
Received 12 July 2022, accepted 5 August 2022, date of publication 16 August 2022, date of current version 19 August 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3198706

A Hybrid Approach to Recommending Universal
Decimal Classification Codes for Cataloguing in
Slovenian Digital Libraries
MLADEN BOROVIČ 1, MILAN OJSTERŠEK1, AND DAMJAN STRNAD 2
1Laboratory for Heterogeneous Computer Systems, Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia
2Laboratory for Geospatial Modelling, Multimedia and Artificial Intelligence, Faculty of Electrical Engineering and Computer Science, University of Maribor,
2000 Maribor, Slovenia

Corresponding author: Mladen Borovič (mladen.borovic@um.si)

ABSTRACT In this article we present a hybrid approach to recommending the Universal Decimal Clas-
sification (UDC) codes for unclassified documents. By recommending UDC codes to librarians, we can
provide the decision support as part of a semi-automatic cataloguing process. As current approaches to
recommending UDC codes are scarce and limited to certain fields of expertise, our motivation was to
create a hybrid approach which covers all fields of expertise within the UDC hierarchy. The cascade hybrid
approach combines the BM25 ranking function with a multi-label classifier based on a BERT (Bidirectional
Encoder Representations from Transformers) deep neural network architecture. Additionally, lists of the
most commonly used UDC codes within a document’s origin organization are used as a final content-based
filtering method. The BM25 ranking function is used to create an initial list of recommendations. The
first cascade step re-ranks the initial list of recommendations using the list of recommendations produced
by the multi-label BERT-based classifier. The second cascade step re-ranks the resulting recommendation
list from the first cascade step using a list of most commonly used UDC codes within the document’s
organization. Finally, post-processing steps are applied to obtain the final list of recommended UDC codes.
We present in detail the UDC structure, the used text corpus of documents and the functioning of our hybrid
recommendation approach. We perform the analysis of the generated recommendation lists for the corpus
from the SlovenianOpen-Access Infrastructure using themetrics hit-ratio, normalized discounted cumulative
gain, mean reciprocal rank and mean average precision. Our hybrid recommendation approach improves
reference scores of individual methods for these metrics.

INDEX TERMS Hybrid recommender systems, multi-label classification, digital libraries, universal decimal
classification.

I. INTRODUCTION
The interdisciplinary field of digital libraries was formed
with the ever growing development of web search engines.
This field of science tackles problems such as organization,
storage, processing and classification of documents. Even
though several different document classification methods
exist, few attempts have been made towards automatic clas-
sification using library classifications such as the Universal
Decimal Classification (UDC) [1], Dewey Decimal Classi-

The associate editor coordinating the review of this manuscript and

approving it for publication was Arianna Dulizia .

fication (DDC) [2] and Library of Congress Classification
(LCC) [3], [4]. There are also other classification systems
particularly tailored for use in a certain language (e.g. there
are special classifications for Chinese, Japanese and Korean
texts). Many documents in libraries across the world are still
being classified manually - either due to the lack of trust
in automatic classification, or its inadequate performance.
The lack of trust in automatic classification is understandable
from the librarians’ point of view, since a wrong classifi-
cation during the cataloguing process can bring on a lot of
additional work with document record editing. More than
that, a misclassified document will be difficult to find with

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 85595

https://orcid.org/0000-0002-3925-5436
https://orcid.org/0000-0003-4468-0290
https://orcid.org/0000-0002-7565-5963

M. Borovič et al.: Hybrid Approach to Recommending UDC Codes for Cataloguing in Slovenian Digital Libraries

the current search processes. In this article we address the
problem of low trust in automatic UDC classification, and
introduce a novel method for UDC class recommendation in
digital libraries. We propose a semi-automatic classification,
with the hybrid recommender system acting as a support
system to the librarian, who can use its recommendations
during the cataloguing process. To provide recommendations,
we use the BM25 ranking function, a fine-tuned BERT-based
multi-label classifier and a content-based filtering method
that uses the most commonly used UDC classes within the
document’s origin organization. Furthermore, some recom-
mendation post-processing techniques are applied to create
the final list of recommendations.

The paper structure is as follows. In the second section
we describe related work and different approaches to rec-
ommender systems implementations, as well as their uses
in digital libraries. The third section overviews the Univer-
sal Decimal Classification. In the fourth section we provide
details on the format and processing of our dataset from
the Slovenian Open-Access Infrastructure. The fifth section
details the functioning of our hybrid approach tomake recom-
mendations of the UDC codes. In the sixth section we eval-
uate the proposed hybrid approach and perform an ablation
study based on the HR@k (hit rate at k), MAP (mean aver-
age precision), MRR (mean reciprocal rank) and NDCG@k
(normalized discounted cumulative gain at k) metrics. The
seventh section summarizes the findings and provides some
further ideas for improvement.

II. RECOMMENDER SYSTEMS IN DIGITAL LIBRARIES
AND RELATED WORK
In recent years, recommender systems have been imple-
mented successfully in various fields for a variety of uses.
They are used commonly in web search engines, social
networks and multimedia services such as YouTube, Net-
flix, Spotify and Last.fm. The two main approaches to
computer-aided recommendation are content-based filtering
and collaborative filtering [5].

Content-based filtering can work on structured descrip-
tions of items to be recommended (e.g., objects with pre-
defined properties), as well as on unstructured data such as
text. The key component of this approach is a good choice
of features that describe the recommended items, so they can
be compared using similarity metrics. The usual metrics used
with structured data are cosine similarity, Jaccard index and
Pearson correlation [6]. Unstructured data is usually repre-
sented as text, so similarity metrics are those traditionally
used in natural language processing. A popular choice in this
case is the tf-idf metric with the BM25 ranking function.
Contrary to content-based filtering, collaborative filtering

uses the data about user interactions with recommendation
objects. In this case, the user views, viewing times, downloads
and other user actions are used to determine similar objects
to recommend. For example, in an online store, a purchase is
a major user interaction that can be used. Likewise, in digital

libraries, a download of a document can be considered a
major user interaction.

Both approaches have their disadvantages. The most
prominent disadvantage of collaborative filtering methods is
the cold start problem. This is a situation that occurs in the
starting phase of a recommender service distribution, when
the active user count is low. Consequently, user interactions
are also sparse, making it difficult to provide users with qual-
ity recommendations. The main weakness of content-based
filteringmethods is overspecialization, where a recommender
system provides users with a limited type of recommen-
dation objects. Usually, hybrid recommender systems are
employed to resolve specific disadvantages of content-based
and collaborative filtering. Hybrid recommender systems
make use of two or more different filtering methods. Sev-
eral content-based filtering methods or collaborative filtering
methods can also be used in a hybrid recommender sys-
tem. Different types of hybridization approaches exist [7],
[8], [9]. Using weight hybridization, a single ranking is cal-
culated from many different used methods [10]. Switching
hybrids [11] use a switching mechanism between different
methods, either on demand, or depending on the goal of the
recommender system.Mixed hybridization [12] is commonly
used to present the results of several techniques in a sin-
gle recommendation list. Feature combination hybridization
combines features from several sources and inputs them into a
single recommendation method [13]. In feature augmentation
hybridization [14], a single recommendation method is used
for obtaining features which are then used as inputs to a dif-
ferent recommendation method. Cascade hybridization [15]
introduces a fixed sequence of recommendation techniques
which lead to a final recommendation list that is a result
of re-ranking. Finally, meta-level hybridization uses a single
recommendation technique to build a model, which is used as
an input to the next recommendation technique [16].

Recommender systems in digital libraries are used com-
monly to recommend documents and other digital library
content [17], [18]. The recommender systems in [19] and [20]
were developed specifically for use in digital libraries, with
the aim of helping researchers find relevant publications.
Similar recommender systems can be found in academic
social networks such as Mendeley [21]. In Slovenia, a cas-
cade hybrid recommender system using content-based and
collaborative filtering was developed within the national
infrastructure of open-access [22], with the aim of providing
recommendations across the digital libraries and repositories
of all Slovenian universities.

Although some research efforts towards automatic UDC
classification have been made [23], most were limited to
traditional machine learning methods [24]. Some related
work has been done on the automatic classification of DDC
classes. This is relevant, because DDC and UDC are similar
in structure as they are both decimal classification systems.
In [25] the authors used traditional machine learning methods
to perform an automatic DDC classification on Swedish doc-
uments. Modern deep neural network architectures within the

85596 VOLUME 10, 2022

M. Borovič et al.: Hybrid Approach to Recommending UDC Codes for Cataloguing in Slovenian Digital Libraries

TABLE 1. Main classes of the universal decimal classification.

field of natural language processing such as BERT [26] have
also been used to classify documents into the DDC. In [27],
the authors performed a BERT-based automatic DDC classifi-
cation on German documents, however the study was limited
to hierarchy levels 3 and 4 within the DDC. Research has also
been done on automatic classification of UDC classes. In [28]
the authors present a recommender system for UDC class
recommendations on mathematical articles, while in [29],
a system for automatic UDC classification of older docu-
ments in the Slovenian language was presented. Based on
the promising results of those efforts, we have developed a
novel approach to semi-automatic UDC classification using
a hybrid recommender system for documents. Another thing
to note is that all of the mentioned related work defines the
automatic classification as a multi-class problem, e.g. they
return a single predicted UDC class from a list of candidates
as a result. Our approach redefines the classification problem
as a multi-label problem and therefore always returns a list of
predicted UDC classes. This is relevant because documents
can be classified intomultiple UDC classes. Additionally, it is
helpful for the end-users to receive a list of recommended
UDC classes, which can aid them during the cataloguing
process.

III. UNIVERSAL DECIMAL CLASSIFICATION
Universal Decimal Classification (UDC) is a bibliographic
and library classification system used for content indexing
and information retrieval. Its licensed paid version spans
more than 70,000 classes, however, a free license version of
approximately 2,600 classes also exists. Both are managed by
the UDC Consortium. Each document can be assigned a class
which classifies it in a certain discipline and branch of knowl-
edge. UDC consists of main classes and auxiliary tables,
where the main classes represent disciplines and branches
of knowledge, and the auxiliary tables represent additional
information (e.g., time, place, language and format).

A UDC code can be simple or complex. In the latter case,
connecting signs are used to define the type of connection
between different classes in a UDC code. Thus, interdisci-
plinary documents can be classified appropriately. Tables 1-3
show examples of UDC classes and codes.

TABLE 2. Hierarchical structure of UDC classes for Computer science
(004), branch Computer communication, computer networks (004.7).
A document with the UDC code ‘‘004.73’’ is implicitly classified into
classes ‘‘0’’, ‘‘00’’, ‘‘004’’, ‘‘004.7’’ and ‘‘004.73’’, with the latter being the
most specific class, ‘‘0’’ being its top-level class, and all the rest being
intermediate classes within the UDC hierarchy.

TABLE 3. Example of a simple and complex UDC code. The simple UDC
code contains a common auxiliary of form (043.2). The complex UDC code
contains a relation connecting sign (denoted with a colon ‘‘:’’),
a consecutive extension (denoted with a slash ‘‘/’’), a common auxiliary
of form (043.2) and a common auxiliary of place (497.4).

A cataloguing process is needed to obtain a UDC code for
a document. This is done with a request to a librarian. The
request consists of a title, abstract and keywords at a mini-
mum, but a table of contents, authors, supervisors and other
information may also be provided, depending on the type of
document. Librarians then look up the provided information
in glossaries and UDC mappings to define the suitable UDC
code. Usually, this process can take a few days. The quality
of the UDC code depends on the used glossary and mapping,
the number of available UDC classes librarians can choose
from, and also the cataloguing experience of the librarian.

IV. TEXT CORPUS AND PREPROCESSING
In this article, we used a text corpus from the Slovenian
open-access infrastructure [22], which was established in
2013 and consists of theses and scientific publications from
all Slovenian universities. The text corpus [30], [31] con-
sists of 114,485 documents in the Slovenian language, and
is segmented into keywords, titles, abstracts, full-texts and
additional bibliographic metadata, including UDC codes.

Because the majority of documents had complex UDC
codes, we implemented a UDC code parser that extracts the
main UDC codes from a complex UDC code. The logic for
parsing relation, coordination and addition connections, con-
secutive extensions and subgroupingwas implemented. Other
syntax features of the UDC were not supported, because a
negligible amount of documents in the corpus featured UDC
codes with them.

We linked the free version of the UDC to our corpus using
the available linked open data [32]. It consists of approxi-
mately 2,600 UDC classes with English and Slovenian trans-
lations. Because of the restricted number of freely available
classes, the parsing was limited in depth for some branches
of the Universal Decimal Classification, as demonstrated in
Table 4.

After processing the UDC codes with the parser, we ana-
lyzed the distribution of processed UDC classes in the chosen

VOLUME 10, 2022 85597

M. Borovič et al.: Hybrid Approach to Recommending UDC Codes for Cataloguing in Slovenian Digital Libraries

TABLE 4. Example of inputs and outputs of our UDC code parser. The
underlined UDC code 621.952.8 was parsed as 621.9 due to limitations of
the freely available classes in the linked open data collection. The
example also shows that our UDC code parser ignores the common
auxiliaries - in this case, the auxiliary of form (043.2) and place
(497.4Koper).

FIGURE 1. Distribution of documents in the corpus based on the top-level
UDC classes.

text corpus. Specifically, we studied the hierarchy depth of
processed UDC codes, since it directly affects the catego-
rization specificity. For example, these UDC codes appear
as ‘‘004’’ for depth of 3, ‘‘7.03’’ for depth 4, ‘‘004.7’’ for
depth 5, ‘‘004.73’’ for depth 6, ‘‘004.738’’ for depth 7 and
‘‘004.738.5’’ for depth 9.

Figure 1 shows the distribution of documents in the text
corpus with respect to the main UDC classes. We can observe
that the top represented UDC branches are 6 - Applied sci-
ences, Medicine, Technology (31.7%), 3 - Social sciences
(28.3%), 5 - Mathematics, Natural sciences (11.8%) and
0 - Science and technology (11.7%). Figure 2 shows the distri-
bution of UDC classes in the text corpus after processing with
respect to the hierarchical depth of the UDC classes. Themost
frequent UDC code hierarchical depths were 5, 6, 4, 3 and
7 respectively. This means that the majority of catalogued
documents with a UDC code in the corpus contained a good
degree of specificity. Furthermore, documents in the corpus,
catalogued with a UDC code of hierarchical depth 1 are very
rare (0.3%).

FIGURE 2. Distribution of documents in the corpus based on the
hierarchical depth of the UDC class after processing.

V. HYBRID APPROACH TO RECOMMENDATIONS

In the proposed hybrid recommendation approach (Figure 3),
we use the cascade hybridization with the BM25 ranking
function and a multi-label BERT-based classifier fine-tuned
on the hierarchical structure of the UDC. The input into
the recommendation process is a document feature structure,
consisting of the title, keywords, abstract and the document’s
origin organization code. The output of the recommender sys-
tem is a list of recommended UDC codes. Within the cascade
hybridization, the first step is to obtain the initial list of UDC
codes with the BM25 ranking function. Similarly, a list of
UDC codes is obtained using the multi-label BERT-based
classifier using the branch hierarchy of the UDC. This list
then re-ranks the initial list of UDC codes. The UDC codes
that appear in both lists are ranked higher. Next, the second
step of the cascade hybridization re-ranks the resulting list
of the first step using the most commonly used UDC codes
depending on the document’s origin organization. The lists
of the most commonly used UDC codes for each organi-
zation have been pre-generated. Finally, the post-processing
steps of top-level boosting, hierarchical specificity boosting
and cut-off are applied. Each of the post-processing steps
defines parameters which can be optimized. Top-level boost-
ing increases the ranking scores of all UDC codes in the
recommendation list that match the top 3 ranked UDC codes
in the recommendation list by their top-level UDC branch.
Hierarchical specificity boosting proportionally increases the
ranking scores of the UDC codes within the recommendation
list, with respect to their depth within the UDC hierarchy,
such that deeper UDC codes are boosted more. The cut-off
procedure removes the UDC codes from the recommendation
list, that have their ranking scores lower than a dynamically
set cut-off value, which is calculated as a proportion of the
highest ranking score (e.g. 50%).

85598 VOLUME 10, 2022

M. Borovič et al.: Hybrid Approach to Recommending UDC Codes for Cataloguing in Slovenian Digital Libraries

FIGURE 3. Proposed hybrid recommendation approach, employing two
cascade hybridization steps and post-processing. The inputs are the
document features constructed from titles, keywords and abstracts. The
first cascade step generates an intermediate list of recommendations
which is the input to the second cascade step. The second cascade step
produces a list of recommended UDC classes which is post-processed
and returned as a result of the hybrid recommendation.

A. FILTERING METHODS
The idea of our approach is to use the BM25 ranking function
to find the k most suitable UDC codes and construct an
initial list of recommendations. Following this initial rank-
ing, we rely on a fine-tuned multi-label BERT classifier to
produce an independent recommendation list using the levels
of hierarchy within the UDC.

The BM25 ranking function is widely used in search
engine implementations, and as a full-text search function-
ality in commercial solutions such as Microsoft SQL Server
and MySQL. Fine-tuned BERT models are most commonly
associated with the categorization and classification tasks
within the field of natural language processing. In our hybrid
approach, BERT served to improve the rankings of UDC
codes that were obtained by the BM25 ranking function.
Similarly, the aggregation of the most commonly used UDC
codes by the document’s origin organization serves to cap-
ture suitable UDC codes that could have been missed in the
previous passes.

1) BM25
BM25 is a ranking function used to determine document
similarity [33]. It was first used in the 1970’s as part of
a probabilistic information retrieval framework. BM25 is
actually a family of methods that differ in weight schemes
and parameter values. The tf and idf weights are usually
used across all variants of the ranking function. There are
many variants of BM25which bring improvements in specific
cases [34], [35], [36]. We used two variants of the BM25
ranking function, to test the performance of different query
weight schemes. Let us denote byD the corpus of documents,

and by Q the input search query to the recommender system.
In the first variant, the BM25 score s(d,Q) is calculated as:

s(d,Q) =
|Q|∑
i=1

idf(qi) ·
tf(qi, d) · (k1 + 1)
tf(qi, d)+ k1 · B

(1)

where qi ∈ Q, d ∈ D and
– tf(qi, d) is the frequency weight, i.e. the number of

occurrences of a query term qi in document d
– k1 is a parameter with a typical value between 1 and 3.

For instance, in [37] the authors recommend the value
k1 = 1.2, [33] used k1 = 2.0, and [38] used k1 = 2.5.

– idf(qi) is the inverse document frequency weight for the
query term qi. It indicates the frequency of the term qi
within the complete corpus, and is calculated as:

idf(qi) = log
|D| − n(qi)+ 0.5

n(qi)+ 0.5
(2)

Here, |D| is the number of documents in the corpus D,
and n(qi) is the number of documents that contain the
term qi.

– B is a normalization factor, computed as:

B = 1−b+ b ·
ld
lavg

(3)

where ld is the length of document d , and lavg is the
average length of documents in the corpus. The length of
a document is the number of terms in the document. The
values for parameter b usually range from 0 to 1. In [37]
the authors recommend the value b = 0.75, which is also
used by other studies [33]. In [38], the value b = 0.8 is
used, while earlier variants of this ranking function used
b = 0 (BM11) or b = 1 (BM15).

The second variant of BM25 we used calculates the BM25
score s′(d,Q) as:

s′(d,Q) = s(d,Q) ·
(k3 + 1) · qtf(qi)
k3 + qtf(qi)

(4)

where qi ∈ Q and d ∈ D. The meaning of new quantities
introduced on the right side of Equation (4) is:
– qtf(qi) is the query term frequency weight for the term
qi. The value is the number of occurrences of the term qi
within the query Q.

– k3 is a parameter with a commonly used value k3 = 0,
although k3 = 1, 000 [39] and k3 = 7 [38] have also
been used. It is worth noting that Equation (1) is a special
case of Equation (4), when k3 = 0, i.e., the query
frequency term is ignored.

Using the BM25 ranking function scores s(d,Q) we can
find the documents in the corpus that are most similar to
the input document, and use the UDC parser on their UDC
codes to extract the UDC classes they were catalogued in.
In this case, higher BM25 scores translate to higher similarity
between the documents. A list of UDC classes, sorted by the
decreasing frequency of the occurring class, is then generated,
and the first k elements are returned as recommended classes.

VOLUME 10, 2022 85599

M. Borovič et al.: Hybrid Approach to Recommending UDC Codes for Cataloguing in Slovenian Digital Libraries

FIGURE 4. Structure of our multi-label BERT-based classifier.

2) MULTI-LABEL BERT CLASSIFIER
A multi-label BERT-based classifier has been trained to
be used within the cascading hybridization during the rec-
ommendation process. The classifier performs multi-label
classification of documents to provide relevant UDC codes
depending on the input text. This is a major difference when
compared to related work, as all of the approaches performed
multi-class classification, where the model is trained to put
all weight on a single target class per document. This is
important, because their work outputs only one UDC code,
which corresponds to a single class within the classifier.
As we can observe from examples in Table 4, in real-world
scenarios there can be more than one UDC code given to a
document during the cataloguing process. To avoid this limi-
tation in our classifier, we redefined the problem of document
classification from a multi-class type to a multi-label type.
That way, the output of the classifier is a list of scores for
UDC codes which correspond to different labels within the
classifier. By doing so, we implicitly support recommenda-
tion of several UDC codes for a document, which is especially
relevant for interdisciplinary documents.

The multi-label BERT-based classifier was trained on all
branches of the UDC hierarchy, which covers all fields of
expertise within the freely available UDC summary. The
idea behind the classifier is to filter relevant UDC codes
within the UDC hierarchy with a degree of specificity. That
way, more specific UDC codes can be obtained as a result

from the classifier, improving the cataloguing process of the
document.

The training data consisted of documents from the corpus
described in Section IV and their corresponding parsed UDC
codes. Each document was labelled with its corresponding
UDC code in one of the freely available UDC codes within
all branches of the UDC hierarchy [32]. A binary vector
was created to represent the UDC codes as target labels for
each document. A component in the binary vector was set to
value 1 if the corresponding code was part of the document’s
multi-label identifier hierarchy, and to 0 otherwise. This was
done for all hierarchical levels of the UDC hierarchy. For
example, a document with the UDC code ‘‘004’’ would have
components ‘‘0’’, ‘‘00’’ and ‘‘004’’ in the binary vector set
to value 1, and all the rest set to 0. The dataset was split
using a 70/15/15 split for training, validation and testing,
respectively.

Figure 4 shows the structure of the classifier. First, the
document features are tokenized and input tokens are pro-
cessedwith the 12 layers that are part of BERTBase. Following
this, a classification head with sigmoid activation is applied
for multi-label classification. Finally, using a threshold value
θ = 0.5, the output labels are stored as a list in descending
score order.

B. FIRST CASCADE HYBRID STEP
In the first cascade hybrid step (Figure 5), an initial list
of recommended UDC codes is produced using the BM25
ranking function. The inputs are document features consisting
of titles, keywords and abstracts, which are taken by BM25
as a search query. The BM25 ranking function then outputs
all documents that are relevant to the search query, along with
their UDC codes. Those UDC codes and their corresponding
BM25 scores are taken and stored in a ranked list of initial
recommendations R0 which has a fixed cut-off length of
15 results. Then, the BERT tokenizer is used to transform
the document feature into tokens, which are the input to the
multi-label hierarchy UDC BERT classifier. The output is a
list of output labels Lhier representing recommended UDC
codes by the classifier. The resulting labels are used with the
list of initial recommendations R0 to re-rank it. The scores of
UDC codes within R0 which are similar to the labels in Lhier
are boosted using the equation:

σR1 = σR0 +
(
σR0 · simjw(r, l)

)
(5)

where σR1 is the new score, σR0 is the old score, and
simjw(r, l) is the Jaro-Winkler similarity [40] between the
UDC code r from R0 and the label l from Lhier representing
the UDC code. The Jaro-Winkler similarity is defined on the
interval [0, 1], where 0 means no similarity, and 1 means
exactmatch. It gives higher values for similarity to strings that
match from the beginning, which suits our task of matching
UDC codes by hierarchical depth. Finally, the resulting list of
UDC codes and their corresponding scores is sorted by score
in descending order to complete the re-ranking process. In the
next steps, this list is referenced as R1.

85600 VOLUME 10, 2022

M. Borovič et al.: Hybrid Approach to Recommending UDC Codes for Cataloguing in Slovenian Digital Libraries

FIGURE 5. Workflow diagram of the first hybrid cascade step.

FIGURE 6. Workflow diagram of the third hybrid cascade step.

C. SECOND CASCADE HYBRID STEP
As the input, the second cascade hybrid step (Figure 6) takes
the ranked list of recommended UDC codes R1 from the
second cascade hybrid step. The document’s origin organi-
zation, which is part of the document metadata, is extracted
and a pre-generated list of the most commonly used UDC
codes of documents originating from that organization (Lorg)
is obtained and used with the list R1 to re-rank it. The scores
of UDC codes within R1 are boosted using the equation:

σR2 = σR1 +

(
σorg

σLmax

)
(6)

where σR2 is the new score, σR1 is the old score, σorg is the
score for the UDC code in Lorg which equals to the number of
occurrences of the UDC code for documents within that orga-
nization, and σLmax is the maximum score in Lorg. Once more,
the resulting list of UDC codes and their corresponding scores
is sorted by score in descending order to complete the re-
ranking process. In the next step, this list is referenced as R2.

D. POST-PROCESSING
Once the list of recommended UDC codes is prepared, post-
processing steps follow to further improve recommendations.
In general, the post-processing steps are used to improve the
user experience by applying logic that is tailored to a specific
user. In our recommendation approach, post-processing is
used in an attempt to improve the ranking of highly specific
UDC codes, as the librarians tend to catalogue the documents
in the same way. This can be observed in Figure 2, which
shows the distribution of documents in the corpus based
on the hierarchical depth of the UDC class. Three different
post-processing techniques were applied and evaluated. Top-
level boosting was used to improve the rankings of UDC
codes depending on their top-level UDC branch. Specificity
boosting was used to improve the rankings of highly specific
UDC codes. A cut-off was used to remove low-ranking UDC
codes from the list of recommendations.

1) TOP-LEVEL BOOSTING
The rankings of recommended UDC codes can be further
improved by boosting the scores of all UDC codes in the
recommendations that fall under the top-level UDC branches
of the top 3 recommended UDC codes. This post-processing
step aims to provide a more unified recommendation in the
sense, that it will focus on relevant top-level UDC branches
and provide some variety of UDC subclasses from that point
on. The boosted score is calculated using the equation:

σT = σR2 +

(
σR2 ·

δ

|R2|
+ log2(rrank + 1)

)
(7)

where σR2 is the score of the recommended UDC code r , rrank
is the rank of the recommended UDC code r , δ is the score
difference between the first and second ranked UDC codes,
representing the dominance of the top result, and |R2| is the
size of the ranked recommendation list R2. The boost is added
to every UDC code score in the list of recommendations.
Finally, the list is re-ranked by boosted score in a descending
order.

2) SPECIFICITY BOOSTING
Librarians tend to provide very specific UDC codes when
cataloguing new documents. Within the UDC hierarchy,
this means a range of specific fields of expertise that are
related to each other and are a part of the same top-level
branch. To achieve more human-like recommendations, this
post-processing step boosts the scores for UDC codes that
are longer in length (are more specific). The boosted score is
calculated using the equation:

σS = σT +

(
λr ·

log2(rrank + 1)
λmax

· φ

)
(8)

where λr is the length of the UDC code in the list of rec-
ommendations, λmax is the length of the longest UDC code
in the list of recommendations and φ ∈ [0, 1] is a scaling
factor regulating the boost value. This post-processing step
adds the boost to every UDC code score in the list of recom-
mendations. Lastly, the list is re-ranked by boosted score in a
descending order.

3) CUT-OFF
In some cases, an imbalance of recommended UDC code
scores can occur. The top recommendedUDC codes will have
a much larger score than the rest of the recommended UDC
codes. A question can be raised whether these low-ranking
recommendations should be kept in the recommendation
list, or removed from it. Using a cut-off threshold T , this
post-processing step aims to exclude the recommendations
with significantly lower scores than the top-ranked recom-
mendation. The threshold is calculated using the equation:

T = γ ·max σr (9)

where max σr is the score of the top-ranking UDC code in
the list of recommendations and γ ∈ [0, 1] is a free parameter
representing the percentage of the top score needed to be kept

VOLUME 10, 2022 85601

M. Borovič et al.: Hybrid Approach to Recommending UDC Codes for Cataloguing in Slovenian Digital Libraries

in the list of recommendations. All UDC codes with scores
lower than the value of threshold T are excluded from the
recommendations.

VI. EXPERIMENTAL SETUP AND EVALUATION
Due to the different purposes of recommender systems, many
different approaches exist for evaluating them. Several useful
and popular methods are presented in the studies [41], [42],
[43], [44], [45]. With so many diverse options for evaluation,
we must first define the end result that we are trying to
accomplish with the inclusion of a recommender system [46].
In our case, we are using a hybrid recommendation approach
that uses content-based filtering methods to obtain a list of
UDC codes that are suitable for the text input. Intuitively,
we turn to metrics such as precision and recall, which are
well established in use with search engines and information
retrieval [47], [48]. Even though these two metrics evaluate
how successful a search system is, they are not able to eval-
uate the user experience, which is arguably more relevant
to recommender systems [49]. With our user scenario, the
librarians cataloguing the documents encounter a problem
of sifting through a large number of UDC codes to select a
suitable one. This can be time consuming, and even confusing
in some cases. In this scenario, the librarians are satisfied
with a smaller set of relevant UDC codes that enables them
to catalogue the documents faster. It is also satisfactory if they
are provided a top-level UDC code branch from where they
can work through the UDC hierarchy manually and select the
suitable UDC codes independently.

From an information retrieval perspective, the usual met-
rics used for evaluation of such systems are precision, recall
and a variety of Fβ metrics, with the F1 metric being the
one used most commonly. This is because the F1 metric
represents a harmonic mean between precision and recall,
weighing them both equally with the idea that a system
should perform equally well in precision as well as in recall.
However, the recall metric is the preferred metric to mea-
sure in our scenario, since the final selection of the most
appropriate UDC codes used for classification will always be
done manually by the end-user. In the field of recommender
systems, the recall metric is also known as hit-ratio (HR).
Furthermore, the hit-ratio can be measured at a cut-off value
k within the list producing a metric HR@k . Its calculation
is given with Equation (10), where nrel,k is the number of
correct recommendations in the recommendation list cut-off
at k , and nall, k is the number of all recommendations in the
recommendation list cut-off at k .

HR@k =
nrel,k
nall,k

(10)

Another prevalent metric used for recommender sys-
tems evaluation is the normalized discounted cumulative
gain (NDCG) which measures the ranking quality of the
produced recommendation list. It can bemeasured at a cut-off
value k as well, producing a metric NDCG@k . Its calculation
is given with Equation (11), where reli is the relevance score

of the recommendation at position i, IDCG@k is the ideal
discounted cumulative gain obtained with the ideal order
of recommendations, and |I (k)| is the length of the ideally
ordered list of recommendations limited to k elements.

DCG@k =
k∑
i=1

2reli − 1
log2(i+ 1)

IDCG@k =
|I (k)|∑
i=1

2reli − 1
log2(i+ 1)

NDCG@k =
DCG@k
IDCG@k

(11)

Additionally, metrics such as mean average preci-
sion (MAP) and mean reciprocal rank (MRR) are commonly
used to evaluate recommender systems. The calculation of
MRR is given with Equation (12), where N is the number
of all resulting recommendation lists, and ranki is the rank
of the first correct recommendation in the i-th resulting
recommendation list.

MRR =
1
N
·

N∑
i=1

1
ranki

(12)

The calculation ofMAP is given with Equation (13), where
AP is the average precision calculated for each resulting
recommendation list, n is the length of the resulting rec-
ommendation list, P@k is the precision score at cut-off k
in the resulting recommendation list, rel(k) is an indicator
function that equals 1 if the recommendation at rank k is
relevant, and 0 otherwise, and nrel is the number of relevant
recommendations. The MAPmetric is calculated as the mean
of the AP scores over all resulting recommendation lists.

AP =

∑n
k=1 P@k · rel(k)

nrel

MAP =
1
N
·

N∑
i=1

APi (13)

We decided to perform an ablation study using the metrics
HR@k , NDCG@k , MAP and MRR to analyze the retrieval
and ranking quality of the recommendations. For the param-
eter k with HR@k and NDCG@k we used values 3, 5, and
10 as they represent a traditional set of choices for the number
of results returned by the recommender system.

We compared the performance of different hybrid recom-
mender system configurations. As a baseline, we used a vari-
ant of recommendation that included only the BM25 ranking
function. We tested the first BM25 variant with parameters at
values k1 = 1.2 and b = 0.75, and the second BM25 variant
with query term frequency using parameter values k3 = 7 and
k3 = 1, 000. Both variants performed comparably, meaning
that the addition of the query term frequency component in
the weighing scheme was not significant for performance.
This phenomenon has been discussed in related work [50],
and we only included the results of the first BM25 variant
without the query term frequency component. The baseline

85602 VOLUME 10, 2022

M. Borovič et al.: Hybrid Approach to Recommending UDC Codes for Cataloguing in Slovenian Digital Libraries

TABLE 5. Tested hybrid recommender system configurations. The checkmark (X) denotes the use of the functionality and the minus (-) denotes the
absence of the functionality.

TABLE 6. Scores for metrics HR@k , NDCG@k , MRR and MAP on the tested hybrid recommender system configurations. The method variants marked with
an asterisk (*) used the top 3 levels of the UDC hierarchy during top-level boosting, while the methods without it used only the top level of the UDC
hierarchy.

method is annotated with ‘‘bm25’’. Table 5 shows the prop-
erties of the tested hybrid recommender system configura-
tions and their notations. We tested the full range of values
for parameters φ and γ which are defined on the interval
[0, 1]. We obtained the best results with the scaling factor
φ = 0.8 for specificity boosting, and the free parameter
γ = 0.5 for cut-off, which we used in our evaluation. For top-
level boosting, we also tested an option where the top-level
boosting was not limited to only the top level, but rather to
the top 3 levels of the UDC hierarchy. This was because most
UDC codes consist of at least 3 levels of the UDC hierarchy
and UDC codes of depth less that 3 are only used for certain
fields of expertise in real-world scenarios (e.g. Architecture
(‘‘72’’) and History (‘‘93’’ and ‘‘94’’)). In Table 6, these
variants are marked with an asterisk (*).

Table 6 shows the values of metrics HR@k , NDCG@k ,
MRR and MAP for the tested hybrid recommender system
configurations. From the results it can be observed that the
cascade hybrid recommender system approaches with dif-
ferent combinations of post-processing steps improve on the
reference scores of individual methods. Another observation
is, that the scores for HR@k stay consistent nomatter whether
the limit of the recommendations list is 3, 5 or 10. This
indicates that the tested approachesmostly capture the correct
UDC codes in the top 3 positions of the resulting recommen-
dation lists. It is worth mentioning here that a catalogued doc-
ument rarely has more than 2 different UDC codes attached
to it. As for NDCG@k , the scores generally decrease as the
number of recommendations in the list increases. This is

expected, since this metric measures the ranking quality using
the relevance score, and, as the length of a recommendation
list grows, the scores of lower ranked recommendations get
lower values. We also observe that the biggest decrease for
this metric is between 3 and 5 given recommendations in the
list.

The variant ‘‘casc-hyb-no-org’’, which does not use the
second cascade hybrid step, improves the metric scores when
compared to the baseline, but is not performing as well as
the variant ‘‘casc-hyb-full’’ which uses both cascade hybrid
steps. This indicates that the use of the multi-label BERT
classifier provides an improvement of results, however the
contribution of metadata about the organization is also impor-
tant. Since these organizations are faculties and research
institutions in specific fields of expertise, this metadata maps
their fields of expertise to their defined specific UDC codes.

In general, we observe that approaches using post-
processing steps further improve metric scores when com-
pared to approaches not using post-processing steps. We can
observe that the variant ‘‘casc-hyb-full-A’’, which does not
use specificity boosting and cut-off, gives the best values
for metrics MRR and MAP. This indicates that the best rec-
ommendations are ranked well with this approach, however
the values of HR@k and NDCG@k for this method suggest
that other good recommendations are either not present or
are ranked very low in the final recommendation list. Addi-
tionally, the variant ‘‘casc-hyb-full-B’’, which does not use
cut-off, and variant ‘‘casc-hyb-full-D’’, which uses all post-
processing steps, give the best values for the metric HR@k .

VOLUME 10, 2022 85603

M. Borovič et al.: Hybrid Approach to Recommending UDC Codes for Cataloguing in Slovenian Digital Libraries

Similarly, the variant ‘‘casc-hyb-full-B*’’, which does not
use cut-off, and variant ‘‘casc-hyb-full-D*’’, which uses all
post-processing steps, give the best values for the metric
NDCG@k . Both of these variants used top-level boosting
which was not limited to only the top level, but rather the top
3 levels of the UDC hierarchy. Arguably, this can be inter-
preted as a good definition of an area of expertise without too
much specificity. As observed from the results, this approach
gave the best improvement over the NDCG@k scores, but
lowered the MRR and MAP scores. We attribute this to the
best recommendation being ranked lower or not present in
the recommendation list due to specificity boosting and cut-
off post-processing steps.

There is no single hybrid approach variant with the best
values for all of the metrics. We attribute this to the fact that
the metrics treat the recommendation lists differently. MRR
focuses on the first relevant item in the recommendation list,
but does not evaluate the rest of the recommendations. MAP
gives high focus to the top ranked items in the recommen-
dation list, but does not differentiate between the top ranked
items as somemight still be more relevant than others, despite
the ranking order. Finally, NDCG@k also gives high focus
to the top ranked items, but uses their graded relevance to
obtain the score.

Overall, variants ‘‘casc-hyb-full-A’’ and ‘‘casc-hyb-full-B’’
seem to perform the best in the sense of a balanced trade-off
between the metric scores. Both of these variants do not use
cut-off, which indicates that some relevant UDC codes are
being removed from the recommendations. It is therefore
arguably worth reconsidering using cut-off, however further
experiments with different approaches to cut-off could pro-
vide more insight.

VII. CONCLUSION
In this paper we have presented a hybrid approach to rec-
ommending UDC codes during the document cataloguing
process. We have described the used text corpus and text pre-
processing techniques. The cascade hybrid steps, as well as
post-processing steps were explained in detail. We performed
an evaluation of a baseline BM25 recommender and different
hybrid recommender system configurations using the HR@k ,
NDCG@k , MRR and MAP metrics. We found that the cas-
cade hybrid approaches improved on the metric scores of a
baseline BM25 recommender.

Our hybrid approach can be modified and tuned in differ-
ent ways and at different points in the workflow. One such
modification would be the use of a fully licensed version of
UDC codes, as it would enable us to parse the already cata-
logued documents with better domain specificity. This would
be especially useful at deeper levels of the UDC hierarchy.
Another improvement could be a fine-tuning optimization
step [51], [52] that would find the optimal values for the
BM25 parameters k1 and b. This would be a periodic process
that would be performed after a certain number of documents
have been added to the corpus. Furthermore, a similar hybrid
recommender system architecture could be implemented,

where domain-specific classifiers would be paired with a
top-level classifier in cascade. The role of the top-level classi-
fier would be to choose which domain-specific classifiers are
to be used in the cascade step. This approach would require
several domain-specific classifiers to be trained. Finally,
in the future, we wish to experiment with inclusion of col-
laborative filtering methods and other deep neural network
architectures, as the latter have recently advanced in the fields
of text mining and natural language processing.

REFERENCES

[1] A. Slavic, ‘‘UDC implementation: From library shelves to a
structured indexing language,’’ Int. Cataloguing Bibliographic
Control, vol. 33, no. 3, pp. 60–65, Jul./Sep. 2004. [Online]. Available:
https://archive.ifla.org/ubcim/admin/content.htm

[2] J. Wang, ‘‘An extensive study on automated Dewey decimal classifica-
tion,’’ J. Amer. Soc. Inf. Sci. Technol., vol. 60, no. 11, pp. 2269–2286,
Nov. 2009.

[3] C. J. Godby and J. Stuler, ‘‘The library of congress classification as
a knowledge base for automatic subject categorization,’’ in Subject
Retrieval in a Networked Environment. Berlin, Germany: K. G. Saur, 2003,
pp. 163–169. [Online]. Available: https://www.degruyter.com/document/
doi/10.1515/9783110964912.163/html

[4] E. Frank and G. W. Paynter, ‘‘Predicting library of congress classifications
from library of congress subject headings,’’ J. Amer. Soc. Inf. Sci. Technol.,
vol. 55, no. 3, pp. 214–227, Feb. 2004.

[5] P. Melville and V. Sindhwani, ‘‘Recommender systems,’’ in Encyclopedia
ofMachine Learning andDataMining. Boston,MA, USA: Springer, 2017,
pp. 1056–1066.

[6] P. Lops, M. D. Gemmis, and G. Semeraro, ‘‘Content-based recommender
systems: State of the art and trends,’’ in Recommender Systems Handbook.
Boston, MA, USA: Springer, 2011, pp. 73–105.

[7] R. Burke, ‘‘Hybrid recommender systems: Survey and experiments,’’User
Model. User-Adapted Interact., vol. 12, no. 4, pp. 331–370, Nov. 2002.

[8] F. O. Isinkaye, Y. O. Folajimi, and B. A. Ojokoh, ‘‘Recommendation
systems: Principles, methods and evaluation,’’ Egyptian Inform. J., vol. 16,
no. 3, pp. 261–273, 2015.

[9] E. Çano and M. Morisio, ‘‘Hybrid recommender systems: A system-
atic literature review,’’ Intell. Data Anal., vol. 21, no. 6, pp. 1487–1524,
Nov. 2017.

[10] L. M. D. Campos, J. M. Fernández-Luna, J. F. Huete, and
M. A. Rueda-Morales, ‘‘Combining content-based and collaborative
recommendations: A hybrid approach based on Bayesian networks,’’ Int.
J. Approx. Reasoning, vol. 51, no. 7, pp. 785–799, Sep. 2010.

[11] D. Billsus, M. J. Pazzani, and J. Chen, ‘‘A learning agent for wireless news
access,’’ in Proc. 5th Int. Conf. Intell. User Interfaces. New York, NY,
USA: Association for Computing Machinery, 2000, pp. 33–36.

[12] A. B. Barragáns-Martínez, E. Costa-Montenegro, J. C. Burguillo,
M. Rey-López, F. A. Mikic-Fonte, and A. Peleteiro, ‘‘A hybrid content-
based and item-based collaborative filtering approach to recommend TV
programs enhanced with singular value decomposition,’’ Inf. Sci., vol. 180,
no. 22, pp. 4290–4311, 2010.

[13] P. Bedi, P. Vashisth, P. Khurana, and Preeti, ‘‘Modeling user prefer-
ences in a hybrid recommender system using type-2 fuzzy sets,’’ in
Proc. IEEE Int. Conf. Fuzzy Syst. (FUZZ-IEEE), Jul. 2013, pp. 1–8.
[Online]. Available: https://ieeexplore.ieee.org/author/37086744975 and
https://ieeexplore.ieee.org/author/37086744975

[14] R. J. Mooney and L. Roy, ‘‘Content-based book recommending using
learning for text categorization,’’ in Proc. 5th ACM Conf. Digit. Libraries.
New York, NY, USA: Association for Computing Machinery, 2000,
pp. 195–204.

[15] A. S. Lampropoulos, P. S. Lampropoulou, and G. A. Tsihrintzis, ‘‘A
cascade-hybrid music recommender system for mobile services based on
musical genre classification and personality diagnosis,’’Multimedia Tools
Appl., vol. 59, no. 1, pp. 241–258, Jul. 2012.

[16] K. Yoshii, M. Goto, K. Komatani, T. Ogata, and H. G. Okuno, ‘‘An efficient
hybrid music recommender system using an incrementally trainable proba-
bilistic generativemodel,’’ IEEE Trans. Audio, Speech, Language Process.,
vol. 16, no. 2, pp. 435–447, Feb. 2008.

[17] X. Bai, M. Wang, I. Lee, Z. Yang, X. Kong, and F. Xia, ‘‘Scientific paper
recommendation: A survey,’’ IEEE Access, vol. 7, pp. 9324–9339, 2019.

85604 VOLUME 10, 2022

M. Borovič et al.: Hybrid Approach to Recommending UDC Codes for Cataloguing in Slovenian Digital Libraries

[18] I. Liao, W. Hsu, M. Cheng, and L. Chen, ‘‘A library recommender system
based on a personal ontology model and collaborative filtering technique
for English collections,’’ Electron. Library, vol. 28, no. 3, pp. 386–400,
Jun. 2010.

[19] J. Beel, A. Aizawa, C. Breitinger, and B. Gipp, ‘‘Mr. DLib:
Recommendations-as-a-service (RaaS) for academia,’’ in Proc. ACM/
IEEE Joint Conf. Digit. Libraries (JCDL), Jun. 2017, pp. 1–2.

[20] C. Porcel, J. M. Moreno, and E. Herrera-Viedma, ‘‘A multi-disciplinar
recommender system to advice research resources in university digital
libraries,’’ Expert Syst. Appl., vol. 36, no. 10, pp. 12520–12528, Dec. 2009.

[21] S. Vargas, M. Hristakeva, and K. Jack, ‘‘Mendeley: Recommendations for
researchers,’’ in Proc. 10th ACM Conf. Recommender Syst., Boston, MA,
USA, Sep. 2016, p. 365.

[22] M. Ojsteršek, J. Brezovnik, M. Kotar, M. Ferme, G. Hrovat, A. Bregant,
andM. Borovič, ‘‘Establishing of a Slovenian open access infrastructure: A
technical point of view,’’ Program, vol. 48, no. 4, pp. 394–412, Aug. 2014.

[23] K. Yi, ‘‘Automated text classification using library classification schemes:
Trends, issues, and challenges,’’ in International Cataloguing and Bib-
liographic Control, vol. 36. London, U.K.: International Federation of
Library Associations, 2007, pp. 78–82. [Online]. Available: https://pascal-
francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20041463

[24] A. Khan, B. Baharudin, L. H. Lee, and K. Khan, ‘‘A review of machine
learning algorithms for text-documents classification,’’ J. Adv. Inf. Tech-
nol., vol. 1, no. 1, pp. 4–20, 2010.

[25] K. Golub, J. Hagelbäck, and A. Ardö, ‘‘Automatic classification of
Swedish metadata using dewey decimal classification: A comparison of
approaches,’’ J. Data Inf. Sci., vol. 5, no. 1, pp. 18–38, Feb. 2020.

[26] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ 2018,
arXiv:1810.04805.

[27] J. Schrumpf, F. Weber, and T. Thelen, ‘‘A neural natural language process-
ing system for educational resource knowledge domain classification,’’ in
Proc. DELFI, A. Kienle, A. Harrer, J. M. Haake, and A. Lingnau, Eds.
Bonn, Germany: Gesellschaft für Informatik, 2021, pp. 283–288.

[28] O. Nevzorova and D. Almukhametov, ‘‘Towards a recommender system
for the choice of UDC code for mathematical articles,’’ in Proc. DAM-
DID/RCDL, A. Pozanenko, S. Stupnikov, B. Thalheim, E. Mendez, and
N. Kiselyova, Eds., Moscow, Russia, 2021, pp. 54–62.

[29] M. Kragelj and M. K. Borštnar, ‘‘Automatic classification of older elec-
tronic texts into the universal decimal classification–UDC,’’ J. Documen-
tation, vol. 77, no. 3, pp. 755–776, Apr. 2021.

[30] M. Ojsteršek, J. Brezovnik, M. Ferme, G. Hrovat, A. Bregant,
and M. Borovič. (2014). OpenScience Slovenia Dataset. Accessed:
Aug. 15, 2021. [Online]. Available: http://www.openscience.si/OpenData.
aspx

[31] M. Borovič, M. Ferme, J. Brezovnik, S. Majninger, A. Bregant, G. Hrovat,
and M. Ojsteršek, ‘‘The OpenScience Slovenia metadata dataset,’’ Data
Brief, vol. 28, Feb. 2020, Art. no. 104942.

[32] Multilingual Universal Decimal Classification Summary (UDCC Publica-
tion No. 088), UDC Consortium (UDCC), The Hague, The Netherlands,
2012.

[33] S. Robertson and H. Zaragoza, ‘‘The probabilistic relevance framework:
BM25 and beyond,’’ Found. Trends Inf. Retr., vol. 3, no. 4, pp. 333–389,
2009.

[34] A. Trotman, A. Puurula, and B. Burgess, ‘‘Improvements to BM25 and
languagemodels examined,’’ inProc. Australas. Document Comput. Symp.
(ADCS), New York, NY, USA, 2014, pp. 58:58–58:65.

[35] Y. Lv and C. Zhai, ‘‘Adaptive term frequency normalization for BM25,’’
in Proc. 20th ACM Int. Conf. Inf. Knowl. Manag. (CIKM). New York, NY,
USA, 2011, pp. 1985–1988.

[36] Y. Lv and C. Zhai, ‘‘Lower-bounding term frequency normalization,’’ in
Proc. 20th ACM Int. Conf. Inf. Knowl. Manag. (CIKM), New York, NY,
USA, 2011, pp. 7–16.

[37] C. D. Manning, H. Schütze, and P. Raghavan, Introduction to Information
Retrieval. New York, NY, USA: Cambridge Univ. Press, 2008.

[38] T. Qin, T.-Y. Liu, J. Xu, and H. Li, ‘‘LETOR: A benchmark collection for
research on learning to rank for information retrieval,’’ Inf. Retr., vol. 13,
no. 4, pp. 346–374, 2010.

[39] K. S. Jones, S. Walker, and S. E. Robertson, ‘‘A probabilistic model of
information retrieval: Development and comparative experiments: Part 2,’’
Inf. Process. Manag., vol. 36, no. 6, pp. 809–840, Nov. 2000.

[40] W. E. Winkler, ‘‘String comparator metrics and enhanced decision rules
in the Fellegi–Sunter model of record linkage,’’ in Proc. Sect. Surv. Res.,
1990, pp. 354–359.

[41] P. Pu, L. Chen, andR. Hu, ‘‘A user-centric evaluation framework for recom-
mender systems,’’ in Proc. 5th ACM Conf. Recommender Syst. (RecSys),
New York, NY, USA, 2011, pp. 157–164.

[42] G. Shani and A. Gunawardana, ‘‘Evaluating recommendation systems,’’
in Recommender Systems Handbook. Boston, MA, USA: Springer, 2011,
pp. 257–297.

[43] D. Monti, E. Palumbo, G. Rizzo, and M. Morisio, ‘‘Sequeval: An offline
evaluation framework for sequence-based recommender systems,’’ Infor-
mation, vol. 10, no. 5, p. 174, May 2019.

[44] M. Bogaert, J. Lootens, D. Van den Poel, and M. Ballings, ‘‘Evaluating
multi-label classifiers and recommender systems in the financial service
sector,’’ Eur. J. Oper. Res., vol. 279, no. 2, pp. 620–634, Dec. 2019.

[45] C. Krauss, A. Merceron, and S. Arbanowski, ‘‘The timeliness deviation: A
novel approach to evaluate educational recommender systems for closed-
courses,’’ in Proc. 9th Int. Conf. Learn. Anal. Knowl. (LAK), New York,
NY, USA, Mar. 2019, pp. 195–204.

[46] S. Rendle, L. Zhang, and Y. Koren, ‘‘On the difficulty of evaluating
baselines: A study on recommender systems,’’ 2019, arXiv:1905.01395.

[47] D. Hand and P. Christen, ‘‘A note on using the F-measure for evaluating
record linkage algorithms,’’ Statist. Comput., vol. 28, no. 3, pp. 539–547,
May 2018.

[48] L. Derczynski, ‘‘Complementarity, F-score, and NLP evaluation,’’ in Proc.
10th Int. Conf. Lang. Resour. Eval. Portorož, Slovenia: European Language
Resources Association, May 2016, pp. 261–266.

[49] S. M. McNee, J. Riedl, and J. A. Konstan, ‘‘Being accurate is not enough:
How accuracy metrics have hurt recommender systems,’’ in Proc. CHI
Extended Abstr. Hum. Factors Comput. Syst. (CHI EA). New York, NY,
USA: Association for Computing Machinery, Apr. 2006, pp. 1097–1101.

[50] A. Schuth, F. Sietsma, S. Whiteson, and M. D. Rijke, ‘‘Optimizing base
rankers using clicks,’’ in Advances in Information Retrieval, M. de Rijke,
T. Kenter, A. P. de Vries, C. Zhai, F. de Jong, K. Radinsky, andK. Hofmann,
Eds. Cham, Switzerland: Springer, 2014, pp. 75–87.

[51] B. He and I. Ounis, ‘‘A study of parameter tuning for term frequency
normalization,’’ in Proc. 12th Int. Conf. Inf. Knowl. Manag. (CIKM),
New York, NY, USA, 2003, pp. 10–16.

[52] B. He and I. Ounis, ‘‘Term frequency normalisation tuning for
BM25 and DFR models,’’ in Advances in Information Retrieval,
D. E. Losada and J. M. Fernández-Luna, Eds. Berlin, Germany: Springer,
2005, pp. 200–214.

MLADEN BOROVIČ received the M.Sc. degree
in computer science from the University of Mari-
bor, in 2012, where he is currently pursuing the
Ph.D. degree in computer science. He is associated
with the Laboratory for Heterogeneous Computing
Systems, Faculty of Electrical Engineering and
Computer Science, University of Maribor, where
he works as a Teaching Assistant. His research
interests include recommender systems, informa-
tion retrieval, text mining, artificial intelligence,

and natural language processing.

MILAN OJSTERŠEK received the Ph.D. degree in
computer science from the University of Maribor,
in 1994. He is currently associated with the Lab-
oratory for Heterogeneous Computing Systems,
Faculty of Electrical Engineering and Computer
Science, University of Maribor, where he works as
the Head of the Laboratory. His research interests
include heterogeneous computing systems, digi-
tal libraries, semantic web, and service-oriented
architecture.

DAMJAN STRNAD received the M.Sc. and Ph.D.
degrees in computer science from the University of
Maribor, Slovenia, in 2000 and 2006, respectively.
He is currently associated with the Laboratory
for Geospatial Modelling, Multimedia and Artifi-
cial Intelligence, Faculty of Electrical Engineering
and Computer Science, University of Maribor. His
research interests include computer graphics, arti-
ficial intelligence, and optimization algorithms.

VOLUME 10, 2022 85605

