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ABSTRACT BPMN process models have been widely used in software designs. The BPMN process models
are characterized by a static graph-oriented modeling language and a lack of analytical capabilities as well
as dynamic behavior verification capabilities, which not only leads to inconsistencies in the semantics of
the BPMN process models, but also leads to a lack of model error detection capabilities for the BPMN
process models, which also hinders the correctness verification and error correction efforts of the models.
In this study, we propose an executable modeling approach for CPN-based data flow well-structured BPMN
(dw-BPMN) process models, and consider both control-flow and data-flow perspectives. First, we present a
formal definition of the dw-BPMN process model, which is formally mapped into a CPN executable model
in three steps: splitting, mapping and combining. Then, we discuss four types of data flow errors that can
occur in the model: missing, lost, redundant, and inconsistent data error. To detect these four data flow
errors, we propose a detection method based on the execution results of the CPN model. Subsequently,
we propose correction strategies for these four data flow errors. Finally, a dw-BPMN process model of a
robot’s temperature detection system for COVID-19 prevention and control in a kindergarten was used as an
example to verify the validity of the method.

INDEX TERMS BPMN, formal verification, CPN, data flow, model transformation.

I. INTRODUCTION
BPMN is a modeling standard in the field of business pro-
cesses that bridge the communication gap between software
system designers and developers [1]. BPMN models include
process or orchestration models, choreography models [2],
and collaboration models [3]. BPMN process models are
frequently used tomodel business processes within an organi-
zation. The BPMN process models focus on business orches-
tration among the participants while describing the overall
control flow and data flow in the software process model.

BPMN has the following two characteristics: on the
one hand, the BPMN models are characterized by a static
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graph-oriented modeling language [4]; on the other hand,
the BPMN models are characterized by a lack of analytical
capabilities and dynamic behavior verification capabilities.
This not only leads to inconsistencies in the semantics of the
BPMN process models, but also leads to a lack of detection
and analysis capability of the BPMN process models for
control-flow errors and data-flow errors, and also hinders the
correctness verification [5] and error-correction work of the
models. For instance, a large BPMN model of a concurrent
system with complex behavior makes it challenging for sys-
tem process designers to confirm the presence of unwanted
features. Model flaws include data flow flaws, such as miss-
ing, lost, and redundant data as well as control flow flaws,
such as deadlocks and live locks. BPMN model errors can be
found via model checking.

86696 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-1273-7838
https://orcid.org/0000-0002-0915-7181


F. Huang et al.: Colored Petri Net Executable Modeling Approach for a dw-BPMN Process Model

Therefore, executable modeling of the BPMN process
models is an effective means of model validation [6]. How-
ever, the validation of the BPMN process models faces the
following challenges. First, the BPMN process models use
graphical and natural language descriptions and lack formal
descriptions. Second, the BPMN process models cover ele-
ments of control and data flows, and the large number of
message exchanges and data associations may lead to large
model sizes and generate structural diversity.

In view of the above challenges, we propose an executable
modeling approach for the CPN-based dw-BPMN process
model. Because model correctness depends not only on their
control flow but also on their data flow, we consider both the
control flow and data flow perspectives. One of the crucial
methods for assessing the dynamic behavior ofmodels, which
can model the control and data flows of business systems
and be used to study and verify their correctness, is Petri
net executable modeling [7], [8], [9], [10]. To address the
problem of structural diversity of BPMN process models,
we propose the concept of the dw-BPMN process model and
then formally transform it into a CPN model in three steps:
splitting, mapping, and combining. Finally, we examined and
corrected the data flow errors. The main contributions of this
study are summarized as follows.
• We propose the concept of a dw-BPMN process model
that covers both control flow and data flow informa-
tion, which not only eliminates the diversity of model
construction structures, but also reduces the possibility
of state-space explosion after mapping from a BPMN
process model to a CPN model.

• We formally detected four possible types of data flow
errors in the dw-BPMN process models: missing data,
lost data, redundant data, and inconsistent data, and
proposed correction strategies for these four types of
data flow errors.

• We provide a dw-BPMN process model of a robot’s tem-
perature detection system for COVID-19 prevention and
control in a kindergarten, which is used as an example
to verify the validity of the method.

The remainder of this paper is organized as follows.
Section II discusses related work. Section III presents rele-
vant definitions of the BPMN, dw-BPMN, and CPN models.
Section IV presents an executable modeling approach for the
CPN-based dw-BPMN process model, in which the three
rules of the transformation process, that is splitting, mapping,
and combination rules, are described in detail. Section V
describes the four possible types of data flow errors and
detection method of the dw-BPMN process model, and the
corresponding correction strategies. Section VI describes the
executable modeling process using the dw-BPMN model of
a kindergarten intelligent morning inspection robot as an
example. Finally, Section VII concludes this paper.

II. RELEVANT WORKS
This section summarizes research works related to executable
modeling and validation of BPMN models.

A. EXECUTABLE MODELING OF BPMN MODELS
The BPMN is a graphical workflow-based language. BPMN
models lack explicit formal semantics as well as analysis and
verification capabilities. Kheldoun et al. [11] proposed a for-
mal mapping method for BPMN using recursive ECATNets.
With this method, the modeler can further use the Maude
LTL model checker to verify the behavioral properties of
the BPMN model. Diaz et al. [12] proposed a GUI rule
that enables semi-automated modeling of BPMN models
based on GUI rules, which has the benefit of saving time by
improving the efficiency of model modeling. However, the
mapping rule relies on class diagrams of the BPMN model.
Corradini and Fornari [13] proposed an executable model-
ing approach for BPMN models based on BProVe, which
combines the LTL model checking technique of MAUDE
and the MultiVeStA statistical model checking technique for
modeling and verifying BPMN models. However, BProVe
relies on the non-formal direct semantics of BPMN mod-
els. Zafar and Azam [14] proposed rules for converting the
BPMN model into a SoaML model, enabling automatic gen-
eration of web service models from the BPMN model. The
advantage of this is that the system developer simplifies
the development of the ERP system, except that the analy-
sis of the BPMN model was not mentioned in that paper.
Duran et al. [15] proposed an executable specification of
rewrite logic for BPMNwith time and extended and modeled
it with probabilities, further describing how to use rewrite
logic for the stochastic analysis of BPMN timing properties.
Houhou et al. [16] presented a direct formalization of the
BPMN model based on first-order logic and provided a veri-
fication of the executable model framework, fbpmn, to verify
the specific properties of BPMN models. Other researchers
have used a purely mathematical approach to describe the for-
mal execution semantics of BPMN models, such as process
algebra [17], communication sequential process (CSP) [18],
formal concept analysis, and Backus Naur Form (BNF) gram-
mar [19]. However, the frameworks proposed by these studies
lack validation of the dynamic behavior of the BPMNmodel.

In addition to the above executable methods, the Petri net
is an important tool for verifying and evaluating the dynamic
behavior of the model. Several scholars have been attracted
to the performable modeling of BPMN models using Petri
net [20]. Li and Ye [21] proposed a method to support the
formal transformation of dynamically evolving BPMN mod-
els into Petri net models and maintain the consistency of
model behavior. Dechsupa et al. [22] proposed a rule for
converting BPMN elements into colored generalized random
Petri net, as well as providing a stepwise refinement and ver-
ification method for each component of the CGSPN model.
The advantage of this is that the designer can automate the
construction of the CGSPN model, but it is time consuming
in the simulation process. Meghzili et al. [23] investigated
the conversion of BPMN orchestration models into workflow
nets and then used petri net to formally define the BPMN
2.0-orchestration semantics and used the semantics to ana-
lyze the errors in the structure and control flow aspects of
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the model, achieving a feasibility verification of the model
conversion.

However, because of the limitations of Petri net, they are
less suitable for modeling large-scale BPMN models; there-
fore, Maarouk et al. [24] investigated executable modeling of
BPMN models using CPN and verified the rationality of this
modeling approach.

The above studies considered, control flow as the back-
bone of the business process and considered only control
errors and behavioral inconsistencies in the model. They
only performed executable modeling and validation of the
control-flow aspects of the BPMN model, and the data-flow
aspects were not mentioned in the modeling process. Data
flow analysis is becoming increasingly important in today’s
business process analysis to capture useful information and
many other features of business processes in a more compre-
hensive way.

Based on the above issues, Dechsupa [25], [26] proposed
an executable modeling approach for BPMN design models
based onCPN, covering both the control flow and data flow of
BPMN models. However, the consideration of BPMN model
diversity and checking of data flow errors were not mentioned
in their study. In general, the errors present in the model can
be divided into two types: control flow errors and data flow
errors, where control flow errors mainly include dead and
live locks, and data flow errors mainly include missing, lost,
redundant, and inconsistent data errors.

B. SUMMARY
Based on the above literature review, we can understand that
there is a long history of research on executable modeling
methods for BPMN process models. Although a number of
researchers have proposed formal methods for executable
modeling and formal validation of BPMN process models,
the following problems still exist in the process of executable
modeling of BPMN process models: (1) while considering
the problem of structural diversity of BPMN process models,
the problem of the influence of data flow on the correctness
of the models is ignored; (2) the lack of BPMN models
themselves based on data flow errors was examined and
corrected.

To address these issues, we propose a CPN-based exe-
cutable modeling approach for dw-BPMN process models.
Our proposed dw-BPMN process model addresses the prob-
lem of model structural diversity while considering data flow.
Subsequently, we also detect data flow errors in the model
based on the generated CPN model execution results and
propose corresponding error correction strategies. Finally, the
effectiveness of the proposed approach is verified through a
case study.

III. RELEVANT DEFINITION
A. BPMN PROCESS MODEL
The BPMN model is a collection of BPMN elements com-
prising control flows, data flows, and associated activities

that generate specific operations to achieve specific business
requirements. The core subset of BPMN elements was
divided into six groups: event elements, task elements, gate-
way elements, connecting elements, artefacts, swim lanes,
and pools [31].

FIGURE 1. The core set of the BPMN process model elements.

Modelers use these elements to describe the BPMN pro-
cess, the collaboration, and the orchestration models [15].
The BPMN process model describes the sequence of activ-
ities and data flows in an organization. The main elements of
the model include flow elements, connecting elements, and
artifacts, as shown in Fig. 1.
Definition 1 (A BPMN Process Model): The BPMN pro-

cess model is a tuple. MBPMN = (N ,A,E, ID,D,M ,G,

F, f ), where:

1) N is a finite set of nodes.
2) A is a set of tasks, and A ⊆ N . For ∀ai ∈ A denotes

ai = (TName,TOper ,TMarker ), where TName denotes the
task name of ai described as a string expression, TOper
denotes the task operation of ai, and TMarker denotes
the task marker of ai consisting of a loop with a loop
condition and multiple instances.

3) E denotes an event and E ⊆ N . E = {Es,Ee,Ei},Es
denotes a start event,Ee denotes an end event, Ee ⊆ N ,
and Ei denotes an intermediate event, Ei ⊆ N .

4) ID indicates a set of variables and item definitions of
the data structures used in the BPMN process.

5) D denotes the set of data, andD = {Di,Do},Di denotes
the input dataset of the task and Do denotes the output
data of the task.

6) M indicates a set of message associations for the task.
7) G denotes a set of gateways, G ⊆ N .
8) F denotes a set of sequence streams, F ⊆ N × N .
9) f denotes a set of mapping functions, and f =
{fAT , fGT , fGD, fGL}, where fAT denotes the map-
ping function indicating the task type, fAT :

A → {task, service, send, receive, user,manual}; fGT
denotes the mapping function indicating the gate-
way type fGT :→ {exclusive, inclusive, parallel}; fGD
denotes a mapping function indicating the direction
of the gateway, fGD : G → {divergent, convergent};
fGL denotes a conditional statement label function
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indicating the gateway, fGL : (G × N )→ Guardlabel,
and Type(fGD(gi)) = bloolean ∀gi ∈ G|fGD(gi) ∈
{exclusive, inclusive} ∧ fGD(gi) ∈ {diverg− ent}.

B. dw-BPMN PROCESS MODEL
Because a BPMN process model describes the sequence of
activities and data flows in a business organization and has
an asynchronous and concurrent character, it is suitable for
formal modeling and verification using the CPN modeling
language. To eliminate the diversity and complexity of the
BPMN process model structure, we propose the concept of a
dw-BPMN process model. This concept eliminates the com-
plexity of the model structure while retaining the generality
of the model.

The dw-BPMN process model has the following
characteristics.

1) |Es| = 1, there is one and only one start event.
2) ∀esc ∈ Es, in(esc) = ∅ ∧ |out(esc)| = 1, the start event

has and has only one sequence stream output and no
input.

3) |Ee| = 1, there is only one end event.
4) ∀eec ∈ Ee, |in(eec)| = 1 ∧ out(eec) = ∅, the end event

has and has only one sequence stream input and no
input.

5) ∀eic ∈ Ei, |in(eic)| = 1 ∧ |out(eic)| = 1, for any
intermediate event, there is only one sequence stream
input and output.

6) ∀x ∈ GPF ∪ GXD ∪ GED, |in(x)| = 1 ∧ |out(x)| >

1. Parallel forking gateways, exclusive data decision
gateways, and exclusive event decision gateways have
only one sequence stream input and greater than one
sequence stream output.

7) ∀y ∈ GPJ ∪ GDM ∪ GEM , |in(y)| > 1 ∧ |out(y)| = 1.
Parallel aggregation gateways, exclusive data merging
gateways, and exclusive event merging gateways have
only one sequence stream output and more than one
sequence stream input.

8) ∀ai ∈ A, |Di(ai)| = 1 ∧ |Do(ai)| = 1 ∧ |in(ai)| =
1 ∧ |out(ai)| = 1. For any given task, there is only one
data output and output, and there is only one input and
output for the sequence stream.

9) ∀aj ∈ A, (|in(M (aj))| = 1 ∧ |out(M (aj))| = 0) ∨
(|in(M (aj))| = 0∧|out(M (aj)| = 1). For any task there
is only one message input or output.

10) ∀G→ {exclusive, parallel}, |GPF |=|GPJ |,
|GXD |=|GDM |, |GED |=|GEM |. For any gateway, the
number of parallel forking gateways must equal the
number of parallel aggregation gateways, exclusive
data decision gatewaysmust equal the number of exclu-
sive data merging gateways, and exclusive event deci-
sion gatewaysmust equal the number of exclusive event
merging gateways.

11) For any non-initial non-ending data object, there is at
least one output and input; a non-initial data object is
the input data that is not the first task or parallel first

set of tasks in the model, and a non-ending data object
is the output data that is not the last task or last parallel
set of tasks.

The above definitions of the BPMN process model allow
for a well-defined structure of data and control flows and
ensure that the model structure is standardized. Therefore,
a process model that meets the above definitions is called the
dw-BPMN process model.
Definition 2 (A dw-BPMN Process Model): A dw-BPMN

process model is a tuple Mdw−BPMN = (N ,A,E, ID,D,M ,

G,F, f ), where the model elements all conform to the above
rules.

C. CPN MODEL
CPN is one of the most widely used formal model-
ing languages [27] for the design and verification of
concurrent systems. The core elements of CPN are the
place, transition, arc, guard condition, arc inscription, and
token.
Definition 3 (A CPN Model): A CPN model is a tuple

MCPN = (P,T ,AC , 6,V , fc), where:

1) P denotes a finite set of system places.
2) T denotes a finite set of transitions, T ∩ P = ∅,

P ∪ T 6= ∅.
3) Ac denotes a finite set of arcs, P∩T = P∩A = A∩T =
∅, and A ⊆ ((P× T ) ∪ (T × P)).

4) 6 denotes a non-empty finite set of colours, called a
colour set.

5) V indicates a limited type variable, ∀v ∈ V and
Type(v) ⊆ 6.

6) fc denotes a set of expression functions, and fc =
{fCC , fGG, fEA, fII }. where fCC denotes the color func-
tion and fCC : (P ∪ T ) → 6s, 6s is a finite subset
of 6. fGG : T → expression, denoting the guard
function of T and satisfying ∀t ∈ T : [Type(fGG(t)) =
Bool ∧ (Var(fGG(t))) ⊆ 6] and Bool = {true, false}.
fEA : Ac → expression, denoting the arc expression
function and satisfying ∀ac ∈ Ac : [Type(fEA(ac)) =
fCC (PP(ac))MS ∧Type(Var(fEA(ac))) ⊆ 6]; fII denotes
the initial identity of an P→ expression and satisfying
∀p ∈ P : [Type(fII (p)) = fCC (p)Ms ∧ Var(fII (p)) = ∅].

CPNTools is a suite of CPN editing, simulation, and anal-
ysis tool [28]. By analyzing the reach graphs and state space
reports generated by the model, errors in the executable
model can be detected, such as the presence of dead loops,
deadlocks, and state space explosion [29], [30]. Therefore,
this study used CPNTools for modeling.

IV. METHODOLOGY
This section describes the process of transformation from the
dw-BPMN process model to the CPN model, as shown in
Fig. 2. Thise process consists of three steps: splitting, map-
ping, and combining. In the following section, we describe
each of these three steps in detail.
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FIGURE 2. Transformation process of dw-BPMN process model to CPN
model.

A. SPLITTING RULES FOR dw-BPMN PROCESS MODEL
The large number of business organizational activities leads
to the large size of the corresponding dw-BPMN process
model, making it more difficult to map and test the model.
The purpose of this step is to split larger process models,
particularly those containing the direct nesting of gateways,
into element groups. The complexity of the model was further
reduced, thus facilitating the mapping exercise. Algorithm 1
illustrates the process of partitioning the dw-BPMN process
model. We identify dw-BPMN partitions using gateway pairs
and node analysis, so the number of divergent gateways must
equal the number of convergent gateways. Our principles for
partitioning the dw-BPMN model are as follows.

1) The start event is used as the initial node, and the
element between it and the first divergent gateway as
the first element group.

2) Use the end event as the end node and the element
between it and the last convergent gateway as the last-
element group.

3) If the model contains a gateway-nesting relationship,
it is divided into inner and outer gateway pairs. That
is, elements between inner gateway pairs contain that
gateway pair as a child layer element group and are
represented as a black box when the outer gateway
pair is divided; elements between outer gateway pairs
contain that gateway pair and a black box as a parent
layer.

4) If the model does not contain gateway nesting relation-
ships, it is divided directly by gateway pairs.

In Algorithm 1, lines 3 to 4 are used to detect whether
the model is a BPMN process model. Lines 5 to 24 are
the specific process of partitioning the model, which treats
each node as a variable n and the partition marker name
{n, partition_id}. In lines 5 to 7, nodes are identified individ-
ually from node Es to node Ee. The Es start event is used as
the initial node and the Ee end event is used as the end node.
where the element list (EL) denotes the list of elements used
to collect and control the nodes, and n is a variable in the EL
of the element list. Lines 8 to 12 indicate that if n is the first

Algorithm 1 Splitting Rules for dw-BPMN Process Model
1 Require: BPMN is a process diagram.
2 Ensure: dw-BPMN process model.
3 If BPMN model is without pool then set Pl := 1
4 End If
5 for EL := label(n)→ Es
6 do EL = (Es;Ee)
7 n := choose the node fromEL
8 If n is a gateway
9 If n is the first divergent gateway Ng1

then all elements from the initial node Es to
node Ng1 as the 1st element group

10 set partition_id = 1 (initial)
11 label_name = {Ng1, 1}
12 End if
13 Else if n is the last convergent gateway Ngj
14 set partition_id = increase partition

number (last)
15 label_name = {Ngj, partition_id}
16 End if
17 Else if n does not a pairwise of previous node
18 set partition_id = increase partition

number (child)
19 label_name = {n, partition_id}
20 Else
21 set partition_id = increase partition

number (parent)
22 label_name = {n, partition_id}
23 End if
24 End if

divergent gateway Ng1, then all the elements from the initial
node Es to node Ng1 are used as the first element group and
the element group name is {Ng1, 1}. Lines 13 to 16 indicate
that if n is the last converged gateway Ngj, then the element
between the end node Ee and node Ngj contains the end event
element as the JTH model element group and the element
group name is {Ngj, partition_id}. Lines 17 to 23 indicate
that if n is not a paired node of the previous node, it is
divided into a new part called a substratum. If n is a paired
node of the previous node, it forms a gateway pair with
the previous gateway node and the element between them
contains the gateway pair as a father hierarchy. Clearly, the
complexity of Algorithm 1 is determined by one loop from
rows 5 to 7, the complexity of the algorithm is O(|n|), where
|n| is the number of data elements. A graphical depiction of
the splitting process is shown in Fig. 3.

B. MAPPING RULES FOR dw-BPMN PROCESS MODEL TO
CPN MODEL
The dw-BPMN process model considers control-flow ele-
ments and data-flow elements, and its core elements include
events, gateways, sequence flows, data, messages, and tasks.
On the other hand, the CPN model includes component units
such as place, transition, color set, arc expression function,
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FIGURE 3. Splitting rules of dw-BPMN process model.

and guard function. The relationship between the dw-BPMN
elements and CPN elements can be illustrated by the formal
definition and structural description of the mapping. There-
fore, we propose corresponding mapping rules. After the dw-
BPMNprocessmodel is split, each dw-BPMNmodel element
group can be converted into a CPN model block according to
the mapping rules.

It is known thatMdw−BPMN = (N ,A,E, ID,D,M ,G,F, f )
and MCPN = (P,T ,AC , 6,V , fc), let ϕ be the mapping
function from the dw-BPMN process model to the CPN
model, namely ϕ : Mdw−BPMN

ϕ
−→ MCPN . The mapping

rules are as follows.

1) ID
ϕ
−→ V , The item definitions of the sets of variables

and data structures declared using BPMNML in the
dw-BPMN process model are mapped to the variables
declared using CPNML in the CPN model. They are
used to determine the type of place in the CPN model.

2) Es
ϕ
−→ Escpn, and Escpn = (ps, p1, ts, 61). The start

event of the dw-BPMN process model is mapped to
the start event fragment of the CPN model, where the
output set defined in the dw-BPMN start event attribute
is used to create the CPN color set to determine the
type of place. The transformation process is illustrated
in Fig. 4.

FIGURE 4. Mapping rule of Start event.

3) Ee
ϕ
−→ Eecpn, and Eecpn = (pe, p2, te, 62). The end

event of the dw-BPMN process model is mapped to
the end event fragment of the CPN model, where the
input set defined in the dw-BPMN end event attribute
is used to create the CPN color set to determine the
type of places. The transformation process is illustrated
in Fig. 5.

FIGURE 5. Mapping rule of end event.

4) Adw−BPMN
ϕ
−→ ACPN . The input and output sets of a

BPMN task are defined by its properties. Both its input
and output sets may contain data objects and messages;
therefore, the tasks in the dw-BPMN process model
can be divided into the following three categories for
conversion, i.e., tasks containing only input and output
data, tasks containing input and output data and input
messages, and tasks containing input and output data
and output messages. The three-class transition rule is
shown in Fig.6. The input data is mapped to the color
set before and after the ‘read’ transform and the color
set before the ‘write’ transition, and the output data is
mapped to the color set after the ‘write’ transition; the
input of a message is mapped to the output of a new
place, and the output of a message is mapped to the
output of a new place.

FIGURE 6. Mapping rules of Tasks. (a) Mapping rule of tasks containing
only input and output data. (b) Mapping rule of tasks containing input
and output data and input messages. (c) Mapping rule of tasks containing
input and output data and output messages.

5) Gdw−BPMN
ϕ
−→ GCPN . The gateway fragments in

the dw-BPMN process model are mapped to the CPN
model fragments. The gateways of the dw-BPMN pro-
cess model can be divided into divergent and con-
vergent. Divergent gateways are divided into parallel
divergent gateways, exclusion data decision gateways,
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FIGURE 7. Mapping rules of gateway. (a) Mapping rule for parallel dispersion gateways. (b) Mapping rule for parallel aggregation gateways.
(c) Mapping rule for exclusion decision gateways. (d) Mapping rule of Exclusive merge gateways.

and exclusion event decision networks, which divided
into parallel convergent gateways, exclusive data con-
vergent gateways, and exclusive event convergent gate-
ways. The mapping of data-based BPMN divergent
gateways involves the mapping of BPMN gateway ele-
ments and guard functions on sequence flows to CPN
model segments. In this case, the sequence flow of the
divergent gateway is mapped to the CPN transition and
the guard function is mapped to the guard function on
the CPN transition. However, the convergent gateway
does not need to map the guard function to the transi-
tion guard function in the sequence flow. The specific
transformation rules are illustrated in Fig. 7.

6) F
ϕ
−→ A. The sequence flow in the dw-BPMN process

model is mapped to the arcs in the CPN model.

C. COMBINING RULES FOR CPN ELEMENT GROUPS
The dw-BPMN process model forms a finite group of
CPN elements after the splitting and mapping processed are
completed.

The only way to create a complete CPN model is to
structurally connect these model element groups, for which
a combination rule is proposed. The transformation rules are
illustrated in Fig. 8.

The formal definition of the combining rule is as follows.
Let CPN1 = (P1,T1,Ac1, 61,V1, fc1) and CPN2 =

(P2,T2,Ac, 62,V2, fc2) be two CPN element blocks.
If p1 ∈ P1 is the output depot of CPN1, p2 ∈ P2 is the
input depot of CPN2, p1 and p2 are the common places
of CPN1 and CPN2, then maintaining only one place of

FIGURE 8. The rules for combining CPN element groups.

p1 and p2 makes the group of CPN1 and CPN2 ele-
ments connected to form a CPN model, namely MCPN =

(P0,T0,Ac0, 60,V0, fc0).
The model satisfies:
1) P0 = (p1 ∪ p2)\{p1};
2) T0 = T1 ∪ T2;
3) Ac0 = Ac1 ∪ Ac2;
4) 60 = 61 ∪62;
5 )V0 = V1 ∪ V2;
6) fc0 = {fCC0, fGG0, fEA0, fII0}.
Where fCC0 = (fCC1 ∪ fCC2)\{(p1, col)|col = fCC (p1)};

fGG0 = fGG1 ∪ fGG2;

fEA0 = (fEAA1 ∪ fEA2)\{((t1, p1), a_ex)|a_ex

= fEA(t1, p1) ∧ t1 ∈ T1} ∪ {((t1, p1), a_ex)|

× ((t1, p1) ∈ Ac1 ∧ t1 ∈ T1 ∧ a_ex

= fEA((t1, p1)) ∗ fEA(p2, t2)\(fEA(t1, p1)) ∧ t2

∈ T2 ∧ (p2, t2) ∈ Ac2};

fII0 = fII1 ∪ fII2.
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The steps for combining model element groups are as
follows.

1) First, all CPM model element groups were arranged in
order of occurrence of the original dw-BPMN model
element groups.

2) Then, the input place or output place shared among
the element groups is found in order according to the
sequence.

3) Finally, only one of the common pairs of output and
output places is maintained, so that the element groups
are connected to form a CPN model.

V. DATA FLOW ERROR DISCOVERY MECHANISM
BASED ON CPN MODEL
The validation of the correctness of the dw-BPMN process
model consists of two aspects: on the one hand, the validation
of the correctness of the model structure, i.e., the detection of
model control flow errors; on the other hand, the validation
of the correctness of the data aspect, i.e., the detection of
model data flow errors. The main errors in the control flow
include deadlock, live lock, and dead tasks in the model, and
themain errors in the data flow includemissing data, lost data,
redundant data, and inconsistent data in the model. In this
paper, we only analyze and discuss the detection methods and
correction strategies for the four types of errors in data flow,
and further derive the basis for correctness analysis.

A. TAXONOMY OF DATA FLOW ERRORS
We classify the data flow errors of the dw-BPMN model as
follows.

1) MISSING DATA
If data d is the input data of a task, but there is no task output
corresponding to the output data before the input data of that
task, that is, data d is not initialized, the model generates
missing data.
Definition 4 (Missing Data): Suppose Mdw−BPMN =

(N ,A,E, ID,D,M ,G,F, f ),∀d ∈ D, If (1) |Di(d)| = ∅;
(2)|DO(d)| 6= ∅, then this dw-BPMN process model has an
error due to missing data.

In Definition 4, the first condition indicates that there is
no input data d ,that is, it is not initialized, and the second
condition indicates that data d will be used by at least one
subsequent task. The presence of missing data errors in the
model leads to business process system anomalies and sus-
pension. Therefore, detection and correction of the BPMN
model is necessary.

2) LOST DATA
If data d is the output data of multiple tasks, but there is no
input data d before data d is used as the output data of another
task later, the model generates data loss.
Definition 5 (Missing Data): Suppose Mdw−BPMN =

(N ,A,E, ID,D,M ,G,F, f ) and ∀d ∈ D. If (1) |Di(d)| 6= ∅,

and |DO(d)| 6= ∅; (2)|Di(d)| < |DO(d)|. Thus, there is a
lost-data error in the dw-BPMN process model.

In Definition 5, the first condition indicates the presence
of at least one task output data d and at least one task input
data d ; and the second condition indicates that the number of
tasks with output data d is greater than the number of tasks
with input data d , that is, the input of data d is missing from
the model pass. The presence of missing data errors in the
model can lead to interruptions in the process of data delivery.
Therefore, the BPMN model must be corrected before the
system can be built.

3) REDUNDANT DATA
If data d is the output data of one task, but not all subsequent
tasks in the execution path use data d as input data, the model
will have data redundancy.
Definition 6 (Redundant Data): Suppose Mdw−BPMN =

(N ,A,E, ID,D,M ,G,F, f ) and ∀d ∈ D. If (1)|DO(d)| 6= ∅;
(2)|Di(d)| = ∅, then the dw-BPMN process model has the
error of redundant data.

In Definition 6, the first condition indicates the presence
of at least one task outputting data d ; the second condition
indicates that none of the tasks uses data d as input data in
subsequent tasks.

4) INCONSISTENT DATA
The presence of redundant data errors in the model may
lead to an inefficient and more costly system, thus, the prior
detection and correction of this error is essential.
Definition 7 (Inconsistent Data): Suppose Mdw−BPMN =

(N ,A,E, ID,D,M ,G,F, f ) and ∀d ∈ D. If (1) |Di(d)| = ∅;
(2) |DO(d)| 6= ∅; and (3) |Di(d)| ≥ 2, then the dw-BPMN
process model has an error of inconsistent data.

In Definition 7, the first and third conditions indicate that
data d is initialized bymultiple tasks and the second condition
indicates that data d is used by at least one task. Inconsistent
data errors in the model may lead to uncertainty and confu-
sion, resulting in system operation errors. Therefore, errors
must be corrected before designing the business system.

B. DATA FLOW ERRORS DETECTION METHOD
The above four types of errors generated by the data flow
in the dw-BPMN process model can be stated as problems of
the arc expression function or variations transfer in the CPN
model. A detailed analysis is presented in Fig. 9.

The specific analysis is as follows.
For problem (a): the problem of missing data in the BPMN

model is regulated by the absence of data variable d in all arc
functions before the ‘t_write’ transition in the correspond-
ing CPN model. This problem can be detected by checking
whether the arc functions before and after the ‘read’ transi-
tion in the CPN model generated by the mapping are empty.

For problem (b): The problem of lost data in the BPMN
model is regulated by the absence of the data variable d
in the previous arc function of a ‘t_read’ transition in the
corresponding CPN model. This problem can be detected
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FIGURE 9. Data flow errors in the BPMN and CPN models. (a) BPMN model with missing data and the CPN model. (b) BPMN model
with lost data and the CPN model. (c) BPMN model with redundant data and the CPN model. (d) BPMN model with Inconsistent
data and the CPN model.

by checking whether the previous arc function of the ‘read’
transition of the CPN model generated by the mapping is
empty.

For problem (c): The problem of redundant data in the
BPMN model is statutorily defined as the data variable d in
the corresponding CPN model is not used in the transmission
process, i.e., the data d no longer appears in the arc function
after a certain ‘t_write’ transition in the CPN model. The
CPN model generated by mapping can be verified for path
failures caused by inconsistent variables.

For problem (d): The problem of inconsistent data in the
BPMN model can be statistically defined as a function of
the ‘t_read_2’ transition and the ‘t_write_2’ transition of the
variable d in the corresponding CPN model, i.e., the same
data The same data is being initialized and read, causing
the most basic logical error. To detect this type of problem,
we can check whether the CPN model generated by mapping
has a path failure caused by the wrong variable order.

The correctness of the generated CPN executable model is
further reflected by the correctness of the dw-BPMN process
model, based on the detection methods of the possible data
flow errors of the dw-BPMN process model described above.

C. CORRECTIONSTRATEGIES FOR DATA FLOW ERRORS
According to the above detectionmethods for data flow errors
in the dw-BPMN process model, errors in the model can be

accurately detected, which facilitates the correction of the
model. Next, we propose four correction strategies corre-
sponding to the four types of data-flow errors. The specific
strategies are as follows:
Strategy 1:LetMdw−BPMN = (N ,A,E, ID,D,M ,G,F, f ),
∃d ∈ D, and that data d is a missing data element, i.e.,
uninitialized. The BPMN task activity Ad , which generates
data d , should be added to the model to satisfy A = A∪ {Ad }
and F = F ∪ {(Ad , d)}. As shown in Fig. 10(a), data d in the
model is used by Task , but data d is uninitialized, that is, task
output data d is missing. The problem of missing data in the
model can be solved by adding a task Ad , before Task .
Strategy 2:LetMdw−BPMN = (N ,A,E, ID,D,M ,G,F, f ),
∃d ∈ D, and data d is a lost data element. The intermediate
BPMN task with no input data d is active as Ad and the
previous task outputs data d . Then, the data d is directly
connected to the task Ad and satisfies F = F ∪ {(Ad , d)}.
As shown in Fig. 10(b), the data d in the model is the output
of Task1 and the output of Task2, but Task2 is lost the input
of data d . To correct the error of lost data in the model, the
input of data d should be added for Task2.
Strategy 3:LetMdw−BPMN = (N ,A,E, ID,D,M ,G,F, f ),
∃d ∈ D, and data d is a redundant data element. The task
of outputting redundant data is called Ad , and the redundant
data element d should be removed from the model to satisfy
D = D− {d} and F = F − {(Ad , d)}. As shown in strategy 3
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FIGURE 10. Data flow errors in the BPMN and CPN models. (a) BPMN model with missing data and the CPN model. (b) BPMN model
with lost data and the CPN model. (c) BPMN model with redundant data and the CPN model. (d) BPMN model with Inconsistent
data and the CPN model.

in Fig. 10(c), the Task outputs data d , and it is not used as
input data for any subsequent task. To correct the errors of
redundant data in the model, data d can be deleted directly.
Strategy 4:LetMdw−BPMN = (N ,A,E, ID,D,M ,G,F, f ),
∃d ∈ D, and data d is an inconsistent data element. The
required data elements can be added according to the different
task activity requirements. As shown in Fig. 10(d), data d is
both the output of Task1 and the input of Task2, which is not
logical; therefore, the appropriate data d1 needs to be added
for Task2.

VI. CASE STUDY
Since the outbreak of COVID-19, the effective combination
of intelligent robotics and medical technology has signifi-
cantly increased the efficiency of the screening process in
the fight against the epidemic. With the demand for smart
kindergartens and the implementation of epidemic prevention
and control guidance, an increasing number of kindergartens
have chosen morning-check robots with intelligent tempera-
ture detection to conduct morning checks for students.

At the same time, the bases of today’s competitive and
highly dynamic marketplace, business process management
strategies and BPMN process modeling have been widely
used in large organizations to ensure continuous improve-
ment of business processes and their adaptation to change.
Currently, the kindergarten smart morning check robot is
equipped with high-definition camera, high-definition dis-
play, infrared sensor, and bass speaker, thus having the

functions of face recognition, report display, body tempera-
ture measurement, and alarm alerts. The operational organi-
zation of the temperature detection function of the robot is
illustrated in Fig. 11.

Next, we modeled and analyzed the dw-BPMN process
model for body temperature detection of a kindergarten smart
morning check robot using a CPN-based executable model-
ing approach, thus verifying the feasibility of our proposed
approach. The dw-BPMN process model for body tempera-
ture detection is shown in Fig. 12; the names of the elements
are described in Table 1, and the variable names are listed in
Table 2.

TABLE 1. Descriptions of activity dw-BPMN process model elements.
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FIGURE 11. The organization of temperature detection system of intelligent morning check robot in kindergarten.

TABLE 2. Description of dw-BPMN process model data elements.

The first step of modeling starts by dividing the dw-BPMN
process model into element groups according to the split-
ting rules. The splitting result is shown in Fig. 12, which
divides the model into four element groups. The first ele-
ment group is EG1 = {Es,Task1,Task2, d1, d2, d3,mass−
age1,massage2,F1}, where Es is the start event, and
F1 is the connected element of the control and data
streams in EG1. The second element group is EG2 =
{Task3, d3, d4,G2,F2}, where F2 is the connecting ele-
ment for the control and data streams of EG2 and G2 is the
exclusion gateway group in EG2. The third element group
is EG3 = {Task4,Task5, d3, d5, d6,G3,F3}, where F3 is
the connecting element for the control and data streams of
EG3 and G3 is the parallel gateway group in EG3. The fourth
element group is EG4 = {Ee,F4}, where Ee is the end event,
and F4 is the connecting element of the control flow and data
flow of EG4.

In the secondmodeling step, the split element groups of the
dw-BPMN process model were converted according to the
mapping rules. The conversion process is shown in Fig. 13,
and the above four element groups are mapped to four CPN
element groups.

In the third step of modeling, the four dw-BPMN ele-
ment groups were combined according to the combination
rules. According to the combination rule, the shared place is
combined with SP = {(p7, p8), (p11, p20), (p18, p21), (p19,
p20)}, where SP is the shared location set, and each group
of shared places is limited to keep one of them. And the
combination result is shown in Fig. 14.

Following the above three-stage modeling approach,
we converted the dw-BPMN process model of the temper-
ature detection system into an executable CPN model. Next,
the CPN model is verified for errors in data flow by checking
whether the arc functions before and after the ‘t_read’ and
‘t_write’ transitions in the CPNmodel are empty and whether
there are inconsistencies in the variables and logical errors in
that order.

As shown in Fig. 14, the generated CPN model did not
contain the above four types of errors. In order to further
verify the data consistency and logical consistency of the
model with the expected system, we cited the example of
two kindergartener temperature detection in kindergarten.
And after analyzing its operation path and results, we found
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FIGURE 12. The dw-BPMN process model of temperature detection and Model Partition.

FIGURE 13. Transformation of the dw-BPMN process model to the CPN model. (a) Mapping of dw-BPMN model element group 1 to
CPN model. (b) Mapping of dw-BPMN model element group 2 to CPN model. (c) Mapping of dw-BPMN model element group 3 to
CPN model. (d) The mapping of dw-BPMN model element group 4 to CPN model.

that the model is consistent with the expectation, and then
analyzed its generated state space report. We found that the

model does not have the problems of deadlock, live lock, and
dead change, as shown in Table 3.
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FIGURE 14. CPN executable model for body temperature detection system.

TABLE 3. State space report of the CPN model. (partial).

Based on the above validation and analysis, it is demon-
strated that this executable modeling approach and the
steps of the CPN-based dw-BPMN process model are
effective.

VII. CONCLUSION
The lack of standard semantic descriptions and corresponding
analysis methods in the BPMN 2.0 standard specification
hinders the formal verification of BPMN process models and
analysis of the presence of undesirable attributes. To satisfy
the demand for formal verification proposed by using the
BPMN process model to support software system develop-
ment, (1) we propose formal definition of the dw-BPMN
process model to reduce the complexity of the model; (2) we
propose a formal definition of the split rule algorithm, map-
ping rule, and combination rule tomap the dw-BPMNprocess
model to the CPN model; (3) the BPMN model data flow
errors in the BPMN model are defined and analyzed; (4) the
feasibility and effectiveness of the proposed method are veri-
fied by experiments; and (5) we formally define four possible
data flow errors in the dw-BPMN process model, and propose
corresponding detection methods and correction strategies.

The method implements formal verification of BPMN pro-
cess models and detects errors caused by data flow aspects,
providing business process designers with a choice of for-
mal model verification methods. To the best of our knowl-
edge, no previous BPMN research has mentioned work on
executable modeling covering data flows and detecting and
correcting data flow errors in the BPMN process model
simultaneously. Our case study shows that the proposed
approach is practical and can be applied to the business
process detection. In this study, we did not consider the types
of data flow errors generated by BPMN extension elements
considering data flow. In the next step, we will investigate
the formal modeling of CPN with discovery and correction
of data flow errors for extension elements such as complex
gateways, and apply matrix operations and deep optimization
algorithms in the data flow error detection methods based on
the CPN model.
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