
Received 21 July 2022, accepted 8 August 2022, date of publication 16 August 2022, date of current version 23 August 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3199009

Neural Network Meta-Models for FPSO Motion
Prediction From Environmental Data With
Different Platform Loads
LUCAS P. COTRIM 1, RODRIGO A. BARREIRA 2, ISMAEL H. F. SANTOS 2,
EDSON S. GOMI 1, (Senior Member, IEEE), ANNA H. REALI COSTA 1,3, (Member, IEEE),
AND EDUARDO A. TANNURI 1
1Numerical Offshore Tank, Universidade de São Paulo (USP), São Paulo 05508-900, Brazil
2Petrobras, Rio de Janeiro 20031-912, Brazil
3Intelligent Techniques Laboratory, Universidade de São Paulo (USP), São Paulo 05508-900, Brazil

Corresponding author: Lucas P. Cotrim (lucas.cotrim@usp.br)

This work was supported in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES Finance Code 001), Brazil;
in part by ANP/PETROBRAS, Brazil, under Project 21721-6; and in part by CNPq under Grant 310085/2020-9 and Grant 310127/2020-3.

ABSTRACT The current design process of mooring systems for Floating Production, Storage, and Offload-
ing units (FPSOs) depends on the availability of the platform’s mathematical model and the accuracy of
dynamic simulations. These simulations then provide the FPSO’s time series motion which is evaluated
according to design constraints. This process can be time-consuming and present inaccurate results due
to the mathematical model’s limitations and the overall complexity of the vessel’s dynamics. We propose
a Neural Simulator, called NeuroSim, a set of data-based surrogate models with environmental data as
input, each model specialized in predicting different motion statistics relevant to mooring system design:
Maximum Roll, Platform Offset, and Fairlead Displacements. The surrogate models are trained by current,
wind, and wave data given in 3 hours periods at a Brazilian Offshore Basin from 2003 to 2010, and the
associated dynamic response of a spread-moored FPSO is obtained through time-domain simulations using
the Dynasim software. Hyperparameter Optimization techniques are performed to obtain optimal Artificial
Neural Network (ANN) models specialized in different platform drafts. Finally, the proposed models are
shown to correctly capture platform dynamics, providing good results when compared to motion statistics
obtained from Dynasim. We conclude that an ANN surrogate model can be trained directly on actual
measured metocean conditions and corresponding FPSO motion statistics to provide increased accuracy and
reduced computational time over traditional methods based on dynamic simulation. Moreover, the proposed
architecture can be integrated into an automated learning framework: The data-based surrogate models can
be continuously fine-tuned and updated with newly measured data, improving accuracy over time.

INDEX TERMS Artificial neural networks, floating offshore platforms, hyperparameter optimization, neural
architecture search, surrogate models.

I. INTRODUCTION
Current FPSO’s Mooring System Design consists in the mea-
surement of local environmental conditions over a represen-
tative time period and subsequent dynamic simulation of the
FPSO model subject to combinations of the extreme winds,
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waves, and currents expected in the next 10 to 100 years of
operation, which are obtained from statistical projections of
the measured environmental conditions. The maximum off-
sets and mooring line tensions are then obtained and verified
to remain within project limits safely.

This process, however, relies on the numerical simulation
of a dynamic model on software such as Dynasim, which
multiplies the approximated wave energy spectrum and the
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FPSO’s RAOs (Response Amplitude Operators) to obtain
the expected vessel’s movement. This process can be both
time consuming and present slightly inaccurate responses
compared to the actual measured movement.

Recently, the increasing performance of data-based
machine learning models in various domains in conjunction
with the high computational times of traditional models and
the unprecedented availability of data have motivated the
study and development of alternative models, denominated
surrogates, or meta-models. The primary motivation behind
such models is to directly model complex, computationally
costly dynamics through available data. Meta-models have
been successfully implemented as alternatives for Finite
Element (FE) and Computational Fluid Dynamics (CFD)
models for predicting mooring line tensions and submerged
riser’s vibration responses. Gumley et al. [7] successfully
implemented a neural network capable of predicting the
hourly mean offset of a turret-moored FPSO from envi-
ronmental conditions, showing that differences in mooring
configuration result in differences between predicted and
measured offset, which can be used to monitor mooring
system integrity.

A. OBJECTIVES
The main objective of this research is to design and validate a
set of data-based meta-models capable of predicting relevant
statistics associated with an FPSO’s dynamic response to
generic environmental conditions. The models are trained
and validated through data obtained from the simulation of
a spread-moored platform subject to 6 years of measured
currents, waves, and winds.

In the proposed framework, meta-models are trained to
correctly predict the maximum roll, offset and fairlead dis-
placements, obtained through dynamic simulation rather than
real FPSO responses. This process allows for validating the
proposed architecture’s performance without the interference
of sensor noise on measured platform responses. Results
indicate that the proposed set of meta-models correctly cap-
tures the simulated platform’s responses and suggest that a
similarly structured neural simulator trained on real FPSO
responses can be more accurate than traditional dynamic
simulation methods.

As the proposed set of artificial neural network
meta-models is trained directly on environmental conditions
and associated FPSO motion, no meaningful physical inter-
pretation of its underlying operations is available. However,
this allows the models to capture complex nonlinear dynam-
ics, such as varying mooring line damping and second-order
wave drift, approximated in dynamic simulation methods.
Overall, a data-based approach is expected to present three
main advantages in comparison to traditional methods:

• Increased accuracy: Training directly on real mea-
sured environmental conditions and the corresponding
platform movement responses avoids several approx-
imations and simplifications of physical phenomena

implemented on traditional simulation software. More-
over, the availability of a considerable volume of data
(over 18 thousand 3h periods) improves the accuracy of
trained data-based models.

• AutomatedLearning: The resulting system is designed
to be integrated with other design tools and is con-
tinuously updated with newly measured environmental
and platform motion data. These updates continuously
improve the meta-model’s accuracy over time.

• Reduced Computational Time: After training, the
computational time associated with evaluating a neu-
ral network prediction is significantly shorter than that
associated with time integration of the system’s dynamic
equations. As a result, given a set of different environ-
mental conditions, a set of data-based meta-models can
obtain relevant platform movement information faster
than traditional methods.

The proposed framework has two main applications: First,
in response-based Mooring System Design, it can be used
in conjunction with traditional simulation software to reduce
the computational time associated with the simulation of
hundreds of metocean conditions. Second, as a Digital Twin
monitoring tool, training with actual measured data and pre-
dicting real-timemotion statistics given incident environmen-
tal conditions.

The main contributions of this work are the proposal,
development and validation of a data-driven motion statis-
tics simulator, called NeuroSim, designed to be used as an
auxiliary tool in Mooring System Design and Seakeeping
applications. In comparison to similar research, the proposed
framework is trained on significantlymore data (over 18 thou-
sand environmental conditions), utilizes a robust hyperpa-
rameter optimization algorithm in order to determine optimal
ANN architectures and considers the issue of the FPSO’s
dynamic response being strongly dependent on platform load
(represented in this work by platform draft).

II. LITERATURE REVIEW
Over the past few decades, data-driven Machine Learning
(ML) models have presented an increasing performance in
various applications, from image recognition and product
recommendation to medical diagnosis and language transla-
tion. In areas such as Offshore Engineering, where complex
non-linear physical phenomena are involved, and there is a
high availability of data due to existing sensor measurements
required to ensure the safety of operations, this approach
has been particularly successful when compared to analytical
hydrodynamic models.

Machine Learning applications in Offshore Engineering
can be divided into two main categories: Mooring Failure
Detection and Response-based SeakeepingAnalysis. The for-
mer can be seen as a classification problem, in which models
are trained to correctly identify mooring line breakage given
the vessel’s motion, allowing for the appropriate repair of
compromised lines while saving expenses associated with
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ROV inspection. The latter is considered a regression task,
in which data-driven meta-models are trained to accurately
predict FPSO motion given incident metocean conditions to
verify that vessel’s responses such as roll, offset and line
tensions remain safely within design criteria.

Initial efforts in FPSO motion prediction through ML
models have focused on using simple Artificial Neural Net-
works (ANNs) to predict a small number of motion statistics.
Mazaheri [1] has trained Multi-Layer Perceptrons (MLPs)
with 1 Hidden Layer to predict an FPSOs surge, sway, and
total excursion over a 3h period given the following 6 envi-
ronmental variables: significant wave height, wave direction,
current speed, current direction, wind speed, and wind direc-
tion. The ANN models were trained on data obtained by
a Hydrodynamic mathematical model to reduce the com-
putational time associated with time-series simulations in
response-based FPSO design.

In the following decade, with the introduction and rise in
popularity of Digital Twins, ML models have been applied to
time-series motion prediction of FPSO, focusing on real-time
prediction of individual variables: such as heave [2], roll [3]
and coupled heave-pitch motion [4]. ML-based time-series
prediction has also been successfully applied to the prediction
of mooring line tensions [5], with the initial segments of
the tension time-series obtained by FE and the remaining by
Wavelet Neural Network meta-models, which resulted in a
significant reduction of computational time. de Pina et al. [6]
presented a comparison of different types of surrogate models
in the prediction of mooring line tension, classified according
to the time-series input. The models are Purely Autoregres-
sive, which utilizes the top tension series itself exclusively;
exogenous models that use surge, sway and heave time-
series; and Nonlinear Autoregressive models with Exogenous
inputs, which combine both present and past values of exoge-
nous series as well as past values of the desired series itself.

Gumley et al. [7] have successfully used ANNs to predict
a turret-moored FPSO’s mean offset given input variables
such as significant wave height, current speed, and vessel
draft. By changing mooring line configuration, a significant
difference between ANN’s predicted and measured motion
statistics is observed, which can be used to monitor the
integrity of an FPSOs mooring system. They determined the
optimal input variable combinations to be used to predict each
motion statistic.

Also with the objective of monitoring the integrity of an
FPSO mooring system, Saad et al. [8] compared two ANN
models. They show that the models were able to detect moor-
ing line failure in near real-time based on the comparison
between the FPSO movement measured by sensors and the
movement predicted by ANNs.

It is essential to notice that there is no universal standard-
ization of data-driven meta-models, unlike traditional meth-
ods based on hydrodynamic equations. Their structure varies
according to application and is often determined through trial
and error or hyperparameter optimization (Section VI-B),
which is exemplified by different authors presenting different

choices of input variables to be considered in each model
as shown in the papers presented above. The choice of
these variables is a significant challenge to ML applications
overall, with considerable research efforts directed towards
developing more general methods, reducing the necessity of
domain-specific knowledge and human intervention. With
this in mind, the framework described in IV attempts to be as
general as possible, making use of all available variables with
no assumption of their relevance to different output variables.

III. THEORETICAL CONCEPTS
This section aims to overview the theoretical foundations
required to understand the problem definition and proposed
methods presented in the next section. Section III-A describes
Dynasim’s Hydrodynamic model of an FPSO and how it
is used to generate simulations of platform motion when
subject to arbitrary environmental conditions. Section III-B
illustrates the concept of ANNs, particularly Multi-Layer
Perceptrons (MLPs), focusing on the process of learning
from data. Finally, section III-C refers to Hyperparameter
Optimization methods.

A. PLATFORM DYNAMIC MODEL
Mooring systems are used to provide stability to FPSOs
subject to incident currents, wind, and waves by anchoring
the platform through the use of mooring lines attached to
the sea bed. Such systems are not only a key component to
ensure the safety of offshore operations but also pose sev-
eral engineering challenges, from project and conception to
operation and maintenance. Dynamic simulation is a crucial
step in the design and subsequent monitoring of mooring
systems, allowing for predicting FPSOmotion given incident
metocean conditions and platform-specific variables such as
draft and the mooring configuration itself.

The dynamic simulation requires a hydrodynamic model
of the FPSO and parameterized wind and wave energy spec-
trums: The former is obtained by calculating hydrostatic
properties of the vessel given its geometry, such as its Mass
Matrix and Center of Gravity (CG) position, which is used
in conjunction with the vessel’s mesh to determine hydrody-
namic coefficients of added mass, radiation damping, first
order and mean drift wave forces for each platform draft.
A hydrodynamic model then calculates the vessel’s Response
Amplitude Operators (RAOs), which are essentially transfer
functions used along with wave energy spectrums to deter-
mine the amplitude of FPSO motion. The latter is obtained
by data that comes from a hindcast model of the area, cali-
brated by a large number of measurements by wave radars,
anemometers, wave buoys, and current meters that are either
installed in the platforms or moored to the seabed.

Simulation results consist in the 6 Degrees of Freedom
(DoF) time-series motion of the platform, which are mea-
sured at a North-East-Down (NED) geographic reference
frame and, given the platform’s heading, can be converted to
the following 6 DoF (Figure 1):
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FIGURE 1. Illustration of the 6 DoF of a marine vessel.

FIGURE 2. FPSO platform at Brazilian coast (source:
https://petroleohoje.editorabrasilenergia.com.br/p-50-passa-por-
reparos).

1) Surge: Longitudinal motion,
2) Sway: Sideways motion,
3) Yaw: Rotation about the vertical axis,
4) Roll: Rotation about the longitudinal axis,
5) Pitch: Rotation about the transverse axis,
6) Heave: Vertical motion.

Simulations are performed on a model of a spread-moored
FPSO located at the Brazilian coast similar to the platform
illustrated in Figure 2, the platform’s main variables are given
by Table 1. Figure 3 illustrates the simulated platform as
viewed in the Dynasim software interface, where mooring
lines are presented in blue and risers in green.

TABLE 1. Main variables of simulated FPSO.

FIGURE 3. FPSO platform in Dynasim interface.

FIGURE 4. Diagram of an artificial neuron.

B. ARTIFICIAL NEURAL NETWORKS
Artificial Neural Networks (ANNs) are mathematical models
inspired by biological neural networks in which neurons are
interconnected in a layered structure. Their output signals are
obtained by applying a nonlinear activation function to the
weighted sum of their input signals. Figure 4 illustrates the
model of a single artificial neuron.

Let x ∈ RN be an input vector and fW(x) be a
single-hidden-layer ANN parameterized by weights W =

{W(1),W(2)
}, where W(1)

∈ RM×N are the weights associ-
ated with connections from input layer to hidden layer and
W(2)

∈ RK×M are the weights associated with connections
from hidden layer to the output vector y ∈ RK . For a regres-
sion MLP with activation function h in the hidden layer and
a linear activation function in the output layer, the network’s
k-th output, yk , is given by:

yk = fk (x|W) =
M∑
j=1

w(2)
kj h

( N∑
i=1

w(1)
ji xi + w

(1)
j0

)
+ w(2)

k0 , (1)

where the weights W(1)
= {w(1)

ji } and W(2)
= {w(2)

kj } are
shown in scalar form in Equation 1 in order to explicitly
illustrate the calculation of output yk .

Given a dataset D = {x(i), y(i)}NDi=1 comprised of ND sam-
ples and with known inputs x(i) ∈ RN and outputs y(i) ∈ RK ,
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the process of training anANN consists in finding the weights
W that minimize a loss function, typically the Mean Squared
Error (MSE) given by:

L(W) =
1
ND

ND∑
i=1

[ 1
K

K∑
k=1

(
y(i)k − fk (x

(i)
|W)

)2]
, (2)

where K is the number of output neurons and fk is given by
Eq.(1). This can be done by performing gradient descent on
the loss function and updating the weights in the direction that
minimize it: W ← W − α∇L(W), where α is the learning
rate. The gradient of the loss function with respect to the
weights ∇L(W) is found by back-propagation of the error
through the network.

C. HYPERPARAMETER OPTIMIZATION
Hyperparameters are parameters used to control the training
process itself. Instead of being learned as are the network
weights, they are fixed during training and define the model’s
architecture or learning algorithm itself. The appropriate
choice of hyperparameters is problem-specific and of fun-
damental importance in developing robust models with high
generalization capability. Examples of ANN hyperparame-
ters are:
• Network architecture: Number of hidden layers and
number of neurons in each layer.

• Activation Function: The activation function h : R→
R used in hidden-layer neurons.

• Number of Epochs: The number of times the entire
training dataset is passed to the network during training.

• Batch size: The number of samples in each training
batch used to approximate the gradient of the loss func-
tion.

• Optimizer: The gradient estimation algorithm imple-
mented during training.

Hyperparameter Optimization (HO) consists of the general
process of determining a model’s optimal hyperparameters
for a given task. Finding the optimal hyperparameters for
an ML model has always been an essential yet demanding
and time-consuming task. Recently, new methods have been
developed to automate these tasks, significantly reducing the
human effort required to optimize models [9] and thus cre-
ating the field of Automated Machine Learning (AutoML).
The positive results obtained by ANNs and Deep Learning
in recent years motivated the development of Neural Archi-
tecture Search (NAS), a sub-field of AutoML dedicated to
optimizing ANN architectures specifically.

NAS methods can be defined by three dimensions [10]:
a search space SS , which bounds the possible architectures
evaluated during NAS; a performance estimation strategy,
which defines an objective function C used to evaluate model
performance during the search process; and a search strategy,
which determines how the algorithm explores the search
space. The search space and performance estimation strategy
are manually defined to obtain the best optimization perfor-
mance for the shortest execution times and to ensure that the

models generated by this process can generalize to unseen
data.

Bayesian Optimization (BO) is one of the NAS techniques
and it consists of two key components: a probabilistic sur-
rogate model S of the objective function C ; and a policy P,
denoted as acquisition function, for selecting new parameters
based on the surrogate model. In each trial, an evaluation of
C updates the surrogate model S, allowing P to select a new
architecture M most likely to achieve the objective of the
optimization for the subsequent trial. The general procedure
is shown in Algorithm 1.

Algorithm 1: Bayesian Optimization
Input: search space SS , objective function C , initial

architectureM0, surrogate model S, acquisition
function P

Output: search historyH
M←M0;
H← {〈M0,C(M0)〉};
Initialize the surrogate model S;
for i = 1, 2, . . . , k − 1 do

M← arg maxM′∈SSP(M
′, S);

H← H ∪ {〈M,C(M)〉};
S ← updateSurrogate(S, 〈M,C(M)〉);

end

The surrogate model is used to estimate the objective func-
tion C , and can be generated in several ways. Often Gaussian
Process regression is used [11]. However, there has been a
rise in the use of Tree-structured Parzen Estimator (TPE),
as it is more flexible to non-numerical search spaces, can
scale to bigger search spaces with a smaller computational
cost, and has been shown to achieve better performance on
some optimization problems [9], [12]. Various choices are
also available for the acquisition function, the most common
being Expected Improvement (EI). This method is based on
selecting the model with the best estimated performance at
each turn. EI is calculated using the surrogate model, and the
architecture with the most significant EI is selected for evalu-
ation in the subsequent trial. A more thorough discussion on
Bayesian Optimization can be found in [11] and [12].

IV. NeuroSim ARCHITECTURE
NeuroSim is an intelligent, data-driven FPSODynamics Sim-
ulator based on Artificial Neural Networks with two main
applications in offshore engineering:
• Mooring System Design Tool: The proposed Neural
Simulator can be trained on several highly accurate
simulations of centenary critical metocean conditions,
which are typically time-consuming to obtain through
traditional time-series dynamic simulation. After train-
ing, NeuroSim can provide design variables such as
maximum FPSO roll or center of gravity offset asso-
ciated with unseen conditions instantaneously, without
computing the entire motion and extracting these values.
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As a result, NeuroSim is a valuable auxiliary design tool
as it allows for a higher number of metocean conditions
to be evaluated.

• Monitoring of an Operational FPSO: On operational
platforms, NeuroSim can be used to convert a batch
of future expected metocean conditions into expected
motion statistics. This applicability provides an extra
layer of safety as critical short-term motion is pre-
dicted, and appropriate measures can be taken. In this
case, NeuroSim’s meta-models are continuously trained
through FPSO motion already measured by IMU and
GPS systems.

This section aims to illustrate NeuroSim’s overall archi-
tecture, explaining its functionality both in response-based
design and in seakeeping applications as well as detailing
inputs and outputs of the system. We present the proposed
framework first as a high-level, black box model capable of
predicting FPSOmotion statistics from incident environmen-
tal conditions in Figure 5. We then illustrate individual Neu-
roSim modules and one of the ANN models that constitute
them in Figures 6 and 7.

During loading and offloading operations, FPSO tank lev-
els go through significant variations. This process results in
variations to platform load, which can be measured by the
draft, the vertical distance between the waterline and the
bottom of the vessel’s hull, also known as the keel. An FPSO’s
dynamic response to incident metocean conditions is highly
dependent on its draft, as it is related to fundamental prop-
erties of the vessel, such as its mass, natural period, and the
position of its Center of Gravity (CG). As a result, data-driven
predictive models need to account for the draft’s influence in
FPSO motion.

Figure 5 illustrates a diagram of the proposed NeuroSim’s
architecture as an extension of the ML framework presented
in [13]. The current framework differs from it in three main
ways:

• Consideration of different platform loads: NeuroSim is
trained on FPSO motion associated with a wide spec-
trum of loads represented by the 8m to 21m draft range.

• Utilization of a more efficient HO method in Bayesian
Optimization over the previously implemented Grid
Search approach, which investigated only a small num-
ber of ANN architectures.

• Extended analysis and additional experiments: The cur-
rent work presents ensemble regression results, analyzes
the sensitivity of the trained models to draft variations
and applies them to unseen, harsh environmental condi-
tions expected in 1, 10, 30, 50 and 100 years periods.

The system is composed of a set of 14 individual Neu-
roSim Modules, each specialized in the prediction of plat-
form dynamics when subject to a specific draft, ranging
from 8m to 21m. NeuroSim takes a batch of measured
environmental conditions representative of 3h time periods
as input. A switching mechanism then takes the measured
platform draft and directs the environmental conditions to

FIGURE 5. NeuroSim architecture diagram.

the appropriate NeuroSim module, which has been trained
and validated to predict motion statistics given the measured
draft accurately. This module provides each of its internal
meta-models with the incident metocean conditions, and each
of them predicts one of the four output variables that describe
FPSOmotion statistics: Maximum Roll, Maximum Center of
Gravity Offset, and Maximum Fairlead Displacements.

This modular architecture is highly scalable, as it allows
for new meta-models to be added in the future to predict
other relevant variables without compromising previously
trained ones. It also provides the systemwith more flexibility,
as different modules have different hyperparameters which
define their structure and help them specialize in the accurate
prediction of FPSO motion for each draft. A single model
appropriate for all platform drafts would not perform as well
in the entire spectrum.

Figure 6 illustrates the structure of an individual
draft-specific NeuroSim Module, specialized in the predic-
tion of motion statistics given incident metocean conditions
for a single given platform draft. The NeuroSim Module
comprises four Neural Network meta-models, one for each
of the desired output variables. During the Hyperparameter
Optimization pipeline, the architectures of each meta-model
are determined throughBayesianOptimization to ensure each

FIGURE 6. Diagram of NeuroSim Module specialized in the prediction of
FPSO’s dynamic responses for individual draft.
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is appropriate for predicting its corresponding output variable
given the module’s FPSO draft.

It is crucial to notice that, while some input variables are
more relevant for predicting specific output variables, the
same environmental conditions are applied identically to all
four meta-models. For instance, Maximum Roll Amplitude
is more affected by significant wave height, period, and
direction than by wind. However, the same 10 input variables
described in the Data Preparation pipeline in section V-B
are used in all models. This procedure is done because, dur-
ing training, the Neural Network meta-models automatically
learn an abstract representation of inputs related to this phys-
ical behavior, while manually changing the input variables
of different meta-models through expert domain knowledge
may lead to biased or inaccurate models.

Finally, a draft-specific NeuroSimModule is comprised of
four individual ANNs, each designed to predict one of the
four output variables: Maximum Roll, Maximum Center of
Gravity Offset, and Maximum Parallel and Vertical Fairlead
Displacements. Figure 7 illustrates the Multi-Layer Percep-
tron ANN specialized in the prediction of Maximum FPSO
Offset for a given platform draft. In this work, MLPs with
three hidden layers are considered and Bayesian Optimiza-
tion is employed in order to determine the optimal number of
neurons in each hidden layer for each of the 56 ANN models
(1 module for each of the 14 drafts with 4 ANNmodels each).

FIGURE 7. Diagram of an MLP Neural Network designed to predict the
Maximum Center of Gravity Offset of the FPSO given incident metocean
conditions.

V. PROPOSED METHODS
This section describes the methodology adopted in this
research, indicating how the theory discussed in section III
is applied to the problem of FPSO motion prediction through
data-driven meta-models. The main objective of this section
is to illustrate the project workflow adopted and how the
NeuroSim architecture presented in Section IV is built, from
the obtention of themeasured environmental conditions to the
preparation of the NeuroSim training dataset and validation
of results. Project Workflow decomposition is highly corre-
lated to the implemented code architecture, with each stage
associated with its corresponding Kedro pipeline module.

First, Section V-A details the metocean conditions sim-
ulated. Then, Section V-B describes each of the project’s
pipelines following the simulation of metocean conditions
on Dynasim. Finally, Sections V-C and V-D describe the
implemented HO algorithm and the error metrics used to
validate trained models, which are used to discuss results in
section VII. Figure 8 depicts the project’s workflow in its five
sequential pipelines:

1) Post Processing.
2) Data Preparation.
3) Hyperparameter Optimization.
4) NeuroSim Training.
5) NeuroSim Test.

FIGURE 8. Project Workflow Diagram illustrating five pipelines:
Post-processing, Data Preparation, Hyperparameter Optimization,
NeuroSim Training, NeuroSim Test.

The NeuroSim Project workflow is subdivided into mod-
ular sequential pipelines not only as a way to better segment
code in terms of functionality, resulting in easier debugging
and less intrusive updates, but also to allow the execution of
individual desired pipelines.

A. METOCEAN CONDITIONS
Petrobras Oceanography Group provided the environmental
data in 3h periods from November 2003 to December 2009 at
the Brazilian coast. The data comes from a hindcast model of
the area, calibrated by many measurements by wave radars,
anemometers, wave buoys, and current meters that are either
installed in the platforms or moored to the seabed. The fol-
lowing variables can describe Metocean conditions:

1) Current velocity: Mean current velocity vc (m/s).
2) Current direction: Current propagation angle θc (◦).
3) Wind velocity: Mean wind velocity vw (m/s).
4) Wind direction: Wind incidence angle θw (◦).
5) First Wave component height: Significant wave

height Hs1(m) corresponding to highest energy wave.
6) First Wave component period: Peak Period Tp1(s)

corresponding to highest energy wave.
7) First Wave component direction: Incidence angle θ1

(◦) corresponding to highest energy wave.
8) Second Wave component height: Significant wave

height Hs2(m) corresponding to second highest energy
wave.
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TABLE 2. Samples of measured metocean conditions.

9) Second Wave component period: Peak Period Tp2(s)
corresponding to second highest energy wave.

10) Second Wave component direction: Incidence angle
θ2 (◦) corresponding to second highest energy wave.

Table 2 shows samples of the measured metocean data
and the corresponding values of each input variable. Due to
sensitive data restrictions, the complete dataset comprised of
all 3h periods used in this work cannot be fully disclosed. It is
important to notice that two wave components were chosen
as input variables in addition to wind and current variable
since sea states on the Brazilian coast are typically bimodal.
Applying the same framework for FPSOs in different loca-
tions may be simplified to include a single wave component
without significant performance loss.

B. PROJECT WORKFLOW
1) P01: POST-PROCESSING
After Dynasim simulation of the 18k measured metocean
conditions and storage of the corresponding FPSO dynamic
responses in h5 files, the Post-processing pipeline performs
time-series analysis and stores the desired motion statistics in
a csv file.

Figure 9 illustrates 20 minutes of the roll angle time-series
obtained from the Dynasim simulation of environmental con-
dition 2680. During the first seconds, the resulting motion
is highly dependent on initial configuration, while subse-
quent dynamics are governed by the incident environmental
conditions. In order to isolate the effects of environmental
conditions, a cutoff time tcutoff of 3600s was implemented,

FIGURE 9. Roll angle time-series corresponding to simulation
2680 obtained from dynasim.

and this pipeline analyzes the remaining 6 DoF time-series to
extract the following output variables:
• Roll Amplitude φmax : Maximum absolute roll angle
given by:

φmax = maxt>tcutoff |φ(t)− φeq| (3)

where φ(t) is the roll motion time-series of the vessel
and φeq is the equilibrium position of the roll degree of
freedom, given by the vessel’s average roll angle when
no incident environmental conditions are present.

• Platform Offset XCG,YCG: Global X and Y positions
of the platform’s center of gravity associated with max-
imum observed offset:{

XCG = X (t∗)
YCG = Y (t∗),

where

t∗ = argmax
t>tcutoff

∥∥(X (t),Y (t))− (Xeq,Yeq)
∥∥
2 . (4)

(X (t),Y (t)) and (Xeq,Yeq) describe the time-series of
the FPSO’s center of gravity over time and its equilib-
rium position when it is subject to no environmental
conditions respectively, measured on a global North-
South/East-West reference frame.

• Maximum Parallel Fairlead Displacements pimax :
Maximum parallel displacements of each fairlead in
the direction parallel to the XY-projection of the corre-
sponding mooring line during equilibrium, as illustrated
in 10.

pimax = maxt>tcutoff pi(t) (5)

where pi(t) is the time-series motion of the i-th fairlead
projected on the vector−→v ai,fi = fi,eq−ai, with fi,eq and
ai denoting the equilibrium position of the i-th fairlead
and the fixed position of the corresponding anchor on
the seabed respectively.

• Maximum Vertical Fairlead Displacements zimax :
Maximum vertical displacements of each fairlead,
as illustrated in Figure 10, with

zimax = maxt>tcutoff zi(t), (6)

where zi(t) is the time-series motion of the i-th fairlead
projected on the global vertical axis Z.

Figure 10 shows a pi,wi, zi reference frame in which
Maximum Fairlead Displacements are determined. Fairlead
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motion in this reference frame is obtained by applying a time
dependent transformation of coordinate frames to the 6 DoF
{X (t),Y (t),Z (t), φ(t), θ(t), ψ(t)} time-series generated by
Dynasim simulation at each time step.

The product of pipeline P01: Post-processing is a csv file
for each platform draft from 8m to 21m in which environ-
mental conditions and the corresponding four variables above
that represent the resulting FPSO motion are stored. Table 3
illustrates the output variables obtained in Pipeline P01 for
the environmental conditions in Table 2.

TABLE 3. Samples of output variables obtained through Pipeline P01.

FIGURE 10. Visualization of a local {pi , wi , zi } fairlead reference frame.

2) P02: DATA PREPARATION
In order to improve the numerical convergence of
learning algorithms, several data preparation techniques
are applied to the data prior to training. Let e =

(vc, θc, vw, θw,Hs1,Tp1, θ1,Hs2,Tp2, θ2) denote a measured
metocean condition as described in Section V-A. As angular
variables are defined in [0◦, 360◦], their periodic property
implies that values such as 0.1◦ and 359.9◦ are functionally
close despite being numerically distant. This discrepancy
can cause slow convergence of the ANN as similar seastates
may be far apart in the network input space. As a result, the
projections of current velocity, wind velocity, and significant
wave height in the N-S and E-W directions were used, rather
than their magnitude and incidence angle, so that the same
seastate can be represented as:

eproj = (vc sin(θc), vc cos(θc), vw sin(θw), vw cos(θw),

Hs1 sin(θ1),Hs1 cos(θ1),Tp1,

Hs2 sin(θ2),Hs2 cos(θ2),Tp2).

This process, known as the projection of environmen-
tal conditions, is illustrated in Figure 11. Since the values
of different input variables have different orders of mag-
nitude, e.g., local wind velocity can be as high as 20 m/s
while current velocity is lower than 1 m/s, a Gaussian
Standardization method was applied to transform the pro-
jected environmental conditions into the actual model’s input
data:

xi =
eproji − µi

σi
, i = 1, . . . , 10,

where µi and σi are the mean and standard deviation of the
i-th variable on the complete dataset. This process scales
input variables and improves numerical convergence.

FIGURE 11. Visualization of Environmental Condition Projection for
incident current (blue) and wave (red).

3) P03: HYPERPARAMETER OPTIMIZATION
The third pipeline is responsible for determining the optimal
Neural Network Architectures for each meta-model and each
FPSO draft through a Hyperparameter Optimization algo-
rithm known as Bayesian Optimization (BO), described in
Section V-C. In this project, BO was applied to determine the
optimal number of neurons in each of the three ANN hidden
layers, while remaining hyperparameters such as activation
function, optimizer, batch size, and the number of training
epochs were kept fixed at appropriate values found through
trial and error and expert knowledge [13].

4) P04: NEUROSIM TRAINING
Once the optimal model architectures, defined by the pro-
posed set of hyperparameters, have been determined exten-
sive training with 90% of the entire dataset is performed,
and the trained models are saved for testing in the fol-
lowing pipeline. During this training, the Train+Validation
dataset was used, and proposed neural networks described
in Tables 9 and 10 were trained for 5000 epochs as
opposed to the 200 epochs used during Hyperparameter
Optimization.
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5) P05: NEUROSIM TEST
Finally, the proposed models for each desired output variable
and each FPSO draft are tested in 10% of the original dataset,
which is comprised exclusively of unseen metocean condi-
tions. This test ensures the resultingmetrics are representative
of the proposed models’ generalization performance when
applied to realistic scenarios where measured environmental
conditions were not used during training and validation.

The main objective of this pipeline is to generate analytic
results to verify NeuroSim’s performance, comparing error
metrics with those of traditional simulation methods and
validating the proposed approach for a data-driven FPSO
dynamics simulator. These results are visualized numerically
and graphically, as discussed in Section VI.

C. NEURAL ARCHITECTURE SEARCH
This section aims to detail the Hyperparameter Optimization
algorithm implemented in pipeline P03. Initially, a prelimi-
nary study indicated appropriate values of hyperparameters
such as activation function, batch size, and the number of
training epochs [13], [15], showing that an optimization of
the ANN architecture (NAS) presented the highest potential
for model performance improvement. As a result, subsequent
research focused on NAS methods in order to determine
the optimal number of neurons in each hidden layer of the
final ANN models [14], where the following methods were
compared for the CG Offset meta-model:

• Random Search (RS)
• Simulated Annealing (SA)
• Bayesian Optimization (BO)

Figure 12 illustrates a comparison of the three investigated
NAS methods in [14], showing BO and RS performed a
more comprehensive search of the proposed search space.
At the same time, SA’s initial architecture tends to impact
evaluated architectures over its optimization trials. Overall,
BO yielded the best models and was ultimately chosen as
the NAS method for this work. In Section VI-B we detail the
adopted procedure.

D. ERROR METRICS
The definition of precise error metrics allows for parameter
tuning during training, the numerical comparison of different
ML models during validation, and indicates expected error
ranges for the final models during testing. As presented
in Section III-C, error metrics are also used to define the
Objective Function used in BO. As a result, despite the
insights provided by visualization tools, error metrics remain
of paramount importance and must be precisely defined.
In this work, meta-model performance is evaluated by the
following error metrics:

• MSE: TheMean Squared Error is obtained by averaging
the squared differences between model predictions (ŷi)
and true values (yi): MSE = 1

ND

∑ND
i=1(yi − ŷi)

2

• RMSE: The Root Mean Squared Deviation is analogous
to the standard deviation and is obtained by taking the

square root of the Mean Squared Error. It has the same
unit as the output variable: RMSE =

√
MSE

• MAE: The Mean Absolute Error is the average of the
absolute differences between true and predicted values
and has the same unit as the output variable: MAE =
1
ND

∑ND
i=1 |yi − ŷi|

• Max Error: Overall maximum error observed over test
set, highly sensitive to outliers:
MaxError = maxi=1,...,ND |yi − ŷi|.

VI. EXPERIMENTS
The main objective of this section is to describe the exper-
iments performed according to the Methodology illustrated
in Section V-B. Firstly, Section VI-A details the dataset
generation process performed in pipelines P01 and P02,
specifying the implemented train-validation-test split. Then,
Section VI-B illustrates the results of pipeline P03, namely
the optimal ANN architectures for each of the 4 meta-models
and 14 different platform drafts, while Section VI-D pro-
vides a local and global analysis of model sensitivity to draft
variations.

A. DATASET GENERATION
The motion of a spread-moored FPSO with 18 mooring lines
was simulated in Dynasim subject to each metocean condi-
tion and for the 14 draft values between 8m and 21m. The
generated time series were then processed according to the
process described in Section V-B for pipeline P01. For each
metocean condition, the corresponding 4 output variables of
interest were extracted: Maximum Roll Angle, CG Offset,
and Maximum Parallel and Vertical Fairlead Displacements.

Before constituting the meta-models Dataset, the output
variables were plotted as a function of the most relevant
environmental variables to check for potential errors in the
simulation process and verify cohesion in terms of the under-
lying physical phenomena. Figures 13 and 14 illustrate, for
all metocean conditions, the maximum observed roll angle
and CG offset, respectively. It is possible to notice that
Roll Amplitude tends to increase as significant wave height
increases and as its period approaches the FPSO natural
period, while the two peaks in the direction plot correspond
to perpendicularly incident waves relative to the platform’s
heading of 210◦. In the CG Offset plot, higher offset values
are observed in the third quadrant (South-East), which is
compatible with typical metocean conditions.

After the extraction of output variables and prelimi-
nary analysis of their values, metocean conditions are pro-
jected and normalized according to the process described
in pipeline P02 (Section V-B). This procedure results in
14 different datasets, one for each platform draft, with
18007 metocean conditions and the corresponding motion
statistics of interest obtained through dynamic simulation.
In order to appropriately evaluate the performance of trained
models in the upcoming stages of the project, this dataset
was split into a Training+Validation set (used for 5-fold
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FIGURE 12. Visualization of evaluated ANN architectures over optimization trials (colorbar) for three different NAS methods: SA (left),
BO (center) and RS (right). The 3 axis correspond to the number of neurons in each ANN Hidden Layer.

FIGURE 13. Visualization of Roll Amplitude values as a function of
significant wave height (top), wave peak period (middle) and wave
direction (bottom).

FIGURE 14. Visualization of CG Offset values for all 18k environmental
conditions in global X (East-West) and Y (North-South) axis.

Cross-Validation) and a separate Test set used exclusively to
assess the performance of the final models (Section VI-C).
Figure 15 illustrates the implemented dataset split, indicating
the number of samples in each set.

B. BAYESIAN OPTIMIZATION
After processing the inputs through projection and standard-
ization and splitting the Dataset into Training, Validation,
and Test sets, NAS methods were used to determine the

FIGURE 15. Diagram of dataset split for 5-fold cross-validation.

optimal meta-model architectures for each output variable
and platform draft. As each of the 14 draft-specific Neu-
roSim modules contains 4 ANNs, each one responsible for
predicting one of the four relevant motion statistics, a total
of 56 ANN architectures were optimized in pipeline P03.

Initially, a simple Grid Search algorithm was used,
in which a reduced number of candidate architectures are
trained, and the model with minimum Cross-Validation
MSE was chosen [13]. This approach, however, is highly
time-consuming and evaluates only a small number of archi-
tectures. Then, Simulated Annealing (SA) was implemented
to encourage the exploration of new architectures during the
initial trials and convergence to optimal regions of the search
space. SA presented better results, exploring better quality
ANN architectures overall, but with highly correlated to the
initial random architecture (Figure 12).

Finally, BayesianOptimization (BO)was executed through
the Python Optuna library. It solved the issue of exploring
only ANN architectures close to the initial random model.
The first 10 trials are randomly generated and subsequent
architectures explored are not necessarily close to each other
but correspond to regions of the search space in which the
Expected Improvement (EI) is maximized, given the cur-
rent approximation of the objective function (section V-C).
It is possible to notice that ANN architectures vary consid-
erably with platform draft and meta-model output variable,
section VI-D explores the sensitivity of each model to draft
variations.
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TABLE 4. Summary of Hyperparameters used in Bayesian optimization.
HL 1-3 denote the number of neurons in Hidden Layers 1-3. *: Parallel FD
meta-model exceptionally uses a sigmoid activation Function instead of
ReLU due to better observed results [13].

Since BO showed better results, yielding ANN archi-
tectures that presented smaller Cross-Validation MSEs in
reduced computational time [14], it was chosen as the main
NAS method for pipeline P03 in this work. It is important to
notice that, while BO has been applied in this research to opti-
mize exclusively the number of neurons in each of the three
hidden layers of the ANN models, it is a general optimiza-
tion algorithm which can be applied to the optimization of
any other hyperparameters. Ma et al. [16] have successfully
applied BO in the problem of NAS for Convolutional Neural
Networks (CNNs), which are significantly more complex
than MLPs. Additionally, there has been significant effort in
recent work to determine the importance of different hyper-
parameters in NAS for MLPs, allowing for the reduction of
the search space and more efficient algorithms [17].

Table 4 summarizes parameter values used for Bayesian
Optimization. An initial analysis of the model’s training
curves indicated that 200 training epochs during HO is an
appropriate value, providing representative measurements of
a model’s performance without leading to unfeasible training
times. Hyperparameters such as batch size, optimizer, and
activation functions were found in [13]. After 500 BO tri-
als, optimal ANN architectures were found for each model
and platform draft, as illustrated in Tables 9 and 10 in
Appendix VIII.

C. NeuroSim TEST
Once the optimal ANN architectures were found, the cor-
responding models are trained with the Train+Validation
dataset (Figure 15) for 5000 training epochs, and their perfor-
mance is evaluated using the proposed metrics (section V-D)
applied to the Test dataset, comprised of unseen metocean
conditions.

1) MAXIMUM ROLL
The Maximum Roll meta-model’s performance is illustrated
in Figure 16, which presents three scatter plots of Roll
Amplitude as a function of significant wave height, period,
and direction, respectively. In each plot, individual points

represent metocean conditions, values predicted by Dynasim
are shown in blue while NeuroSim predictions are shown in
orange.

In order to better visualize error regions as a function of the
same set of input variables, Figure 17 illustrates a colormap
of the associated absolute error between Dynasim and Neu-
roSim. In this plot, red indicates higher errors (higher than
0.20◦) while blue indicates prediction errors in the range of
0◦ to 0.1◦. An analysis of NeuroSim’s error plots for the 14m
draft Roll Amplitude meta-model leads to two immediate
conclusions:
• Good performance on critical cases: All metocean con-
ditions which resulted in maximum platform roll of
over 2.0◦ were accurately predicted with NeuroSim.
This result is positive, as highly accurate predictions of
roll motion for calm conditions are not as relevant in
mooring system design.

• Localized error spikes: NeuroSim’s Roll Amplitude
meta-model’s highest errors were observed on aminimal
number of incident metocean conditions. In other words,
there is a large gap between the first and second highest
errors. The condition which presented the highest error
corresponds to a 2.5m high-frequency wave with an
incidence direction parallel to the platform’s main axis.
In this case, NeuroSim’s predicted roll was higher than
the actual maximum roll measured by Dynasim. This
result is preferable to having multiple conditions with
poor prediction performance, as higher errors tend to be
highly uncommon.

FIGURE 16. Roll amplitude meta-model results as a function of
significant wave height (top), wave peak period (middle) and wave
direction (bottom) for 14m FPSO draft. Comparison between NeuroSim
meta-model (orange) and Dynasim values (blue).

FIGURE 17. NeuroSim roll amplitude meta-model error plot.
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2) MAXIMUM CENTER OF GRAVITY OFFSET
Similarly to the first meta-model, NeuroSim’s CG Offset
prediction results for an FPSO draft of 14m are plotted
in Figures 18 and 19. The former illustrates Dynasim and
NeuroSim predicted values for the X and Y position of the
maximum center of gravity offset, while the latter displays
a colormap of the prediction error. The convex hull that
encapsulates all offsets across the entire dataset is represented
as the dotted red line in both figures.

NeuroSim’s CG Offset meta-model presented relatively
low absolute errors in cases where the offset was more sig-
nificant, which tend to occur when incident currents present
higher velocity. This result is a positive outcome similar to
the Roll Amplitude meta-model, where accurate predictions
occur in critical cases. One possible explanation for this
behavior is that the neural network models find it more chal-
lenging to correctly predict the desired variables in calm sea
states as similar environmental conditions may lead to more
varied dynamic responses, while critical conditions may have
a narrower range of responses. This hypothesis is supported
by Figure 19 where points closer to the origin tend to display
more significant absolute errors (>3m).

FIGURE 18. CG Offset meta-model results at global XY reference frame
for 14m FPSO draft. Comparison between NeuroSim meta-model (orange)
and Dynasim values (blue).

Overall, NeuroSim’s CG Offset meta-model’s error is
within an acceptable range for almost all of the metocean
conditions tested. Error spikes of 8m are observed for only
two conditions in less densely populated areas of the plot,
indicating the model’s error is due to insufficient similar
training samples and resulting generalization issues in these
regions.

3) MAXIMUM PARALLEL FAIRLEAD DISPLACEMENTS
The last two meta-models, maximum parallel and ver-
tical fairlead displacements have predicted variables of
higher dimension than the previous two. Both outputs are
18-dimensional, as they contain numerical values for the
maximum displacements of each of the 18 fairleads in the

FIGURE 19. NeuroSim CG Offset meta-model error plot.

corresponding local reference frames. This result leads to
visualization issues when trying to plot NeuroSim’s perfor-
mance similarly to previous meta-models. As a result, the
Parallel Fairlead Displacement prediction results are plotted
in terms of the average value among mooring lines in a given
group. The 18mooring lines can be divided into four different
groups:
• Group 1: Lines 1-5 (bow-port)
• Group 2: Lines 6-9 (stern-port)
• Group 3: lines 10-13 (stern-starboard)
• Group 4: Lines 14-18 (bow-starboard)
Figure 20 contains four 3D scatter plots of the

group-average maximum parallel fairlead displacements
obtained through Dynasim simulation (blue) and predicted
by NeuroSim (orange). The output variable is plotted as a
function of the most relevant inputs, current velocity, and
direction for the more straightforward physical interpretation
of results. It is worth noting that taking the average maximum
displacements among line groups is a good approach for
visualization as the output variable presents slight variations
inside each group.

As expected, the typical local seastates and the resulting
FPSO dynamic motion are reflected in the overall behavior of
the Parallel Fairlead Displacement (FD) meta-model for each
line group. Groups 2 and 3 (stern) tend to display mostly pos-
itive values of maximum parallel FD, while groups 1 and 4
show negative output variable values. This behavior is appro-
priate given typical local seastates and the FPSO heading.
Additionally, NeuroSim presented predictions with small
errors when compared to Dynasim. These results are numer-
ically analyzed in chapter VII.

4) MAXIMUM VERTICAL FAIRLEAD DISPLACEMENTS
Finally, the performance of the final meta-model is evaluated
as the previous one. However, since no group-specific behav-
ior was observed, the maximum vertical fairlead displace-
ments (FD) are plotted as an average across all 18 lines, as a

86570 VOLUME 10, 2022



L. P. Cotrim et al.: Neural Network Meta-Models for FPSO Motion Prediction From Environmental Data

FIGURE 20. Maximum parallel fairlead displacement meta-model results
for each line group as a function of current velocity and direction for 14m
FPSO draft.

FIGURE 21. Maximum vertical fairlead displacements meta-model results
as a function of significant wave height and direction for 1m draft.
Comparison between NeuroSim meta-model (orange) and Dynasim
values (blue).

FIGURE 22. NeuroSim maximum vertical fairlead displacements
meta-model error plot.

function of the environmental variables it is most sensitive to,
significant wave height and direction (Figure 21).
Similar to CGOffset prediction, error spikeswere observed

on a small number of metocean conditions while most con-
ditions were predicted with high accuracy. Unlike the first

meta-models, however, NeuroSim’s prediction of maximum
vertical FD presented no regions of error concentration in
the input space, even in plots of different combinations of
input variables. A positive result is that even the maximum
observed test error (approx. 0.2m) is sufficiently small to
allow for accurate line tension estimation in the future.

D. DRAFT SENSITIVITY ANALYSIS
Platform draft, similar to metocean conditions, is obtained
through a model that receives several sensor measurements.
As a result, there is an associated uncertainty with draft
values, and measured motion may correspond to a differ-
ent actual platform draft. Given the switching mechanism
present in NeuroSim’s architecture (section IV), this might
lead to incorrect predictions made on the assumption that the
FPSO had a different load, and therefore different dynamic
response, at the time the metocean condition was measured.
Motivated by these issues, NeuroSim’s draft sensitivity was
analyzed, both locally (section VI-D1) for small draft varia-
tions, and globally (sectionVI-D2), where eachmeta-model’s
predictions are compared to observed output variables for all
14 considered platform drafts.

1) LOCAL SENSITIVITY ANALYSIS
During operation, the most common platform draft for the
studied FPSO is 14m, as extreme values only occur directly
after loading or offloading. This analysis aims to evaluate
the performance of the 14m meta-models when predicted
roll amplitude and offset are compared to values obtained
from simulations of the FPSO subject to the same metocean
conditions but under 13m and 15m draft. As draft measure-
ment errors higher than 1m are uncommon, this analysis can
verify whether trained meta-models remain accurate and how
specialized they are in the draft they were trained on.

Figure 23 illustrates the sensitivity of the 14m draft Roll
Amplitude meta-model to 1m draft variations. An error scal-
ing process can be observed, in which specific metocean
conditions with the highest errors in the center column plots
had their errors amplified and remained the highest error
conditions when the model was applied to predict the motion
of a 13m draft FPSO (left column). However, metocean con-
ditions, which lead to higher than average roll amplitudes
(such as waves with peak period close to 16s), had their errors
significantly amplified when the 14mmodel predictions were
compared to the 15m dataset (right column). Interestingly,
this leads to an asymmetrical sensitivity to draft, where the
14m Roll Amplitude meta-model seems to be better suited to
predict FPSO roll motion when subject to an actual draft of
13m rather than 15m.

Similarly, the 14m draft CG Offset meta-model’s sensi-
tivity to draft (Figure 24) presented the same error scaling
behavior, in which a few problematic metocean conditions
remain with high errors when the model is applied to the
13m and 15m datasets. However, the model presented a
generalized increase in the errors of predictions with small
offset values close to the center, preserving the accuracy of
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FIGURE 23. Local sensitivity analysis of 14m draft roll amplitude meta-model when compared to actual drafts of 13m (left)
and 15m (right). Plots are defined as Figure 16.

FIGURE 24. Local sensitivity analysis of 14m draft roll amplitude meta-model when compared to actual drafts of 13m (left)
and 15m (right). Plots are defined as Figure 18.

predictions with higher offset values. This result is a positive
outcome since such metocean conditions tend to be the most
extreme and relevant during response-based design, as they
are more likely to lead to mooring line breakage.

2) GLOBAL SENSITIVITY ANALYSIS
The sensitivity analysis presented above is limited to the
evaluation of the 14m draft model and only to variations
of 1m in draft measurements. While providing valuable
insights, the strictly visual interpretation of results should
be complemented with a numerical, quantitative evaluation.
The objective of this section is to investigate the perfor-
mance of each of the 14 meta-models when applied to the

14 datasets corresponding to observed FPSOmotion statistics
when subject to each draft. By assigning an error metric such
as the test Mean Absolute Error (MAE) to each combination
of models (columns) and datasets (rows), we can construct a
Draft Sensitivity Matrix (DSM) that compactly presents the
expected meta-model performance for all possible drafts.

Figure 25 illustrates the Roll Amplitude meta-model DSM.
The left plot presents the MAE values associated with apply-
ing each draft-specific meta-model to each of the 14 datasets.
In contrast, the right plot identifies the combinations which
result in errors smaller than 10% of the average Roll Ampli-
tude across the entire dataset (0.0366◦). This threshold
is applied to verify which models allow for draft mea-
surements without significantly compromising prediction
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FIGURE 25. Roll amplitude meta-model MAE DSM (left) where columns
and rows correspond to draft-specific ANN models and datasets
respectively. Error threshold DSM (right) indicating in red combinations
where the MAE exceeds 10% of the average Roll Amplitude (0.0366◦).

accuracy. We notice that ANNmodels trained to predict max-
imum roll for drafts of 8m and 9m tend to performworst when
their predictions are compared to the maximum roll observed
for an FPSO subject to different drafts. However, the 13m
to 18m meta-models are more robust to draft measurement
errors and display a wide range of MAE values under the
specified threshold.

FIGURE 26. CG Offset meta-model MAE DSM (left) where columns and
rows correspond to draft-specific ANN models and datasets respectively.
Error threshold DSM (right) indicating in red combinations where the
MAE exceeds 10% of the average CG offset (0.8942m).

FIGURE 27. Parallel meta-model MAE DSM (left) where columns and rows
correspond to draft-specific ANN models and datasets respectively. Error
Threshold DSM (right) indicating in red combinations where the MAE
exceeds 10% of the average parallel fairlead displacement (0.8911m).

Similarly, Figures 26, 27 and 28 exhibit theMAEDSMand
the corresponding Error Threshold DSM for the CG Offset,
Parallel and Vertical Fairlead Displacement meta-models.
We notice the sensitivity errors are more symmetrically dis-
tributed when compared to the Roll Amplitude meta-model,
which means, for example, that the MAE observed when

FIGURE 28. Vertical meta-model MAE DSM (left) where columns and rows
correspond to draft-specific ANN models and datasets respectively. Error
threshold DSM (right) indicating in red combinations where the MAE
exceeds 10% of the average vertical fairlead displacement (0.1213m).

FIGURE 29. Maximum roll as a function of significant wave height (top),
wave peak period (middle) and wave direction (bottom) for 14m FPSO
draft. Comparison between 2003-2009 dataset (blue) and extreme
environmental conditions (red) in 1, 10, 30, 50 and 100 years.

comparing the 12m ANN model predictions with the 14m
dataset is similar to the MAE observed when comparing the
14m ANN model with the 12m dataset. A positive result is
that small MAE values are obtained across the main diagonal
of the DSM, which corresponds to cases where the ANN
model predictions are compared to FPSO motion subject to
the same draft. The Parallel and Vertical Fairlead Displace-
ment meta-models presented wider ranges of acceptable draft
measurement error, indicating models with higher flexibility
to draft errors.

E. EXTREME ENVIRONMENTAL CONDITIONS
In Mooring System Design it is common to analyze typical
local environmental conditions in order to generate statistical
worst-case scenario estimates expected in the future. For a
100 year period these are known as centenary environmental
conditions. In order to analyze the performance of NeuroSim
in such conditions, Dynasim simulations were performed for
a set of the seven worst-case scenario environmental condi-
tions expected in 1, 10, 30, 50 and 100 years time periods
was simulated in Dynasim. Each environmental condition
corresponds to current, wind and wave aligned in one of the
seven directions: N, NE, E, SE, S, SW, WNW, resulting in
35 total simulations. Figure 29 illustrates the most extreme
environmental conditions expected in the future in compari-
son to the original 2003-2009 dataset used to train NeuroSim.
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Table 5 illustrates the numerical error metrics obtained by
NeuroSim when applied to the set of extreme environmen-
tal conditions for the Roll Amplitude meta-model. Both the
Mean Absolute Error and the Maximum Error increase as
the time period considered increases. Errors increase substan-
tially even for the 1 year time period due to the lack of sim-
ilar environmental conditions in the 2003-2009 dataset with
which NeuroSim was trained. As presented in VII, NeuroSim
achieves good performance in the test dataset comprised of
samples from the 2003-2009 time period in which it was
trained. As a result, the addition of extreme environmental
conditions in the training set would increase its performance
in the prediction of other extreme conditions. The application
of the proposedmodels directly in the prediction of extremely
harsh metocean conditions without retraining is not advised.

TABLE 5. NeuroSim’s roll amplitude error metrics for the set of expected
extreme future environmental conditions.

VII. RESULTS AND DISCUSSION
Previous sections presented the theoretical concepts behind
this research, displayed our proposal, detailed the adopted
methodology, and illustrated the experiments performed in
chronological order from the obtention of data to the analysis
of trained and validated models. This section aims to expose
a summary of the results obtained by NeuroSim, provide a
numerical overview of the relevant error metrics, and finally,
a discussion of results.

Data-driven approaches to FPSO motion prediction and
response-based design are relatively new and currently in the
stage of validation, working as additional tools to traditional
dynamic simulation methods. As a result, the research per-
formed thus far constitutes a proof of concept of the proposed
framework as an auxiliary tool to response-based design and,
in the future, an addition to FPSO digital twins in seakeep-
ing applications. Future steps include training meta-models
with real measured FPSO motion, rather than the use of
Dynasim to generate the predicted variables. As described
in Section V-B, 18k metocean conditions measured over
6 years at the Brazilian coast were analyzed and simulated
in a dynamic simulation software known as Dynasim, which
generated the time-series motion of a spread-moored FPSO
subject to these conditions. Output motion statistics were then
extracted from the 6 DoF time-series and associated with the
corresponding metocean conditions according to Equations 3

TABLE 6. NeuroSim roll amplitude test error metrics for each FPSO draft.

to 6, which were processed to generate Training, Validation,
and Test datasets. The datasets were then used to perform a
Hyperparameter Optimization technique known as Bayesian
Optimization, which provided the optimal ANN architectures
for each meta-model and platform draft. Finally, the proposed
models were trained and tested. Some of the results obtained
are visually presented in section VI-C.

Table 6 illustrates the test errors of NeuroSim’s Roll
Amplitude meta-model, with the results from similar tables
for the remaining three meta-models being summarized in
Table 7. The model column indicates the optimal ANN archi-
tecture obtained through BO for each platform draft.

The average Roll Amplitude test MAE is 0.00993◦ which
corresponds to 2.71% of the average maximum roll in the
complete dataset (0.366◦). For the CG Offset meta-model,
the test MAE of 0.3906m is 4.37% of the output vari-
able’s average value 8.942m while its maximum test error
of 6.3912m, when compared to the water depth at the plat-
form’s location, corresponds to only 0.51%. These results
indicate NeuroSim’s errors when predicting motion statistics
for unseen environmental conditions are within an acceptable
range.

TABLE 7. NeuroSim’s average test error metrics across all platform drafts.

Since BO generates a history of trials or candidate ANN
architectures, an alternative approach that better utilizes this
set of architectures was implemented and compared to the
results above. We tested a technique is known as Ensem-
ble Regression, in which the final prediction is given by a
composition of the prediction of multiple models. The 5 and
10 best ANN architectures obtained during the 500 trials of
BO were used in ensembles, and the average prediction of its
models gave the final predicted value. Figure 30 shows that
ensembles reduce Test MAE across all platform drafts for the
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FIGURE 30. Test MAE for roll amplitude ensemble as a function of N for
each FPSO draft, where N is the number of ANN models in the ensemble.

TABLE 8. NeuroSim’s test error metrics for different ensemble
approaches.

Roll Amplitude meta-model and Table 8 presents the results
for all meta-models.

Overall, the optimized models obtained through BO and
trained on simulated motion data presented good test results
compared to the average accuracy of traditional dynamic
simulation methods. The Roll Amplitude (Table 6) and Ver-
tical Fairlead Displacement meta-models presented a slightly
worse performance for lower draft values. In contrast, the
CG Offset and Vertical Fairlead Displacement meta-models
presented the inverse behavior, performing better for drafts
of 8m-13m. This result is possibly explained by the charac-
teristics of the underlying motion, as roll and vertical fairlead
displacements are vertical motions, whereas platform offset
and parallel fairlead displacements are horizontal, parallel to
the water plane.

Across all four meta-models, the Maximum Error metric
displayed the highest variance, as it depends on a small num-
ber of specific, problematic metocean conditions, as illus-
trated in Figures 16 to 21. However, this metric is helpful
in order to determine the absolute highest prediction errors
given by NeuroSim across the entire Test set, providing valu-
able insights into high confidence upper boundaries of errors
for unseen metocean conditions.

FromTable 8 we conclude that ensembles of 5 and 10mod-
els performed better across all meta-models, which is visually
illustrated in Figure 30. There is a trade-off in terms of addi-
tional required memory and training times relative to error
reduction for ensembles regression, diminishing returns as
the number N of models in the ensemble increases. Interest-
ingly, the performance increase when using ensembles com-
pared to the single best model approach varies significantly
for different values of FPSO draft.

VIII. CONCLUSION
In this work, we proposed a framework for developing, train-
ing, and validating a data-driven, neural network-based FPSO
dynamics simulator calledNeuroSim. The adoptedmethodol-
ogy is comprehensively described in Section V-B and makes
use of best practices of modern ML development to ensure
scalability and ease of maintenance during production. Neu-
roSim’s project code is based on the Kedro framework, which
significantly organizes it in modular pipelines and efficiently
stores all project data that flows through them. A state-
of-the-art hyperparameter optimization algorithm is used to
determine optimal ANN architectures for each of NeuroSim’s
models, which are then trained and tested.

The results obtained (Section VII) indicate NeuroSim is
capable of capturing an FPSO’s dynamic response to arbitrary
incident metocean conditions, as mean errors are within an
acceptable range. These results solidify the proposed frame-
work as a successful proof of concept for the future devel-
opment and training of NeuroSim on real, measured FPSO
motion statistics and possible integration with other monitor-
ing tools as part of a complete digital twin of an operating
FPSO.

From the results obtained, three main issues are identified
with the framework proposed in this paper: First, the ANN
models are trained exclusively on simulated motion, rather
than data obtained from a real operational FPSO. While this

TABLE 9. Optimal model architectures obtained through Bayesian
Optimization in Pipeline P03 for roll amplitude and CG offset
meta-models.
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TABLE 10. Optimal model architectures obtained through Bayesian
Optimization in Pipeline P03 for parallel and vertical maximum fairlead
displacements.

approach is interesting as a proof of concept, it needs to be
validated on noisy, real-world data. Second, NeuroSim’s test
metrics, particularly the maximum errors (0.251◦ and 6.39m
for the roll and offset outputs), can be further improved. Since
Hyperparameter optimization has already been performed on
the ANN architectures, a natural next step is to validate dif-
ferent types of regression models such as ensembles. Third,
modern Mooring System Design techniques require addi-
tional motion statistics not predicted in the current version of
NeuroSim, such as the standard deviation of the roll motion,
the average CG offset and maximum line tensions.

In order to address these three issues, future work includes:

• Fine-tuning the proposed framework on real measured
FPSOmotion and testing NeuroSim in seakeeping appli-
cations as an auxiliary tool for real-time motion statis-
tics prediction. Results will then be compared to values
obtained through traditional simulation methods, indi-
cating whether the meta-models can capture unmodeled
dynamics.

• Further investigate Ensemble Regression techniques,
such as Boosting or weighted average prediction of
ANN models specialized in different regions of the
input space, rather than using the simple average of the
best ANN models. Different strategies such as Physics
Informed Models can also be researched in order to
reduce errors through the use of domain knowledge and
known hydrodynamic equations.

• Increment the proposed framework to include additional
motion statistics to be predicted, such as line tensions.

APPENDIX
BAYESIAN OPTIMIZATION RESULTS
This section presents the optimal Neural Network architec-
tures found during Bayesian Optimization in Pipeline P03
for each of the four meta-models and 14 different platform
drafts. Tables 9 and 10 summarize the set of hyperparame-
ters that corresponded to the minimum value of the average
Cross-Validation MSE after 500 optimization trials for the
Roll Amplitude, Maximum Center of Gravity Offset, and
Maximum Fairlead Displacements, respectively. Columns
HL1, HL2 and HL3 indicate the number of neurons in each
of the three ANN hidden layers.
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