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ABSTRACT The gunshot event localization and classification have numerous real-time applications. The
study is also useful for steering the video camera and guns in the directed direction. This paper proposes a
framework that can be used for a surveillance system to accurately localize and classify the type of gunshots
impregnated with wind noise. The main contribution of this paper is the localization of the gunshot for the
very first time using Hadamard product with wavelet de-noising in windy conditions. We have evaluated
our framework on airborne gunshots acoustic dataset, and a derived (simulated) sound dataset, as an offline
scenario, using four microphones’ geometry. For localization, the proposed system outperformed with an
accuracy of 99.95%. The other contribution is a sensitivity-based comprehensive examination of gunshot
sound signals, with normal to strong wind noise of varying SNRs, for machine learning and deep learning
classifiers to categorize the type of gunshots. For classification, it has been found, not known before for the
gunshots dataset, that ELM is robust for original, normal, and strong windy environments with an accuracy of
93.01%, 91.61%, and 88.11% respectively with the threshold SNR. A comprehensive comparison of recent
techniques with the proposed approach has also been added.

INDEX TERMS Acoustic signal processing, azimuth, direction of arrival, elevation angle, extreme leaning
machine, phase delay, time delay.

I. INTRODUCTION
Within the past few decades, a renowned research area is the
localization and categorization of acoustic events in numer-
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ous fields like fine particle detection [1], medical health
sciences [2], and audio surveillance systems [3] including
challenging actual time environments [4]. The array of micro-
phones is used for acquiring valuable signals with time-to-live
(TTL) variations [5]. The study of gunshot events localization
and classification has important implications in real-time
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surveillance systems. It has gained interest for steering the
video cameras, and even guns, in the directed directions. Sim-
ilarly, the classification of gunshot events is important along
with its localization. Therefore, the positional parameters and
related classification of gunshots motivate to view the scene
using video devices in a surveillance system, especially in the
case of wind noise-contaminated environments.

The acoustic emission is its source positioning or local-
ization and classification (L&C) linked to complex nonsta-
tionary waves with detailed source information. Initially, the
acoustic signals are detected followed by time delay (TD)
localization of the source. The localization is carried out in
real-time by finding the cross-correlation between acoustic
signals acquired for each microphone based on a specific
common (reference) one. The azimuth and elevation angles
as direction of arrival (DOA) metrics are estimated using
TD measurement techniques. Some researchers working on
acoustic signals used the frequency domain in finding the
DOA. Astapov et al. [6] selected the urban and military
security system for acoustic event localization based on gun-
shots. They worked on a circular array of unmanned group
sensors (UGS) for the estimation of the direction of arrival of
gunshot acoustic events with a computationally cost-effective
solution. Gaikwad et al. [7] worked on combat operations
support by means of localization of enemy troops in real-
time which was considered beneficial to planning a war
strategy. Their enemy localization method was based on
triangulation for an enemy localization, i.e. acoustic source
positioning, using two microphones and a single acoustic
source strategy. They also reported four different complex
scenarios using different stages. Valenzise et al. [3] showed
an acoustic surveillance system in their remarkable work
that identified anomalous acoustic events and localized the
event source with camera steering in the predicted direc-
tion. They used the least-squares-based localization algo-
rithm to compute the azimuth and elevation angles to find
the time difference of arrival using an array of microphones.
Astapov et al. [8] based their research on gunshot shockwave
and muzzle blast direction of arrival on civilian as well as
military security systems. They used circular microphone
geometry of microphones and reported an adequate direction
of arrival time in their published work with computational
low overhead. Pathrose et al. [9] worked on the localization
problem to ascertain the attack direction by small firearms
for retaliation. Consequently, the shooting position determi-
nation for surveillance is important to tackle any possible
attacks. They used multiple microphones located at the same
distance to acquire the time of arrival for different acoustic
events and determine the positional information as azimuth
and elevation angles of the acoustic source with respect to
the corresponding topology of microphones.

Numerous ideas and approaches have been exten-
sively employed for acoustic event classification using
learning-based or data-driven methods to develop the map-
ping function between unknown sound signals and the pre-
dicted class label. The discriminative features are extracted

for localization by involving massive amounts of sensor
data with the help of artificial intelligence-based tools, like
artificial neural networks (ANN), and deep neural networks
(DNN). The localization was dealt with as a regression job
finding distance using a model, and finally representing
the position-related details by determining the missing and
uncertain knowledge of the physical environment. Anzai [10]
allocated machine learning (ML) models for classification
tasks by introducing the structure of patterns. Efforts were
made by many researchers to optimize the ML algorithms.
Bottuo et al. [11] wrote a review for text classification high-
lighting optimized ML algorithms using case studies. They
mentioned DNN application in feature space to find the opti-
mal solution. Similarly, Huang et al. [12] used single hidden
layer feedforward neural network (SLFNs) for introducing
an extreme learning machine (ELM) where branch weights
for the inputs are randomly selected and the outputs are esti-
mated in an analytic manner. It has a fast learning capability
as compared with ML, including its robust and consistent
problem-solving ability to overcome the overfitting problem
during the training phase in conventional neural networks
[13]. Corriea et al. [14] employed deep-feed forward neural
networks for the localization of acoustic events. It is based
on the training of multiple neural networks under the given
conditions. Vera-Diaz et al. [15] employed convolutional neu-
ral networks for acoustic source localization using massive
positioning data to carry out the appropriate learning during
the training phase. Here, it is important to note that deep
learning application requires a sufficient number of instances
to automatically discover the representations which are not
always possible in sensitive cases [16].

Numerous cohorts solved acoustic event categorization
problems using ML strategies. The Mel-frequency cepstral
coefficient (MFCC) based features have been commonly
adopted for acoustic events [17]. The principal component
analysis (PCA) with its linear and kernelized variants has
been used to reduce the features to a more discriminative
form [18]. The classifiers that have been commonly used for
acoustic event classification are naïve Bayes (NB), k-nearest
neighbors (k-NN), support vector machine (SVM), linear
discriminant analysis (LDA), and random forest (RF) in indi-
vidual (traditional) as well as hybrid (or ensemble) capacity
[19]. SVM is based on both structural and empirical risk
minimizations. The former is based on a boundary creation
in a way that maximizes the margin between the classes
whereas the latter minimizes the number of misclassifications
between the classes by transforming the input space into high
dimensional space that leads to generalization improvement
[20]. NB classifiermakes feature variables independent, so all
variations and characteristics of each class can be learned
[21]. The k-NN classifier is the simplest algorithm as it
does need any information about the existing data. It is a
non-parametric learning algorithm and it is based on the near-
est neighbors to the unknown instances with features charac-
teristic of either of the classes [22]. The RF classifier [23] is
an ensemble-based technique inwhichmultiple decision trees
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are used as base learners. Improvements equivalent to more
than doubling the data can be achieved using RF algorithms
offering better results from the same data size. Recently,
the active learning technique has been used with a modified
breaking ties algorithm with multinomial logistic regression
for the classification of hyperspectral images of aerial views
using satellite images [16]. Liu et al. [24] carried out acoustic
signals-based fault detection on belt-conveyor idlers. After
the acoustic signal acquisition, features were extracted by
MFCC and then applied to different machine learning algo-
rithms. Dabetwar et al. [25] worked on ultrasonic data acqui-
sition for multiple structural health monitoring systems, and a
classical supervised machine learning algorithm was applied
to determine the damage levels of different signals. Similarly,
Pham et al. [26] detailed a survey on machine learning,
deep learning, and federal learning applied in the field of
intelligent radio-signal processing. Rozemberczki et al. [27]
developed a deep learning framework with a combination of
machine learning for solving the problem of spatiotemporal
signals. The main focus of this research was to build temporal
geometric deep- and machine-learning models in a unified
form.

Shi et al. [28], [29] introduced Gammatone Frequency
Cepstral Coefficients (GFCC) as an alternative to MFCC
[30] for speaker recognition systems. They replaced Mel
filter bank with the gammatone filter bank (GFB) to improve
robustness. They used multitaper estimation, MVA (mean
subtraction, variance normalization, and autoregressive
moving average filter) to generate GFB. Similarly, Thiruven-
gatanadhan [31], [32] introduced Power Normalized Cepstral
Coefficients (PNCC) as the acoustic features. In this feature
extraction technique, the discrete wavelet transform (DWT)
based features [33], [34] are grouped into k number of
groups using k-means clustering The classification is based
on the minimum distance between the cluster centroid and
the feature vector. Some cohorts also worked on the hybrids
[35], [36], [37] of these acoustic feature extraction techniques
and found improved results that would have been obtained
otherwise on an individual basis.

The event localization, as well as classification metrics, are
usually affected due to the distortion of the sound signal when
it passes through the wind medium [38]. The investigation
of degradation to SNR of the sound signal was successfully
carried out as a real-world problem by white noise analysis.
The noise present in the acoustic signals has been analyzed
by numerous filters, like Savitzky-Golay [39] and the moving
average filters [40]. The performance of the conventional fil-
ters underperforms by changing the signal parameters, while
the behavior of the adaptive filters is repeatedly reflected
in the statistical properties of the signals including noise
[41]. Bhoyar et al. employed recursive least square (RLS)
and least mean square (LMS) filters for noise cancellation
to measure the precise signal [42]. Dhimane et al. [43] con-
ducted a study on adaptive filter usage for their comparison
concerning stability, efficiency, and computational cost for
various applications. Similarly, Khan et al. [44] carried out

a survey to compare the RLS, notch, and LMS filters. They
found that the RLS relatively performed better than the rest
of the two, but suffered an additional cost. For an acoustic
noise distribution, Goubran et al. [45] employed adaptive type
filters for the suppression of noise and enhanced the vehicle
sound signals. Breining et al. [46] used adaptive filters of
complex types with high order for the acoustic echo control.
The process suffered from additional computational costs.
Thenua et al. [47] worked on lung sound signals with the
application of adaptive filters on bio-signals and proposed a
novice algorithm for the classification of acoustic events.

We focused on normal and strong wind noise models as the
environmental noise type in this paper. Further, we have ana-
lyzed distinctive levels of windy sound, by observationally
finding parametric thresholds for different filters. In common,
a specific filter outflanks up to a certain limit with the acoustic
events sifted utilizing conventional, as well as adaptive filters
prior to L&C to check the execution of the framework under
normal and extreme noise-contaminated acoustic signals.

The main contributions of this work are summarized as
follows:

• A framework is proposed for the localization and classi-
fication of gunshots in windy conditions.

• Comparison of conventional filters with adaptive filters
for gunshot signals with wind noise for varying SNR.

• The Hadamard product with wavelet de-noising is used
for the very first time to localize gunshots in windy
conditions.

• A comprehensive sensitivity analysis of gunshot signals,
with normal to strong wind noise of varying SNR, for
machine learning and deep learning classifiers to cate-
gorize the type of gunshots.

• Comparison of the proposed work with other known
existing research works for localization and classifica-
tion of acoustic sources.

The organization of this article is as follows: Section II
illustrates the materials and methods, Sections III is based
on results and discussion, while Section IV summarizes the
paper with conclusions.

II. MATERIALS AND METHODS
The establishment of soundwaves is based on the propagation
of acoustic waves. The sound waves need mechanical vibra-
tions to travel through the flexible medium. Sound waves
move faster in solids, while the velocity of sound is rela-
tively slow in gases and liquids congruent to their respective
degree of compactness on the atomic scale [48]. The pro-
posed system for sound source localization and classification
used for the detection of acoustic events is illustrated in
Figure 1, whereFigure 1 (a) represents the data flow between
different modules, and Figure 1 (b) illustrates the detailed
workflow of complete acoustic localization and classification
system including the impregnation with noise, filtering prior
to the L&C phases for measuring and analyzing the acoustic
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signals. The analysis of different L&C systems is carried out
after the noise addition and filtering of the acoustic signals.

A. DATASET
The airborne gunshots dataset [49] (AGD-2021) has been
used in this research article which contains different cate-
gories of weapons with 722 sound effects as illustrated in
Table I. The dataset of gunshots was recorded in an unknown
acoustic environment as laid down by AGD-2021. We recon-
structed sound effects recordings with existing wind noise
models [49] and simulated the time delay of arrival at par-
ticular azimuth (φ) and elevation (θ ) angles. The detail of the
class imbalance of the dataset is shown in Section II (E) (1),
whereas the visualization of the feature space of MFCC is
illustrated by the t-SNE plot (Section III (A).

B. PREPROCESSING
For localization, the notion of preprocessing is to generate
the data for four microphones’ geometry before normal and
strong wind noise simulation is carried out. For classifica-
tion, the Airborne dataset is directly simulated for reverber-
ant wind noise conditions. The high-class imbalance in this
dataset is alleviated to improve generalization as illustrated
in Section 2.5.1. Extracting unique features from the acoustic
signals, viz. original, normal, and strong wind noise impreg-
nated signals is explained in Section 2.5.2 by using MFCC
vectors.

1) SIMULATION FOR LOCALIZATION
The original signals (Airborne dataset) are employed for the
simulation of acoustic signals (localization dataset) using
a four-node omnidirectional geometry at known, 70 cm,
positions as illustrated in Figure 2 [50]. Node 1, viz.
Microphone-1 (Mic-1) has been selected as the reference
node. In practical applications, the data acquisition is nearly
continuously accompanied by wind noise impregnation. For
noise impregnation, original sound signals are treated with a
noise model [38] for normal as well as intense wind condi-
tions. The preprocessing of signals for the detection of noise
falls apart its quality.

C. ANALYSIS OF FILTERS FOR NOISE
The elimination of noise or outliers from the sound events
is analyzed using filters. The filter behavior is found cor-
responding to the limiting value of SNR for the simulation
of strong and normal wind models using conventional filters
with their adaptive counterparts before the localization or
classification phases.

1) CONVENTIONAL FILTRATION
This type of filtration is characterized by filtering out the
detrimental components of the signals in the neighborhood
by using fixed parameters on conventional filters. The notion
is to partition the acquired signal into multiple portions as
illustrated in Figure 3. The sequential application of filter
then follows signal reconstruction using the filtered sections.

FIGURE 1. Proposed framework for acoustic event localization and
classification, (a) data flow diagram, (b) L&C framework.

FIGURE 2. Visualization of 4-microphone geometry in an omnidirectional
manner (each one of the mics is 70 cm apart from one another).

An overview of filters used in this work is given with a brief
working principle explained as given by:

The weighted average filter is based on the application
of a signal that has been segmented, taking the mean of N
sequential segments of a waveform [51]. The reconstructed
signal smoothness is attributed to the removal of noise, and it
is given by y [n]

def
=
∑N−1

k=0 x [n− k].
In themedian filter, a window scope is defined for ordered

samples where the central value is thought to be the output.
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TABLE 1. Airborne dataset (gunshots).

FIGURE 3. Segmentation of an acoustic signal.

The removal of outliers results in the smoothness of the
signal. As a non-linear method, it is a key filter to isolate the
impulsive noise while not affecting the useful components in
the signal.

Savitzky–Golay filter is defined in the time domain-based
movingwindowwith least squares used for polynomial fitting
[52]. The waveform obtained is smooth and represented as
gm =

∑nR
k=−nL ck+nL sm+k . Here, gm represents the output

signal, sm+k is the input signal, the midpoint is m, nR rep-
resents the point-count to the right of m, and nL is the point-
count to the left.

2) ADAPTIVE FILTRATION
There exist multiple unknown parameters in a real-time sys-
tem with non-linearly dynamic variations and we cannot rely
only on rigid traditional digital filters. Hence, adaptive filters
are imperative for varying environments. The main aim of
these filters is to minimize the cost function between the
output of the adaptive filter and desired signal to achieve
optima. Various cost functions have been proposed so far to
optimize these filters. Another interesting aspect of adaptive
filters is the way they merge the distributed signals. Combine
then adapt and adapt then combine are commonly practiced
approaches for merging signals [53]. In adaptive filters, the
parameters of the input signal are derived by processing and
updating them [41]. The working principle of an adaptive
filter is illustrated in Figure 4. Here, the error between the
target and filtered output is represented by e(n), x(n) are the
input noise signals, d(n) are the target signals, and the output
is represented by y(n).

An overview of adaptive filters used in this work is given
by:

A fair cost function-based adaptive filter has been pro-
posed by Guan et al. [53]. Spatial and temporal weights

FIGURE 4. Working principle of an adaptive filter.

of varying parameters are computed for the cost function.
The steepest descent method is utilized to update the weight
vector. ATC technique is resorted to combining the temporal
details of system parameters. Let V0 is the initial weight
vector of the input signal A (i) with variance v of varying
parameters. At any instance i the loss L(i) is defined as:
L (i) = V0A (i)+v (i)−V (i)A(i). The fair cost function C(i)
based on L(i) is computed by:

C (i) = γ 2
[
|L (i)|
γ
− log(1+

|L (i)|
γ

]
(1)

where γ is the threshold in such a way that γ > 0. Similarly,
the adaptive Kalman filter (AKF) is presented by [54] to
model the relation between gyroscope random noise and
white noise, providing the fact that the gyroscope noisemodel
is continuous while the Kalman filter is digital in the time
domain. Therefore, the noisemodel is linked to the filter in the
continuous-time domain as a first step, and then it is converted
into a discrete form to connect with the digital Kalman filter.
This filter performs better for both Gaussian noise as well as
color noise. The adaptive filter for non-Gaussian flicker noise
(NGFN) proposed by Parshin and Parshin [55] endeavored to
gain balance between the energy of the signal and the width
of the spectrum to get the best signal-to-noise ratio. It uses
the adaptive Bayesian technique to compute the variables of
NGFN.

The least mean square (LMS) filter uses optimized filter
weighting factors, and its working principle is the stochastic
gradient strategy [52] trying to behave like the desired signal.
The objective is achieved by finding the error based on least
mean squares by varying the filter coefficients, as illustrated
in Figure 5. The adjustable parameters are: y(n) represents
the filtered output, d(n) is the target signal, e(n) represents
the error between target and filtered outputs, w is the weight,
h represents filtering, and x(n) is the noisy input signal.
The recursive least square (RLS) filter is based on the

minimization of the least mean square error and handles the
coefficients of the filter in a recursive manner [47]. Further,
the filter outclasses in performance at an additional com-
putational overhead [56]. The principle of the RLS filter is
illustrated in Figure 6. The parametric updating is carried
out recursively, where e(n) is the error between the predicted
and the target outputs, d(n) is the target output, d’(n) is the
predicted output, and 1w is the weight- update to the signal
coefficients.
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FIGURE 5. Working principle of LMS filter.

FIGURE 6. Working principle of RLS filter.

In the amplitude-based frequency filters (ABFF),
the extraction of frequency components that are useful,
as depicted in Figure 7, is conducted. Here, x’(n) represents
the input noisy signals, x(n) indicates the target signal, e(n) is
the error existing across the target and filtered outputs, y(n)
represents the filtered signal, and X represents the filtered
output in the frequency domain.

In the noise removal method based on wavelet trans-
forms, the signal is first altered to the maximum overlap-
ping discrete wavelet domain [57], and the noisy segments
are accustomed to a limiting threshold [58]. The soft and
hard threshold-based comparison of the signal is carried out
so the error lies below a certain limiting value, εABS. The
decomposition is relaxed only in case the error is higher.
The inverse wavelet transform of the maximum overlapping-
based threshold signal is carried out. The denoising mech-
anism using wavelet transforms is illustrated in Figure 8,
where a is the reconstructed signal with a hard threshold, b
is the reconstructed signal with a hard threshold, O indicates
the original signal, ε(a, O) is the error between O and b, ε(b,
O) represents the error between O and b, and Th indicates the
threshold for the error.

D. LOCALIZATION
The knowledge of the location of the combatant strength-
ens the planning strategy of a battleground. Gaikwad et al.
[7] presented a method for identification of source-location
based on self-location and self-direction within an artificial
battle scenario created by the internet of battlefield things
(IoBT). The acoustic source position can be estimated by
different approaches such as minimummean square error and
time delay measurements [59]. The estimate of localization
or positioning of the acoustic event source is possible by
time delay measurements for all nodes with respect to the
reference node. The time delay measurement technique for
the direction of arrival is given by:

FIGURE 7. Schematic illustration for ABFF.

FIGURE 8. Acoustic signal denoising using Wavelet transforms.

i. Time delay estimation (time domain) is based on finding
the peak of the cross-correlation for all nodes (other than
the reference node) with respect to the reference node
[60].

ii. Time delay estimation (frequency domain) is based on
the Hadamard product of acoustic signals transformation
to the frequency domain [61]. The cross-correlation of
acoustic signals with respect to the referencemicrophone
is determined, and the integral of all time delays is trans-
formed to the time domain.

iii. Similarly, the time delay estimation is carried out using
phase transformation. [62].

The measurement of ime delay by any of the techniques
follows the computation of the direction of arrival as given
by [50]:

τ = −
RK
c
, (2)

where

K =

 kx
ky
kz

 =
 sin (θ) cos (φ)
sin (θ) sin (φ)

cos(θ )

 and R =

−→r2 −−→r1−→r3 −
−→r1

−→r4 −
−→r1

 .
Here, τ is the time delay measured as a ratio of the pro-

jection of the distance vector, amid microphones along the K
direction, to the sound velocity c, and R is the vector based
on microphones’ distances. The azimuth φ and elevation θ
angles are representatives of the direction of arrival and can
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be found using K in 3D Euclidean space as given by:

φ = tan−1
ky
kx
, (3)

θ = tan−1
kxy
kz
, (4)

where kz =
(
1− kxy

) 1
2 .

The exploitation of acoustic signal in frequency domain
was carried out by [59] and [63]. They dealt with muzzle blast
and shock waves separately. Muzzle blast was caused by an
eruption of the explosive while a bullet’s thrust originates the
shock wave. The notion behind the use of frequency domain
is that both of these signals are generated at different time
domains and hence eventuated in different frequency bands.
The signals captured at each microphone are converted into
frequency domain with the movable finite-length window
to frame the signals in order to find the frame cross-power
spectrum of the received signals. Once the signals have been
transformed into the frequency domain, phase transformation
has been employed to the cross-power spectrum according to
certain weights. Finally, the frame cross-correlation function
is determined by taking inverse Fourier transformation and τ
is determined by the peak value of the cross-correlation that
represents the delay τ12 between the two signals as given by
[64]:

R12 = ∫ψ (ω) .G12 (ω) e
jωτdω, (5)

where R12 represents the cross-correlation in the fre-
quency domain between mic-1 and mic-2, G12 indicates the
cross-power spectrum of the signals r1 and r2 that are received
at mic-1 and mic-2 respectively.ψ represents the phase trans-
formation of all other mics to get the cross-correlation with
reference mic.

The proposed gunshots localization method in windy con-
ditions is described mathematically as follows:

Let [S1 (n) , S2 (n) , S3 (n) , S4 (n)] represent the original
gunshot signals and [N 1 (n) ,N2 (n) ,N3 (n) ,N4 (n)] denote
the wind noise signals at microphones-1,2,3 and 4 respec-
tively.

The first step is to take the Hadamard product of the
original gunshot signals with the wind noise signals.

xi(n) = Si (n)� Ni (n) where, i = 1, 2, 3, 4

The symbol � represent the Hadamard product.
The generalized analysis and synthesis sections of discrete

wavelet transforms (DWT) has been illustrated in Figure 9.
Here, the reconstructed x̃i(n) can be written mathematically
as follows:

x̃i [n] =
J∑
j=1

∑
k

yj1 [k] g
j
1

[
n−2jk

]
+

∑
k

yj0 [k] g
j
0

[
n− 2jk

]
,

(6)

where

yj1 [k] =
∑
n

xi [n] h
j
1

[
2jk − n

]
,

FIGURE 9. The generalized DWT for analysis and synthesis sections using
J stages.

and

yj0 [k] =
∑
n

xi [n] h
j
0

[
2jk − n

]
j = 1, 2, . . . , J

Now, ai (n) and bi(n) are the signals obtained after applying
the hard and soft threshold on the reconstructed signal x̃i [n]
respectively.

The value of J is incremented if the following two condi-
tions are not full filled:

Th < ε (a,O) = ‖x̃i [n]− ai (n)‖
2 ,

Th < ε (b,O) = ‖x̃i [n]− bi (n)‖
2 ,

where Th is the limiting error value, a is the hard
threshold-based reconstructed signal, b is the soft threshold-
based reconstructed signal, O is the original signal, ε(a, O)
represents the error between O and a, and ε(b, O) represents
the error between O and b.

The time delay is estimated by finding the peak of the
cross-correlation for all the microphones with respect to the
reference microphone.

Let

τ = [τ12, τ13, τ14] ,

where τ12, τ13, τ14 are the time delays of microphone-2, 3 and
4 with respect to microphone-1, respectively. The φ and θ
angles can be estimated using Equations 2, 3 and 4.

E. CLASSIFICATION
The cognition of the type of the signal is mandatory to acquire
the whereabouts of the source because each stimulus falls in a
certain bandwidth and has a specific energy spectrum associ-
ated with it [65]. Similarly, different classes of guns have dis-
tinct acoustic attributes exclusively belonging to them [66].
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FIGURE 10. Gunshots event distribution across different classes of
Airborne dataset (Class No. as annotated in Section 2.1).

Furthermore, it is hard as well as essential to distinguish
between an actual gunshot and a non-life-threatening sound
disguised as a gunshot signal [67]. We have two sources of
acoustic events in this work, one is the Airborne dataset, and
the second is the simulated datasets for the original (without
noise), normal wind noise, and strong windy conditions for
the acoustic event classification problem [68]. The Airborne
dataset is based on the gunshots types (Table 1). The acoustic
event counts vary a lot for different classes across the dataset
leading to a poor generalization of the AI-based model.
We addressed the class imbalance problem using the synthetic
oversampling minority technique (SMOTE).

1) CLASS IMBALANCE
The predictability of the ML algorithm suffers if the number
of samples in each class varies during the training phase. The
variation of instances is illustrated inFigure 10 in the original
dataset. In general, the ML model is not up to the mark
to learn from acoustic events of minority classes affecting
their class (individual) predictive accuracy. To address this
issue, it is mandatory to enhance the instances of minority
classes. One out of many solutions is SMOTE that improved
the number of instances for a class having lesser number of
training events. In this technique, the instances of theminority
classes are generated by linear interpolation using randomly
the k-nearest neighbors of actual events. This improved the
generalization of the minority class [69], [70].

2) AUDIO FEATURES-MFCC
The Mel-frequency cepstral coefficients, a frequency group
depicting the general shape of the spectral envelope, are
used as discriminative audio features for classification. It has
been used in the speech recognition arena along with the
machine learning paradigm [71]. It is based on extracting
the amplitude spectrum of the audio signal in a vector form.
Raj et al. [72] introduced a multi-layered CNN-based auto-

CODEC using MFCC as the input for denoising the signals
robustly and securely with an accuracy of 93.25%. Recently,
Siam et al. [73] used MFCC features obtained from a physio-
logical signal, namely Photoplethysmography (PPG) to find
volumetric changes in blood circulation, which is fed to the
neural networks to analyze blood flow variation in organs
depending on the heartbeats. The PPG signals are reported to
be useful as an alternative identification biometric. Unique 13
MFCC [74], [75] are extracted using the acoustic signals of
three types, namely original, normal and strong wind noise-
impregnated sets. Mel is a short name for melody, and it is
based on the comparison of pitch on a scale. The sound recog-
nition systems use these features to identify the speaker [75].
The MFCCs are based on the human ear’s perception of the
sound frequencies. The human ears receive low frequencies
better while the higher tolls are not acknowledged by the
receptors. The steps involved in MFCC extraction are given
by:

i. First of all, the acoustic signal is segmented so that each
frame is 25 milli-second [75]. The number of frames
must be an even number (use zero padding in case a
frame count is an odd number).

ii. Each segment of the acoustic signal is used to com-
pute the discrete Fourier transform (DFT) as given by:
Ai (k) =

∑N
n=1 ai (n)f (n) e

−j2πkn/N , 1 ≤ k ≥ K , where
ai (n) is ith frame acoustic signal in the time domain,
DFT of ith frame is Ai (k), the analysis window of the
signal is f (n), and K represents the length of the DFT.
The spectral density estimate for the segmented acoustic
signal is given by: xi (k) = |ai (k)|2 /N .

iii. The filter bank (Mel) equates the spectral density to the
Mel scale, and a group of 78 standard triangular filters is
used for this conversion. In the filter bank, depending on
the DFT setting in the previous step, a set of 78 vectors
(each of length 257) is chosen. The filter bank energies
are computed by summing up the products of each filter
bank with spectral density. We have now 78 numbers
representing the energy of each filter bank. The compu-
tation of log power of 78 Mel frequencies is carried out
corresponding to 78 filter bank energies (FBEs).

iv. The cepstral coefficients, 78 in number, are obtained by
computing discrete cosine transform (DCT) of 78 FBEs.

v. Only the 39 larger coefficients, reflecting the prompt
energy variation in a bank, are selected for the statistics
of Minimum, Maximum, Variance and Mean. A vector
of these 156 features was considered as Mel frequency
cepstral coefficients (MFCC).

Further, GFCC, PNCC, and DWT have also been used as
audio features for the classification of acoustic events.

3) OVERVIEW OF ML CLASSIFIERS
We have used many algorithms for spot-checking, and a few
algorithms are selected on the basis of computational com-
plexity and prediction results. All of these top-rated machine
learning algorithms are experts in their own solution space

VOLUME 10, 2022 87309



S. A. Qureshi et al.: Gunshots Localization and Classification Model Based on Wind Noise Sensitivity Analysis

depending on their parametric fine-tuning according to the
structure of the problem. A gist of the classification methods
implemented in this work is given by:

An ELM is considered by non-discrete or non-
differentiable relations for decreasing the loss function result-
ing in performance improvement. It has no requirement for
parametric optimization. Its basic architecture consists of
input and output layers with only one hidden layer. Two types
of weight vectors have been used in ELM, one between the
input and hidden layers, and the second between the hidden
and output layers [69], [76]. Two activation functions are
employed in ELM. The sigmoid function is activated amid
input and hidden layers, while a linear function is employed
amid the hidden and output layers. The objective here is to
initialize the input weight vector using a uniform distribution
[77]. The ELM output is: yk =

∑m
j=1 βj,kg(

∑n
i=1 wi,jxi+ bi),

where j = 1, 2, 3, . . . ,m, where wi,j represent input weight
vectors, bi is the bias, xi is the input feature vector, Yk
represents the output, m indicates the number of neurons in
the hidden layer, n represents the number of features in the
input layer, and k represents the number of classes in the
dataset.

An SVM classifier works on the principle of maximizing
the gap between the support vectors, the least confidence
points of the classes so that the optimal decision sur-
face divides the instances into their corresponding classes.
Depending on the number of classes in the problem, multiple
decision surfaces are formed using the training features but
the notion is to find the optimum bifurcating surface(s) with
maximum margin on either side. The main task is to estimate
the weight vector along with bias for classifying all the test
instances ‘x’ with optimum accuracy. The equation for max-
imum margin is given by:

m = 2 ∗
||wtx t + b||
| |w| |

, (7)

where m represents the margin that is twice the gap between
the decision hyperplanes, and the support vectors on its either
sides. In case the classes are inseparable, the training features
are raised to a higher dimension with the help of non-linear
kernels. The best-suited kernel and its appropriate parameters
can influence the results a lot.

Naïve Bayes (NB) classifier is a probability-based
approach where the uncorrelated features of all classes are
obtained [78]. The main idea of the NB classifier is derived
from the Bayes theorem which states that the posterior prob-
ability of an unknown instance can be found in the class
distribution of all the classes and their respective class priors
are known. Eventually, the event (with an unknown class
label) having the larger value of posterior probability for
a class would be assigned the same class label. The main
assumption of this classifier is that the predictors remain
indifferent to the features and the features in an event are
independent of one another. NB is based on the posterior
probability so that depending on the maximum value corre-
sponds to the selected class. The conditional probability is

given by: P (Ck |X1,X2,X3, . . . ,Xn) for k outcome or class
Ck . The BT is given by:

P (Ck |X) =
P (Ck)P (X |Ck)

P (X)
, (8)

where P (Ck |X) denotes the posterior probability, P(Ck )
is the prior probability, P (X |Ck) denotes likelihood and
P(X ) is the evidence. Naïve Bayes theorem can be expressed
as: P (Ck |X1,X2,X3, . . . ,Xn) = 1

Z P(Ck )
∏n

i=1 P (Xi |Ck),
where evidence Z = P(x) is a scaling factor dependent
on (X1,X2,X3, . . . ,Xn). The parametric estimation neces-
sitates the use of a marginal probability distribution for
the class prior P(Ck ) and conditional probability for each
known instance given the class P (Xi |Ck). The type of xi
(discrete or numeric), such distributions can be multinomial
or normal respectively, and it is computed for reach cj. For
inference, the maximum-a-posteriori (MAP) is used, i.e. for
< x1, x2, . . . , xn > select the class c∗ such that:

PC∗ = argmax
cj

P
(
C = cj |X1 = x1, x2, . . . ,Xn = xn

)
, (9)

PC∗ = argmax
cj

P
(
C = cj

∏n

i=1
P(Xi = xi |C = cj

)
. (10)

NB is a simple and unrealistic independence method and has
efficiently been used in many applications.

A k-NN classifier, a non-parametric algorithm, is a
proximity-based approach where the number of nearest
neighbors of the unknown event, in the feature space, decides
the class label assignment to the unknown event[79]. The
notion behind its working is that similar things are contiguous
to each other [80]. The k-NN use for a test sample classifica-
tion is based on finding its distance from all other training
instances. The metrics that can be used for distance measure-
ments can be Hamming, Euclidean, Manhattan, or any other
distance measuring scheme. The paths or distances are then
sorted in an ascending order to track the nearest neighbor
listing. First k number of nearest neighbors are selected, and
each one of the points causing the shortest distance then
votes for the unknown event. The class having the maximum
number of votes for the unknown event is used to assign its
class label. The value of ‘k’ plays a vital role in the working
of k-NN and it mostly depends on the nature of the underlying
data distribution.

RF is an ensemble-learning classifier that uses manifold
decision trees (DTs) as the base learners [81]. Each one of
the DTs is designed on the basis of random attribute selection
from training instances. After the training of all the decision
trees, the test event is passed through each one of them, and
the DTs will opt for the class in terms of a vote for each test
event. The class having the maximum number of votes will
be assigned to the test event.

4) 1D-CNN ARCHITECTURES FOR MULTI-CLASS
CLASSIFICATION
We have introduced three 1D-CNN architectures based on
the number of layers, namely Light, Mild and Extensive 1D-
CNN architectures as illustrated in Figure 11. The number of
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TABLE 2. Parameters used for 1D-CNN architecture used for classification
of gunshot acoustic events.

layers varied to extract the features in the encoding part of the
architectures. Figure 11 (a, b, & c) illustrates the buildup of
three architectures using 10, 12, and 18 layers respectively.

Each of the 1D-CNN architectures is based on
1D-convolution between the 1D-receptive length of the signal
with an associated set of kernels to extract the features
dynamically based on the general working principles of deep
learning. Here, we have used MFCC feature vectors from
the acoustic signal data. The sizes of layers that have been
used are depicted in the design of the respective architec-
ture. The set of parameters used to extract features by 1D-
representation learning is illustrated in Table II.

F. LOCALIZATION AND CLASSIFICATION PERFORMANCE
MEASURES
For noise analysis, the variations are in the form of filter
parameters along with (SNR)Noise. The subscript ‘‘Noise’’
has been added to indicate the higher noise content in the
ratio. The (SNR)Rec has been used for the estimation of the
quality of reconstructed signals as compared with the original
signals in decibels [82]. The subscript ‘‘Rec’’ has been added
to indicate the higher reconstructed signal content in the ratio.
The good quality of the restored signal is indicated by the
higher (SNR)Rec value. The mathematical relation for the
signal-to-noise ratio is given by SNR = 20. log10 (

S
N ), where

S represents the desired signal level and N represents the
noise signal level [83], [84].

The performance measurement of the localization phase to
specify the position of the acoustic even source in 3D-space
is carried out using the (ϕ, θ ) angles pair. The localization
performance is computed by means of relative error as given
by [85]:

Eloc =
|
∣∣em − ep∣∣ |

ep
, (11)

where em and ep represent the measured and actual positions
of the acoustic source. The localization performance as accu-
racy is given by: Aloc = (1− Eloc) ∗ 100.

For classification performance measurement, one of the
important measures for the ML model is the classification

accuracy as given by [86]:

Acls =
TP + Tn

Tp + Tn + FP + Fn
, (12)

where
Tp = true positives: correctly identified acoustic events by

the model,
Tn = true negatives: correctly identified events as nega-

tives (the other class even correctly classified in comparison
to the positive class) by the model,
Fp = false positives: incorrectly classified the negative

samples as of positive class,
Fn = false negatives: incorrectly classified positive sam-

ples as that of negative class.
Another performance measure is the specificity that is used

to evaluate the model by using a false-positive rate as given
by [86]:

Sp =
Tn

Fp + Tn
(13)

Similarly, the performance measure recall (or sensitivity) is
used to evaluate the model by using the true positive rate as
given by [80]:

Rc =
Tp

Tp + Fn
(14)

Precision is another performance measure to check the pos-
itive class predictions (Tp, Fp) that are actually from the
positive class as given by [80]:

Pr =
Tp

Tp + Fp
(15)

Another popular classification performance measure is
F-score which is considered most effective for imbalanced
datasets. It is defined as the harmonic mean between Pr and
Rc as given by [86]:

F − score =
2× Pr × Rc
Pr + Rc

(16)

III. RESULTS AND DISCUSSION
The entire experimentation was carried out using a computer
machine having A6-6310 processor, AMDRadeon R4 graph-
ics card, and 16 GB RAMmodules. The open source libraries
were used to develop scripts for localization and classification
tasks. For machine learning models, the training: test ratio
used is 90:10 with stratified resampling.

A. FEATURES’ VISUALIZATION
The enormous data generated in most scientific fields make
it challenging to visualize it. In our case, to visualize MFCC
distribution in feature space, we carry out the mapping
from high to low dimensional feature space by adopting the
t- Stochastic Neighbor Embedding (t-SNE) plot. Here the
high dimensional points are mapped to a low dimensional
space so that the former behavior is mimicked by the latter
one. The algorithm used to carry out this task model uses two
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FIGURE 11. CNN architectures used for acoustic dataset: (a) Light
1D-CNN architecture, 10 layers, (b) Mild 1D-CNN architecture, 12 layers,
and (c) Extensive 1D-CNN architecture, 18 layers.

distributions: original points (Gaussian distribution based)
and the embedded points (Student’s t-distribution based) [87].
The divergence (Kullback-Leibler) between these distribu-
tions is minimized by positional variation of the embedded
points [88]. The event distribution in classes is illustrated in
Figure 12. The challenging nature of classification using this
dataset is evident due to the overlapping class boundaries of
the acoustic events in the feature space.

B. NOISE STUDY
The filtering of noise is affected by changing (SNR)Noise
after the simulation of sound events with models of normal
wind and a strong windy environment. In real scenarios,
(SNR)Noise goes up to −20 dB in high noise levels, but
for wind sensitivity analysis filters work if the noise level
decreases up to−3100 dB although this is not a real scenario.
But parameters of both adaptive and conventional filters are
observed for the best acoustic detection as illustrated and
discussed in the subsequent tables.

The sole objective of this part of experimentation is to
critically scrutinize the performance of filters by empirical
parametrization. The results of conventional filter experimen-
tations are shown in Tables III & IV for normal and strong
windy models respectively. During this experimentation, the
(SNR)Noise value was kept at −3100 dB. It was unrealistic
but it was adopted in order to check the high-value response of
(SNR)Noise for our acoustic signals. It was observed that raise
in noise level resulted in the alleviation of filter performance.
This suppression caused by noise could be parametrically
controlled by window width (Ww) and the polynomial order
(Po). The optimization of parameters was carried out by

FIGURE 12. The feature set visualization of acoustic events extracted
from Airborne dataset using t-SNE plot.

keeping one parameter constant while modifying the other.
It was found that the Savitzky-Golay filter with (Ww = 27
& Po = 4) achieved an (SNR)Rec of 60.36 dB for the
normal wind noise model. In the same acoustic conditions,
the median filter with (Ww = 5 & Po = 1) achieved
(SNR)Rec as 69.82 dB. The high value of (SNR)Rec using the
median filter is attributed to its suppression of noise peaks.
Further, the comparison of Savitzky-Golay and median filters
shows that the complexity of median filters is low due to the
reduced number of frame sequences. The moving average
filter performance was not up to the mark reconstruction of
the acoustic signal due to the noise averaging effect. The
conventional filter experimentation for strong wind noise
showed that the same trend followed as that of normal wind
noise. The results, however, suffered as illustrated inTable IV
due to extreme conditions of wind noise. For strong wind
model based acoustic signal filtering, the Savitzky-Golay
filter resulted in an (SNR)Rec of 51.44 dB which was lower
than the best performing median filter with an (SNR)Rec of
61.58 dB. Similarly, the strong windy environment-based
performance of the Savitzky-Golay filter (51.44 dB) can
be compared with a normal wind environment (60.36 dB),
thereby validating the effect of wind-noise extreme condi-
tions evident.

Similarly, the experimentation using adaptive filters
resulted in Tables V & VI with empirically found param-
eters illustrating the thresholds of (SNR)Noise for normal
as well as strong windy noise models respectively. The
performance of adaptive filters has been found outclass in
comparison to the conventional filters. Further, the wavelet
transforms with Daubechies (db) family (soft threshold at
level 1) resulted in an outclass performance on a noisy
signal, (SNR)Noise = −3100 dB, achieving (SNR)Rec =
178.26 dB under a normal windy environment. The appli-
cation of the same set of parameters for wavelet de-noising
filter using a strong noisy signal resulted in a degraded
signal (94.26 dB).
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TABLE 3. Conventional filters analysis for normal wind noise (Ww and Po
represent window width and polynomial order respectively, (SNR)Noise is
the noise impregnation level and (SNR)Rec is the reconstructed signal
quality).

TABLE 4. Conventional filters analysis for strong wind noise (Ww and Po
represent window width and polynomial order respectively, (SNR)Noise is
the noise impregnation level and (SNR)Rec is the reconstructed signal
quality).

TABLE 5. Adaptive filters analysis for normal wind noise (WT stands for
wavelets transforms, db1 represents Daubechies family with a soft
threshold at level 1, (SNR)Noise is the noise impregnation level and
(SNR)Rec is the reconstructed signal quality).

C. LOCALIZATION STUDY
The original sound events were simulated using four distant
microphones (70 cm) arranged in an omnidirectional geom-
etry (Section 2.2) keeping one microphone serving as the
reference point. The simulated signals are then subjected to
noise addition at different noise levels. We investigated dif-
ferent distances from the reference microphone (viz. 50 cm,
70 cm, and 100 cm), and the actual and localization accuracy
was found the same as for 70 cm, rather than the computa-
tional cost that appeared as a consequence.

TABLE 6. Adaptive filters analysis for strong wind noise (WT stands for
Wavelets Transform, db1 represents Daubechies family with a soft
threshold at level 1, (SNR)Noise is the Noise Impregnation Level and
(SNR)Rec is the Reconstructed signal Quality).

The reference microphone was positioned with known ϕ
and θ relative to the acoustic source measuring 20◦ and 90◦

respectively. We assumed the that sound event source was in
a windy noise situation. The noise level was added with a
known (SNR)Noise at each node thereby lowering the acoustic
signal quality. These signals were used for the analysis of
localization-based experimentation for time delay estimation.
The signals are filtered and reconstructed using conventional
and adaptive filters before finally being used for time delay
estimation. Consequently, the experimentation was carried
out for direction of arrival (ϕ′, θ ′) estimation (estimated
azimuth and elevations angles) along with measuring the
quality of the reconstructed signal in terms of (SNR)Rec. It has
been found that the quality of the acoustic signal is important
as it is directly correlated with the localization accuracy. The
greater the strength of the acoustic signal, the higher the local-
ization accuracy resulting thereof. The localization precision
has been taken care of by considering the results to four
decimal places. Further, the experimentation using Hadamard
product has been found to perform remarkable, in normal as
well as extreme wind conditions, as compared with the other
two techniques. The conventional filters have been found
sensitive to noise. Consequently, good reconstructed signals
after filtering are desirable, using conventional filters, for
better localization of the acoustic source.

The localization performance is illustrated in Tables VII
& VIII for normal and strong windy noise using conven-
tional filters for reconstructed signals. The signals from each
microphone are noise impregnated at specific (SNR)Noise
to degrade the acoustic signal quality. The various noise
levels (SNR)Noise are used to generate the noisy acous-
tic signals in each of the microphones. The (SNR)Noise at
microphone-1 (reference microphone) was kept at 14 dB
assuming a high-quality signal of the acoustic source. Simi-
larly, (SNR)Noise was kept -2dB at microphone-2 considering
more noise affected signal, while microphone-3 was kept at
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TABLE 7. Localization study using conventional filters under normal wind
conditions (Sim. No. represents the Experimentation number, and Mic.
represents the microphone, ∅′ and θ ′ represent the estimated azimuth
and elevation angles respectively, and (SNR)Rec is the Reconstructed
signal Quality).

2 dB considering the noise impregnation level between the
first and third microphones. The (SNR)Noise was kept at -2 dB
at microphone-4 allowing for weak power to receive acoustic
signals. Table VII illustrates the localization performance
by using the Hadamard product-based time delay estimation
using reconstructed signals from conventional filters under
normal wind conditions. The median filter-based localization
accuracy has been found to be 99.95% using the median filter
(in the conventional filters group) which has been found to
be outclass in its class of filters. Although the localization
accuracy was computed and found the same for different
filters, the azimuth and elevation angles are marginally differ-
ent. The slight difference in these measurements is important,
especially in the case of surveillance systems. It was found
that with constant (SNR)Noise-based simulation using strong
windy conditions, the resulting localization performance was
up to 99.95% as illustrated in Table VIII.

Moreover, the localization results using reconstructed
signals, obtained from adaptive filters, are illustrated in
Tables IX & X. In these tables, the quality of reconstructed
signals in terms of (SNR)Rec is alleviated in the windy envi-
ronment at a specific noise contamination (SNR)Noise. The
various noise levels (SNR)Noise are used to generate the noisy
acoustic signals in each of the microphones or nodes. The
node-1 was kept at (SNR)Noise = 9 dB assuming the good
quality of the acoustic signal at the reference node, whereas
the node-2 was kept at noise level (SNR)Noise = −2 dB
assuming a severely damaged signal. However, at node-3
noise level was kept at (SNR)Noise = 1 dB assuming signal
quality between node-1&3. At node-4 the noise level was
(SNR)Noise = −4 dB assuming the lower capturing qual-
ity of the microphone along with the noise contamination
effect. Table IX shows the localization performance of the
Hadamard product using the reconstructed signals from adap-
tive filters under normal windy conditions. The localization
performance accuracy has been found to be 99.98% with

TABLE 8. Localization study using conventional filters under strong wind
conditions (Sim. No. represents the Experimentation number, and Mic.
represents the microphone, ∅′ and θ ′ represent the estimated azimuth
and elevation angles respectively, and (SNR)Rec is the Reconstructed
signal Quality).

wavelet denoising filters on reconstructed signals. It was fur-
ther observed that in the signal simulation based on specific
(SNR)Noise under extreme wind conditions, as illustrated in
TableX, the localization accuracy was dropped up to 99.95%
using the wavelet transforms-based denoising method show-
ing its consistent behavior under varying wind noise
conditions.

The performance of localization on reconstructing sig-
nals obtained from ABFF is accurate up to 98.03% under
normal windy environments. When compared with wavelet
denoising filters the ABFF filtering capability increases in
strong wind noise impregnation to the original signal but its
localization capability is less precise. This may be attributed
to the fact that in the presence of strong wind noise the
amplitude of the acoustic source is distinct and identifiable
easily. The localization performance using RLS and LMS has
similar behavior. However, in case the reconstructed signals
are based on LMS in strong wind noise, the localization
performance is reduced to 99.91%, whereas the RLS has
shown stable behavior in strong wind noise due to recursion
algorithms.

The filtering is expected to leave behind the desired fea-
tures of a gunshot signal, which often has noise-like con-
stituents, however, the accuracy of our results shows that
the effect of filtering has been found negligible as shown in
Tables VII-X.

D. CLASSIFICATION PERFORMANCE ANALYSIS OF
PROPOSED TECHNIQUE USING MFCC
The multi-dimension feature extraction is carried out using
MFCC statistics based on min, max, mean and standard
deviation. The MFCC has 156 coefficients (Figure 12) indi-
cating the dimensionality of the problem. We employed ML
algorithms for ideal (original signals) and noisy acoustic
environments as illustrated in Tables XI-XIV. In the case of
ELM, an empirical analysis of the number of neurons in the
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TABLE 9. Localization study using adaptive filters under normal wind
conditions (Sim. No. represents the Experimentation number, WT stands
for Wavelets Transform, and Mic. represents the microphone, ∅′ and θ ′

represent the estimated azimuth and elevation angles respectively, and
(SNR)Rec is the reconstructed signal quality).

hidden layer, as illustrated in Table XI, has been carried out
and the model was fine-tuned for our gunshot acoustic signals
framework. The activation functions that have been checked
include radial basis, triangular basis, sigmoid, sine, hardlim,
etc. The sigmoid function was selected with 55500 neurons in
the hidden layer as found optimum inTableXI. The optimum
results were found using ELMwith sequential degradation in
performance observed in datasets for original acoustic data
without noise addition, normal wind, and strong windy envi-
ronments with (SNR)Noise = 20 dB as 93.01% (Table XII),
91.61% (Table XIII), and 88.11% (Table IV) respectively.
The remarkable classification performance of ELM was

observed owing to the fact its ability to find the isolation
surface between classes having complex feature spaces with
overlapped events across classes using only the discriminant
features.

The notion of SVM for non-separable data in the feature
space is to raise the dimension of data until it becomes sep-
arable by a hyperplane. In our acoustic signal classification
problem, the features are raised to a higher dimensional space
with a polynomial kernel (order = 2) so that the features
become linearly separable. The maximization of margin with
this setup resulted in a classification accuracy of 90.91% as
shown in Table XII. The classification performance dropped
sequentially with mild to severe wind noise conditions. The
SVM accuracy dropped to 86.11% (Table XIII) and 77.08%
(TableXIV) for normal and strongwind noisemodels respec-
tively with (SNR)Noise = 20 dB.
The decision boundary formation of the NB classifier

depends on the posterior probabilities of acoustic events’
classes where the features are assumed to be conditionally
independent of one another. As a matter of fact, for explo-

TABLE 10. Localization study using adaptive filters under strong wind
conditions (Sim. No. represents the experimentation number, WT stands
for wavelets transform, and Mic. represents the microphone, ∅′ and θ ′

represent the estimated azimuth and elevation angles respectively, and
(SNR)Rec is the reconstructed signal quality).

TABLE 11. Empirical analysis for ELM parameterization under normal
windy conditions ((SNR)Noise = 20 dB); Nh represents the hidden
neurons, and 55500 neurons that correspond to the optimum accuracy
value.

sives data, the features are slightly correlated causing feature
overlapping, and this resulted in deteriorated performance.
A slight improvement in results is observable in the case
of extreme wind noise conditions. Here two competing pro-
cesses may be thought of as taking place simultaneously, one
successfully discriminating the acoustic events with assump-
tions and the second causing overfitting in the presence of
wind noise. The latter superseded the former after a sufficient
number of training instances were used in the training phase.

A robust and consistent learning pattern was observed for
the RF classifier even in strong windy conditions as shown
in Tables XII-XIV. In this case, the notion is to average
DTs of multiple depths, same trees subjected to different
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portions of the training partition thereby increasing diversity
and alleviating correlation between features. This results in
consistent performance in normal as well as extreme wind
noise conditions measuring accuracy in the case of RF above
80%. On a similar basis, the k-NN classifier performed rel-
atively better for k = 1 due to the correlated features found
with a single contiguous instance in good association with
the test event. As far as the classification rate in normal and
strong windy conditions is concerned, the k-NN classifier has
been found reliable and robust. However, in the strong windy
environment, there is slight improvement due to an exten-
sive range of feature boundaries with a higher probability of
selecting the correct label instance in close proximity to the
test instance.

E. CLASSIFICATION PERFORMANCE ANALYSIS OF
INDIVIDUAL FEATURE EXTRACTION TECHNIQUES
We investigated DWT [34], MFCC [30], GFCC [28]
and PNCC [31], [89] as the potential feature extraction
techniques. The analysis of individual feature extraction
techniques, viz. DWT, MFCC, GFCC, and PNCC, have
been plotted for classification performance as depicted in
Figure 13. We experimented with SVM, NB, k-NN, ELM,
and RF with the feature sets for DWT, MFCC, GFCC, and
PNCC. The overlapping features in GFCC, DWT, and PNCC
including their hybrids resulted in adverse classification per-
formance. Further, it has been found that the ELM using
MFCC for wind noise-contaminated gunshots signals appear
the most significant for classification purposes, resulting in
relatively outclass performance.Figure 13 (a) shows the indi-
vidual feature type performance in terms of accuracy for clas-
sifiers, viz. SVM (polynomial order 2), NB, k-NN (k = 1),
ELM (55500 neurons), and RF. The overall performance,
keeping in view the feature extraction type, has been found
to be excellent using ELM with MFCC features. Similarly,
as illustrated in Figure 13 (b), the F-score has been found
high relatively for ELM using MFCCs.

F. CLASSIFICATION PERFORMANCE ANALYSIS OF HYBRID
FEATURE EXTRACTION TECHNIQUES
We used a manifold combinatorial logic of two feature types
using individual features extracted through DWT, MFCC,
GFCC, and PNCC. It has been found using Figure 13 that
the MFCC boosted the features more as compared with other
feature extraction techniques, and resulted in an outclass
performancewhatevermay be the type of classifier. Similarly,
it is further inferred that the ELM exploited the MFCC fea-
tures more as compared with other classifiers. The results of
the hybrid of two feature types are illustrated in Figure 14.
However, not even fractional enhancement in performance
was observed with the formation of hybrids like DWT-MFCC
[35], GFCC-MFCC [36], andMFCC-PNCC [36]. The results
of the individualMFCC features for theAirborne dataset gave
the optimum performance as compared with other potential
feature extraction techniques.

FIGURE 13. Feature type analysis of DWT, MFCC, GFCC, and PNCC
techniques on an individual basis for computation of (a) accuracy, and
(b) F-score using classifiers: SVM, NB, k-NN, ELM, and RF for Airborne
dataset.

Each classifier is accompanied by its possible solution
domain, using discriminative features, culminating in perfor-
mance evaluation measures. When these features are merged,
they collectively may or may not generate better results.
When the features from different feature sets are combined,
if uncorrelated, they can improve discrimination improving
performance. The converse is also true. In our acoustic clas-
sification problem using the gunshots dataset, SVM, RF, and
k-NN classifiers resulted in relatively better performance as
compared with ELM in the hybrid of feature types on a
classification basis.

G. CLASSIFICATION PERFORMANCE ANALYSIS USING 1D
CNN ARCHITECTURES
The experimentation for CNN architectures was based on
DWT [33], [34], MFCC [30], GFCC [28], [29] and PNCC
[31], [89] feature sets. The results of MFCC were found
outclass and the entire section reports the results usingMFCC
architecture.

It is customary to evaluate the sensitivity of various com-
binations of fine-tuned architectures in case the performance
classification is to be optimized. Three architectures, light,
mild and extensive, resulted in performance evaluation as
illustrated in Figure 15 for original sound events, normal
wind noise model, and strong wind noise model respectively.
The parametric set used to run the analysis of the code is given
in Section II. G.
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FIGURE 14. Hybrid Feature type analysis of DWT, MFCC, GFCC, and PNCC
techniques for computation of (a) accuracy, and (b) F-score using
classifiers: SVM, NB, k-NN, ELM, and RF for Airborne dataset.

It is customary to evaluate the sensitivity of various com-
binations of fine-tuned architectures in case the performance
classification is to be optimized. Three architectures, light,
mild and extensive, resulted in performance evaluation as
illustrated in Figure 15 for original sound events, normal
wind noise model, and strong wind noise model respectively.
The parametric set used to run the analysis of the code is given
in Section II. G.

Figure 15 (a) shows the improved results with mild 1D-
CNN architecture compared with other options tried for a
multi-class acoustic classification problem structure. Further,
the addition of severity of wind noise in original acous-
tic signals also resulted in degradation of the classification
accuracy. Next to the mild architecture, light architecture
resulted in an excellent performance. The extra layers in
extensive architecture were not found competing with the
lighter architecture options with a relatively lesser number of
layers. Similarly, Figure 15 (b) shows the comparison of the
F-score, which is important for the performance analysis of
imbalanced classes. The same trend was found as encoun-
tered in the previous case that the mild 1D-CNN architecture
resulted in a relatively higher F-score, with the best results
found in the untreated noise model case. The addition of noise
resulted in the degradation of the signals.

The comparison of classification performance of CNN
architectures with ELM showed that the latter produced out-
class performance. The difference in efficiency is attributed
to the lesser number of instances available during the train-
ing phase even with instance augmentation application using

FIGURE 15. The three proposed 1D-CNN architectures for classification
performance analysis in terms of (a) accuracy, (b) F-score for original
acoustic events, normal and strong wind noise models.

SMOTE technique. Deep learning, in general, requires a
large number of training instances in which case the results
of classification problems suffer drastically otherwise. The
deep learning strategy, in this particular gunshot detection
problem, was not found as the ultimate solution as it was
expected to be.

H. COMPLEXITY ANALYSIS OF PROPOSED
CLASSIFICATION MODEL
It is a measure of the time complexity of the proposed frame-
work and is attributed to the assessment of resources (time
and space) that a specific algorithm uses while executing it
on a computer system.

In the tests conducted we took into consideration the com-
ponents to carry out the complexity analysis of the proposed
system of classification as illustrated in Table XV. The uni-
form basis has been selected with the optimum parameters
already used in driving the optimum classification results.

The overall reduced prediction time with outclass accuracy
per instance for gunshot type classification is achieved using
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TABLE 12. Original acoustic signals based comparison of performance.

TABLE 13. Normal wind impregnated signals based comparison of
performance.

TABLE 14. Strong wind impregnated signals based comparison of
performance.

ELM. The comparison of computational times for different
potential classifiers during training and testing phases is illus-
trated in Figure 16.

I. COMPARISON WITH EXISTING METHODS
We have compared our work for localization and classifica-
tion performance using state-of-the-art methods. The selec-
tion was made for recently used existing methods, and the
implementation was carried out using the Airborne dataset.

The comparison of our localization results with exist-
ing methods is shown in Table XVI. The classification
results for comparison with existing methods are illustrated
in Table XVII. The hybrids of different individual acoustic
feature extraction techniques have also been tried. The hybrid
of MFCC-PNCC with SVM (polynomial of order 2) has
been found remarkable (90.91% as accuracy), and next to our
proposed ELM-based technique (93.01% as accuracy). The

TABLE 15. Complexity analysis variables/parameters for the proposed
classification system.

FIGURE 16. Complexity analysis of the proposed system for different
classifiers used for Airborne dataset using augmentation by SMOTE.

lesser number of instances available in the dataset resulted
in relatively degraded classification performance of CNN
(88.42%).

J. CHALLENGES AND FUTURE RECOMMENDATIONS
The sound effects library used by us does not include the real
difference between a close recording at a shooting range vs.
a real recording at a considerable distance from the firearm.
Similarly, actual gunshot detection systems do not have a pre-
recorded single sound, but have to cope with the fact that gun-
shots are highly directional, have multi-path reflections from
the ground and other nearby surfaces, suffer diffraction due to
obstacles between the shooting position and themicrophones,
and vary substantially according to the orientation of the
gun’s muzzle concerning the microphones. In the future, the
real-time recordings of actual gunfire with varying distances,
and varying acoustical surroundings from the microphones
will be useful to find more realistic localization and range
finding of gunshots.

The time-delay detection of a signal depends upon iden-
tifying a specific feature that is recognized in each micro-
phone signal. In the presence of noise, there is a considerable
likelihood that distant gunshot sounds may be obscured, and
therefore less likely to be detected. The analysis with high
noise levels, greater than −3100 dB (Section 3.2), will be
carried out in the future.
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TABLE 16. Comparison of proposed localization results with existing
techniques using Gunshot dataset (locally recorded dataset have been
used by the researchers, while we used the publically Available Acoustic
dataset); NM stands for not mentioned.

TABLE 17. Comparison of proposed classification results with existing
techniques using original dataset.

The effect of echo in gunshots can only be analyzed in
known environmental conditions. In the future, the effect of
echo will be investigated in real-time scenarios. Furthermore,
the gun position in different directions either raised higher or
lower to the microphones, will also be figured out in future
studies. The robustness of the classification model, although
has been found to outclass against wind noise conditions,
however, other environmental noises like loud door slams,
and handclaps need to be investigated as the detection accu-
racy of false alarms.

IV. CONCLUSION
In this work, a framework is proposed for the localization
and classification of gunshots in normal and strong windy
environments for a surveillance system. The sensitivity anal-
ysis of normal and strong wind noise impregnated acoustic
signals has been conducted for gunshot events to localize
the acoustic event source and devise an ML model for the
classification of the imbalanced dataset. The filtration of the
simulated and noise impregnated acoustic signals has been
carried out using conventional as well as adaptive filters.

It has been observed through experiments that the recon-
structed signal quality using median filter, among conven-
tional filters’ class, is relatively more robust against specified
wind noise. However, the acoustic signals based on adaptive
filters quality are much improved as compared with the con-
ventional filters. In the adaptive filters class, the performance
of wavelet transforms-based denoising filters has shown rel-
atively promising results. Further, localization of the acoustic
source using Hadamard product approach in combination
with wavelet de-noising has been used first time for the
localization of gunshots in windy conditions. We have found
that the proposed frequency domain approach relatively out-
performs with a localization accuracy of 99.95%. It has been
found that the classification using ELM, not known before
for gunshots dataset to the best of our knowledge, has been
found robust with the classification performance in terms
of accuracy for original gunshots, normal- and strong-wind
noise impregnated events as (93.01%, 91.61%, and 88.11%)
respectively.
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