
Received 17 July 2022, accepted 11 August 2022, date of publication 16 August 2022, date of current version 22 August 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3198939

Synthesis of a Transfer Function With Real Poles
From Tabulated Frequency Response Data for
Transmission-Line Impedance Modeling
TAKU NODA , (Senior Member, IEEE)
Grid Innovation Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Yokosuka, Kanagawa 240-0196, Japan

e-mail: takunoda@ieee.org

ABSTRACT Synthesis of a transfer function from tabulated frequency response data is an important topic in
engineering. Especially in transmission line (TL) modeling, the impedance of a TL must be synthesized in
the form of a transfer function of complex frequency, for instance, to be used in time-domain simulations. The
TL impedance whose frequency response is in most cases calculated by analytical formulas and prepared
in the form of tabulated data shows variation with respect to frequency due to skin effects in conductors
and the ground, and synthesis of the frequency variation theoretically requires real poles only. This paper
proposes an algorithm to synthesize a transfer function only with real poles from tabulated frequency
response data for TL impedance modeling. Since the skin effects are a phenomenon which is continuous with
respect to frequency and theoretically does not have poles at specific positions, the problem is essentially
to approximate such a frequency response by a transfer function with a finite number of poles. Considering
this point, a pole allocation method is investigated using practical TL impedance-matrix data. Once the
poles have been allocated, their residue matrices are identified by a least-squares method using the singular
value decomposition algorithm with column scaling. For validation, the method is applied to the synthesis
of impedance matrices of an overhead power TL and a submarine-cable power TL.

INDEX TERMS Frequency response, impedance, poles and zeros, skin effect, system identification, transfer
functions, transmission lines.

I. INTRODUCTION
Synthesis of a transfer function from tabulated frequency
response data is an important topic in engineering, and it has a
relatively long history of research. First, the history is briefly
reviewed here.

A fundamental study for obtaining a transfer function from
tabulated frequency response data was presented by Levy [1].
In the study, a rational function of s is used as the transfer
function and identified by a least-squares method in which
the denominator is multiplied to both sides in the formulation.
Note that the complex frequency is denoted by s throughout
the paper. Later, Sanathanan and Koerner proposed to apply
weighting values in the least-squares formulation to cancel
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out the effects of the denominator [2]. This stream of studies
are well described byWhitefield [3]. Later, it was recognized
that the sn terms in the least-squares formulation take a
wide range of values whose ratios exceed machine arithmetic
accuracy [4], especially when a wide range of frequency is
considered. This fact leads to frequency-range partitioning
methods [5], [6], [7], [8] to avoid ill-conditioning in the least-
squares formulation. Another successful method called Vec-
tor Fitting uses a partial-fraction form of s or a pole-residue
form of s as the transfer function [9], [10]. The identification
is carried out by relocating poles with introducing a scaling
factor in an iterative procedure.

In some engineering applications, it may be a priori known
that the target system to be modeled has no complex poles.
In transmission-line (TL) modeling, ranging from a TL inter-
connecting electronic circuits to a power TL, the impedance
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of a TL shows variation with respect to frequency due to skin
effects in conductors and the ground, and it is theoretically
known that the impedance has no complex poles. If this is the
case, we may want to synthesize a transfer function with real
poles only, for instance, to be used in time-domain simula-
tions. All thosemethodsmentioned in the previous paragraph,
however, cannot guarantee to give real poles only and may
give complex poles due to numerical errors. Notable early
work to identify an RL circuit thus a transfer function only
with real poles includes the following. Yen et al. proposed
a method to synthesize an RL circuit from the conductor
cross-section data of a TL [11]. Semlyen et al. proposed a
Gauss-Seidel-type iteration scheme to identify a multiphase
RL circuit from given frequency response data for three-phase
overhead TL modeling [12]. The former is not applicable to a
multiphase line, and the latter is restricted to the three-phase
case. Note that the frequency response of a TL is in most
cases calculated by analytical formulas [13] and prepared in
the form of tabulated data.

This paper proposes an algorithm to synthesize a trans-
fer function only with real poles from tabulated frequency
response data for TL impedance modeling. The method is
applicable to the general multiphase case. Since the skin
effects are a phenomenon which is continuous with respect
to frequency and theoretically does not have poles at specific
positions, the problem is essentially to approximate such
a frequency response by a transfer function with a finite
number of poles. In other words, the continuous response
is reproduced by the sum of a finite number of discrete
frequency responses. Considering this point, a pole allocation
method is investigated. Different pole allocations are gener-
ated by a geometric sequence and tested using practical TL
impedance-matrix data from [14]. As a result, it is found that
equidistant poles allocated on the logarithmic axis give rea-
sonably accurate results. Once the poles have been allocated,
their residue matrices are identified as a least-squares prob-
lem. It is solved by the singular value decomposition (SVD)
algorithm with a column-scaling technique. A primitive ver-
sion of the proposed algorithm is partially shown in [14],
and this paper presents the improved and complete version
with sufficient investigations. For validation, the method is
applied to the synthesis of impedancematrices of an overhead
power TL and a submarine-cable power TL, the same data
mentioned above, and accurate results are obtained.

II. PREPARATION
A. PROBLEM DESCRIPTION
In this paper, we denote the complex frequency by s =
σ + jω. Consider a linear system whose frequency response
is H (s). We assume that the system has real poles only. The
input-output relationship is written as

y(s) = H (s)x(s), (1)

where x(s) and y(s) are respectively the input to and the
ouput from the linear system. In electrical engineering appli-
cations, H (s) is usually an impedance or an admittance.

In a single-phase case, x(s), y(s) and H (s) are all scalar. In a
multiphase case, x(s) and y(s) are column vectors of order N ,
and H (s) is an N -by-N matrix, where N is the number of
phases. H (s) is often obtained by numerical computation
using analytical formulas, and we assume that the result is
given in the form of numerical data at K discrete frequency
points:

H1,H2, · · · ,HK (2)

They are frequency response data of the system at angular
frequency points ωk for k = 1, 2, · · · ,K . Table 1 shows an
example of tabulated frequency response data in the case of
N = 2. Our problem is to synthesize a transfer function of
the partial-fraction form

H (s) =
M∑
m=1

1
s− pm

Rm (3)

whose response closely approximates the given frequency
response data (2) at the discrete angular frequency points.
In the equation above, pm and Rm are real poles and their
residues for k = 1, 2, · · · ,K . In a multiphase case, the
dimension of Rm is the same as that of H (s).

B. TL IMPEDANCE EQUIVALENT CIRCUIT AND ITS
EQUATION
A TL basically consists of more than or equal to two conduc-
tors and insulating space and/or material(s) around them. The
currents propagating along the conductors show skin effects
depending on the frequency. The equivalent circuit of the
series impedance of a TL, when one of the conductors is
focused on with its surrounding space, can be expressed by
Fig. 1 (a) according to [15], and this Cauer ladder network
can be converted to the Foster form shown in Fig.1 (b) [16].
To describe the Foster-form equivalent circuit by immittance,
the admittance form

Y (s) =
M∑
m=1

1
rm + slm

=

M∑
m=1

1/lm
s+ rm/lm

(4)

is suitable, where rm and lm are the resistance and the induc-
tance of the mth layer of the Foster-form equivalent circuit.
Since (3) and (4) are in the same form, we can conclude the
following. To model the series impedance matrix Z of a TL,

TABLE 1. Example of tabulated frequency response data.
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FIGURE 1. Equivalent circuit of the series impedance of a TL, when one of
the conductors is focused on with its surrounding space, can be
expressed by the Cauer ladder network shown in (a), and it can be
converted to the Foster form shown in (b).

Z can be calculated at discrete frequency points for instance
by skin-effect formulas, and they are inverted to obtain their
admittance matrices in the form of frequency response data
as shown in (2). Actually, Table 1 shows the inverse of the
impedance matrix of two OC 60 mm2 wires (hard drawn cop-
per wires) horizontally placed at 10 m in height. The distance
between the two wires is 50 cm, and the ground resistivity
is 100�m. The admittance matrix data obtained are the input
for the synthesis. Then, a transfer function is synthesized in
the partial-fraction form (3). Note that the resultant transfer
function matrix reproduces the dynamics of the admittance
matrix that is the inverse of the series impedance matrix of
the given TL.

III. SYNTHESIS ALGORITHM
In the proposed algorithm, a transfer function of the form (3)
is synthesized from the frequency response data, which are
conceptually or mathematically given in the form (2) and
actually given in a tabulated form such as the one shown in
Table 1 in a certain computer file format. The algorithm first
determines the distribution of poles, and then, their residue
matrices are identified to obtain the transfer function.

A. POLE ALLOCATION
The poles of the transfer function are allocated along the
negative real axis, or the negative σ axis, on the complex
s plane. As understood from skin effect formulas [13], the
skin effects are a phenomenon which is continuous with
respect to frequency and theoretically does not have poles
at specific positions. Therefore, our problem is essentially to

approximate such a continuous frequency response by a trans-
fer function with a finite number of poles. In other words, the
continuous frequency response is reproduced by the sum of a
finite number of discrete frequency responses as shown in (3).
The TL impedance is generallymonotonically-increasing due
to the jω term multiplied to the inductance and also due
to the

√
jω terms appearing in skin effect expressions. This

fact suggests that an optimal pole allocation can be achieved
roughly by one of the three distributions, a distribution with
more poles at lower frequencies, that with more poles at
higher frequencies, or a equidistant distribution. Since it is
well-known that the frequency response of TL impedances
can be well captured using a logarithmic frequency axis,
we denote the base 10 logarithm of frequency f by ϕ. Con-
sider the geometric sequence

1ϕm = 1ϕ1α
m−1 (m = 1, 2, · · · ,M ) (5)

If 1ϕm is considered the distance between two neighboring
poles in logarithmic frequency, then we can generate the three
pole distributions mentioned above by changing the value of
the common ratio α. Calculating the sum of the sequence up
to the (m− 1)th term as

ϕm = ϕ1 +

m−1∑
µ=1

1ϕ1α
µ−1 (6)

gives the position of the mth pole in logarithmic frequency.
Thus, the mth pole is given by

pm = −2π10ϕm (7)

form = 1, 2, · · · ,M .Whenα, the first frequency point f1 and
the last frequency point fK are given, we obtain

1ϕ1 = (ϕK − ϕ1)
1− α

1− αM−1
(8)

ϕ1 = log10 f1, ϕK = log10 fK (9)

If α is smaller than one, (7) gives more poles at higher
frequencies. If α is larger than one, (7) gives more poles at
lower frequencies. And, if α = 1, then we get equidistant pole
allocation by (7) on the logarithmic scale. We will discuss
an optimal value of α using numerical results obtained by
practical TL impedance-matrix data in Section IV.

B. IDENTIFICATION OF RESIDUE MATRICES
In the previous section, poles have been allocated. Therefore,
the next task is to identify their residue matrices. The residue
matrices are identified so that the response of the transfer
function (3) reproduces the given frequency response (2) as
closely as possible. This leads to

M∑
m=1

1
jωk − pm

Rm ' Hk (10)

at the discrete frequency points k = 1, 2, · · · ,K .
For various kinds of simulations, a perfect reproduction of

dc response is desirable. Let us assume that the dc resistance
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matrix Rdc of a TL is given. The dc response of the left-hand
side of (10) must agree with G0 that is the inverse of Rdc.

M∑
m=1

(
−

1
pm
Rm

)
= G0 (11)

Both Rdc and G0 are diagonal matrices. The diagonal entries
of Rdc are dc resistance values of the conductors, and their
reciprocals are the diagonal entries of G0. Therefore, the
entries of G0 are considered known values, and the equation
above can be rearranged as

RM =
M−1∑
m=1

(
−
pM
pm

Rm

)
− pMG0 (12)

Substituting this equation into (10) gives
M−1∑
m=1

(
1

jωk − pm
−
pM
pm

1
jωk − pM

)
Rm

' Hk +
pM

jωk − pM
G0 (13)

If the residue matrices are determined using the equation
above, the dc response is perfectly reproduced. If Rdc is not
available, we can use (10) instead.

Equations (10) and (13) are both matrix equations. Any
element of both matrix equations results in the same form

M ′∑
m=1

ak,m rij,m ' bij,k (14)

where M ′ = M in the case of (10) and M ′ = M − 1 in the
case of (13). The (i, j) element of Rm is denoted by rij,m. In the
case of (10), the coefficients ak,m and bij,k are given by

ak,m =
1

jωk − pm
, bij,k = hij,k (15)

In the case of (13),

ak,m =
1

jωk − pm
−
pM
pm

1
jωk − pM

(16)

bij,k = hij,k +
pM

jωk − pM
g0,ij (17)

In the equations above, hij,k is the (i, j) element ofHk , and g0,ij
is the (i, j) element of G0. For each of the matrix elements,
tabulating all frequency points for k = 1, 2, · · · ,K gives the
overdetermined linear equations of the form

Ax ' b (18)

where x is a column vector of order M ′ containing rij,m for
m = 1, 2, · · · ,M ′ as unknowns. Note that x is a real vector,
since Rm is real. A is an K -by-M ′ matrix containing the coef-
ficients am,k , and b is a column vector of order K containing
the coefficients bij,k . Since A and b are complex-valued, they
can be decomposed into their real and imaginary components.
This leads to the following real-valued overdetermined linear
equations. [

Re{A}
Im{A}

]
x '

[
Re{b}
Im{b}

]
(19)

Solving the equation above for each matrix element gives the
residue matrices Rm for m = 1, 2, · · · ,M ′. In the case where
Rdc is available and (13) is used, RM is obtained by (12).
For accurate and robust solution, the following numerical

techniques are utilized. To solve (19) accurately, its condition
number should be improved [17]. For this purpose, column
scaling [18], [19] which balances the Euclidean norms of
the matrix columns to one is applied. Finally, we want to
avoid the situation where the solution algorithm such as the
QR algorithm fails due to a very small pivot value. To cope
with this situation, the SVD procedure proposed in [20] is
used and briefly reviewed here. If the left-hand-side matrix
of (19) is denoted by A′, its SVD is expressed by A′ = USV T ,
where U and V are 2K -by-M ′ and M ′-by-M ′ orthogonal
matrices respectively. S is a diagonal matrix whose diagonal
entries s1, s2, · · · , sM ′ are real and positive and called the
singular values of A′. The singular values can be sorted such
that s1 ≥ s2 ≥ · · · ≥ sM ′ by permuting the elements of U
and V . If the right-hand-side vector of (19) is denoted by b′

and if we define ξ = V T x and β = UT b′, (19) can be brought
to

Sξ ' β (20)

Since the singular values can be viewed as the contributions of
the equations to the solution, the elements of very small ones
compared to the largest one s1 can be replaced with zeros.
As a result, the first M ′′ elements are retained.

ξ̂ =
[
β1
s1

β2
s2
· · ·

βM ′′
sM ′′

0 · · · 0
]

(21)

In this way, we can avoid divisions by extremely small num-
bers and ensure the computational stability of the solution
process. The final solution is given by

x = V ξ̂ (22)

The small singular values whose elements are replaced by
zeros can be determined by comparing their values to a
user-defined tolerance considering the machine epsilon of
the computer used. In the comparison with the tolerance, the
singular values should be normalized so that s1 = 1.

C. MODEL ORDER DETERMINATION
The number of poles M is the order of the transfer function
to be synthesized in the partial fraction form (3). An optimal
order of the transfer function can be searched for by repeating
the synthesis procedures mentioned above with changingM ,
and the optimality may be assessed by the following error
index.

δ = max(δR, δL) (23)

δR = max
i,j,k

∣∣∣ log Re {zij(jωk )}− log Re
{
zij,k

} ∣∣∣ (24)

δL = max
i,j,k

∣∣∣ log Im
{
zij(jωk )

}
ωk

− log
Im
{
zij,k

}
ωk

∣∣∣ (25)

where zij(jωk ) and zij,k are the ij element of the inverse of
H (jωk ) and that of Hk respectively. Since H (jωk ) and Hk are
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admittance matrices, zij(jωk ) and zij,k are impedance matrix
elements. For the calculation of the index above, the inverse
of the synthesized transfer function matrix H (jωk ) and that
of the given frequency response data Hk are calculated at fre-
quency points k = 1, 2, · · · ,K to obtain the values of zij(jωk )
and zij,k . Then, (23)–(25) are evaluated. For TLmodeling, the
resistance and the inductance are important for reproducing
the loss and the propagation velocity respectively. Thus, the
reproduction of the resistance is evaluated by (24), and that
of the inductance is evaluated by (25). Finally, the larger one
is selected as the overall error index as in (23).

Starting from a designated value of M , the synthesis algo-
rithm described in Sections III-A and III-B is performed, and
the error index δ is evaluated by (23)–(25). If δ is larger than
the error tolerance ε specified by the user, M is increased by
one and the synthesis algorithm is repeated. This process is
iterated until δ becomes smaller than or equal to ε. When
this condition is satisfied, the synthesized transfer function
is considered the final model.

IV. NUMERICAL EXAMPLES
A. DOUBLE-CIRCUIT OVERHEAD POWER TRANSMISSION
LINE
Fig. 2 shows the conductor arrangement of a 500-kV double-
circuit overhead power TL. This is actually an existing TL in
Japan. Considering the skin effects in the conductors and the
ground [13], the impedance matrix of the TL has been cal-
culated at 161 frequency points from 0.1 Hz to 10 MHz. The
frequency points are sampled equidistantly on the logarithmic
scale including the boundaries. Since there are 6 power wire
bundles (three phases of two circuits) and 2 ground wires,
the size of the original impedance matrix is 8 by 8. The
voltages and currents of the ground wires are not of interest
in most power system simulations, and the rows and columns
corresponding to the ground wires are thus eliminated assum-
ing zero voltages taking their existence into account. The
resultant matrix size is 6 by 6. The dc resistance of each power
wire bundle is calculated to be 17.55 m�/km, and it is taken
into account in the residue matrix identification. The space
inductance is subtracted from the impedance matrix.

To investigate an optimal value of the common ratio α for
pole allocation, both the values of α and the model order M
are varied, and the pole allocation procedure described in
Section III-A and the residue matrix identification procedure
described in Section III-B are carried out for each combina-
tion of value sets. The value of α was varied from 0.95 to
1.05 at an interval of 0.001, while that of M was varied
from 10 to 50. It had been tested in advance that the values
of α outside the range above did not give accurate results.
Fig. 3 (a) shows the error index δ given in (23) for all
combinations of the value sets. When one of the arguments
of the logarithmic functions in (24) and (25) is negative at
any frequency point in any matrix element, δ is forced to one.
The case where the synthesized transfer function achieves the
smallest value of δ or the smallest error is at α = 0.978 and

FIGURE 2. Conductor arrangement of a 500-kV double-circuit overhead
power transmission line.

FIGURE 3. Variation of the error index δ given in (23) with respect to the
common ratio α used for pole allocation and the model order M for the
double-circuit overhead power TL example: (a) shows the entire view.
(b) shows the equidistant pole allocation case (α = 1) and the case where
the synthesized transfer function achieves the smallest value of δ
(α = 0.978). When one of the arguments of the logarithmic functions
in (24) and (25) is negative at any frequency point in any matrix element,
δ is forced to one.

M = 49 as shown in Fig. 3 (b). It should be noted however
that the equidistant pole allocation case or α = 1 gives a
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slightly less accurate but accurate enough especially in the
range δ < 10−1 which is practicable for simulations.

With the equidistant pole allocation (α = 1), the pro-
posed synthesis algorithm including the order determination
procedure described in Section III-C has been performed.
The error tolerance ε is set to 0.05, and an optimal order
is searched for within the range from 10 to 50. Equations
whose singular values are smaller than 1,000 times of the
machine epsilon of the computer used are eliminated in the
SVD solution. Fig.4 shows the synthesis result, where
the frequency responses of the synthesized model and the
given data are compared in resistance and inductance. Since
the synthesized transfer function is quite accurate, dashed
lines cannot be distinguished. The error index δ becomes
smaller than the error tolerance ε atM = 35, the model order
has been determined to be 35. Since the synthesized model
with α = 1 is quite accurate, the equidistant pole allocation
may be recommended.

B. SUBMARINE-CABLE POWER TRANSMISSION LINE
The cross section of a 250-kV dc submarine power cable
is shown in Fig. 5. It is a 600-mm2 oil-filled (OF) cable
used for an hvdc submarine power TL. Since hvdc submarine
cables are installed with a large distance between cables,
mutual couplings among different cables are negligible. The
cable is laid on a seabed whose resistivity is 100 �m, and
the resistivity of the sea water is 0.21 �m. Taking the skin
effects in the cable conductors, the sea water and the seabed
into account [13], the impedance matrix of the TL has been
calculated at 161 frequency points from 0.1 Hz to 10 MHz.
The frequency points are sampled equidistantly on the log-
arithmic scale including the boundaries. The calculation of
the ground return impedance is due to Sunde’s formula [21].
There are 3 conductor layers in the cable, and the size of
the original impedance matrix is thus 3 by 3. Since the steel
armor is soaked in the sea water, its voltage can be considered
zero. With this condition, the impedance matrix is reduced
to 2 by 2. The dc resistances of the core conductor and the lead
sheath are 28.67 m�/km and 29.37 m�/km respectively, and
they are taken into account in the residue matrix identifica-
tion. The space inductance is subtracted from the impedance
matrix.

For the investigation of an optimal value of the com-
mon ratio α for pole allocation, the values of α and
M are varied, and the synthesis algorithm described in
Sections III-A and III-B are carried out for each combination
of value sets. The values of α was varied from 0.95 to 1.05 at
an interval of 0.001, whileM was varied from 20 to 60. It had
been also tested in advance that the values of α outside the
range above did not give accurate results. Fig. 6 (a) shows
the error index δ for all combinations of the value sets. In the
same way as the previous example, δ is forced to one, when
one of the arguments of the logarithmic functions in (24)
and (25) is negative at any frequency point in any matrix

FIGURE 4. Synthesis result of the double-circuit overhead power TL
example: (a) resistance of the diagonal elements, (b) resistance of the
off-diagonal elements, (c) inductance of the diagonal elements, and
(d) inductance of the off-diagonal elements. The two digit numbers
shown in the figures designate matrix indices.
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FIGURE 5. Cross section of a 250-kV dc submarine power cable.

FIGURE 6. Variation of the error index δ given in (23) with respect to the
common ratio α used for pole allocation and the model order M for the
submarine-cable power TL example: (a) shows the entire view. (b) shows
the equidistant pole allocation case (α = 1) and the case where the
synthesized transfer function achieves the smallest value of δ (α = 0.986).
When one of the arguments of the logarithmic functions in (24) and (25) is
negative at any frequency point in any matrix element, δ is forced to one.

element. The case where the synthesized transfer function
achieves the smallest value of δ thus the smallest error is

FIGURE 7. Synthesis result of the submarine-cable power TL example:
(a) resistance of the diagonal elements, (b) resistance of the off-diagonal
elements, (c) inductance of the diagonal elements, and (d) inductance of
the off-diagonal elements. The two digit numbers shown in the figures
designate matrix indices.

at α = 0.986 and M = 51. Fig. 6 (b) compares the
result of this case with that of the equidistant pole allocation
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case (α = 1). Both the present and previous examples
indicate that a valuewhich is slightly smaller than 1 or slightly
more poles at high frequencies may give the smallest value
of the error index δ. This point may worthwhile to investigate
deeper as a further advanced research topic. At the same time,
however, the equidistant pole allocation case or α = 1 stably
achieves the practicable range δ < 10−1 where M > 40 as
shown in Fig. 6 (b).

With the equidistant pole allocation (α = 1), the proposed
synthesis algorithm including the order determination pro-
cedure has been performed. The settings of the error toler-
ance ε and the SVD solution are the same as the previous
example. The search range for an optimal order is set to
20 to 60. The synthesis result is shown in Fig. 7, where
the frequency responses of the synthesized model and the
given data are compared in resistance and inductance. Again,
dashed lines cannot be distinguished, since the synthesized
transfer function is quite accurate. The model order has been
determined to be 41. As observed, the synthesized model is
quite accurate, and we may conclude from the two examples
that the equidistant pole allocation on the logarithmic scale
(α = 1) is recommended for practical simulations.

V. CONCLUSION
This paper has proposed an algorithm to synthesize a trans-
fer function only with real poles from tabulated frequency
response data for transmission-line (TL) impedance model-
ing. The pole allocation method has been investigated using
the impedance-matrix data of a 500-kV double-circuit over-
head power TL and a 250-kV dc submarine power cable.
The former is a typical ac transmission line, and the latter
is used for an hvdc submarine transmission. As a result,
it has been found from practical examples that equidistant
poles allocated on the logarithmic axis give accurate results.
A least-squares method for identifying the residue matrices
of the poles has been proposed. The singular value decom-
position (SVD) algorithm with a column-scaling technique is
used for obtaining an accurate result with enhanced numer-
ical stability. An order determination method has also been
proposed to find an optimal model order. For validation, the
synthesis algorithm that combines the aforementioned meth-
ods is applied for synthesizing the impedance matrices of
the double-circuit overhead power TL and the dc submarine
power cable, and accurate results are obtained. As the next
task, we plan to use the proposed method for time-domain
simulations with the Bergeron Cell line model [14]. This
work may realize variable-length modeling of TLs, which
can be considered a new trend different from recent devel-
opments [22], [23].

APPENDIX A
EFFECT OF ERRORS
As mentioned in the main text, the tabulated frequency
response data of a TL impedance are in most cases obtained
by numerical computation using analytical formulas. In some
cases, however, such data are obtained by measurement, and

the data may involve measurement errors. To investigate such
cases, the impedance matrix of the 500-kV double-circuit
overhead power TL used in Section IV-A is calculated at
41 frequency points from 0.1 Hz to 10 MHz, in other words,
5 points per decade, and errors are superimposed on the
response to simulate measurement. The errors are generated
by normally-distributed random numbers and superimposed
independently on both the resistance and the inductance part.
The standard deviation used in the random number generation
is set to the half of the given error constant εm, and the error
is bounded by εm. In order to well observe the effects of
the errors, an optimal order is searched for within the range
from 10 to 100, and the error tolerance ε is relaxed to 0.1.
Transfer function synthesis is performed by the proposed
algorithm with varying the error constant εm from 0 % to 5 %
by 1 %. The result is shown in Table 2. Note that the result
changes each time the program is executed due to the random
number generation, and a typical result is shown in Table 2
by repeating the synthesis several times. As the superimposed
errors become larger, the determinedmodel orderM becomes
larger at the beginning but saturated to a certain value, 83,
above εm = 2 %. It seems that the characteristics of the
superimposed errors are reproduced by the model in that
region. From this result, we can draw an interesting con-
clusion. When the proposed synthesis algorithm is applied
to measured data, they should be smoothed out for instance
by applying a local polynomial approximation so that the
identified transfer function will not reproduce the error char-
acteristics.

TABLE 2. Effect of superimposed errors on model order.
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