFO−ZN (s) = 0.0381
(
1+

1
1.2720.95

+ 0.34080.95
)
.

(43)

IV. RESULTS, DISCUSSIONS, AND COMPARISONS
A. DISCRETE-TIME IMPLEMENTATION
The controllers from (41), (42) and (43) have been approx-
imated in the discrete-time domain using the method
from [33].
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FIGURE 7. Normalized input and output signals for the FO-ZN auto-tuner.

FIGURE 8. Normalized input and output signals for the FO-ZN auto-tuner.

A fifth order of approximation is used for every controller
to determine the discrete-time recurrence formula, with a
sampling time of 0.01s. Fig. 9 proves that the fifth order
is suitable to accurately approximate the FO-ZN controller
from (43) by comparing the frequency domain response of
the fractional order controller with its approximation. As can
be seen, the fifth order discrete-time transfer function has a
similar frequency domain behaviour as the continuous-time
fractional order controller. The results are similar for the Sine
Test and FO-KC controllers.

The recurrence relations are used to compute the con-
troller’s parameters using LabVIEW and the value is fed
to the experimental platform through the NIElvis microcon-
troller. The control signal is the voltage applied to the variable
speed fan, limited in the [0 10]V interval due to the physical
construction of the platform.

B. EXPERIMENTAL VALIDATION
The discrete-time controllers have been implemented in Lab-
VIEW using their recurrence formulas, all having the same
sampling time: 0.01s and the same complexion of 5th order.
The controllers are validated based on three test scenar-
ios related to reference tracking, disturbance rejection and
robustness to system uncertainties.

FIGURE 9. Frequency domain response of the fractional order PID
controller (FO-ZN) with its discrete-time approximation.

a: REFERENCE TRACKING
Fig. 10 presents experimental test results for different oper-
ating areas. In Fig. 10a, the input steps are [−20, −15,
−20, −26]◦. The −26◦ value represents the initial state of
the VTOL system, where the moving arm lies on the base
platform. As can be seen, all three controllers provide a closed
loop system that is stable and reaches the desired set-point
with zero steady state error. For the first test [−26 −20]◦, the
FO-KC controller has a settling time of 20s, followed by the
Sine-Test controller with 30s and the FO-ZN with a settling
time of approx. 40s. However, for the other step values, the
settling time is almost similar, with a slight improvement
noticed for the FO-KC controller. Furthermore, the over-
shoot is null for all controllers. From the control signal point
of view, the values vary between [0 4.8]V for the FO-KC
and FO-ZN controllers, while the FO-ZN controller presents
some spikes when the reference step amplitude changes. It is
without doubt that the FO-KC controller is the best choice for
this operating area.

A second step test is presented in Fig. 10b, where the
set-point is [0, 15, 30, 15]◦. Again, the VTOL system is in
its initial position at the beginning of the experiment, leaving
from the −26◦ position. The FO-KC is the worst performer
in this operating area, proving unstable. For the first two
steps between [−26 0]◦, and [0 15]◦ the Sine-Test controller
obtains the best settling time. However, for a wider operating
area, the Sine-Test controller becomes unstable when the
reference values go from 15◦ to 30◦. The control signal is
similar to the previous test case scenario, with several spikes
observed on the control signal computed with the FO-ZN
controller. Hitherto, the best controller for this test case is the
FO-ZN, since it provides a stable closed loop system for all
reference values.

b: DISTURBANCE REJECTION
Another test scenario implies output disturbance rejection
performance presented in Fig. 11. The robotic arm is stabi-
lized at−10◦, between 0 and 35 seconds (best settling time is
obtained with the FO-KC controller). An output disturbance
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FIGURE 10. Experimental controller validation for step reference tracking.

of 7◦ is applied at t=35s. As can be seen, all three controllers
successfully reject the disturbance. At t=50s, the disturbance
is removed and the system returns to the reference position.
The peak amplitude is larger for the FO-KC controller (−2◦)
which surpasses the disturbance amplitude, while the other
controllers have a peak amplitude of−9◦, less that the distur-
bance signal. Similar settling times are obtained by all three
controllers. However, it can be observed that the FO-KC and
Sine-Test controllers cause larger output oscillations, while
FO-ZN provides a smoother transition.

c: ROBUSTNESS
The last experiment targets robustness assessment for system
uncertainties. Hence, the process is modified by adding a
20g weight to the moving arm on top of the fan. Another
step reference test is performed for the [−26 0]◦ operating
area, where all controllers proved stable in previous tests.
Reference step values of [−17,−10, 0]◦ are applied at times
[0, 40, 65]s. The FO-KC controller is considerably faster
between [−26 − 17]◦, followed by the Sine-Test controller
and FO-ZN. For the [−17 10]◦ interval, all three controllers
are similar, while for [−10 0]◦ the FO-KC controller is unsta-
ble. For the last interval, the controller tuned using the Sine-
Test method provides a slight improvement to the settling
time. It is clear that stability and improved settling time jus-
tifies the fact that the Sine-Test controller is the most robust.

FIGURE 11. Experimental controller validation for output disturbance
rejection.

FIGURE 12. Experimental controller validation for system uncertainties.

C. CONTROLLER COMPARISON
The three tuning methodologies are compared based on the
following criteria: closed loop system performance, tuning
difficulty and tuning effort.

Table 1 presents a summary of the results presented in pre-
vious subsection related to closed loop system performance
and control effort. The controllers receive a grade on a scale
from 0 to 3, where 0 - poor, 1 - deficient, 2 - satisfactory
and 3 - good.

For the [−26 0]◦ operating area the FO-KC controller
outperforms the other controllers in terms of settling time.
However, the FO-KC is graded with a 0 for step reference
tracking in the [0 30]◦ range because it is unstable for all step
amplitudes, while the Sine-Test controller is stable for 2 out of
3 step amplitudes. It is clear that the most reliable controller
for nonlinear systems is the one tuned using the FO-ZN
methodology. The control signal comparison is related to the
aggressiveness of the controllers, where the FO-ZN receives
a satisfactory grade due to spikes in the signal. These also
need to be saturated before feeding the control signal to
the real process. The implementation complexity is similar
between the three compared controllers since all needed a
fifth order discrete-time approximation for the same sampling
time of 0.01s.
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TABLE 1. Controller comparison based on closed loop system
performance for the VTOL system.

TABLE 2. Controller comparison based on tuning complexity.

The conclusion of the performance comparison is that the
FO-KC controller is the better choice for isolated operating
ranges, while the FO-ZN controller is ideal for wider oper-
ating areas due to its increased stability in favor of settling
time.

A different comparison is performed in Table 2 based on
tuning complexity of the three methodologies. The presence
of the specified criteria in the tuning procedure is marked
with an ’x’. Finding the critical frequency is relevant for all
three cases: in the FO-KC and Sine-Test methods, the gain
crossover frequency is chosen to be less than the critical
frequency in order to obtain a stable closed loop system,
whereas the FO-ZN controller needs the sine test at the
critical frequency. The sine test is also needed for every auto-
tuning strategy. However, the Sine-Test and FO-KC methods
needs an extra processing of the output signal, to obtain
the output derivative signal. From the previously mentioned
factors, the FO-ZN auto-tuner is an easier approach, since the
output derivative is not needed.

In addition, another comparison is performed based on
the road-map of the auto-tuning procedure. The Sine-Test
auto-tuner requires the solving of a system of nonlinear
equations, while the FO-KC auto-tuner implies minimizing
the slope difference between the loop response and the for-
bidden region circle. However, instead of performing com-
plex minimization procedures, it is sufficient to calculate the
slope difference for 1◦ steps of the angle α and pick the one
that gives the smallest difference. In comparison, the FO-ZN
methodology implies choosing a fractional order (the same
value for both integration and differentiation) and performing
simple computations using predefined formulas. The most
difficult task in the FO-ZN auto-tuning procedure is solving a
trivial second order equation. Hence, the computational effort

is moderate for FO-KC and Sine-Test strategies and easy for
the FO-ZN method.

Specialized knowledge in the field of calculus and opti-
mization strategies is needed for the first two methods,
whereas the FO-ZN is an easy and straightforward approach
for anyone that doesn’t have an engineering background.
This makes the FO-ZN auto-tuner the better approach for
industrial settings where robustness and stability are needed.
However, the FO-KC methodology is ideal for applications
with restricted operating areas where settling time is the most
important design characteristic.

Comparing the tuning effort with the overall performance,
the FO-ZN controller is definitely the better option because
it obtains good performance with minimum effort and can be
easily tuned without an extensive knowledge in the field of
mathematics or control engineering.

V. CONCLUDING REMARKS
The paper presents three novel auto-tuning methodologies
which are similar in using a single sine test for the tuning
process. The method is suitable for stable processes. A brief
mathematical background of fractional order PI/PID con-
trollers is presented with the purpose of understating the
tuning concepts. The methodologies are presented using a
highly nonlinear VTOL platform, with the purpose of keeping
a robotic arm at a given position, regardless of disturbance
and process uncertainties. The tuning procedure is illus-
trated from a control engineer’s perspective, with detailed
explanations of the workflow, focusing on real-life data and
implementation strategies. This work can be used as a gen-
eral guideline when dealing with sine-based fractional order
auto-tuners that can benefit both specialized engineers and
non-specialized practitioners alike.

In addition, this work is the first comparison between
fractional order auto-tuning strategies based on experimental
data. Performance criteria, as well as tuning effort and com-
plexity are analyzed in order to determine the best fractional
order control strategy. The general conclusion of the study
is that the FO-ZN controller is the most reliable and easy to
tune option, whereas the FO-KC controller obtains the best
performance for limited operating areas.

Future developments include, but are not limited to, testing
the auto-tuning strategies on more mechanical processes and
comparisons with other integer/non-integer methodologies.
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