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ABSTRACT Retinal optical coherence tomography (OCT) imaging is a mainstay in the clinical diagnosis of
several sight-threatening diseases. Due to the wide variability in shape and orientation of retinal structures,
analyzing and interpreting OCT images are complex tasks that require domain knowledge. Within the
analysis process, delineating anatomical landmarks and pathological formations, i.e., segmentingOCT scans,
is a labor-intensive task usually carried out by expert graders. Recently, several studies have proposed
methods based on fully convolutional neural networks (FCN) to alleviate the burden of manual OCT
segmentation. Despite the promising performance of FCN-based methods, the negative impact of the class
imbalance problem on the segmentation of small foreground targets such as macular cystoid edemas remains
a challenge. This article proposes a novel end-to-end automatic method for segmenting retinal layers and
macular cystoid edema in OCT images. The proposed method introduces a novel FCN architecture that
leverages spatial and channel-attention gates at multiple scales for fine-grained segmentation and aweighting
loss approach to handle class imbalance. Results on a benchmark dataset that includes cases of severe retinal
edema show the robustness of the proposed algorithm, which achieved state-of-the-art performance with a
mean Dice score of 0.92 ± 0.03.

INDEX TERMS Deep learning, semantic segmentation, attention gates, fully convolutional networks, optical
coherence tomography.

I. INTRODUCTION
Due to its non-invasive nature and high resolution, opti-
cal coherence tomography (OCT) imaging is a widely used
diagnostic tool in the characterization of retinal pathologies
such as diabetic macular edema (DME), age-related macular
degeneration (AMD), and retinal vein occlusion (RVO). The
quantification of diagnostic findings in OCT images is central
to detecting sight-threatening conditions and relies on the
accurate segmentation of anatomical landmarks and abnor-
mal structures. As a highly complex task, OCT segmentation
requires specialized knowledge, which is not always readily
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available because of labor shortages and increased demand.
Moreover, OCT-manual segmentation is labor-intensive and
prone to interobserver variability. Following the success of
deep learning in computer vision tasks, several authors pro-
posed deep learning-based methods for automatic OCT seg-
mentation with promising results [1], [2], [3], [4], [5], [6], [7],
[8], [9], [10], [11], [12].

This article introduces MAGNet: Multiscale Attention
Gated Network, a novel lightweight fully convolutional
neural network (FCN) for end-to-end automatic segmenta-
tion of retinal layers and macular cystoid edema (MCE)
in OCT images. The proposed network builds upon the
encoder-decoder architecture and attention-gated framework
to exploit pixel-wise spatial information for fine-grained
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segmentation. Unlike related work, we model spatial and
channel attention independently to serve complementary
objectives. Channel-attention gates are placed on the encoder
to learn which feature maps are the most informative and
emphasize them before reaching the decoder. On the other
hand, spatial-attention gates at the decoder capture pixel-wise
contextual information to focus learning on the most rele-
vant regions within feature maps. To train the segmentation
model, we propose a novel loss-weighting approach based
on the Euclidean distance transform [13] tailored to handle
class imbalance. The proposed method derives pixel-wise
loss weightings directly from the data without adding training
hyperparameters. Furthermore, to support the Green AI ini-
tiative [14], we take advantage of Fire modules [15] to reduce
the number of parameters of the proposed FCN.

This research aims to advance the state of the art of
medical-imaging processing by developing a deep-learning
application for end-to-end automatic segmentation of diag-
nostic markers in retinal OCT B-scans. The main contribu-
tions of this study are summarized as follows:
• We propose two attention gates designed to capture

channel and spatial correlations within intermediate fea-
ture maps. These gates provide amechanism for improv-
ing the allocation of computational resources toward the
most informative features for the segmentation task.

• The proposed attention gates are integrated into a novel
fully-convolutional network, which delivers state-of-
the-art results with fewer parameters than comparative
networks.

• We introduce a novel adaptive-weighting scheme for
the loss function to circumvent the negative effect of
the class-imbalance problem. The weighting approach is
pixel-wise, parameter-free, and easily adaptable to any
cost function.

II. RELATED WORK
Owing to their ability to learn complex hierarchical rep-
resentations directly from data, convolutional neural net-
works (CNN) are the preferred approach for computer vision
tasks such as image classification, object detection, and
image segmentation. CNNs have set the benchmark for image
segmentation outperforming methods based on graph theory,
dynamic programming, and energy minimization, such as
graph-cut, shortest path, and active contours [16]. Within the
context of medical data, CNNs are increasingly used for a
wide variety of classification tasks across several imaging
modalities, including MRI [17], [18], CT/X-rays [19], [20],
fundus photography [21], [22], and ultra-widefield retinal
imaging [23].

The development of CNN architectures for image seg-
mentation led to several innovations in network connectivity
to aid gradient flow. The seminal work of Long et al. [24]
on fully convolutional networks for semantic segmentation
introduced the notion of skip connections. These connections
combine coarse-high-level semantic information from deeper
layers with fine-grained information from shallow layers to

refine segmentation results. Later developments improved
the FCN framework with the encoder-decoder architecture,
unpooling operations [25], and atrous convolutions [26].
Encoder-decoder architectures leveraging skip connections,
such as U-net [27], are extensively used for medical-image
segmentation.

Even though architectural developments have been instru-
mental in enhancing the representational capacity of FCNs,
some shortcomings remain unaddressed. Namely, the inter-
leaved coding of spatial and channel information in feature
maps generated at each convolutional layer and the waste-
ful computation of redundant, low-level features brought
across via skip connections. Prior work has proposed to
improve the joint encoding of spatial and channel infor-
mation in CNNs via explicitly embedded learning mech-
anisms that capture spatial interdependencies between the
feature-map channels. Recently, attention and gating mech-
anisms have been incorporated into the FCN workflow to
improve the allocation of computational resources towards
the most informative features of the input signal [28], [29].
Attention mechanisms have been demonstrated to enhance
network performance across several computer vision tasks,
from classification [30] and localization [31], to image
captioning [32]. For image segmentation, attention and
gating mechanisms leverage global information to high-
light relevant features while suppressing less informative
ones.

Besides architectural innovations, a considerable body of
knowledge places the loss function at the center of numerous
approaches to overcome the negative effect of class imbalance
on CNN-based image segmentation [33], [34], [35], [36].
According to the optimization objective, most loss func-
tions fall under two categories: distribution-based and region-
based [34]. Distribution-based loss functions measure the
difference between the probability distribution of the segmen-
tation target and that of the predictions. The cross-entropy
function is a distribution-based loss widely used in image
segmentation [37]. Region-based loss functions measure the
similarity of the predicted segmentation and the target ground
truth. The most extensively-used loss in this category is the
Dice loss function [38]. Apart from pure distribution and
region-based losses, compound loss functions combine terms
derived from the cross-entropy and the Dice loss functions.
Compound loss functions typically improve the segmentation
performance but add extra training parameters, increasing the
search space of the hyperparameter optimization.

III. METHOD
A. PROBLEM DEFINITION
Given an OCT B-scan, the segmentation task is approached
as a multiclass classification problem where every pixel x
in a given input image I is mapped to a class label ŷ in the

label space Ŷ = {c1, c2, . . . , cK }. Fig. 1 shows a preview of
the proposed MAGNet segmentation results, including seven
retinal layers and macular cystoid edema.
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FIGURE 1. Preview of the segmentation results of the proposed MAGNet. Input OCT B-scans (a), Human grader markings (b),
proposed-approach segmentation maps (c). Foreground class-label color code is shown to the right. Background classes above
and below the retina are shown in black.

FIGURE 2. Overview of the proposed fully convolutional MAGNet architecture. The spatial resolution of the feature maps are indicated inside
corresponding boxes.

B. NETWORK ARCHITECTURE
The proposed FCN is based on the widely-used encoder-
decoder architecture, which has proven to be a suitable
framework for image segmentation. As shown in Fig. 2, the
architecture comprises three major components: Fire mod-
ules, channel-attention gates, and spatial-attention gates. The
network encoder extracts feature maps through Fire modules
applied at multiple scales. On the other hand, the decoder con-
catenates encoder features with low-level features extracted
from the network backbone to refine the segmentation results.
Attention gates are strategically placed at every level of
the encoding and decoding branches to focus the learning
effort on the most relevant features for the segmentation
task.

Based on prior work findings, we adopted skip connections
to retain global information that otherwise is lost at the encod-
ing stage due to pooling operations. Skip connections ease
the flow of gradients through the network and improve the
segmentation results by supplementing contextual informa-
tion at the decoding stage. However, this approach overlooks
correlations between feature maps which causes redundant,
irrelevant features to be processed repeatedly at multiple
scales. To address this shortcoming, we use channel-attention
gates to learn which feature maps are worth passing to the
decoder. At the decoding stage, spatial-attention gates learn
pixel-wise attention maps to weight the features within a
given feature map. As a result, features are emphasized based
on their relevance to the segmentation or de-emphasized
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otherwise. The detail of the main components of the proposed
architecture is described below.

1) FIRE MODULE
Drawing inspiration from the efficiency-driven network
design of SqueezeNet [15], we adopted the Fire module as
the building block of the proposed architecture’s backbone.
Using Fire modules as its basic unit, the SqueezeNet achieves
state-of-the-art classification performance with 50x fewer
parameters than the AlexNet [39] architecture. The Fire mod-
ule processes a given feature map in three steps, as shown in
Fig. 3. First, the feature map is compressed along the channel
dimension using one convolution layer with a 1 × 1 filter.
The number of channels after the compressing operation
is C/4, where C denotes the number of input channels. Then,
two convolutions layers expand the compressed feature map
producing two feature maps withC channels each. Lastly, the
output feature map is obtained by concatenating the outputs
of the expansive operations along the channel dimension.
In general, the Fire module establishes a mapping F(.) :
X → U, where X ∈ RH×W×C ′ is the input feature map,
U ∈ RH×W×C is the output feature map, H and W are
spatial dimensions height and width,C is the number of input
channels and C ′ is the number of output channels.

FIGURE 3. Architecture of the Fire module. The dimension of the feature
maps are shown next to corresponding boxes.

2) CHANNEL-ATTENTION GATE
Channel attention gates are applied to the output of Fire
modules in the encoder to increase the model sensitivity to
informative features and, consequently, suppress less useful
ones. This attention mechanism applies a series of transfor-
mations to a given input to identify which channels within
the feature map are the most relevant for the segmentation
objectives. As shown in Fig. 4, an encoder feature map U =
[u1,u2, . . . ,uC ], here represented as a collection of channels
ui ∈ RH×W , is first spatially summarized by a global average
pooling layer. The output of this operation is an embedding
z ∈ R1×1×C of the global information in U, where the

c-th element in z is computed by:

zc =
1

H ×W

H∑
i

W∑
j

uc(i, j) (1)

The vector z is further transformed using a gating mechanism
designed to capture channel-wise dependencies. The gating
mechanism is enforced through a sigmoid activation that
brings the activation range to the interval [0,1]. The output
of the channel-attention gate s is given by:

s = σ (W2ψ(W1z)) (2)

where σ (.) denotes the sigmoid activation function, ψ(.) the
ReLU activation function, and W1 ∈ RC×C

2 and W2 ∈

R
C
2 ×C represent the weights of two 1 × 1 convolutional

layers. The vector s = [s1, s2, . . . , sc] is then used to obtain
a weighted feature map Û = [s1u1, s2u2, . . . , sCuC ]. During
training, the network progressively tunes the activations si to
emphasize or ignore channels according to their importance
for the segmentation task. Weighted feature maps are passed
through skip connections and concatenated with intermediate
feature maps of similar resolution to add contextual informa-
tion at every stage of the upsampling path.

3) SPATIAL-ATTENTION GATE
Previous work demonstrated that spatial-attention gates are
effective in focusing the network onto the target regions auto-
matically without additional supervision [16], [40]. Based
on these works, we introduce spatial-attention gates at
the decoder to learn an attention map Â that defines the
pixel-wise relevance of each location (i, j) in a given input
feature map U. In contrast with the channel-attention gate,
the spatial-attention gate summarizes the feature mapU along
the channel dimension and scales spatially, according to the
importance of the spatial location. As illustrated in Fig. 5,
the input feature map U = [u1,1,u1,2, . . .ui,j, . . . ,uH ,W ],
with ui,j ∈ R1×1×C representing the spatial location (i, j),
i ∈ [1, 2, . . . ,H ], and j ∈ [1, 2, . . . ,W ] is compressed along
the channel dimension twice, first with a 1× 1 convolutional
that reduces its channel dimension by half and then, a second
time to obtain a projection tensor q ∈ RH×W , that con-
tains linear combinations qi,j representing the channel-wise
expression at each location(i, j). The projection q is passed
through a sigmoid operation σ (.) to obtain the attention
map which is used to scale the input feature map. Lastly,
a residual connection was added as a safeguard to prevent
vanishing gradients. The output of the spatial-attention gate
Û = [(σ (q1,1) + 1)u1,1, (σ (q1,2) + 1)u1,2, . . . , (σ (qi,j) +
1)ui,j, . . . , (σ (qH ,W ) + 1)uH ,W ] is a feature map that either
emphasizes or de-emphasizes what is relevant or irrelevant
for fine-grained segmentation.

4) MODEL COMPLEXITY
As shown in Fig. 2, the proposed MAGNet follows an
encoder-decoder design comprising three encoder blocks,
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FIGURE 4. Architecture of the channel-attention gate. H and W denote spatial dimensions height and width. C denotes the channel dimension.

FIGURE 5. Architecture of the spatial-attention gate. H and W denote spatial dimensions height and width. C denotes the channel dimension.

one bottleneck, and three decoder blocks. In contrast to
related work, our design leverages attention gates and Fire
modules to obtain a deep model while keeping the number of
parameters low. As shown in Table 1, the proposed architec-
ture has significantly fewer parameters than state-of-the-art
FCNs for image segmentation.

C. LOSS FUNCTION
Because of the dominance of background classes in diag-
nostic images, highly imbalanced datasets are commonplace
in the medical field. Tuning FCNs with such imbalanced
datasets can negatively affect the segmentation performance
since the learning process focuses on the classes that weigh
the most to the loss. Weighting the loss function coun-
ters the unwanted effects of the class imbalance problem
by balancing the contribution of individual classes to the
loss value. Ordinarily, weightings emphasize the importance
of underrepresented classes over others in the loss during
training. This study introduces a novel pixel-wise weighting
approach based on the Euclidean distance transform to handle

TABLE 1. Model complexity comparison.

class imbalance. Our loss weighting method uses distance
maps computed from the boundary of the segmentation tar-
gets to assign pixel-wise weightings. Fig. 6(c) shows an
example of distance maps computed from the ground truth
of an MCE-class sample. To formally define the distance-
transform weightings, let be Gj the set of pixels representing
the ground truth of class j. The distance transform of a pixel i
in Gj is determined as follows:

DTij = min
i′∈Gj

(‖i− i′‖2 + 1
j
G(i)) (3)
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FIGURE 6. Illustration of the pixel-wise weighting scheme used to balance the loss function. The loss weightings
are obtained based on the distance transform of segmentation targets. A sample’s ground truth of the class MCE
is shown in (a), a close-up of the ground truth and corresponding distance map are shown in (b) and (c),
respectively.

where ‖.‖2 represents the Euclidean distance, and 1
j
G(i) is an

indicator function defined as:

1
j
G(i) =

{
0 if i ∈ Gj
∞ otherwise

(4)

Distance-based weightings highlight boundary errors in
proportion to the distance to the ground-truth. The farther a
misclassified pixel is from the target boundary, the higher its
assigned weight and contribution to the loss. The distance-
transform weighting for pixel i of class j is given by:

WDMT
ij = 1+ DTij (5)

The formulation of the proposed weighting scheme is task
agnostic, which makes weightings applicable to any base cost
function. This study uses the cross-entropy loss as the base
cost function. The definition of the cross-entropy loss is as
follows:

CE =
1
N

K∑
j=1

N∑
i=1

yij log ŷij (6)

where yij ∈ {0, 1} is the one-hot encoding of the ith pixel
for class label j, ŷij is the predicted class probability of the
ith pixel for class label j, K is the number of classes, and N is
the number of pixels. The distance-map-transform weighted
cross-entropy is given by:

DWCE =
1
N

K∑
j=1

N∑
i=1

WDMT
ij yij log ŷij (7)

IV. EXPERIMENTAL DESIGN
A. DATASET
We used 110 annotated B-scans sourced from the publicly
available Duke SD-OCT dataset [1]. The dataset consists of
10 volumes acquired from a cohort of ten DME patients using
a Spectralis HRA+OCT scanner (Heidelberg Engineering,
Heidelberg, Germany). All OCT volumes are centered at the
fovea and have 61 B-scans each. The B-scans are 768 ×
496 pixels in size and have an axial resolution of 3.87 µm.

Each volume includes annotations from two retina special-
ists on eleven non-consecutive scans where expert annota-
tions delineate eight retinal boundaries and fluid masses.
Henceforth, we refer to Duke’s retina-specialist annotations
as Expert1 and Expert2.

In addition to the Duke dataset, we used the publicly
available HCMS dataset [41] to validate the proposed seg-
menting algorithm. The data comprise scans of the right eye
of 35 subjects, including healthy controls (14) and multiple
sclerosis patients (21). The dataset includes 35 OCT volumes
containing 49 B-scans each. The acquisition device was a
Spectralis OCT system (Heidelberg Engineering, Heidelberg,
Germany). All B-scans are 1024 × 496 pixels in size, with a
lateral resolution of 5.8 µm and axial resolution of 3.9 µm.
Besides the OCT images, the dataset provides manual delin-
eations for nine layer boundaries in every B-scan.

We defined ground-truth class labels for each dataset based
on the corresponding expert annotations. The class-label defi-
nition for the Duke dataset included eight foreground classes
corresponding to seven retinal layers and fluid (CME) and
two background classes for the regions above and below the
retina. Similarly, we defined ten class labels for the HCMS
data, including eight retinal layers and the same two back-
ground classes defined for the Duke dataset.

As a pre-processing step, we center-cropped all B-scans
along their longest axis to make them square with a size of
496 pixels. Then, to ease gradient computations, we rescaled
the pixel-intensity values to the range [0 1]. Finally, we split
the data into disjointed partitions for training and testing pur-
poses. Considering the amount of the available ground-truth
labels, we separated the Duke data into two sets, 8 OCT vol-
umes for training and 2 OCT volumes for testing. Similarly,
we split the HCMS dataset into two partitions having 18 OCT
volumes (training set) and 17 OCT volumes (test set).

B. NETWORK TRAINING PROTOCOL
We trained the proposed FCN-segmentation model to opti-
mize the weighted cross-entropy loss (DWCE) defined in (7).
The network parameters were updated with the stochastic
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gradient descent algorithm [42] using a variable learning
rate and minibatch size of two. Preliminary experiments
showed an inverse correlation between the segmentation
performance and the minibatch size hyperparameter. This
observation coincides with previous research that verified
a higher performance attained from training regimes with
small minibatch sizes rather than large ones [43], [44], [45].
Optimal values for the initial-learning rate, decay drop factor,
and decay-drop period hyperparameters were determined by
grid search. Table 2 lists the training hyperparameters and
the intervals of the search space. Two training rounds were
conducted with the Duke dataset, each using one of the two
expert annotations as reference. The development and testing
environment was MATLAB R© release 2021b and CUDA R©

library version 9.0. Model training and evaluation was con-
ducted on a Windows 10 PC (CPU: Intel i7 8700K CPU @
3.7 GHz - 6 cores, RAM: 32 GB) with a GPU NVIDIA R©

GeForce GTX R© 1080 Ti with 11 GB RAM.

TABLE 2. Network training hyperparameters.

C. PERFORMANCE EVALUATION
To evaluate the segmentation performance, we used the Dice-
similarity score. This metric measures the overlap between
the regions of the model prediction and the ground truth. The
definition of the Dice similarity score for class j is as follows:

DSCj(Pj,Gj) =
2|Pj ∩ Gj|
|Pj| + |Gj|

(8)

where |.| represents set cardinality, Pj is the predicted seg-
mentation of class j and Gj the corresponding ground truth.

D. COMPARISON WITH STATE OF THE ART
The proposed method was contrasted with state-of-the-
art algorithms for layer and fluid segmentation in OCT
images. Specifically, FCN-based methods including FCN-
8 [24], FCNwith conditional random fields [46] (FCN-CRF),
U-Net [27], and U-Net-based networks: RelayNet [47],
U-Net with shape-based regression [48] (U-Net-SR), and
DMP Net [49]. Besides FCN architectures, the comparison
included methods based on graph theory and dynamic pro-
gramming (GDP), namely, Kernel regression with GDP [1]
(GDP-KR), Neutrosophic-set and GDP [3] (GDP-NS). In line
with the most common setup in related work, we used a
MAGNet trained and evaluated with Expert1 annotations for
the performance comparison on the Duke dataset. In addition,
we evaluated MAGNet with Expert2 annotations and com-
pared it to competing methods using said setup. Similarly, the

proposed MAGNet was evaluated on the HCMS dataset and
contrasted with published works using said data.

E. ABLATION STUDY
To evaluate the impact of the proposed contributions,
we present an ablation study with plausible variations of the
proposed algorithm. Besides the proposed approach, we con-
ducted five additional experiments to evaluate the importance
of the attention mechanisms and the loss function on the
overall results. Regarding the influence of the attention gates,
three network variants were considered for evaluation. The
variant N1 corresponds to the proposed architecture with
the channel-attention gates removed. Conversely, the vari-
ant N2 keeps the channel-attention gates and removes the
spatial ones from the complete model. On the other hand,
the variant N3 is obtained by removing all attention gates
from the proposed architecture. As for the loss function,
we devised two experiments (N4 and N5) to contrast the
performance of models trained with the proposed DWCE loss
against that of corresponding models trained with the cross-
entropy. In both experiments the models were optimized with
the cross-entropy loss function instead of the DWCE loss.
Table 3 summarizes the configuration of the experiments in
the ablation study.

TABLE 3. Configuration of the salient components evaluated in the
ablation study.

V. RESULTS AND DISCUSSION
Table 4 presents the results of the proposed and state-of-
the-art methods on the Duke dataset. The results correspond
to two experimental setups: a) using Expert1 annotations as
ground truth for training and testing, and b) using Expert1
annotations as a reference for training and Expert2 for testing.
We report the Dice score for seven retinal layers and the cys-
toid edema class. In addition, we report the overlap between
human-grader annotations (denoted as Expert1 and Expert2).

Looking at the overlap between grader markings, it is
noticeable that the Dice score is low in most classes and
particularly low in theMCE class. This observation illustrates
the high degree of difficulty that the segmentation task entails.
The proposed approach obtained the highest segmentation
performance in layers ILM, NFL-IPL, INL, OPL, ONL-
ISM, and ISE, with Dice scores values over 0.9. More-
over, the proposed method achieved the highest Dice score
in the class MCE. Our deep-learning approach improved
the performance of graph-based algorithms, with substantial
improvements in layers NFL, OPL, and theMCE class. These
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TABLE 4. Dice score of the proposed and comparative methods on the Duke dataset evaluated with: (a) Expert1 annotations as ground truth and
(b) Expert2 annotations as ground truth. Best results in group columns are shown in bold.

TABLE 5. Dice score of the proposed MAGNet models trained using annotations from Expert1 (MAGNet1) and Expert 2 (MAGNet2). Highest scores in
column are shown in bold.

TABLE 6. Dice score of the proposed and comparative methods on the HCMS dataset. Best results in column are shown in bold.

classes are challenging segmentation targets, as they have
the lowest overlap scores between human-grader annotations.
Contrasting the proposed network with state-of-the-art FCNs,
we remark that our network achieved competitive perfor-
mance with a much smaller architecture (see Table 1). Fur-
thermore, we highlight the improvement in the segmentation
performance of imbalanced classes INL, OPL, ISE, OS-RPE,
and MCE. We stress that this improvement is a direct result
of the proposed pixel-wise weighting approach, which, unlike
comparative methods, does not add training hyperparameters.

Regarding the results using Expert2 annotations as ground
truth, the performance of the proposed and competing meth-
ods drops relative to the experiment using Expert1 markings.
This decrease in performance is not unexpected, considering
the high disagreement between expert annotations. However,
we remark that the proposed method outperformed compara-
tive methods and achieved a higher Dice score than Expert1.
We also report results for all possible experimental configu-
rations with MAGNet and each set of expert annotations for
completeness (Table 5). Consistent with prior results, training

and testing on the same set of annotations delivered higher
performance than other experimental configurations. Further-
more, the proposed method improved the human-grader over-
lap in all experimental settings with substantial improvements
in classes with a low inter-observer agreement.

Furthermore, we evaluated the proposed MAGNet on
833 unseen images from the HCMS dataset. Table 6 shows
the results of the proposed and comparative methods on this
set of images, where the proposed MAGNet attained the
best overall performance with a mean Dice similarity score
of 0.91%. Moreover, MAGNet achieved the highest segmen-
tation performance in seven of eight layers with substantial
improvements relative to competingmethods in theNFL-IPL,
INL, and IS layers. These results confirm the robustness of
the proposed method and its performance consistency.

A. QUALITATIVE EVALUATION
Fig. 7 shows a qualitative comparison between top
performing FCNs and the proposed approach on the
Duke dataset. The algorithm predictions correspond to
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FIGURE 7. Segmentation results of the proposed MAGNet and comparative methods on the Duke dataset. Models were trained and evaluated on
the Duke dataset using Expert1 annotations as reference. (a) OCT B-scan input, (b) Expert1 annotations (ground truth), (c) Expert2 annotations,
(d) MAGNet, (e) DMPNet, (f) RelayNet. Magenta arrows in the second row indicate the location of the fovea. White boxes in the third row indicate a
small fluid pocket.

FIGURE 8. Segmentation results of the proposed MAGNet and comparative U-Net-based networks on the HCMS dataset. (a) OCT inputs,
(b) Ground truth, (c) MAGNet, (d) DMPNet, (e) RelayNet.

a representative sample of the benchmark dataset that
includes one case of severe cystoid edema disrupting the
fovea (top row), two scans showing diffused fluid accumu-
lations (second and third rows), and one scan without edema
distal from the fovea (bottom row). We remark quality differ-
ences in the pathological scans regarding the segmentation
of fluid accumulation and the retinal layers at the fovea.
Fluid accumulation is a hard-to-segment target as it can be
seen in the marked disagreement between human-manual
annotations (Fig. 7(b) and Fig. 7(c)). State-of-the-art meth-
ods under-segment fluid masses in Fig. 7(e) and Fig. 7(f).
Moreover, a small fluid pocket at the right of the scan in
Fig. 7(f) (indicated by a white box) is absent in the prediction
of one of the comparative methods. Another challenging
target is the foveal region (indicated by a magenta arrow

in 7(b)), where retinal layers are ordinarily at their thinnest.
As it can be seen, the proposed-method segmentation is of
high quality and comparable to human grader markings.
Similarly, Fig. 8 presents a representative sample of seg-
mentation results obtained in the HCMS dataset. Consistent
with prior evaluation, the proposed method show quality
segmentation results, on par with human grader perfor-
mance. By contrast, competing FCNs results are affected
by blood-vessel shadows that occur in B-scans distal from
the fovea (middle and bottom rows) where segmentation
errors brake the layer delineation producing a jagged effect
(Fig. 8(d) and Fig. 8(e)).
Overall, the proposedMAGNet attained high segmentation

performance in both test sets. Nevertheless, few B-scans
in the Duke dataset showed minor segmentation errors in
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TABLE 7. Dice score of the proposed MAGNet variants evaluated in the ablation study. Models were trained and evaluated on the Duke dataset taking:
(a) Expert1 annotations as reference and (b) Expert2 annotations as reference. Highest scores in group columns are shown in bold.

FIGURE 9. Segmentation errors in the ERP boundary of retinas showing
hyperreflective foci (white arrows). Automatic and manual delineations
are shown in green and red, respectively.

the RPE boundary. Upon visual inspection of said B-scans,
we found that errors concentrate around hyperreflective
foci (HRF) near the RPE. HRF are small, punctiform hyper-
reflective lesions that appear brighter than surrounding tissue.
When HRF groupings occur close to the RPE, the proposed
algorithm label HRF pixels as RPE, which in turn results in
the predicted segmentation overstepping the target boundary
(see Fig. 9). The low incidence of samples showing HRF
near the RPE in the dataset (less than 4%) might explain the
occurrence of these segmentation errors. Thus, adding more
examples of these abnormal formations to the training data
might enhance the discriminative capability of the segmenta-
tion model.

B. ABLATION STUDY
We evaluated plausible variations of the proposed method to
observe the impact of the main components of the framework
on the segmentation performance. Five experimental configu-
rations were evaluated twice on the Duke dataset, each using
either Expert1 or Expert2 annotations as reference. Table 7
summarizes the results of the ablation experiments grouped
by ground truth.

1) ATTENTION GATES
Comparing the variant without attention gates (N3) with the
proposed architecture, we observe a substantial improvement
across all classes due to the combined effect of the two atten-
tion mechanisms (see Table 7). Notably, the proposed net-
work improved the segmentation performance of challenging
classes by 5% on average. We also evaluated the effect of
the two types of attention gates separately by removing the
channel-attention gates in N2 and the spatial-attention gates
in N1. Contrasting N2 and N1 with the variant without any
attention mechanism, we observed a slightly better improve-
ment with N1 than with N2. Although this difference might
be attributed to the increase in parameters due to the attention
blocks, it is worth noting that said increase was less than 2%
in both variants. We also note the complementary nature of
the two attention mechanisms, demonstrated by the higher
improvement margins of the proposed approach relative to
those of the variants with only one type of attention. Fig. 10
shows qualitative results of the network variants evaluated in
this ablation analysis.

2) LOSS WEIGHTING
We introduced a novel weighted loss to counter the neg-
ative effect of the class imbalance on the segmentation
performance. To evaluate the impact of the proposed loss
function while factoring out the effect of the attention
mechanism, we trained the model without attention gates
(N3) with the cross-entropy loss. As shown in Table 7, the
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FIGURE 10. Segmentation results of the MAGNet variants evaluated in the ablation study. Models were trained and evaluated on the Duke dataset
using Expert1 annotations as reference. (a) Input OCT scans, (b) ground truth, (c) proposed MAGNet, (d) variant N1: spatial-attention gate,
(e) variant N2: channel-attention gate, (f) variant N3: sans attention gates.

FIGURE 11. Segmentation results of the MAGNet variants evaluated in the ablation study. Models were trained and evaluated
on the Duke dataset using Expert1 annotations as reference. (a) Input OCT scans, (b) ground truth, (c) proposed MAGNet trained
with the DWCE loss, (d) experiment N4: variant N3 trained with the cross-entropy loss, (e) experiment N5: proposed MAGNet
trained with the cross-entropy loss.

segmentation performance dropped 3% on average across
all classes. In addition, we trained the proposed full model
with the cross-entropy loss (experiment N5) and contrasted
its performance against that of the same model trained with
the DWCE loss. As shown in Table 7, the model trained with
the proposed weighted loss improves the mean Dice score of
the model trained with the cross-entropy loss by 5%. These
observations confirm the effectiveness of the proposed loss
weighting approach in handling class imbalance, with the
added advantage that ourweighting scheme is data-driven and
parameter-free. A qualitative comparison of the loss function
experiments is presented in Fig. 11.

VI. CONCLUSION
This study proposes a novel end-to-end automatic method
for segmenting retinal layers and macular cystoid edema in
OCT B-scans. The proposed method addresses the need for
automating retinal OCT image analysis, which is a labor-
intensive task, prone to human error and inter-observer vari-
ability. Results of the evaluation on two publicly available
benchmark datasets showed that the proposed method
reached competitive performance on par with state-of-the-
art FCNs. The proposed method was evaluated on a bench-
mark dataset of OCT B-scans from DME patients where it
achieved a mean Dice score of 0.92± 0.03 and improved the

VOLUME 10, 2022 85915



A. Cazañas-Gordón, L. A. Da Silva Cruz: MAGNet for Retinal Layer and Macular Cystoid Edema Segmentation

state-of-the-art performance of the CME class by 7%. In addi-
tion, the proposed algorithm attained a mean Dice score of
0.91 ± 0.03 in a OCT dataset acquired from healthy controls
and multiple sclerosis patients. Furthermore, the proposed
approach introduces an effective, parameter-free loss weight-
ing scheme to handle the class imbalance problem. In future
work, we hope to extend the proposed method to other retinal
pathology diagnosed with OCT, such as macular holes and
drusen, as well as to other imagingmodalities. In addition, the
interplay between contradicting expert annotations warrants
further research conducing to leverage such a differential
knowledge concurrently in a single deep learning pipeline.
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