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ABSTRACT Chest X-ray is one of the most common radiological examinations for screening thoracic
diseases. Despite the existing methods based on convolution neural network that have achieved remarkable
progress in thoracic disease classification from chest X-ray images, the scale variation of the pathological
abnormalities in different thoracic diseases is still challenging in chest X-ray image classification. Based on
the above problems, this paper proposes a residual network model based on a pyramidal convolution module
and shuffle attention module (PCSANet). Specifically, the pyramid convolution is used to extract more
discriminative features of pathological abnormality compared with the standard 3 x 3 convolution; the shuffle
attention enables the PCSANet model to focus on more pathological abnormality features. The extensive
experiment on the ChestX-rayl4 and COVIDx datasets demonstrate that the PCSANet model achieves
superior performance compared with the other state-of-the-art methods. The ablation study further proves
that pyramidal convolution and shuffle attention can effectively improve thoracic disease classification

performance. The code is published in https://github.com/Warrior996/PCSANet.

INDEX TERMS Chest X-ray, pyramidal convolution, shuffle attention, thoracic disease classification.

I. INTRODUCTION

Chest X-ray(CXR) is an economical and affordable medical
imaging technology, which is mostly used for early screening
of thorax, lung tissue, heart, and other diseases, such as
pneumonia, heart failure, lung cancer, and so on. More than
1 million adults are hospitalized each year for pneumonia,
and approximately 50,000 patients died each year from this
disease only in the United States [1]. Typically, most chest
X-ray images primarily rely on manual observation by a pro-
fessional radiologist. Unfortunately, a radiologist with profes-
sional clinical training can make mistakes due to the complex
pathological abnormalities and subtle structural changes of
various thoracic diseases. Approximately 20-50% of lung
nodules are reported to be missed or misdiagnosed [2]. Even
excellent radiologists will have 3-6% of serious misdiagno-
sis [3]. Therefore, the precise classification and localization
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of chest X-ray images have great significance to assist the
clinical diagnosis of thoracic diseases.

The previous works made significant progress on the chest
X-ray images classification. For example, wang et al. [4]
evaluated the classification effects of four classical CNN
models, AlexNet [5], GoogleNet [6], VGGNet-16 [7], and
ResNet-50 [8] on the chest X-ray images while publishing
the ChestX-ray14 dataset. The CheXNet model proposed by
Rajpurkar et al. [9] achieved the accurate classification of
thoracic diseases by modifying the fully connected layer of
DenseNet-121 [10] and loss function, especially the accu-
racy of the diagnosis of pneumonia reaches 88.87%, which
exceeds the current human diagnosis level. However, the
chest X-ray images classification is still a challenge due to the
complexity of disease pathological abnormalities. On the one
hand, there is an obvious scale variation of the pathological
abnormalities in various thoracic diseases. The example is
shown in Fig.1, “pneumonia” and ‘“‘cardiomegaly” cover
almost the half of left lung and the whole heart, but ‘“‘nodule”
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FIGURE 1. Four chest radiographs with different diseases from the
ChestX-ray14 dataset. Pathological findings and pathological
abnormalities are highlighted by blue text and green bounding boxes.

and “mass” are much smaller than it. Consequently, the
standard 3 x 3 convolution may not adapt to the scale variation
of discriminative features when facing pathological abnor-
malities of various thoracic diseases. On the other hand, it is
difficult for convolution neural network to learn discrimina-
tive representations of the complicated pathology abnormal-
ities in thoracic diseases since there are similar organs and
tissues in each chest X-ray image. Thus, chest X-ray image
classification is a challenging task due to the significant scale
variance of the pathological abnormalities in various thoracic
diseases and the similarities of discriminative features in each
chest X-ray image.

In recent years, deep learning have made significant
advances in many areas of medical image analysis, such
as lesion region segmentation or detection [11], [12], [13],
[14], [15], disease classification [4], [16], [17], [18], [19],
[20], image alignment [21], [22], [23]. The previous works
were used for pathological abnormality detection and disease
classification by high-resolution feature maps and standard
convolution neural network. For example, Huang et al. [24]
proposed a high-resolution network (HRNet) to extract
abnormal abnormality features from four high-resolution fea-
ture maps. Guan and Huang [25] proposed a category-wise
residual attention learning (CRAL) framework, in which the
feature embedding module uses convolutional neural network
(CNN) to learn high-level features. In this paper, we propose
a residual network model based on pyramidal convolution
and shuffle attention for a multi-label chest X-ray image
classification. The example of the PCSANet model for the
diagnosis of thoracic disease is illustrated in Fig.2. However,
the high-resolution feature maps and standard convolution
neural network only learn single-scale features of patholog-
ical abnormality. Therefore, the PCSANet model does not
follow the standard 3x3 convolution, but employs pyramid
convolution to extract discriminative features of pathological
abnormality from chest X-ray images. In addition, the lat-
est shuffle attention mechanism is also introduced to focus
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FIGURE 2. Example of the PCSANet model for thoracic disease diagnosis.
The input is a chest X-ray image and the output is prediction scores and a
heatmap of the pathological abnormality.

on more pathological abnormality features. The numerous
experiments demonstrate that the model effectively improves
the classification performance of thoracic diseases from chest
X-ray images, with the AUC can reach 82.5% on the Chest
X-ray14 dataset. The main contributions of this paper are as
follows:

(1) This paper proposes a residual network model based
on pyramidal convolution for disease feature extraction,
in which pyramidal convolution can extract multi-scale dis-
criminative features of pathological abnormality compared
with the standard 3 x3 convolution.

(2) The shuffle attention is introduced into the PCSANet
model to focus on more pathological abnormality features.

The structure of this paper is as follows: section II mainly
introduces the related work of chest X-ray image classi-
fication and attention mechanisms in the field of medical
imaging. Section III describes the proposed PCSANet model.
Section IV shows the dataset and experiments. Section V
summarizes the whole work.

Il. RELATED WORK

A. THORACIC DISEASE CLASSIFICATION ON THE CHEST
X-Ray IMAGE

In recent years, the research on the computer-aided diagno-
sis of thoracic diseases has attracted much attention. With
the release of the ChestX-rayl4 dataset, the method based
on deep learning for thoracic diseases classification has
become a research hotspot, and achieved excellent classifi-
cation performance. Kumar et al. [26] proposed an enhanced
cascade network for thoracic disease classification by study-
ing the most suitable loss function. Guan et al. [16] proposed
a two-branch architecture ConsultNet to learn discrimina-
tive features by extracting critical disease-specific features
and enhancing the potential semantic dependencies in the
feature space. Chen et al. [27] introduced a graph convo-
lution network (GCN) into the classification of thoracic
diseases to explore the relevant information of pathology.
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Rehman et al. [28] proposed a self-activated CNN approach
for the detection of multiple thoracic diseases, including
COVID-19. Due to the expensive manual annotation of
chest X-ray images, Li et al. [29] proposed a unified
approach for thoracic disease identification and localization
using class information and limited positional annotation.
Rozenberg et al. [30] inspired by [29], proposed a method for
thoracic disease localization with limited annotation based
on a well-posed loss function and an architecture for patch
non-independence and shift invariance. It is worth noting
that [30] uses much cheaper image annotations instead of
very few bounding box annotations. Compared with previous
works, the PCSANet model incorporates a pyramidal con-
volution module and a shuffle attention module to achieve
superior performance.

B. ATTENTION MECHANISM IN CHEST X-ray IMAGE
ANALYSIS

Attention mechanisms have been successfully explored in the
field of natural language processing and computer vision.
The multi-label chest X-ray image classification task requires
learning more discriminative features of pathological abnor-
mality to distinguish various thoracic diseases. Ma et al. [31]
proposed a multi-attention convolution neural network using
a multi-attention mechanism and fusion of global and local
information for thoracic disease classification and local-
ization. Yan et al. [32] proposed a weakly supervised deep
learning framework equipped with the SE-blocks, multi-
map transfer, and max-min pooling for classifying thoracic
diseases as well as localizing suspicious lesion regions.
Wang et al. [17] proposed a triple attention learning model
for thoracic disease classification, which integrates three
attention modules of channel level, element level, and scale
level into a unified framework. Ouyang et al. [33] proposed
an attention-driven weakly supervised algorithm for the prob-
lem of abnormality localization, which incorporates a hierar-
chical attention mining framework that unifies activation- and
gradient-based visual attention in a holistic manner. Different
from the previous works, this paper introduces a shuffle atten-
tion mechanism that focuses on more discriminative features
of pathological abnormality to improve the classification per-
formance of thoracic diseases from chest X-ray images.

lIl. PYRAMIDAL CONVOLUTIONAL SHUFFLE ATTENTION
RESIDUAL NETWORK MODEL

The overview of the proposed PCSANet model is illustrated
in Fig.3, which consists of a backbone network for feature
extraction and the shuffle attention module. The backbone
network learns the multi-scale discriminative features of
pathological abnormality through a residual network model
with pyramidal convolution. Then, the discriminative features
are entered into the shuffle attention module to increase repre-
sentation power: focusing on more discriminative features of
pathological abnormality. The partial layers of the proposed
PCSANet model are illustrated in Table.1, where output
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TABLE 1. Partial layers of the proposed PCSANet model.

Layer Output shape | Kernel size | Stride | Padding
PyConvBlock (256, 56, 56) / / /
Conv2d (64,112, 112) (1,1 (1,1 /
BatchNorm2d (64,112, 112) / / /
ReLU (64,112, 112) / / /
PyConv4 (64, 56, 56) / / /
Conv2d (16, 56, 56) (3,3) 2,2 1,1
Conv2d (16, 56, 56) (5,5) 2,2) | (2,2
Conv2d (16, 56, 56) 7,7 2,2)| 3,3
Conv2d (16, 56, 56) 9,9 2,2)| 4,4
BatchNorm2d (64, 56, 56) / / /
Conv2d (256, 56, 56) (1, 1) 1, 1) /
BatchNorm2d (256, 56, 56) / / /
SAlayer (256, 56, 56) / / /
AdaptiveAvgPool2d 2, 1,1 / / /
Sigmoid 2,1,1) / / /
GroupNorm (2, 56, 56) / / /
Sequential (256, 56, 56) / / /
MaxPool2d (64, 56, 56) (3,3) 2,2)| (1,1
Conv2d (256, 56, 56) (1,1 (1,1 /
BatchNorm2d (256, 56, 56) / / /

shape, kernel size, stride, and padding show how the features
information are collected and passed to the next block.

A. BACKBONE NETWORK

The PCSANet model adopts the ResNet50 as the backbone
network to extract the discriminative feature mapping F €
RE*WxH of the input image and outputs corresponding cate-
gory information of the image. ResNet consists of five resid-
ual blocks, an average pooling layer, and a fully connected
layer. The output vector of the fully connected layer passes
through a nonlinear activation layer the sigmoid layer:

ple| ) =1/(1+4exp(—pglc| D)) (1

where I denote the input image. p(c | I) indicates the prob-
ability score of I belongs to the category ¢ € {1, 2,..., C}.
The global branching parameters W are optimized by mini-
mizing the binary cross entropy loss function(BCE):

1 C
L(W) = - Zlc log(p(c | ) + (1 —Ic) log(1 — p(c | 1))
c=1

(@)

where /. denotes the true label of category ¢ and C denotes
the total number of disease categories.

B. PYRAMIDAL CONVOLUTION MODULE
The bounding box of lesion areas in the ChestX-ray 14 dataset
provided by the National Institutes of Health Clinical Center
(NIHCC) shows that the lesion areas of thoracic diseases
such as Atelectasis, Infiltration, and Pneumonia are larger,
while the lesion areas of thoracic diseases such as Mass and
Nodule are smaller. The pyramidal convolution can extract
the multi-scale discriminative features to improve classifica-
tion performance. The structure of pyramidal convolution is
shown in Fig.4.

The pyramidal convolution contains n convolution kernels
of different scales, which have different spatial resolutions

85573



IEEE Access

K. Chen et al.:

Thorax Disease Classification Based on Pyramidal Convolution Shuffle Attention Neural Network

! Level N %,
" PyConv o

————— -

Input

- — == -

|

: Xii — X't S Aggregate
:' X Spilt \ X' X'
i X2 — X'i2

: Xe X'e

\\ Shuffle Attention Module

Y N
|l Classification :
| 1
! Pool !
: : FC || BCE |,
ng 1
1 1
Features \ !
_____________ - /7
_____________ -
Classification :
- Pool :
b e %1l Fc | BCE |
— : e -
1 l ! ]
1 o e I _7
1
1
|

FIGURE 3. Overview of the PCSANet model. The PCSANet model consists of a Backbone Network and a Shuffle Attention module. First, we feed a input
image into the Backbone Network and obtain the multi-scale discriminative features. Then we introduce shuffle attention to focus on more pathological
abnormality features. At last, both of them are combined to classify the input image. Note that the”Relu”, “Pooling”, “FC", and “BCE” represent the relu
layer, average pooling layer, fully connected layer, and binary cross entropy loss function respectively.

w

input feature map

pyramidal convolution kernel

output feature map

FIGURE 4. Structure of the pyramidal convolution module. Pyramidal
convolution kernels increase in size and decrease in depth from bottom
to top.

and depths to capture more detailed feature information with-
out increasing the computational cost. The convolution ker-
nels of different scales lead to different receptive fields in
each layer, which can extract multi-scale features at different
levels, both 1x 1 and 3 x3 sized convolution kernels can learn
detailed information, both 5x5 and 7x7 sized convolution
kernels with larger receptive fields can learn semantic infor-
mation. In addition, the pyramidal convolution can perceive
the spatial feature relationships at different levels, which also
makes the convolution layer have the ability to retain detailed
features. Meanwhile, it also effectively alleviates the problem
of local information loss due to down-sampling. The feature
mapping is grouped and convolved by different convolution
branches. At last, the features of different branches are cas-
caded and stitched to form a fused feature. In this paper, the
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FIGURE 5. Structure of the shuffle attention module.

residual bottleneck block based on the pyramidal convolution
module is used to replace the residual block of ResNet, and
the 3x3 convolution kernel in the standard residual block is
replaced with the pyramidal convolution kernel of different
kernel levels (9x9, 7x7, 5x5, 3x3), where the depth of the
convolution kernels varies at each level.

C. SHUFFLE ATTENTION MODULE

There are two broad types of attention mechanisms: spa-
tial attention and channel attention, which are used to
capture the pixel-level pairwise relationships and chan-
nel dependence. Different from previous attention mecha-
nisms, shuffle attention employs shuffle units to efficiently
combine spatial attention and channel attention to obtain
better performance without increasing the computational
cost.
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The structure of the shuffle attention module is shown
in Fig.5, the entire attention mechanism consists of
four parts:

(1) Feature grouping: given an input feature mapping X €
RE*WxH "where C, W, and H represent the channel, width,
and height of the feature map, respectively. First, the feature
map X is splited into G groups X = [X1,---,Xg],X; €
R(C/GOXWxH Then, each group is divided into two branches
along the direction of the channel X;1, Xj» € RUC/G)/DxWxH
One branch utilizes interrelationships between channels to
generate a channel attention map, while the other branch
utilizes the spatial relationship between a feature to generate
a spatial attention map.

(2) Channel attention: First, the channel statistics is
obtained according to the avgpool function. Then, the feature
representation is enhanced by using the fuse linear function.
At last, the global information is embedded by multiply-
ing with the original feature values after being activated by
the sigmoid function to obtain the category representation
containing the channel attention weights X;1” to enhance the
features. The specific calculation formula is as follows:

X/, = o (fu(s)) - Xi = 0 Wis1 + b1) - Xal (3

where f, denotes the linear function, o denotes the sigmoid
activation function, s denotes the average pooled feature, and
the two parameters Wi, by € R(C/G/2x1x1 cap be obtained
by network training.

(3) Spatial attention: Spatial attention can be regarded as
a supplement to channel attention. First, spatial statistics are
obtained according to the groupnorm normalization function.
Then, the feature representation is enhanced by using the fuse
linear function. At last, the global information is embedded
by multiplying with the original feature value after being
activated by the sigmoid function to obtain the one containing
spatial attention weights X/, to strengthen the importance
of features for a specific region. The specific formula is as
follows:

X, =0 (W2-GN (Xp) + b2) —Xjpp = 0 (Wasy + by) — Xpp
4)

where GN denotes the groupnorm normalization function,
so denotes the normalized feature, and the two parameters
Wy, by € R(C/O/2x1x1 can be obtained through network
training.

(4) Aggregation: Combining features X;;'X}, weighted by
channel attention and spatial attention, back to the grouped
dimension CG~! x H x W, where C is the channel dimension,
H and W are the length and width of the feature map. Merge
the grouped blocks again and return to the original dimension
C x H x W. After completing both attention learning and
recalibrating the features, the two branches are spliced and
aggregated Xp' = [Xit', Xio'] € R/ x W x H. Then all
sub-features are aggregated. In the end, the channel grouping
operation is performed.
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IV. EXPERIMENT

A. DATASET AND EVALUATION METRICS

ChestX-rayl4 is one of the early large-scale chest X-ray
datasets published by the National Institutes of Health. The
data are collected from the National Institutes of Health Clin-
ical Center’s Picture Archiving and Communication System.
Wang et al. [4] designed an automatic annotation algorithm
based on natural language processing techniques to mine key-
words from medical examination reports and automatically
annotate a sample of them. The dataset includes 112,120
X-ray frontal view images of 30,805 patients. The example
images and the corresponding labels are shown in Fig.6.
If none of the 14 types of diseases are found on an image,
it is labeled as “No Findings”. However, a “No Findings”
sample simply means that it does not contain any of the
14 types of diseases mentioned above, it is not possible to
determine whether it contains other diseases. In addition, the
ChestX-ray14 dataset is divided into a training validation set
(80%) and a test set (20%) at the patient level, in which
bounding boxes of lesion areas in 984 images for 8 types of
diseases are labeled for performance evaluation of the lesion
area localization task.

COVIDx Dataset! [34] is a new dataset for the
detection of COVID-19 with over 30,000 CXR images
from a multinational cohort of over 16,400 patients,
which contains 15884 confirmed positive COVID-19 cases,
13992 normal cases. The COVIDx dataset is collected from
eight open source chest radiography datasets: COVID-19
Image Data Collection” [35], Figurel-COVID-chestxray-
dataset,’ Actualmed-COVID-chestxray-dataset,4 COVID-19
radiography database’ [36], [37], rsna-pneumonia-detection-
challenge dataset, RICORD COVID-19 dataset’® and
bimcv-covid19 dataset’ [38]. In order to avoid overfitting,
we divide the training set into a training set(80%) and a
validation set(20%), and the test set is still the COVIDx
Dataset test set, consisting of only 400 images. Furthermore,
the COVIDx dataset is still being updated.

1) MULTI-LABEL SETTINGS

Using a C-dimensional vector L = [I1, I, ...l.], where [, €
{0, 1}. I, denotes the presence or absence of the ¢ disease,
1 indicates presence, and 0 indicates absence. C is the number
of all diseases in the dataset. If L is a zero vector, this means

1 https://www.kaggle.com/datasets/andyczhao/covidx-
cxr2?select=competition_test

2https ://github.com/ieee8023/covid-chestxray-dataset

3 https://github.com/agchung/Figure1-COVID-chestxray-dataset

4https ://github.com/agchung/Actualmed-COVID-chestxray-dataset

5 https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-
database

6https /lwww.kaggle.com/c/rsna-pneumonia-detection-challenge

7https :/Iwiki.cancerimagingarchive.net/pages/viewpage.action?
pageld=70230281

8https ://wiki.cancerimagingarchive.net/pages/viewpage.action?
pageld=89096912

9https ://bimev.cipf.es/bimcv-projects/bimecv-covid 19/
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Atelectasis Cardiomegaly Effusion

Infiltration

Pneumonia Pneumothorax Consolidation

Edema Emphysema Fibrosis

FIGURE 6. Example images and the corresponding labels in the Chest X-ray14 dataset.

that none of the above 14 types of diseases are exists in the
image.

2) EVALUATION METRICS
To evaluate the PCSANet model on the ChestX-ray14 dataset,
we have used Area Under Curve scores (AUC) and Receiver
Operating Characteristic curves (ROC). The horizontal coor-
dinate of the ROC curve is the False Positive Rate (FPR)
and the vertical coordinate is the True Positive Rate (TPR).
According to the multi-label setting, the FPR is the proportion
of samples with the true label ““0”” and predicted ““1”’, and the
TPR is the proportion of samples with the true label “1”” and
predicted ““1°°. The formula is as follows:
TP FP

——— FPR= —— 5)
TP + FN FP+ TN

We have used confusion matrix, accuracy, sensitivity, pre-
cision, specificity and Fl-score to evaluate the PCSANet
model on the Covidx dataset. The formula is as follows:

TPR =

TP 4+ TN
Accuracy = (6)
TP+ FP+ FN + TN
Sensitivi i @)
ensitivity = ———
4 TP + FN
. TP
Precision = —— ®)
TP + FP
Specificity = —— ©)
pecificity = IN 7P
2 x TP
F1 — score = (10)

2xTP+FP+FN
where TP and TN indicate the number of rightly predicted
positive and negative samples, FP and FN represent to
the number of mistakenly predicted positive and negative
samples.
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FIGURE 7. ROC curves of the PCSANet model over the 14 types of
pathologies.

B. EXPERIMENTAL SETUP

The PCSANet model was implemented on the PyTorch
framework and trained on a computer with NVIDIA TITAN
GPU for 120 epochs from scratch with a batch size of 64.
During training, we perform image preprocessing by resizing
the input images to 256 x 256, randomly rotating and horizon-
tal flipping, randomly resized center cropping to 224 x224,
and normalizing by the mean and standard deviation of the
ImageNet dataset [42]. We use ResNet-50 as the backbone
network and shuffle data only in the training stage. We opti-
mize the network using Adam [43] with a weight decay of
le-5, a betas of (0.9, 0.999), a eps of le-8, and the learning
rate starts from 0.001 and is divided by 10 after 30 epochs.
During validation and testing, we also resize the original
image to 256 x256, resize center cropping to 224 x224, and
normalize with the same as the training stage.
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TABLE 2. Comparison results of previous works on the ChestX-ray14 dataset. We compute the AUC score of each class and the average AUC scores across

the 14 types of diseases.

Method | Wang [4] | Li [29] | Baltruschat [39] | Yao [40] | Wang [41] | Huang [24] | PCSANet
Atel 0.700 0.727 0.755 0.733 0.751 0.794 0.807
Card 0.810 0.836 0.877 0.856 0.871 0.902 0.910
Effu 0.759 0.789 0.818 0.806 0.818 0.839 0.879
Infi 0.661 0.672 0.694 0.673 0.681 0.714 0.698
Mass 0.693 0.776 0.810 0.777 0.800 0.827 0.824
Nodu 0.669 0.696 0.736 0.724 0.715 0.727 0.750
Pnel 0.658 0.649 0.703 0.684 0.694 0.703 0.750
Pne2 0.799 0.808 0.819 0.805 0.825 0.848 0.850
Cons 0.703 0.720 0.742 0.711 0.742 0.773 0.802
Edem 0.805 0.806 0.842 0.806 0.835 0.834 0.888

Emph 0.833 0.888 0.875 0.842 0.843 0.911 0.890
Fibr 0.786 0.771 0.800 0.743 0.804 0.824 0.812
PT 0.684 0.737 0.742 0.724 0.746 0.752 0.768

Hern 0.872 0.693 0.916 0.775 0.902 0.916 0.915

Mean 0.745 0.755 0.795 0.761 0.788 0.812 0.825

The 14 types of pathologies are Atelectasis, Cardiomegaly, Effusion, Infiltration, Mass, Nodule,

Pneumonia, Pneumothorax, Consolidation, Edema, Emphysema, Fibrosis, Pleural Thickening,

and Hernia

C. RESULTS ANALYSIS
To prove the effectiveness of the PCSANet model on the

chest X-ray image, the PCSANet model is evaluated on both
ChestX-ray14 and COVIDx datasets.

1) RESULTS ON CHESTX-ray14 DATASET

We report the performance of the PCSANet model on the
ChestX-rayl4 dataset in the section. The AUC scores and
ROC curves of each pathology are shown in Table.2 and
Fig.7. Notably, the PCSANet model achieve a high AUC
score of 0.825. The results of comparing with previous works
are summarized in Table.2. Wang et al. [4] evaluated the clas-
sification of thoracic diseases in CNN classic models AlexNet
[5], GoogleNet [6], VGGNet-16 [7], and ResNet-50 [8],
respectively. Baltruschat et al. [39] fully considered the influ-
ence of non-image features on thoracic disease classifica-
tion and add angle, gender and other features to the model.
Yao et al. [40] achieved excellent classification results by
learning multi-scale features while generating higher resolu-
tion salient maps. Li et al. [29] proposed a method for thoracic
disease identification and localization using class information
and limited positional annotation. Wang et al. [41] proposed
a two-branch CNN architecture: the global branch and local
branch learning features from global images and the local
regions, which is guided by heatmaps produced by class acti-
vation mapping (CAM). Huang et al. [24] proposed a fused
high-resolution network (FHRNet) concatenating global and
local feature extractors with a global average pooling layer for
diagnosing chest X-ray images. Lietal The PCSANet model
has made great progress compared with previous works. The
overall performance of the PCSANET model is improved by
3.6% and 7.8% compared to [39] and [40]. Compared to the
second-best model (Huang et al. [24]), the PCSANet model
performs better in 9 types of disease classifications: “Atelec-
tasis”, “Cardiomegaly”, “Effusion”, “Nodule”, ‘“Pneu-
monia”’, “Pneumothorax”, ‘“Consolidation”, “Edema” and
“Pleural Thickening”, and it has increased by 6.3% and
6.1% in “Pneumonia” and “Edema’. For some challenging
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FIGURE 8. Confusion matrix of the PCSANet model on the COVIDx
dataset.

normal

diseases, such as “Effusion” and “Edema”, the accuracy is
dramatically improved by a margin of at least 6.0% contrast to
the second highest AUC in Table.2. The overall classification
performance is improved by learning more multi-scale dis-
criminative features of pathological abnormality. In addition,
the data clearly show that the AUC score of infiltration is
relatively low because the diagnosis of infiltration mainly
depends on the changes in lung regional texture, which is
difficult to recognize.

As can be seen from Table.2, the horizontal comparison
shows that the existing methods and our model have different
classification effects. Among them, 9 types of thoracic dis-
eases have the best AUC scores with the PCSANet model.
The vertical comparison shows that the existing methods and
the PCSANet model have different classification effects in the
14 types of thoracic diseases. The most accurately thoracic
disease is “Cardiomegaly”’, with an AUC score of 0.910, and
the least accurately identified disease is “Infiltration”, with
an AUC score of 0.698.

As shown in Fig.7, we also map the ROC curves of
the PCSANET model for each of the 14 types of tho-
racic diseases, and it is worth noting that the ROC curve
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FIGURE 9. Example of a heat map generated by Grad-cam. The first row is a bounding box provided by the National Institutes of Health
Clinical Center (NIHCC), the second-row models resnet-50, the third row is the addition of the pyramidal convolution module, and the
fourth and fifth rows are the PCSANet model with the addition of the shuffle attention module and the pyramidal convolution module,
respectively.

TABLE 3. Comparison of different methods on the COVIDx dataset(%).
For each column, the best results are highlighted in bold.

Method Accuracy | Sensitivity | Precision | Specificity | F1-score
Deep-COVID [44] | 81.33 66.00 90.41 96.50 76.30
nCOVnet [45] 87.33 82.00 91.11 96.00 86.32

DarkCovidNet [46] | 88.67 89.00 94.68 97.50 91.75
COVID-Net [34] 93.33 91.00 98.91 99.47 94.79
PCSANet 96.75 94.00 99.47 99.50 96.66

of “Infiltration” is flatter than that of “Cardiomegaly”,
which indicates that “Infiltration” is less effective than *““Car-
diomegaly” in classification performance.

2) RESULTS ON COVIDx DATASET

We compare the performance of the PCSANet model on
the COVIDx dataset with several state-of-the-art COVID-19
detection methods [34], [44], [45], [46]. As shown in Table.3,
it is obvious that the PCSANet model outperforms the
state-of-the-art methods. The PCSANet model has significant
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TABLE 4. Comparison of ablation study with the same experimental
settings. The average AUC scores are reported. For each column, the best
results are highlighted in bold.

Method | PCSANet | w/o attention | w/o pyconv | backbone
Atel 0.807 0.803 0.783 0.782
Card 0.910 0.911 0.893 0.891
Effu 0.879 0.880 0.870 0.869
Infi 0.698 0.698 0.687 0.686
Mass 0.824 0.830 0.795 0.796
Nodu 0.750 0.752 0.721 0.716
Pnel 0.750 0.750 0.724 0.735
Pne2 0.850 0.853 0.826 0.831
Cons 0.802 0.802 0.794 0.793
Edem 0.888 0.883 0.880 0.878
Emph 0.890 0.893 0.839 0.847
Fibr 0.812 0.805 0.779 0.774
PT 0.768 0.763 0.747 0.744
Hern 0.915 0.895 0.844 0.837
Mean 0.825 0.823 0.799 0.798

performance improvements on all metrics, with the accuracy
increased by 3.53%, sensitivity increased by 3.19%, precision
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TABLE 5. Classification examples of the PCSANet model. We present the top-8 predicted categories and the corresponding probability scores. The ground

truth labels are highlighted in red or blue.

)
2
£
Atelectasis 0.8886 Cardiomegaly  0.9711 Effusion 0.8966 Infiltration 0.6114 Emphysema 0.8918
Infiltration 0.3991 Effusion 0.4259 Infiltration 0.1517 Nodule 0.4292 Pneumothorax  0.8154
" Effusion 0.2667 Infiltration 0.2713 Atelectasis 0.0987 Edema 0.1522 Atelectasis 0.1361
g Consolidation 0.1135 Atelectasis 0.0419 Edema 0.0797 Consolidation ~ 0.0929 Effusion 0.0824
3 Pneumonia 0.0339 Edema 0.0287 Nodule 0.0383 Pneumonia 0.0854 Infiltration 0.0557
Nodule 0.0240 Nodule 0.0208 Consolidation  0.0333 Mass 0.0343 PT 0.0422
Pneumothorax  0.0097 PT 0.0202 Cardiomegaly  0.0324 Effusion 0.0269 Mass 0.0190
Edema 0.0092 Consolidation ~ 0.0151 Mass 0.0314 Fibrosis 0.0103 Nodule 0.0133
)
2
£
|
Infiltration 0.6114 Mass 0.9079 Nodule 0.8640 Effusion 0.8915 Effusion 0.4511
Nodule 0.4294 Nodule 0.8595 Infiltration 0.1925 Atelectasis 0.2436 Atelectasis 0.3270
] Edema 0.1522 Infiltration 0.0293 Mass 0.1579 Infiltration 0.0993 Infiltration 0.1765
§ Consolidation  0.0929 Effusion 0.0150 Effusion 0.0586 Consolidation ~ 0.0727 Cardiomegaly ~ 0.0570
2 Pneumonia 0.0854 Atelectasis 0.0124 Fibrosis 0.0357 Mass 0.0383 Consolidation ~ 0.0507
Mass 0.0343 Consolidation ~ 0.0115 PT 0.0254 Nodule 0.0292 Edema 0.0264
Effusion 0.0260 PT 0.0067 Consolidation  0.0254 Pneumothorax  0.0288 Pneumonia 0.0178
PT 0.0121 Fibrosis 0.0052 Pneumonia 0.0224 PT 0.0208 Nodule 0.0129

increased by 0.56%, specificity increased by 0.03%, and
Fl-score increased by 1.93% over the second-best model
(COVID-Net [34]).

Moreover, the confusion matrix is used to demonstrate
the performance of the PCSANet model in the COVIDx
dataset, as shown in Fig.8. The PCSANet model only mis-
classified 12 COVID-19 cases, and it can correctly pre-
dict 188 COVID-19 cases. At the same time, only 1 normal
case was misclassified as COVID-19 case. The experimental
results on the COVIDx dataset confirm that the PCSANet
model can robustly handle various complex thoracic diseases
on the chest X-ray image.

D. ABLATION STUDY

To evaluate the effectiveness of the pyramidal convolu-
tion module and shuffle attention module, ablation studies
are conducted on the ChestX-rayl4 dataset. The PCSANet
model uses ResNet-50 as the backbone network and com-
bines the pyramidal convolution module and shuffle atten-
tion module. We remove the pyramidal convolution module
and the shuffle attention module from the PCSANet model
in turn. The ‘““backbone” indicates the backbone network
ResNet-50, and the PCSANet model indicates the ‘“‘com-
plete” model, “w/o pyconv”’ means that only the shuffle
attention module is added to the backbone network, and
“w/o attention” means that only the pyramidal convolu-
tion module is added in the backbone network. The aver-
age AUC scores are shown in Table.4. The corresponding
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feature heat map is shown in Fig.9. It is obvious that the
AUC scores of the PCSANet model and “w/o attention”
are very similar, and “w/o attention” has a slight advantage
over the PCSANet model in 6 types of thoracic diseases:
“Cardiomegaly”, “Effusion”, “Mass”, “Nodule”, ‘“Pneu-
mothorax”, “Emphysema”. We think that the shuffle atten-
tion not only focuses on important discriminative features of
pathological abnormality but also focuses on some useless
features.

E. VISUALIZATION

The section demonstrates the feature heat map and the clas-
sification results are shown in Fig.9 and Table.5. The fea-
ture heat map is generated in two steps: first, the absolute
value of the feature value at each location is obtained from
a specific layer (the conv_5 layer of ResNet-50), and then
the maximum value along the feature channel is calculated.
It can be observed from Fig.9 that local regions of the image
are activated. This indicates that the PCSANet model can
learn to focus on the pathological abnormality and thus be
able to identify the disease accurately. There are the first
8 probability scores for each sample in Table.5. The real
labels are highlighted in red or blue. It can be seen that there
is a big gap between the scores of real thoracic disease and
other thoracic diseases. For example, the predicted score of
“Atelectasis” (row 1, column 1) is 0.8886, about 97 times
that of ““ Cardiomegaly” (0.0092). Only in some special
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cases (highlighted in blue) is the PCSANet model unable to
accurately identify the thoracic disease.

V. CONCLUSION

In this paper, we propose the PCSANet model for multi-label
chest X-ray image classification. Numerous experiments
have shown that the PCSANet model can effectively classify
chest X-ray images with the AUC score that can reach 82.5%
on the Chest X-rayl4 dataset. The experiment results also
demonstrate that our PCSANet model is capable of extracting
multi-scale discriminative features of various pathological
abnormalities using pyramidal convolution, focusing on more
pathological abnormality features using shuffle attention.
In the future, the research will be continued in two directions.
First, weakly supervised precision localization methods will
be investigated due to the expensive bounding box. Second,
image segmentation methods are used to enable a better com-
bination of global and local features to achieve more accurate
localization and identification of pathological abnormality.
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