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ABSTRACT This paper deals with the solution of delay differential equations describing evolution of
dislocation density in metallic materials. Hardening, restoration, and recrystallization characterizing the
evolution of dislocation populations provide the essential equation of the model. The last term transforms
ordinary differential equation (ODE) into delay differential equation (DDE) with strong (in general, Hölder)
nonlinearity. We prove upper error bounds for the explicit Euler method, under the assumption that the
right-hand side function is Hölder continuous and monotone which allows us to compare accuracy of other
numerical methods in our model (e.g. Runge-Kutta), in particular when explicit formulas for solutions are
not known. Finally, we test the above results in simulations of real industrial process.

INDEX TERMS Delay differential equation, Euler method, metallic materials, Runge-Kutta method, strict
error analysis.

I. INTRODUCTION
Numerous models of materials developed in the second half
of the 20th century use external variables as independent
ones [1]. The model output is a function of some pro-
cess parameters (e.g., strain, temperature, strain rate), which
are external variables and which are grouped in the vector
p (y = y(p), where y is the model output). The main draw-
back of this approach is that it does not properly take into
account the history of the considered process. Namely, within
these models once the conditions of the process change, the
calculated material responses immediately by moving to a
new equation of state and the model output is a function
of new values of external variables. On the other hand,
it was observed experimentally, see for example [2], that
metallic materials in general show delay in the response to
the change in processing conditions. Therefore, the rheolog-
ical models, which include internal variables as independent
parameters, were proposed in the literature. In the internal
variable approach (IVM) the model output is a function of
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time t; again of some process parameters (e.g., temperature,
strain rate), which we grouped in the vector p and inter-
nal variables, which we grouped in the vector q: (so now
y = y(t, p, q)). Since the internal variables remember the state
of the material, these models give more realistic description
of materials behavior.

The model with one internal variable, which is the aver-
age dislocation density ρ, is usually considered for metallic
materials. The model follows fundamental works of Kocks,
Mecking, and Estrin [3], [4]. Main assumptions of this model
are repeated briefly below. Since the stress during plastic
deformation is governed by the evolution of dislocation pop-
ulations, a competition of storage and annihilation of dislo-
cations, which superimpose in an additive manner, controls a
hardening. Thus, the flow stress σf accounting for softening
is proportional to the square root of dislocation density

σf = a7 + a6bµ
√
ρ, (1)

where a6 is a material dependent coefficient, a7 is stress
due to lattice resistance or solution hardening, b is length
of the Burgers vector, and µ is shear modulus (e.g.
see [1, chapter 3.3]).
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The evolution of dislocation populations is controlled by
hardening (dρ/dt = A1ε̇, where ε̇ is the strain rate) and
restoration (ρ′(t) = −A2(t)ρ(t)ε̇(t)) processes. During defor-
mation the dislocation density increases in a monotonic way
until the state of saturation is reached.

The Kocks-Mecking-Estrin (KEM) model has been
intensively developed during last decades with the wide
focus ranging from discrete dislocation dynamics [5] to
phenomenological approaches [6]. Distinguishing between
various types of dislocations (mobile, trapped) was an impor-
tant objective of the research, see eg. recent publication [7].
A number of dislocation density reaction models were
applied to describe the deformation of various superalloys,
such as Ti-alloys [8], [9] and Ni-alloys [10]. Effect of reverse
deformation on evolution of dislocations was investigated
in [11]. Authors of [12] applied KEM based model to ana-
lyze fracture during deformation. Several researchers inves-
tigated deformation at lower temperatures, when recovery
is a dominant softening mechanism [13]. However, at ele-
vated temperatures an additional softening mechanism called
recrystallization occurs. The term recrystallization is com-
monly used to describe the replacement of a deforma-
tion microstructure by new grains [14]. Processes of phase
changes (transformations), which are common in metallic
materials, compose nucleation and growth stages. It means
that during this process the two phases can coexist. Recrystal-
lization is classified as a specific type of the transformation,
in which the part of the material with increased dislocation
density due to deformation is considered an old phase and
the part of the material with rebuilt microstructure and free
of dislocations is considered a new phase. Two types of the
recrystallization can be distinguished, dynamic which occurs
during the deformation and static, which occurs after the
deformation. The final microstructure and mechanical prop-
erties of the alloys are determined, to a large extent, by the
recrystallization. The research on the recrystallization dates
back to 19th century, and the fast development of the dynamic
recrystallization theory was summarized in [14]. The most
recent research on this process is described in [15]. A lot
of factors have a significant effect on the recrystallization,
including the stacking fault energy, the process conditions
(temperature, strain rate), the grain size and few other met-
allurgical parameters. Modeling of recrystallization has been
for decades based on the Johnson-Mehl-Avrami-Kolmogorov
model, which is based on the external variables only and gives
erroneous results when process conditions are changed. In the
present work an approach based on the internal variable,
which is a dislocation density, was proposed. Since various
parts of thematerial during recrystallization can be in a differ-
ent state and this process is launched when certain threshold
of the accumulated energy is reached, the rate of this process
depends on the history of the energy accumulation. The
energy accumulated in thematerial in the form of dislocations
from the past acts as the driving force for the current progress
of the recrystallization. Similarly, the driving force during
static recrystallization depends on the energy accumulated

earlier in the material during deformation. This process is
launched when certain threshold of the accumulated energy
is reached and the rate of this process depends on the history
of the energy accumulation. In the mathematical description
of this phenomenon a delay differential equation (DDE) is a
natural tool. This approach appeared first in [16]. For more
details, see Chapter 3.3 in [1].

Accounting for the recrystallization in the KEM formal-
ism is not so frequent and dedicated mainly to multiphase
superalloys [17]. The focus is on physical background of the
recrystallization in these alloys and there are no details of the
numerical solution. To our knowledge, there are no publica-
tions connected with application of KEMmodel coupled with
the recrystallization term to steels, which are still the most
common constructional materials.

From the above reasoning, it turns out that the evolution of
dislocation populations accounting for hardening, recovery,
and recrystallization is given by

ρ′(t) = A1(t) · ε̇(t)− A2(t) · ρ(t) · ε̇(t)1−a9

−A3(t) · (ρ(t))a8 ·R(t − tcr ), t ≥ 0, (2)

where as before t is time, ε̇ is the strain rate, A1,A2,A3 are
model parameters (sometimes time independent, but in most
of real world cases dependent on other process parameters,
such as t , ε̇ etc.), and a8, a9 ∈ [0, 1] are additional model
coefficients. The function R is responsible for the delay in
the response to the change in processing conditions, and in
the most of practical considerations it is enough to consider

R(s) = 1(0,+∞)(s) · ρ(s). (3)

In what follows, we will always use R in the form (3) in
(2). In what follows, by a solution of (2) we mean any
continuous function ρ, which we assumeC1 everywhere with
the only possible exception at the point tcr , where one-sided
derivatives may disagree.
The rate of hardening is inversely proportional to the length

of the Burgers vector b and the free path for dislocations l, that
is A1 = 1/(bl) when ε̇ > 0 and A1 = 0 when ε̇ = 0. The
recovery and the recrystallization are temperature dependent
processes following the Aarhenius law [18]. The average free
path for dislocations l, the self-diffusion parameter A2, and
the grain boundary mobility A3 in equation (2) are calculated
as

l =
{
a1Z−a13 , when ε̇ > 0,
0, when ε̇ = 0,

(4)

A2 = a2 exp
(
−a3
RT

)
, (5)

A3 = a4
µb2

2D
exp

(
−a5
RT

)
, (6)

where: a2 is self-diffusion coefficient, a3 is activation energy
for self-diffusion, a4 is coefficient of the grain boundary
mobility, a5 is activation energy for grain boundary mobility,
D is austenite grain size, Z = ε̇ exp(Q/(RT )), is the Zener-
Hollomon parameter, Q is activation energy for deforma-
tion, R is the universal gas constant equal to 8.314 J/mol,
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FIGURE 1. Typical responses of metallic materials subjected to
deformation at elevated temperatures, results of the tests for DP
steel [19] and copper [20].

and a1, a13 are auxiliary model coefficients. Note that in
real industrial process even T varies in time, so coefficients
A1,A2,A3 are complicated functions changing in time.

Critical dislocation density for recrystallization is
calculated as

ρcr = a11 + a12Za10 (7)

where a10, a11, a12 are coefficients, and tcr is the time
between beginning of deformation and beginning of recrys-
tallization (i.e. the moment of reaching ρcr ). Note that ρcr
depends on Z which also changes in time. In simplified
approach, ρcr will be constant, but in practice it is not. In any
case, we are interested in the first time that this value is
reached (curves representing ρ and ρcr intersect), which is
by the definition value of tcr .

In real world, measurement of dislocation density during
the process is difficult. Fortunately, flow stress can be mea-
sured, and it is dependent on the dislocation density, which
evolution is given by equation (2). Measurements of flow
stress from experiments for different materials are presented
in Fig. 1.

Besides numerical simulations, we will perform a detailed
theoretical analysis of (2), and there are a few good rea-
sons to do that. First of all, it is hard to find in the lit-
erature mathematical tools that can be directly applied to
this type of equations, while in recent years some studies
of its numerical evolution were undertaken. Classical liter-
ature for ordinary differential equations (ODE), e.g. [21],
[22], assumes some regularity of right-hand side function,
commonly Lipschitz condition. Similar assumptions occur
for delay differential equations, cf. [23], [24]. Unfortunately,
there is no strict mathematical analysis of the error even
in the case of standard numerical methods like explicit

Euler method, for considered here nonlinear delay differential
equations with a locally Hölder continuous and monotone
right-hand side function. In the recent literature weakened
conditions appear with regards to stochastic delay differential
equations (e.g. [25], [26]), stochastic functional differential
equations with infinite delay [27], uncertain delay differen-
tial equations driven by a canonical Liu process [28], neutral
fractional order time delay systems [29] or in differential
equations with time-dependent delay (c.f. [30] where only
stability of equilibria were studied).

In our opinion it is valuable to show that results of these
simulations reflect the real behavior of the system. Fortu-
nately, analytic solutions and rigorous formulas can be used
for numerical tests on this equation for simplified equations
derived from (2), especially the cases when coefficients Ai
are no longer time (or other process parameters) dependent.
As a result of this study we want to ensure that numerical
methods, which are accurate at one hand, and have low
computational cost at the same time. As we will see, there
are good candidates here (as we prove they behave well for
simplified models).

While nowadays there is high popularity in methods of
higher order (e.g. Runge-Kutta scheme), they are not suitable
for our needs. First of all, observe that in (2) the right-hand
side function is only monotone and locally Hölder continu-
ous, however it is not differentiable at 0 and it is not even
globally Lipschitz continuous (recall that the global Lipschitz
condition is usually imposed in the literature). Yet another
problem in the case of delayed equations, is that in practice
in the case of higher order we will need value of delayed
function in points not used in mesh of computation. This
leads to interpolation of these values, possibly canceling
effect of higher order, and making precise error analysis
extremely problematic. Taking all the above reasons into
account, we decided to stick with classical Euler scheme
whose correctness and suitability we are convinced both
numerically and mathematically. In particular, we provide
in Theorem 3.2 the error bounds for the classical Euler
scheme under such irregular assumptions. Moreover, numeri-
cal results reported in Section IV confirmed its good behavior,
when applied to the equation (2) with real-world parameters.
For further numerical experiments in real-world setting we
refer the reader to our recent paper [31].

The paper is organized as follows. Section II is devoted
to existence and uniqueness of solutions of (2). Section III
contains error behavior analysis for explicit Euler method
with some discussion why we finally chose it for our main
numerical experiments. Finally, in Section IV some numeri-
cal results are given, with simulations for (2) with real world
parameters of selected metallic materials (copper and Dual
Phase steel, DP steel for short) at the end.

II. EXISTENCE AND UNIQUENESS OF SOLUTIONS OF
SOME INSTANCES OF (2)
In this section we will consider (2) with some relatively
mild additional conditions on time-dependent coefficients
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A1,A2,A3 and ε̇ (mainly that they are bounded, end extremal
values satisfy some relations bonding them together). Before
we can prove main results of this section, we will consider
the following auxiliary delay differential equation obtained
by simplification of (2) to the form

ρ′(t)=A1 −A2 · ρ(t)− A3 · (ρ(t))a8 · 1(tcr ,+∞)(t) · ρ(t − tcr ),

(8)

where a8 ∈ [0, 1] and A1,A2,A3 > 0 are constant. Observe
that in (8), compared to (2), we assume constant strain rate
ε̇(t) ≡ 1, and by convention functionR is given by (3). Prop-
erties of this simplified equation will allow us to approximate
evolution of (2).

A. EXISTENCE AND UNIQUENESS OF SOLUTION
We start with presenting two auxiliary results on (8), which
will help us to analyze (2). Note that the case a8 = 0 is very
similar to the simple delayed equation ρ′(t) = A1 − A2 ·
ρ(t)−A3 ·ρ(t−τ ) considered in [32]. Unfortunately, we may
not use directly formulas of solutions from there, since in
our case of (8), influence of delayed term is also delayed
by characteristic function in (3). In [32] it was pointed out
that too large value of τ with respect to A,B,C can result in
unbounded oscillations and as a result negative values of ρ.
In what follows we will see that the condition A3

A2
< 1 always

prevents it, while as reported in [32], cases A3
A2
≥ 1 may

lead to unstable solutions. The situation in this case is much
dependent on the value of ρcr , however. The analysis of
(8) will lead to analogous conditions on coefficients in (2).
However as we will see later, our model (with real world
parameters) will satisfy these assumptions. The following
result is an adaptation of the proof of Theorem 3.2. in [24]
to delay differential equations (8). The argument is standard,
however, we present it for the reader’s convenience.
Lemma 2.1: Let ρ : [0, σ ) → R be a noncontinuable

solutions of delay differential equations (8) and assume that
σ < +∞. Then limt→σ− |ρ(t)| = +∞.

Proof: There is j ≥ 0 such that jtcr < σ ≤ (j + 1)tcr .
But then we can view ρ as a noncontinuable solution of the
ODE defined for 0 ≤ t < σ + tcr :

x ′(t) = A1(t) · ε̇(t)− A2(t) · x(t) · ε̇(t)1−a9

−A3(t) · (x(t))a8 · 1(0,+∞)(t) · ρ(t − tcr ).

If ρ was bounded, then by standard argument for ODEs (e.g.
see [33, Theorem 2.1]) ρ can be continued beyond σ which
is a contradiction. �
Lemma 2.2: Assume that A3

A2
< 1 and a8 = 0. The

solutions of delay differential equations (8) with the initial-
value condition

0 ≤ ρ(0) = ρ0 < ρcr < A1/A2; ρ(t) = ρ0 for t < 0

exist for any t ≥ 0 and are bounded by [0,A1/A2].
Proof: It is easy to verify that for t ≤ tcr the solution

ρ(t) exists, is increasing and contained in the interval (0, ρcr ).

After reaching t = tcr , discontinuity in the vector field dis-
appears, and (8) becomes standard delay differential equation
with continuous initial condition, defined by solution of (8)
on the interval [0, tcr ]

ρ′(t) = A1 − A2ρ(t)− A3ρ(t − tcr ).

In the case that there is a solution that cannot be continued on
R+ it must leave the interval [0,A1/A2] first, see Lemma 2.1.
Denote

γ = sup{t : ρ(s) ∈ [0,A1/A2] for all 0 ≤ s ≤ t}

and assume that γ < ∞. It is clear that γ > 0 and there is
a decreasing sequence tn, such that limn→∞ tn = γ , ρ(tn) is
well defined (i.e. tn is in domain of ρ) and ρ(tn) 6∈ [0,A1/A2].

By definition ρ(γ ) ∈ {0,A1/A2}. Let us consider two
cases.
1) Assume first that ρ(γ ) = A1/A2. If ρ(γ − tcr ) > 0

then ρ′(t) < 0 for t ∈ (γ − δ, γ + δ) for sufficiently
small δ which is impossible, because for small δ, ρ′(t)
is continuous on (γ, γ + δ) contradicting the choice of
sequence tn.
Let us assume now that ρ(γ − tcr ) = 0. This implies
that there exists δ > 0 such that for t ∈ (γ − δ, γ + δ)
function r defined by r(t) = A1/A2 for t ∈ [γ, γ + δ)
and r(t) = ρ(t) for t < γ is continuous. But then, the
function x(t) = ρ(t)−r(t) is a solution of the ODE with
continuous vector field defined by x ′(t) = −A2x(t) for
t ∈ (γ − δ, γ ] and x ′(t) = −A2x(t) − A3ρ(t − tcr ) for
t ∈ (γ, γ + δ), with initial condition x(γ ) = 0. It is
clear that x as a solution of that equation must satisfy
x(t) ≤ 0 because for x > 0 the vector field is negative.
Therefore, for t ∈ (γ, γ+δ) we have ρ(t) ≤ A1

A2
≤ ρ(γ ).

This is in contradiction with the choice of sequence tn.
2) Assume next that ρ(γ ) = 0. There is δ such that for

t ∈ (γ − δ, γ + δ) we have A3
A2
+

A2
A1
|ρ(t)| < 1. But then,

for all these t we have a lower bound for the values of
the vector field

ρ′(t) ≥ A1 − |ρ(t)|A2 − A3
A1
A2

≥ A1

(
1−

A2
A1
|ρ(t)| −

A3
A2

)
> 0

showing that ρ is an increasing function on the interval
(γ − δ, γ + δ). A contradiction again.

Indeed, the solution of (8) is bounded and contained in
[0,A1/A2], which then implies that it can also be continued
onto R+, see Lemma 2.1. �

While we state the following result for a8 > 0 in practice
we will be interested only in a8 ∈ [0, 1]. The proof is
standard, we leave details to the reader.
Lemma 2.3: Assume that A3

A2
< 1 and a8 > 0. The

solutions of delay differential equations (8) and with initial-
value condition

0 ≤ ρ(0) = ρ0 < ρcr < A1/A2; ρ(t) = ρ0 for t < 0

exist for any t ≥ 0 and are bounded by [0,A1/A2].
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Remark 2.4: In the following theorem we may replace
mα2 by inf ε̇A2 and Mβ1 by sup ε̇A1. This way it can be
applied to a slightly larger class of equations.
Remark 2.5: In practice, the value of temperature T (t) is

much higher than 0 and by physical constraints also bounded
from the above. So if ε̇(t) > m > 0 then Z (t) ⊂ [a, b] ⊂
(0,+∞) and as a consequence all the coefficients Ai(t) are
bounded and separated from zero.
Theorem 2.6: Assume that there are positive constants

0 < αi ≤ βi and 0 < m ≤ M such that coefficients
Ai(t) ∈ [αi, βi] (for each t ≥ 0; this takes into account other
process parameters that these coefficients are dependent)
and ε̇(t) ∈ [m,M ] for every t ≥ 0. Additionally assume
that α3

mα2
< 1 and either a8 > 0 or β3

mβ2
< 1. Then the

solutions of delay differential equations (2) with the initial-
value condition

0 ≤ ρ(0) = ρ0 < ρcr <
Mβ1
mα2
; ρ(t) = ρ0 for t < 0

exist for any t ≥ 0 and are bounded by [0, Mβ1mα2
] and are

unique.
Proof: Consider the following equations with constant

coefficients:

z′(t) = Mβ1 − mα2z(t)− α31[tcr ,∞)(t)z(t − tcr ) (9)

and with initial-value condition z(t) = ρ0 for all t ≤ 0 and

w′(t) = mα1 −M1−a9β2w(t)− β31[tcr ,∞)(t)w(t − tcr )

(10)

and with initial-value condition w(t) = 0 for all
t ≤ 0 where tcr is provided solution of (2), provided it
exists. In the other case we omit delay term in (9) and (10).
By Lemmas 2.2 and 2.3 solutions of (9) and (10) exist for
every t > 0 and z(t) <

Mβ1
mα2

while w(t) ≥ 0. In fact,
w(t) ≥ 0 when a8 > 0 despite of relations between other
coefficients. Simple calculations yield that for t < tcr we
have z′(t) − ρ′(t) ≤ 0 and ρ′(t) − w′(t) ≥ 0 which implies
that ρ(t) exists for t ∈ [0, tcr ] and w(t) ≤ ρ(t) ≤ z(t) and this
inequality can be recursively extended onto further intervals
[ntcr , (n + 1)tcr ] which completes the proof of boundedness
of solutions.
Consider time interval [ntcr , (n + 1)tcr ) for n = 0, 1, . . ..

We may view (11) on each of these intervals as ODE. Let

f (t, x) = A1(t) · ε̇(t)− A2(t) · x · ε̇(t)1−a9

−A3(t) · xa8 ·R(t − tcr )

where on each of the above intervals delay term R(t − tcr )
can be regarded as a function of t but independent of solution.
In fact we can view R(t − tcr ) as a function defined for all
t ∈ R by putting R(t − tcr ) = R(ntcr ) for all t > (n+ 1)tcr .
This way we may regard (2) as associated ODE

ρ′(t) = f (t, ρ(t)) (11)

with initial condition ρ(ntcr ) := lims→nt−cr ρ(s), since values
ρ(s) for s ∈ [(n − 1)tcr , ntcr ) have already been determined.
It is obvious that ρ(tcr ) ≥ 0. Note that there are δ, α > 0 such

that for x ∈ [0, δ] we have f (t, x) > α, so in particular ρ(t)
is bounded away from 0, provided it is defined. We already
know that there is a solution ρ of (2) (so also (11)) in
[ntcr , (n + 1)tcr ) and assume that ρ̄ is another solution in
[tcr , 2tcr ), but with the same initial value as ρ, i.e., ρ̄(tcr ) =
ρ(tcr ). Then we have
d
dt
(ρ(t)− ρ̄(t))2 = 2(ρ(t)− ρ̄(t))(f (t, ρ(t))− f (t, ρ̄(t)))

≤ 0, (12)

since for all t the function (0,+∞) 3 x 7→ f (t, x) is
nonincreasing (recall ρ(t) ≥ 0 for all t ≥ 0), hence

0 ≤ (ρ(t)− ρ̄(t))2 ≤ (ρ(ntcr )− ρ̄(ntcr ))2 = 0. (13)

Repeating the above arguments inductively on consecutive
intervals [ntcr , (n+ 1)tcr ) we complete the proof. �
Remark 2.7: In practical applications, the condition

ε̇(t) ≥ m > 0 will not be usually satisfied. The reason is that
inside the metallic material usually it will take some time to
observe ε̇(t) > 0. However after some time, say T0 we will
have ε̇(t) > m for all t > T0 and at the same time ρ will not
diverge too much from ρ0. The reader may check that in these
cases, statements of Theorem 2.6 are still valid.
The same reasoning can be applied to other coefficients.

B. SOME SOLUTIONS OF THE TOY MODEL (8) AND
EXISTENCE OF tcr

For the equation (8) we can give explicit formula for solution
in the case when a8 ∈ {0, 1}. For the fractional values of
a8 it is rather hard to provide analytic formulas. On the other
hand, we may view the above two cases of a8 as bounds
for intermediate values. The main utility of these formulas,
is that they can be used to strict control of error in preliminary
numerical experiments. As usual, let us assume that

0 ≤ ρ0 < ρcr < A1/A2. (14)

Under the assumption above the solution ρ attains the critical
value ρcr in finite time tcr , and it is not hard to check that

tcr =
1
A2

ln
( ρ0 − (A1/A2)
ρcr − (A1/A2)

)
. (15)

Namely, for t ∈ [0, tcr ] the equation (8) is reduced to a simple
linear equation with the solution

ρ(t) =
A1
A2
+

(
ρ0 −

A1
A2

)
e−A2t , (16)

which is a strictly increasing function and ρ(tcr ) = ρcr . In the
intervals [ntcr , (n + 1)tcr ], n ∈ N, we solve the equation (8)
recursively as follows. Let us denote by φn−1 the solution ρ
in the interval t ∈ [(n − 1)tcr , ntcr ] (φ0 in [0, tcr ] is given
by (16)). We have two cases:
(i) a8 = 0: The solution with the initial value

ρ(ntcr ) = φn−1(ntcr ) is

ρ(t) = e−A2(t−ntcr ) ·
(
φn−1(ntcr )+

t∫
ntcr

eA2(s−ntcr )

·

(
A1 − A3 · φn−1(s− tcr )

)
ds
)
, (17)
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for t ∈ [ntcr , (n+ 1)tcr ].
(ii) a8 = 1: The initial value ρ(ntcr ) = φn−1(ntcr ) leads to

the solution

ρ(t) = e
−

t∫
ntcr

pn−1(s)ds

·

(
φn−1(ntcr )+ A1 ·

t∫
ntcr

e

s∫
ntcr

pn−1(u)du
ds
)
,

(18)

where

pn−1(t)=A2+A3 · φn−1(t − tcr ), t ∈ [ntcr , (n+ 1)tcr ].

(19)

Note that both solutions are given in integral form, which
most likely is impossible to present as explicit functions in the
case a8 = 1, since we have doubly exponential terms under
integral. For the case a8 = 0 it seems possible to provide
some formulas (similarly to [32]), however their complexity
increases rapidly withmultiplies of tcr , mainly because vector
field is discontinuous.

On the other hand, equations (17) and (18) can be treated
with numerical integration with rigorous control of numerical
errors. This way we can accurately estimate numerical errors
of numerical solutions of these equations (e.g. by explicit
Euler method). This gives us a chance for rigorous com-
parison of various numerical methods for solving equations
of type (8), possibly ensuring similar behavior of numerical
approximations of its further generalizations.
Remark 2.8: The assumption that A1 > 0 seems to be

crucial in order to have a nontrivial problem, since, in the
case when A1 = 0, we get by (14) that ρ0 = ρcr = 0 and
tcr = 0. Moreover, the equation (8) becomes the following
Bernoulli equation

ρ′(t) = −A2 · ρ(t)− A3 · (ρ(t))a8+1, t > 0, (20)

which, under the initial value ρ0 = 0, has the following trivial
solution ρ(t) = 0 for all t ∈ [0,+∞) and all a8 ∈ [0, 1].
By Theorem 2.3 all solutions of (8) tend to the zero solution
when A1 → 0+. Hence, only the case when A1 > 0 is of
practical interest. It is worth mentioning, that it is always the
case in considered models.

Unfortunately in applications we cannot assume that coef-
ficients Ai are time independent. Then the question arise
to which extent the new equation is similar. The first step
will be to show that critical time tcr , under certain assump-
tions on A1,A2, always exists also in that case. Assume that
assumptions of Theorem 2.6 are satisfied, in particular coef-
ficients Ai as well as ε̇ are bounded, i.e. Ai(t) ∈ [αi, βi] and
ε̇(t) ∈ [m,M ] for every t ≥ 0.

Consider time-dependent version of (8) before reaching tcr
derived from (2) with ‘‘smallest possible’’ vector fiels, that is
the equation (stated for t ≥ 0)

ρ′(t) = mA1(t)−M1−a9A2(t) · ρ(t), ρ(0) = ρ0 ≥ 0.

(21)

Hence

ρ(t) = e
−M1−a9

t∫
0
A2(s)ds

·

(
ρ0 + m

t∫
0

e
M1−a9

s∫
0
A2(u)du

A1(s)ds
)
, (22)

which is clearly continuous and positive function on [0,+∞),
and since both A1,A2 are bounded away from zero, we also
have

lim
t→+∞

e

t∫
0
A2(s)ds

= +∞,

lim
t→+∞

t∫
0

e

s∫
0
A2(u)du

A1(s)ds = +∞. (23)

Therefore solution of both (22) and (2) satisfy

lim sup
t→+∞

ρ(t) ≥
m

M1−a9
lim sup
t→+∞

A1(t)
A2(t)

.

In particular, when lim sup
t→+∞

A1(t)
A2(t)

>
M1−a9ρcr

m then there exists

tcr > 0 such that the solution ρ of (21) satisfies ρ(tcr ) = ρcr
(and by continuity we may assume that tcr is smallest among
all such times).

For example, let us consider the equation (2) with
a9 = 0, time independent but positive A1,A2, continuous ε̇
and, as before, assume that ε̇(t) ≥ m > 0 for all t ≥ 0.
Hence, we are considering time-dependent version of (8),
with A1(t) = A1ε̇(t), A2(t) = A2ε̇(t) and A3(t) = A3.
Under the assumption (14) we have, by the above consid-
erations, that there always exists tcr > 0, since in that case
lim sup
t→+∞

ρ(t) = A1/A2 > ρcr . Moreover, it can be shown that

tcr = ε−1
( 1
A2

ln
( ρ0 − (A1/A2)
ρcr − (A1/A2)

)
+ ε(0)

)
, (24)

where ε−1 is the inverse function for ε, which exists since
ε is strictly increasing. Note that in the case when ε̇ ≡
1 we restore from (24) the equation (15). Nevertheless, only
in this particular case we know the closed formula for tcr .
In general the nonlinear equation ρ(tcr ) = ρcr has to be
solved numerically.

As long as tcr is calculated, we can repeat arguments
presented earlier in Section II-B and provide formulas for
solutions when a8 ∈ {0, 1}. As before, for t ∈ [ntcr , (n +
1)tcr ], n ∈ N, we solve the equation (8) with time-dependent
A1,A2,A3 recursively. Let us denote by φn−1 the solution ρ
in the interval t ∈ [(n − 1)tcr , ntcr ], where φ0 in [0, tcr ] is
given by

φ0(t) = e
−

t∫
0
A2(s)ds

·

(
ρ0 +

t∫
0

e

s∫
0
A2(u)du

A1(s)ds
)
. (25)

We consider the following two cases:
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(i) a8 = 0: Then for t ∈ [ntcr , (n + 1)tcr ], n ∈ N, the
solution is given by

ρ(t) = e
−

t∫
ntcr

A2(s)ds

·

(
φn−1(ntcr )+

t∫
ntcr

e

s∫
ntcr

A2(u)du
· qn−1(s)ds

)
,

(26)

where

qn−1(t) = A1(t)− A3(t) · φn−1(t − tcr ). (27)

(ii) a8 = 1: Then for t ∈ [ntcr , (n + 1)tcr ], n ∈ N, the
solution is

ρ(t) = e
−

t∫
ntcr

pn−1(s)ds

·

(
φn−1(ntcr )+

t∫
ntcr

e

s∫
ntcr

pn−1(u)du
· A1(s)ds

)
,

(28)

where

pn−1(t) = A2(t)+ A3(t) · φn−1(t − tcr ),

t ∈ [ntcr , (n+ 1)tcr ]. (29)

Despite, the formulas being slightly more complicated, they
can be effectively used within the process of evaluation of
accuracy and correctness of numerical methods used to solve
time-dependent versions of (8).

III. ERROR ANALYSIS OF THE EXPLICIT EULER METHOD
Since in the case when a8 ∈ (0, 1) the exact formulas
for the solution of (2) are not known, we use the suitable
numerical methods to approximate ρ on a finite time interval.
We are interested in the error analysis for solutions of (2) after
reaching tcr , since delay activates at this point. This approach
will allow us to impose some reasonable assumptions on
continuity of vector field. It will be visible in assumptions
(F1)-(F4) below; see also Remark 3.7.

We consider the (general) delay differential equation

z′(t) = f (t, z(t), z(t − tcr )), t ≥ 0, (30)

with a given right-hand side function f : [0,+∞)×R×R→
R and where z(t) = η ∈ R for t ∈ [−tcr , 0].

For fixed n ∈ N the explicit Euler method that approx-
imates a solution z = z(t) of (30) for t ∈ [0, (n + 1)tcr ]
is defined recursively for subsequent intervals. Namely, let
N ∈ N and

t jk = jtcr + kh, k = 0, 1, . . . ,N , j = 0, 1, . . . , n,

where

h =
tcr
N
. (31)

Note that {t jk}
N
k=0 is uniform discretization of the subinterval

[jtcr , (j + 1)tcr ]. Discrete approximation of z in [0, tcr ] is
defined by

y00 = η, (32)

y0k+1 = y0k + h · f (t
0
k , y

0
k , η), k = 0, 1, . . . ,N − 1.

(33)

Let us assume that the approximations yj−1k ≈ z(t j−1k ),
k = 0, 1, . . . ,N , have already been defined in the interval
[(j− 1)tcr , jtct ] (for j = 1 it was done in (32) and (33)). Then
for j = 1, 2, . . . , n we take

yj0 = yj−1N , (34)

yjk+1 = yjk + h · f (t
j
k , y

j
k , y

j−1
k ), k = 0, 1, . . . ,N − 1,

(35)

as the approximation of z in [jtcr , (j+ 1)tcr ].
In this section we present rigorous analysis of the error

of the explicit Euler method under the nonstandard assump-
tions on the right-hand side function f of the equation (30).
Namely, we assume that f is monotone and locally Hölder
continuous instead of the global Lipschitz continuity. Accord-
ing to the authors knowledge, there is lack of such analysis
in the literature (cf. [21], [22], [23]), since we consider a
non-Lipschitz case. It should be mentioned that in case of
numerical integration methods really strict error analysis is
complicated, otherwise any method can be improved using
the knowledge of its error behavior. Strict truncation error
evaluation is an elusive goal of scholars in numerical inte-
gration.

Let us emphasize once again, that we cannot apply higher
order methods under out assumptions (such us Runge-Kutta
schemes), since we do not assume that function f is dif-
ferentiable. Observe that indeed it is the case of our main
equation (2), since the right-hand side function of (2) is not
differentiable at 0 when a8 ∈ (0, 1).
For the right-hand side function f : [0,+∞)×R×R→ R

in the equation (30) we impose the following assumptions:
(F1) f ∈ C([0,+∞)× R× R;R).
(F2) There exists a constant K ≥ 0 such that for all

(t, y, z) ∈ [0,+∞)× R× R

|f (t, y, z)| ≤ K (1+ |y|)(1+ |z|).

(F3) For all (t, z) ∈ [0,+∞)× R, y1, y2 ∈ R

(y1 − y2)(f (t, y1, z)− f (t, y2, z)) ≤ 0.

(F4) There exist L ≥ 0, α, β, γ ∈ (0, 1] such that for all
t1, t2 ∈ [0,+∞), y1, y2, z1, z2 ∈ R

|f (t1, y1, z1)− f (t2, y2, z2)|

≤ L
(
(1+ |y1| + |y2|) · (1+ |z1| + |z2|) · |t1 − t2|α

+|y1 − y2|β

+(1+ |z1| + |z2|)|y1 − y2|γ

+(1+ |y1| + |y2|)|z1 − z2|
)
.
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In the following fact we provide an example of the right-hand
side function that satisfies the assumptions (F1)-(F4). In what
follows we use this function in order to approximate the solu-
tion of (2) in the case when a8 ∈ (0, 1), see also Remark 3.7.
The proof of this fact is standard and we leave it to the reader.
Lemma 3.1: Let the functions A,B,C : [0,+∞) →

[0,+∞) satisfy Hölder condition with the Hölder exponent
α ∈ (0, 1] and with the Hölder constant H ∈ [0,+∞),
% ∈ (0, 1] and define a function f̃ : [0,+∞)× R× R→ R
as follows1

f̃ (t, y, z) = A(t)− B(t) · sgn(y) · |y|−C(t) · sgn(y) · |y|% · |z|.

(36)

If the functions A,B,C are bounded in [0,+∞), then the
function f̃ satisfies (F1)-(F4) with K = ‖A‖∞ + ‖B‖∞ +
‖C‖∞, L = max{3H , ‖B‖∞, 2‖C‖∞}, α = α, β = 1 and
γ = %.

The following theorem is the main result of this section.
It states the upper bound on th error of the Euler algorithm
under the mild assumptions (F1)-(F4). We want to underline
here that up to our knowledge there are no such results in
the literature, since in standard situation at least the global
Lipschitz condition is satisfied. Unfortunately, due to the
form of the main equation (2), this condition is not satisfied,
which supports necessity of the following result.
Theorem 3.2: Let η ∈ R and let f satisfy (F1)-(F4). Fix

n ∈ N. Then there exist C0,C1, . . . ,Cn ≥ 0 such that for
sufficiently large N ∈ N the following holds

max
0≤k≤N

|φ0(t0k )− y
0
k | ≤ C0(hα + hβ + hγ ), (37)

and for j = 1, 2, . . . , n

max
0≤k≤N

|φj(t
j
k )− y

j
k | ≤ Cj(h

1/2
+ hα + hβ + hγ ), (38)

where φj = φj(t) is the solution of (30) on the interval
[jtcr , (j + 1)tcr ] and sequences y

j
k , t

j
k are calculated using

explicit Euler method as described in (34).
We want to underline here that the theorem above gives

the error estimates for the Euler scheme on the fixed and
bounded time horizon [0, (n + 1)tcr ]. This is crucial, since
the discretization parameter N depends on n.
In order to prove Theorem 3.2 we need several auxiliary

lemmas. Note that the same symbol may be used for different
constants.
Lemma 3.3: Let us consider the following ordinary differ-

ential equation

z′(t) = g(t, z(t)), t ∈ [a, b], z(a) = η, (39)

where −∞ < a < b < +∞, η ∈ R and g : [a, b]× R→ R
satisfies the following conditions:
(G1) g ∈ C([a, b]× R;R).
(G2) There exists K > 0 such that for all (t, y) ∈ [a, b]×R

|g(t, y)| ≤ K (1+ |y|).

1sgn(x) = 1 if x ≥ 0 and sgn(x) = −1 if x < 0.

(G3) For all t ∈ [a, b], y1, y2 ∈ R

(y1 − y2)(g(t, y1)− g(t, y2)) ≤ 0.

Then the equation (39) has a unique C1 solution in [a, b],

sup
t∈[a,b]

|z(t)| ≤ (|η| + K (b− a))eK (b−a), (40)

and for all t, s ∈ [a, b]

|z(t)− z(s)| ≤ K̄ |t − s|, (41)

where K̄ = K
(
1+ (|η| + K (b− a))eK (b−a)

)
.

Proof: Since the right-hand side function g is continuous
and it is of at most linear growth (i.e. (G1) and (G2) are sat-
isfied), Peano’s theorem guarantees existence of the solution
(e.g. see Theorem 70.4, page 292 in [34]). The uniqueness
follows from the monotonicity condition (G3). Namely, let
us assume that (39) has two solutions z = z(t) and x = x(t)
with the same initial-value z(a) = x(a) = η. Then for all
t ∈ [a, b]

d
dt
(z(t)− x(t))2 = 2(z(t)− x(t))(g(t, z(t))− g(t, x(t))) ≤ 0.

Therefore, the mapping [a, b] 3 t 7→ (z(t) − x(t))2 is
non-increasing and we get for all t ∈ [a, b]

(z(t)− x(t))2 ≤ (z(a)− x(a))2 = 0,

which, together with continuity of z, x, implies that
z(t) = x(t) for all t ∈ [a, b].

For all t ∈ [a, b] by (G2) we get

|z(t)| ≤ |η| +

t∫
a

|g(s, z(s))|ds

≤ |η| + K (b− a)+ K

t∫
a

|z(s)|ds, (42)

and by Gronwall’s lemma we obtain (40). The esti-
mate (41) follows from (G2), (40) and the mean value
theorem. �
The following result provides an upper bound on the error

of explicit Euler method applied to ODEs with monotone and
Hölder continuous right-hand side functions.
Lemma 3.4: Let us consider the following ordinary differ-

ential equation

z′(t) = g(t, z(t)), t ∈ [a, b], z(a) = η, (43)

where −∞ < a < b < +∞, η ∈ R and g : [a, b]× R→ R
satisfies the following conditions:
(G1) g ∈ C([a, b]× R;R).
(G2) There exists K > 0 such that for all (t, y) ∈ [a, b]×R

|g(t, y)| ≤ K (1+ |y|).

(G3) For all t ∈ [a, b], y1, y2 ∈ R

(y1 − y2)(g(t, y1)− g(t, y2)) ≤ 0.
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(G4) There exist L > 0 and γ1, γ2, γ3 ∈ (0, 1] such that for
all t1, t2 ∈ [a, b], y1, y2 ∈ R

|g(t1, y1)− g(t2, y2)|

≤ L
(
(1+ |y1| + |y2|)|t1 − t2|γ1 + |y1 − y2|γ2

+|y1 − y2|γ3
)
.

Let us consider the explicit Eulermethod based on equidistant
discretization. Namely, for n ∈ N we set h = (b − a)/n,
tk = a + kh, k = 0, 1, . . . , n, and let y0 ∈ R be such that
|η − y0| ≤ 1. We take

yk+1 = yk + h · g(tk , yk ), k = 0, 1, . . . , n− 1. (44)

Then the following holds.
(i) There exists C1 = C1(a, b,K , η) > 0 such that for all

n ∈ N,1 ∈ [0,+∞) we have

max
0≤k≤n

|yk | ≤ C1(1+1). (45)

(ii) There exists C2 = C2(a, b,L,K , η, γ1, γ2, γ3) > 0 such
that for all n ∈ N,1 ∈ [0,+∞) we have

max
0≤k≤n

|z(tk )− yk | ≤ C2(1+ hγ1 + hγ2 + hγ3 ).

(46)

Proof: We have that

|yk+1| ≤ (1+ hK )|yk | + hK , k = 0, 1, . . . , n− 1

(47)

and |y0| ≤ |η| + 1. Hence, by the discrete version of
Gronwall’s lemma we get that for all k = 0, 1, . . . , n

|yk | ≤ eK (b−a)(|η| +1+ 1)− 1 ≤ C1(1+1), (48)

where C1 = max{eK (b−a)(|η| + 1) − 1, eK (b−a)
}. This

proves (45).
For k = 0, 1, . . . , n − 1 we consider the following local

ordinary differential equation

z′k (t) = g(t, zk (t)), t ∈ [tk , tk+1], zk (tk ) = yk .

(49)

By (48) we get for all t ∈ [tk , tk+1] that

|zk (t)| ≤ |yk | +

t∫
tk

|g(s, zk (s))|ds

≤ C1(1+1)+ K (b− a)+ K

t∫
tk

|zk (s)|ds,

(50)

and by the Gronwall’s lemma we obtain

sup
t∈[tk ,tk+1]

|zk (t)| ≤ C2(1+1), (51)

where C2 = (C1 + K (b − a))eK (b−a). Therefore, for all
t ∈ [tk , tk+1]

|zk (t)− yk | ≤

t∫
tk

|g(s, zk (s))|ds

≤ hK
(
1+ sup

t∈[tk ,tk+1]
|zk (t)|

)
≤ C3(1+1)h, (52)

with C3 = (1+ C2)K . Now, we have that

|z(tk+1)− yk+1| ≤ |z(tk+1)− zk (tk+1)| + |zk (tk+1)− yk+1|,

(53)

for k = 0, 1, . . . , n− 1. Note that for all t ∈ [tk , tk+1], due to
the assumption (G3), the following holds

(z(t)− zk (t))2

= (z(tk )− yk )2

+2 ·

t∫
tk

(z(s)− zk (s)) (g(s, z(s))− g(s, zk (s))) ds

≤ (z(tk )− yk )2. (54)

Hence, we arrive at

|z(tk+1)− zk (tk+1)| ≤ |z(tk )− yk |. (55)

We now estimate the second term in (53). We have by (44),
(48), (49), (51), (G4), and (52) that

|zk (tk+1)− yk+1|

=

∣∣∣zk (tk )− yk + tk+1∫
tk

(
g(s, zk (s))− g(tk , yk )

)
ds
∣∣∣

≤

tk+1∫
tk

|g(s, zk (s))− g(tk , yk )|ds

≤ L

tk+1∫
tk

(
(1+ |zk (s)| + |yk |)|s− tk |γ1

+|zk (s)− yk |γ2 + |zk (s)− yk |γ3
)
ds

≤ C̃4h
(
(1+1)hγ1 + (1+1)γ2hγ2 + (1+1)γ3hγ3

)
,

(56)

where C̃4 = Lmax{(1+C1+C2)/(1+γ1),C
γ2
3 ,C

γ3
3 }. Since

(1+1)γi ≤ 2(1+1), i = 1, 2, we obtain that

|zk (tk+1)− yk+1| ≤ C4h(1+1)(hγ1 + hγ2 + hγ3 ),

(57)

where C4 = 2LC̃4.
Let us denote

ek = z(tk )− yk , k = 0, 1, . . . , n. (58)
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Of course |e0| ≤ 1. By (53), (55), and (57) we have the
following recursive inequality

|ek+1| ≤ |ek | + C4(1+1)h(hγ1 + hγ2 + hγ3 ), (59)

for k = 0, 1, . . . , n− 1. It is easy to see that

|ek | ≤ 1+ kC4(1+1)h(hγ1 + hγ2 + hγ3 )

≤ 1+ C4(b− a)(hγ1 + hγ2 + hγ3 ), (60)

≤ C(1+ hγ1 + hγ2 + hγ3 ), (61)

for all k = 0, 1, . . . , n, where C = 6(1+ b− a) max{1, (b−
a)C4}. This ends the proof of (46), completing the proof of
lemma. �

In the following lemma we show, by using the results
above, that the delay differential equation (30) has unique
solution under assumptions (F1)-(F3). Note that the assump-
tions are weaker than those known from the standard liter-
ature. Namely, we use only monotonicity and local Hölder
condition for the right-hand side function f .
Lemma 3.5: Let η ∈ R and let f satisfy (F1)-(F3). Then

the equation (30) has a unique continuously differentiable
solution that exists for any t ≥ 0. Moreover, if we denote
by φn = φn(t) the solution of (30) on the interval [ntcr , (n+
1)tcr ], then for all n ∈ N0 there exist K0,K1, . . . ,Kn ≥ 0 such
that

sup
ntcr≤t≤(n+1)tcr

|φn(t)| ≤ Kn, (62)

and, for all t, s ∈ [ntcr , (n+ 1)tcr ]

|φn(t)− φn(s)| ≤ K̄n|t − s|, (63)

with K̄n = K (1+ Kn−1)(1+ Kn), where K−1 := |η|.
Proof: We proceed by induction with respect to n.

For n = 0, the equation (30) can be written as

z′(t) = f (t, z(t), η), t ∈ [0, tcr ], (64)

with the initial condition z(0) = η. Denoting by

g0(t, y) = f (t, y, η), t ∈ [0, tcr ], y ∈ R, (65)

we get, by the properties of f , that g0 ∈ C([0, tcr ]× R),

|g0(t, y)| ≤ K̂0(1+ |y|), (66)

with K̂0 = K (1+ |η|), and

(y1 − y2)(g0(t, y1)− g0(t, y2)) ≤ 0, for all y1, y2 ∈ R.
(67)

Therefore, by Lemma 3.3 we get that there exists a unique
continuously differentiable solution φ0 : [0, tcr ]→ R of the
equation (64), such that

sup
t∈[0,tcr ]

|φ0(t)| ≤ K0,

where

K0 = (|η| + K̂0tcr )eK̂0tcr

= (|η| + K (1+ |η|)tcr )eK (1+|η|)tcr ≥ 0,

and for all t, s ∈ [0, tcr ]

|φ0(t)− φ0(s)| ≤ K̄0|t − s|,

where

K̄0 = K̂0(1+ K0) = K (1+ K−1)(1+ K0)

depends only on η,K , tcr .
Let us now assume that there exists n ∈ N0 such

that the statement of the lemma holds for the solution
φn : [ntcr , (n+ 1)tcr ]→ R. Consider the equation
z′(t) = f (t, z(t), φn(t − tcr )), t ∈ [(n+ 1)tcr , (n+ 2)tcr ],

(68)

with the initial condition z((n+ 1)tcr ) = φn((n+ 1)tcr ). Let
gn+1(t, y) = f (t, y, φn(t − tcr )),

t ∈ [(n+ 1)tcr , (n+ 2)tcr ], y ∈ R. (69)

We get by the inductive assumption and from the properties
of f that gn+1 ∈ C([(n + 1)tcr ], (n + 2)tcr ] × R;R), for all
y ∈ R we have

|gn+1(t, y)| ≤ K

(
1+ sup

ntcr≤t≤(n+1)tcr
|φn(t)|

)
(1+ |y|)

≤ K̂n+1(1+ |y|), (70)

with K̂n+1 = K (1+ Kn), and

(y1 − y2)(gn+1(t, y1)− gn+1(t, y2)) ≤ 0, y1, y2 ∈ R.
(71)

Hence, again by Lemma 3.3 we get that there exists a unique
continuously differentiable solution φn+1 : [(n + 1)tcr , (n +
2)tcr ]→ R of the equation (68), such that

sup
t∈[(n+1)tcr ,(n+2)tcr ]

|φn+1(t)| ≤ Kn+1,

Kn+1 = (Kn + K̂n+1tcr )eK̂n+1tcr

= (Kn + K (1+ Kn)tcr )eK (1+Kn)tcr ≥ 0,

where and for all t, s ∈ [(n+ 1)tcr , (n+ 2)tcr ] we have
|φn+1(t)− φn+1(s)| ≤ K̄n+1|t − s|,

where K̄n+1 = K̂n+1(1+ Kn+1) = K (1+ Kn)(1+ Kn+1).
From the above inductive construction we see that the

solution of (30) is continuous.Moreover, due to the continuity
of f , φn, and φn−1 we get for any n ∈ N0 that

lim
t→(n+1)tcr−

z′(t)

= lim
t→(n+1)tcr−

φ′n(t)

= lim
t→(n+1)tcr−

f (t, φn(t), φn−1(t − tcr ))

= f ((n+ 1)tcr , φn((n+ 1)tcr ), φn−1(ntcr ))

= f ((n+ 1)tcr , φn+1((n+ 1)tcr ), φn(ntcr ))

= lim
t→(n+1)tcr+

f (t, φn+1(t), φn(t − tcr ))

= lim
t→(n+1)tcr+

φ′n+1(t) = lim
t→(n+1)tcr+

z′(t).

Hence, the solution of (30) is continuously differentiable.
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The proof is completed. �
Lemma 3.6: Let η ∈ R and let f satisfy (F1)-(F4). For any

n ∈ N0 consider the function gn : [ntcr , (n+ 1)tcr ]×R→ R
given by

gn(t, y) = f (t, y, φn−1(t − tcr )), (72)

where φn = φn−1(t) is the solution of (30) on the interval
[(n− 1)tcr , ntcr ] and φ−1(t) := η for all t ∈ [−tcr , 0]. Then
(i) gn ∈ C([ntcr , (n+ 1)tcr ]× R;R).
(ii) For all (t, y) ∈ [ntcr , (n+ 1)tcr ]× R

|gn(t, y)| ≤ K̂n(1+ |y|),

where K−1 = |η|, K̂n = K (1 + Kn−1) and Kn−1 is the
constant from Lemma 3.5.

(iii) For all t ∈ [ntcr , (n+ 1)tcr ], y1, y2 ∈ R

(y1 − y2)(gn(t, y1)− gn(t, y2)) ≤ 0.

(iv) For all t1, t2 ∈ [ntcr , (n+ 1)tcr ], y1, y2 ∈ R

|gn(t1, y1)− gn(t2, y2)|

≤ L̂n
(
(1+ |y1| + |y2|) · |t1 − t2|α

+|y1 − y2|β + |y1 − y2|γ
)
,

where L̂n = L(1 + 2Kn−1 + t1−αcr K̄n−1) and K̄−1 := 0,
K−1 := |η|.
Proof: Conditions (i), (ii), and (iii) follow by

Lemma 3.5.
By the assumption (F4) and Lemma 3.5 we get for all

t1, t2 ∈ [ntcr , (n+ 1)tcr ], y1, y2 ∈ R that

|gn(t1, y1)− gn(t2, y2)|

= |f (t1, y1, φn−1(t1 − tcr ))− f (t2, y2, φn−1(t2 − tcr ))|

≤ L
(
(1+ |y1| + |y2|) · (1+ |φn−1(t1 − tcr )|

+|φn−1(t2 − tcr )|) · |t1 − t2|α + |y1 − y2|β

+(1+ |φn−1(t1 − tcr )| + |φn−1(t2 − tcr )|) · |y1 − y2|γ

+(1+ |y1| + |y2|) · |φn−1(t1 − tcr )− φn−1(t2 − tcr )|
)

≤ L
(
(1+ |y1| + |y2|) · (1+ 2Kn−1) · |t1 − t2|α

+|y1 − y2|β + (1+ 2Kn−1) · |y1 − y2|γ

+K̄n−1(1+ |y1| + |y2|) · |t1 − t2|
)

≤ L̂n
(
(1+ |y1|+ |y2|) · |t1 − t2|α+ |y1 − y2|β+ |y1− y2|γ

)
.

�
Now we are ready to prove Theorem 3.2.
Proof of Theorem 3.2:On the interval [0, tcr ] we approx-

imate the solution of (30) by the explicit Euler method

y00 = η, (73)

y0k+1 = y0k + h · g0(t
0
k , y

0
k ), k = 0, 1, . . . ,N − 1,

(74)

where g0(t, y) = f (t, y, η). Applying Lemmas 3.6 and 3.4 to
η := η, g := g0, [a, b] := [0, tcr ], 1 := 0 we get that

max
0≤k≤N

|φ0(t0k )− y
0
k | ≤ C0(hα + hβ + hγ ), (75)

where C0 = C0(tcr ,L,K , η, α, β, γ ) ≥ 0, and

|y0k | ≤ K̃0, k = 0, 1, . . . ,N , (76)

where K̃0 = K̃0(tcr ,K , η) ≥ 0.
In [tcr , 2tcr ] we consider the following differential equa-

tion

z′(t) = g1(t, z(t)), t ∈ [tcr , 2tcr ], (77)

with the initial value z(tcr ) = φ0(tcr ) = φ0(t0N ) and g1(t, y) =
f (t, y, φ0(t−tcr )).We approximate (77) by the auxiliary Euler
scheme

ỹ10 := y10 = y0N , (78)

ỹ1k+1 = ỹ1k + h · g1(t
1
k , ỹ

1
k ), k = 0, 1, . . . ,N − 1.

(79)

By (75) we have that

|φ1(t10 )− ỹ
1
0| = |φ0(t

0
N )− y

0
N | ≤ C0(hα + hβ + hγ ).

(80)

Applying Lemmas 3.6, 3.5 and 3.4 to η := φ0(t0N ), g := g1,
[a, b] := [tcr , 2tcr ], 1 := C0(hα + hβ + hγ ) we get that

|φ0(t0N )| ≤ K0, (81)

and

max
0≤k≤N

|φ1(t1k )− ỹ
1
k | ≤ C̃1(hα + hβ + hγ ), (82)

where C̃1 = C̃1(tcr ,L,K , η, α, β, γ ) ≥ 0 that, in particular,
depends on the initial value η of the equation (30). Let us
denote by

e1k = ỹ1k − y
1
k , k = 0, 1, . . . ,N ,

where we have that e10 = ỹ10− y
1
0 = 0. From (79) and (35) we

have for k = 0, 1, . . . ,N − 1 that

e1k+1 = e1k + hR
1
k + hL

1
k , (83)

where

R1
k = f (t1k , ỹ

1
k , φ0(t

0
k ))− f (t

1
k , y

1
k , φ0(t

0
k ))

and

L1
k = f (t1k , y

1
k , φ0(t

0
k ))− f (t

1
k , y

1
k , y

0
k ).

From (83) we obtain that

(e1k+1 − hL
1
k )

2
= (e1k + hR

1
k )

2,

which, together with the assumption (F3), implies

(e1k+1)
2
≤ (e1k )

2
+ h2(R1

k )
2
+ 2he1k+1L

1
k ,

k = 0, 1, . . . ,N − 1. (84)
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Moreover,

e1k+1L
1
k ≤

1
2

(
(e1k+1)

2
+ (L1

k )
2
)
,

hence

(e1k+1)
2
≤ (e1k )

2
+ h2(R1

k )
2
+ h(e1k+1)

2
+ h(L1

k )
2,

k = 0, 1, . . . ,N − 1. (85)

Since 0 < 1/(1− h) ≤ 1+ 2h ≤ 2 for h ∈ (0, 1/2), we have
that

(e1k+1)
2
≤ (1+ 2h)(e1k )

2
+ 2h2(R1

k )
2
+ 2h(L1

k )
2,

k = 0, 1, . . . ,N − 1. (86)

Recall a well known fact that for all % ∈ (0, 1] and x ∈ R it
holds

|x|% ≤ 1+ |x|. (87)

Then by the assumption (F4), Lemma 3.5 and (75) we have
the following estimates

|R1
k | ≤ L

(
|e1k |

β
+(1+2 sup

0≤t≤tcr
|φ0(t)|) · |e1k |

γ
)
≤c1(1+|e1k |),

(88)

where c1 = c0(L,K0) ≥ 0, and

|L1
k | ≤ L(1+ 2|y1k |) · |φ0(t

0
k )− y

0
k |

≤ LC0(1+ 2|y1k |)(h
α
+ hβ + hγ ). (89)

Furthermore, it holds that for all k = 0, 1, . . . ,N − 1

|y1k+1| ≤ |y
1
k | + h · |f (t

1
k , y

1
k , y

0
k )|

≤ |y1k | + hK (1+ |y1k |)(1+ |y
0
k |)

≤ |y1k | + hK (1+ K̃0)(1+ |y1k |)

= (1+ hc̃1)|y1k | + hc̃1,

where c̃1 = c̃1(K , K̃0) ≥ 0 and |y10| = |y
0
N | ≤ K̃0. By using

discrete Gronwall’s inequality we obtain

|y1k | ≤ K̃1, k = 0, 1, . . . ,N . (90)

Therefore, by (90) and (89) we obtain for all
k = 0, 1, . . . ,N

|L1
k | ≤ c̄1(h

α
+ hβ + hγ ), (91)

with c̄1 independent of N . From (86), (88), and (91) we get
for sufficiently large N and k = 0, 1, . . . ,N − 1 that

(e1k+1)
2
≤ (1+ 3h)(e1k )

2
+ D1h2 + D2h(h2α + h2β + h2γ ),

(92)

whereD1,D2 ≥ 0 are independent ofN . Solving this discrete
inequality yields

(e1k )
2
≤ D̄1(h+ h2α + h2β + h2γ ), k = 0, 1, . . . ,N ,

(93)

with D̄1 ≥ 0 independent of N . Since

|φ1(t1k )− y
1
k | ≤ |φ1(t

1
k )− ỹ

1
k | + |e

1
k |,

by (82) and (93), we arrive at

max
0≤k≤N

|φ1(t1k )− y
1
k | ≤ C1(h1/2 + hα + hβ + hγ ),

(94)

with C1 ≥ 0 independent of N .
On the consecutive intervals we proceed by induction.

Namely, let us assume that there exist 1 ≤ j ≤ n − 1 and
Cj, K̃j ≥ 0 such that

max
0≤k≤N

|φj(t
j
k )− y

j
k | ≤ Cj(h

1/2
+ hα + hβ + hγ ), (95)

and

|yjk | ≤ K̃j, k = 0, 1, . . . ,N . (96)

(For j = 1 the statement has already been proven in (94) and
(90).) In the interval [(j + 1)tcr , (j + 2)tcr ] we consider the
following ODE

z′(t) = gj+1(t, z(t)), t ∈ [(j+ 1)tcr , (j+ 2)tcr ], (97)

with the initial value z((j+1)tcr ) = φj+1((j+1)tcr ) = φj(t
j+1
0 )

and gj+1(t, y) = f (t, y, φj(t − tcr )). We approximate (97) by
the following auxiliary Euler scheme

ỹj+10 := yj+10 = yjN , (98)

ỹj+1k+1 = ỹj+1k + h · gj+1(t
j+1
k , ỹj+1k ),

k = 0, 1, . . . ,N − 1. (99)

By (95) we have that

|φj+1(t
j+1
0 )− ỹj+10 | = |φj(t

j
N )− y

j
N |

≤ Cj(h1/2 + hα + hβ + hγ ).

(100)

Repeating the arguments used from (77) to (94), but now
for η := φj(t

j+1
0 ), g := gj+1, [a, b] := [(j + 1)tcr ,

(j+ 2)tcr ], 1 := Cj(h1/2 + hα + hβ + hγ ), we obtain

|φj(t
j+1
0 )| = |φj(t

j
N )| ≤ Kj, (101)

and

max
0≤k≤N

|φj+1(t
j+1
k )− yj+1k |

≤ max
0≤k≤N

|φj+1(t
j+1
k )− ỹj+1k | + max

0≤k≤N
|ỹj+1k − y

j+1
k |

≤ Cj+1(h1/2 + hα + hβ + hγ ), (102)

and

|yj+1k | ≤ K̃j+1, k = 0, 1, . . . ,N , (103)

with K̃j+1,Cj+1 ≥ 0 independent of N , provided that N is
sufficiently large. This ends the proof. �
Remark 3.7: In Lemma 3.1 we provided an example of a

function f̃ that satisfies (F1)-(F4). Note that f̃ , with A(t) =
A1(t) · ε̇(t),B(t) = A2(t) · ε̇(t)1−a9 ,C(t) = A3(t), coincides
in [tcr ,+∞)× [0,+∞)× [0,+∞) with

f (t, y, z) = A(t)− B(t) · y− C(t) · ya8 · z,

t ≥ tcr , y ≥ 0, z ≥ 0, (104)
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which is a right-hand side function of the main equation (2)
for t ≥ tcr where z represents the delay term R(t − tcr ).
Knowing that the solution ρ of (2) is unique and non-negative
(see Theorem 2.6), the solutions of (2) and

ρ̃′(t) = f̃ (t, ρ̃(t), ρ̃(t − tcr )), (105)

coincide for t ≥ tcr . (We take ρ̃(t) = ρ(t) for t ∈ [−tcr , tcr ].)
This justifies, why we can use the Euler scheme in order to
approximate the nonnegative solution ρ of (2).

IV. NUMERICAL EXPERIMENTS
In this section we will provide numerical simulations of (2)
with real world parameters. We have conducted the exper-
iments with our own C++ implementation of the method
mentioned above. Additionally, all floating point numbers
was kept as a double data type. However, before we dive
into the test results of (2), we will take a closer look to (8),
that is we assume that Ai and ε̇ are time independent. This
will give us a preliminary insight into possible evolution of
(2). In particular we will see how it changes with the change
of parameters Ai, in particular influence of the boundary
condition A1/A2. We will also check how the accuracy of
solutions changes with time step, and comment of empirical
speed of convergence of numerical solutions.

It is also worth mentioning that (8), while much simplified
compared to (2), has its utility for modeling of our process.
Namely, it can be used in inverse analysis, as laboratory
experiments are usually done in controlled environment.
In particular T and ε̇ can be assumed constant in laboratory
experiments, which leads to time-independent coefficients
Ai(t) ≡ Ai.

A. EMPIRICAL TESTS OF CONVERGENCE - SELECTED
INSTANCES OF EQUATION (8)
As before, we divide our discussion into two cases when
a8 ∈ {0, 1}.
In the case when a8 = 0, we consider four sets of parame-

ters (see Fig. 2)
(a) ρ0 = 0, ρcr = 1,A1 = 10,A2 = 1,A3 = 0.9,
(b) ρ0 = 0, ρcr = 4,A1 = 10,A2 = 2,A3 = 1,
(c) ρ0 = 0, ρcr = 9,A1 = 10,A2 = 1,A3 = 0.9.
All solutions are considered on the interval [0, 10 tcr ]. Initial
conditions on all particular intervals are given by values of
corresponding analytical formula.

We also considered case a8 = 0 with parameters range
showing influence of violated condition A2/A3 (see Fig. 3):
(d) ρ0 = 0, ρcr = 9,A1 = 10,A2 = 1, A3 ∈ [0.9; 1.5],
(e) ρ0 = 0, ρcr = 4,A1 =10,A2 = 1, A3 ∈ [0.5; 5].
Note, that in these cases A3

A2
= 1 or we even have A3

A2
> 1.

Let us emphasize, that the assumptions of Theorem 2.2
are broken. Nevertheless, the derived methods work properly
what suggests that the assumptions might be weakened in
further research. Notice however, that while solutions exists
(and can be computed), it is hard to find their technologi-
cal justification (recall that ρ represents dislocation density,
so Fig. 3(e) definitely cannot represent real technological

FIGURE 2. Exemplary analytical and numerical solutions in the case when
a8 = 0.

process). Note that similarly to effect observed in [32] for
equation similar to the case a8 = 0, large A3/A2 > 1 (or
large tcr ) may lead to unbounded oscillations of solutions and
technologically unjustified solutions. In fact, as we can see,
such solutions may occur even when solution stabilizes (i.e.
oscillations are bounded and decreasing in amplitude).

In the case when a8 = 1, we consider two exemplary sets
of parameters (see Fig. 4):

(f) ρ0 = 0, ρcr = 4,A1 = 10,A2 = 2,A3 = 1,
(g) ρ0 = 0, ρcr = 9,A1 = 10,A2 = 1,A3 = 0.9.
Computing solution in consecutive intervals requires

approximating of non elementary integrals. Therefore, the
recursive formula for analytical solution, even for the third
interval [2tcr , 3 tcr ], is computationally very demanding
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FIGURE 3. Exemplary numerical solutions in the case when some
assumptions are not satisfied.

(as the integrals needs to be approximated independently in
each iteration). Because of that, for error comparison using
the analytical solution, we restrict our attention only to the
interval [0, 2 tcr ]. Approximations by numerical methods,
however, are computed for the whole considered interval
[0, 10tcr ]. Then, the initial conditions for subsequent subin-
tervals are taken from the numerical approximations.

In order to present numerical results of (8) we have to
introduce some additional notations. Let tN = (t10 , t

1
1 , . . . ,

t1N , . . . , t
m
N ) be a vector of points, where tnk = ntcr + kh,

k = 0, 1, . . . ,N , n = 1, 2, . . . ,m, h = tcr
N , and

m ∈ N. For given parameters of (8), we denote by zN =
(z10, z

1
1, . . . , z

1
N , . . . , z

m
N ) a vector of values of exact solution of

(8) computed in tN points. Let φ be explicit Euler, backward
Euler or Runge-Kutta scheme, see [23]. For each set of
parameters we tracked the behavior of the worst case error,
estimated by

sup
0≤k≤N ,1≤n≤m

|φ(tnk )− z
n
k |, h =

tcr
N
, (106)

as N → ∞. Results of numerical tests are presented for
case (b) in Fig. 5 and Table 1, and for case (g) in Fig. 6
and Table 2, where points of consecutive iterations of the
method are depicted by dots. As we can see, the case of
a8 = 1 requires more delicate analysis for choosing N ,

FIGURE 4. Exemplary numerical solutions in the case when a8 = 1.

FIGURE 5. Numerical test for case (b) a8 = 0, ρ0 = 0, ρcr = 4,A1 = 10,
A2 = 2,A3 = 1 by explicit Euler method. Dots represent consecutive steps
of the method.

FIGURE 6. Numerical test for case (g) a8 = 1, ρ0 = 0, ρcr = 9,A1 = 10,
A2 = 1,A3 = 0.9 by explicit Euler method. Dots represent consecutive
steps of the method.

because too small number leads to having points not reflect-
ing properly the dynamics of solutions.

In all the cases where assumption A3
A2
< 1 is satisfied, viz.

(a)-(c), (f)-(g) we observe the theoretical convergence rate.
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TABLE 1. Error behavior for case (b) a8 = 0, ρ0 = 0, ρcr = 4,A1 = 10,A2 = 2,A3 = 1.

TABLE 2. Error behavior for case (g) a8 = 1, ρ0 = 0, ρcr = 9,A1 = 10,A2 = 1,A3 = 0.9.

TABLE 3. Error behavior for case (e) a8 = 0, ρ0 = 0, ρcr = 4,A1 = 10,A2 = 1 when A3 = 5.

In the cases (d)-(e) when ratio A3
A2

is slightly above 1, some
convergence to exact solutions can be observed. However,
amplitude of oscillations increases with growing A3

A2
, leading

eventually to an unstable solution (see Fig. 3). Nonetheless,
for a fixed number of intervals and tending with N → ∞,
we still can observe the theoretical convergence rate of both
Euler methods and Runge-Kutta scheme (see Table 3).

B. EQUATION (2) WITH REAL WORLD PARAMETERS
In previous section we proved that explicit Euler method (and
its modification) gives very satisfactory results for simplified
equation (8) and proved stability of this method. This entitles
us to perform numerical simulations on more complicated
equation (2) with both ε̇ and T time dependent and other
parameters (time dependent as well) coming from real world
processing of materials. First, let us examine solutions of (8)
with parameters established for DP steel and copper through

inverse analysis for the experimental data (uniaxial compres-
sion tests performed at constant temperatures and strain rates)
using algorithm described in [35]. When equation (1) is used
to calculate the flow stress, the results which are depicted in
Fig. 7, are very similar to those in Fig. 1.
This confirms that indeed, we are ready for modeling of

real industrial process. Since it is characterized by strong het-
erogeneity of deformation, we decided to consider industrial
process of hot strip rolling for demonstration of capabilities
of the developed model. Similarly to previous laboratory case
(see Fig. 7), two materials, DP steel and copper, were consid-
ered. Roll pass data, which were the same for both materials,
were as follows: initial thickness 20 mm, thickness reduction
50%, roll radius 400 mm and roll rotational velocity 10 rpm.
Thermal-mechanical finite element (FE) model was used in
themacro scale to calculate strains, stresses and temperatures.
Details of the FE code are given in [36] and [37]. Briefly, the
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FIGURE 7. Calculated solutions for constant temperature T and strain
rate ε̇ = 1.

FIGURE 8. Shape of the deformation zone and flow lines along which the
model was solved.

Levy-Mises flow rule was used as the constitutive law:

σ =
2
3
σf

ε̇i
ε̇ (107)

where: σ , ε̇ - stress and strain rate tensors, respectively, ε̇i -
effective strain rate, σf - the flow stress provided by (1).
Equation (2) was solved along the flow lines in the defor-

mation zone using current local values of the strain rate and
the temperature. The results for two lines, one in the center
of the strip and the second one close to the surface (see
Fig. 8), are presented on Fig. 11 and 12. Let us explain
the details behind these numerical experiments. Due to hor-
izontal symmetry only a top part of the roll gap is shown

FIGURE 9. Calculated distribution of the temperature (a), the strain rate
(b) and the strain (c) in the roll gap for DP steel.

FIGURE 10. Calculated distribution of the temperature (a), the strain rate
(b) and the strain (c) in the roll gap for copper.

in Fig. 8, 9, and 10. The entry temperature was 1060◦ C
for DP steel and 600◦ C for copper. Shear modulus µ was
assumed to be time independent and equal µ = 45000
MPa for copper and µ = 75000 MPa for DP steel. For the
assumed parameters the length of the computation domain
was 105 mm and the time needed for the material point to
flow through this domain was 0.28 s. Finite element (FE)
simulation of the rolling process was performed using FE
code described in [36] and [37] and calculated distributions
of the temperature, strain rate and strain are shown in Fig. 9
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FIGURE 11. Calculated coefficients and solutions for copper.

and Fig. 10. Results depicted in Fig. 9 are for the DP steel
and in Fig. 10 for the copper. On the basis of these results
changes of the temperature and the strain rate along the flow
lines in Fig. 8 were determined, leading to time-dependent
coefficients A1(t),A2(t),A3(t) as presented on Fig. 11 and
Fig. 12. Another important coefficient is a8 as it is responsible
for nonlinearity in (2). For copper it was possible to satisfac-
torily fit the model with a8 = 1, however for DP steel it had to
be fractional because a8 = 1 was not leading to satisfactory
fitting. Fitting was successful with a8 = 0.45239 and this
value was used in our simulations (cf. [36]). By the same
reason, the coefficient a9 was set to 0 for copper and to
0.13751 for DP steel. The coefficient a11 = 104 in both cases,
which among other things, ensures that ρcr is never 0.

We used this data to deal with (2). Calculated evolution
solutions ρ with parameters evolving along the lines 1 and 2
in Fig. 8 are presented in Fig. 11 and Fig. 12. Starting
density ρ0 was the same for both metals and equal 104 m−2.
Analysis of these results shows that they react properly to
distinct temperature and strain rate histories for the center
and surface areas. Practical observations show that in the
center the temperature increases due to deformation heating.
Contrary, drop of the temperature due to heat transfer to the
cool roll is observed in the surface area. As far as strain rate is
considered, in the central part it decreases monotonically due
to monotonic deformation of this part. The results presented
in Fig. 11 and Fig. 12 replicate properly material behavior in
these conditions of the deformation. In the surface area, where
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FIGURE 12. Calculated coefficients and solutions for DP steel.

the temperature is lower and the strain rate is higher, critical
dislocation density is higher and so ρcr given by equation (7)
is reached later. In the center of the strip higher temperature
leads to more dynamic recrystallization and a decrease of the
dislocation density.

Capability to describe microstructure evolution in the vary-
ing temperatures and/or strain rates is the main advantage of
the model comparing to conventional models, which are phe-
nomenological and predict evolution of the average grain size
and resulting flow stress of the material. The conventional

models were developed with the objective to reproduce flow
stress curves observed in the experiments in constant con-
ditions of deformation. In our approach we account for the
effect of recrystallization in an explicit way by consider-
ing the history of the evolution of the dislocation density.
In consequence, the model describes the phenomenon of
the recrystallization accounting for the energy (dislocation
density) accumulated in the material and can describe defor-
mation in the varying conditions, which occur in the industrial
processes. For constant deformation conditions, our model
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predicts flow stress curves which are in agreement with those
observed in experiments.

V. CONCLUSION
In the paper we have investigated mathematical aspects of
evolution of dislocation density in metallic materials, mod-
eled by delay differential equations (2). For typical range of
real world parameters we have shown that the unique solution
always exists and it is bounded. For approximation of the
solution we have used the explicit Euler method. We have
shown the rate of convergence of the Euler method in the
case when the right-hand side function is only locally Hölder
continuous. We have confirmed our theoretical findings in
numerical experiments performed in special cases, when
explicit solutions were known.Moreover, we have applied the
algorithm to examples with real-world parameters. Despite
the fact that for a Runge-Kutta method we have not been able
to investigate its error under conditions (F1)− (F4), required
by the equation, we tested its numerical behavior taking
the Euler scheme as a benchmark. Numerical experiments
showed advantage of the Runge-Kutta method over the Euler
schemes. This encouraged us to use Runge-Kutta methods in
real world applications. Let us emphasize once again, in spite
of possible initial believe of triviality in choosing the explicit
Euler method to investigate, from theoretical point of view it
is highly not obvious that under the nonstandard assumptions
it keeps its numerical properties. Therefore, investigation of
theoretical properties of the Runge-Kutta method under the
assumptions (F1)− (F4) are forwarded to a future work.
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