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ABSTRACT In this work, a barrier robust iterative learning control approach for a class of nonlinear
systemswith both nonparametric uncertainties and time-iteration-varying parametric uncertainties is studied.
The nonparametric uncertainties meet Lipschitz-like continuous condition, and the time-iteration-varying
parametric uncertainties are generated by a high-order internal model(HOIM). A barrier Lyapunov function
is adopted for controller design to achieve system constraints. In light of the fact that the reference trajectory
is smoothly closed, alignment condition is used to overcome the initial position problem of ILC. Robust
learning method is used to compensate for the nonparametric uncertainties. According to the characteristic of
HOIM, the time-iteration-varying parametric uncertainties is estimated by using difference learning method.
Excellent tracking performance may be obtained as the iteration number increases, with the error quadratic
form constrained during each iteration. Numerical Simulation results show the effectiveness of the propose
barrier robust iterative learning control scheme.

INDEX TERMS Nonlinear systems, iterative learning control, high-order internal model, barrier Lyapunov
function, alignment condition.

I. INTRODUCTION
Iterative learning control (ILC) is indeed a suitable control
strategy for those nonlinear systems that operate repeatedly
during a finite time interval. With the prominent ability in
rejecting repetitive disturbances or uncertainties, even where
system modeling is very difficult, ILC system is still promis-
ing to achieve good performance [1], [2], [3], [4], [5], [6].
Based on the invariance property, the iteration-independent
parameter(s) in a closed-loop ILC system may be gradually
estimated by using the information of system error, such
that, as the iteration number increases, excellent tracking
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performance may be achieved over the whole time interval.
The research on ILC algorithm originated in the early 80s
of last century. Nowadays, ILC is widely applied in the con-
troller design of robotic systems, batch reactor, traffic flow,
motor driver, etc [7], [8], [9], [10].

There are some challenges in the research of ILC, three
of which will be discussed in this work. The first prob-
lem is about the compensation strategy of uncertainties.
Direct parameter-estimation method is suitable for deal-
ing with those uncertainties whose structures are available
but the parameters are unknown. However, this strategy
is not practical to nonparametric uncertainties and with
iteration-varying uncertainties. Robust method is a use-
ful solution to compensate for nonparametric uncertainties,
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that is, a feedback term may be designed according to the
upper bound of nonparametric uncertainty [11]. Another
common solution is to approximate nonparametric uncer-
tainties by using fuzzy systems or neural networks [29],
[34]. The iteration-varying factors generated by high-order
internal model (HOIM) has been a focus of ILC research
in recent years. In [12], Yin et al. proposed a HOIM-based
ILC scheme for continuous-time nonlinear systems with
time-iteration-varying parameters. In [13], Yu et al. devel-
oped a HOIM-based adaptive ILC approach for a class of
MIMO discrete-time nonlinear systems with time-iteration-
varying unknown parameters. In [14], Wan and Li inves-
tigated the ILC algorithms for 2-D linear discrete FMMI
systems to track the HOIM-based iteration-varying refer-
ence trajectories. Hitherto, there have been a few research
reports focusing on adaptive ILC algorithms for systems
with nonparametric uncertainties alone, or for systems with
time-iteration-varying parametric uncertainties generated by
HOIM alone. However, few results involve ILC algorithms
for nonliner systems with both nonparametric uncertainties
and time-iteration-varying parametric uncertainties generated
by HOIM.

The second issue about ILC is the system constraint. Most
practical systems are subject to certain constraints for phys-
ical limits or performance requirements, which has enticed
sustained research interest from control community in the
past decades. A lot of reports on state constraints, output
constraints or tracking error constraints have been proposed
[15], [16], [17], [18], [19], [20]. At present, in the context
of adaptive ILC, barrier Lyaponov function approach is the
mainstream technique for implementing system constraints.
In [21], based on backsteppingmethod, an output-constrained
adaptive ILC is developed for nonlinear systems under align-
ment condition. In [22], an error-constraint ILC for MIMO
systems under alignment condition is discussed. In [23],
a state-constrained error-tracking ILC scheme is proposed for
nonparametric uncertain systems with arbitrary initial error.
In [24], a neural network based adaptive ILC scheme is pro-
posed for nonlinear uncertain systems with state constraints.
The spatial adaptive ILC with position constraint has been
discussed in [25] and [26], respectively. In [27], the filtering
error-like variable is constrained for nonlinear systems with
parametric uncertainties generated by a HOIM.

The third issue about ILC concerns the initial condition
of ILC systems [28]. In many ILC literatures, there exist
a fundamental assumption that the initial system errors of
ILC systems must be zero. To meet this assumption, perfect
resetting or repositioning with zero initial error is necessary
at the very beginning of each iteration cycle. Since this
perfect resetting or repositioning can not be met in actual
systems, this special assumption is really a stumbling block
to apply ILC theory into practice. Through continuous explo-
ration, several solutions have been proposed for relaxing this
assumption in ILC system design [29], [30], [31], such as
time-varying boundary layer technique, initial rectification
approach, alignment condition, etc. Among these solutions,

alignment condition is practical for uncertain ILC systems
whose reference trajectories are smoothly closed in space
[32], [33]. To date, how to develop an effective ILC algorithm
for the nonzero initial error systems where there exist non-
parametric uncertainties and iteration-varying uncertainties,
and exist the requirement of system constraint, has not been
addressed yet.

Motivated by the aforementioned studies, in this work,
we present a barrier adaptive ILC scheme for a class
of nonlinear systems with nonparametric uncertainties and
time-iteration-varying parametric uncertainties under align-
ment condition, where the nonparametric nonlinearities
satisfy local Lipschitz conditions and the time-iteration-
varying parametric uncertainties are generated by a HOIM.
To address this constraint requirement, we adopt a error
quadratic form-based barrier Lyapunov function to controller
design. Alignment condition is used to deal with the nonzero
initial error of ILC systems.

Compared to the result of similar research, the main con-
tributions are summarized as follows:
1) A robust adaptive iterative learning controller is devel-

oped for nonlinear systems with time-iteration-varying
parametric uncertainties and nonparametric uncertain-
ties generated by HOIM. The assumption on uncertainty
structure in this work is lower than that in similar works.

2) To achieve system constraint during operation, an error
quadratic form barrier Lyapunov function is constructed
to design iterative learning controller for nonlinear sys-
tems with nonparametric uncertainties and iteration-
time-varying parametric uncertainties generated by
HOIM.

3) Adaptive ILC algorithms are developed for the case with
iteration-independent time-varying input gain and for
the case with state-dependent input gain, respectively.

The remainder of this paper is organized as follows.
The system model and control objective are described in
Section II. A barrier adaptive ILC scheme is developed in
Section III. The proof on system convergence and system
constraints is provided in Section IV. Section V presents the
barrier robust ILC approach for systems with state-dependent
input gain. In Section VI, numerical simulation results are
provided to compare the proposed barrier adaptive ILC
against the barrier-free adaptive ILC. Finally, Section VII
concludes the work.

II. PROBLEM FORMULATION
Consider a class of nonlinear systemswhich repetitively oper-
ates during t ∈ [0,T ] as follows:{

ẋi,k (t) = xi+1,k (t), i = 1, 2, · · · , n− 1

ẋn,k (t) = ϑϑϑTk (t)ζζζ (xxxk (t))+ f (xxxk (t), t)+ g(t)uk (t),
(1)

where k is the iteration index, xxxk (t) = [x1,k (t), x2,k (t), · · · ,
xn,k (t)]T ∈ Rn, g(t) is the unknown positive iteration-
independent time-varying input gain, uk (t) is the control
input, and ζζζ (xxxk (t)) = [ζ1(xxxk (t)), ζ2(xxxk (t)), · · · , ζp(xxxk (t))]T
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is a continuous basis function vector. The reference trajectory
xxxd (t) is smoothly closed,

xxxd (T ) = xxxd (0). (2)

and
Assumption 1: f (xxxk (t), t) satisfies the Liphitz-like contin-

uous condition as

|f (xxxk , t)− f (xxxd , t)| ≤ α(xxxk ,xxxd , t)‖xxxk − xxxd‖, (3)

where α(xxxk ,xxxd , t) is a known continuous function [32].
Assumption 2: ϑϑϑk = [ϑ1,k , ϑ2,k , · · · , ϑp,k ]T ∈ Rp. For

j = 1, 2, · · · , p, ϑj,k is an unknown bounded parameter with
respect to both t and k as follows [12]:

ϑj,k (t) = wj,1ϑj,k−1(t)+ · · · + wj,mjϑj,k−mj (t), (4)

where wj,1, · · · ,wj,mj are known constant coefficients.
ϑj,−1(t), · · · , ϑj,−mj (t) are unknown basis functions that are
linearly independent.

In this work, we will develop adaptive iterative learning
control scheme for system (1), and then extend it to the
systems with state-dependent input gains (42). The control
task is to make xxxk (t) track its reference trajectory xxxd (t) under
xxxk (0) 6= xxxd (0). For the purpose of brevity, the argument(s)
of a function may be omitted while the context is sufficiently
explicit.
Remark 1: In this work, the structure of f (xxxk , t) in (1) is

unknown. If the structure of f (xxxk , t) is assumed to be known,
then this function can be parameterizable as

f (xxxk , t) = wwwT (t)ξξξ (xxxk ). (5)

Substituting (5) into (1) yields{
ẋi,k = xi+1,k (t), i = 1, 2, · · · , n− 1

ẋn,k = ϑϑϑTk (t)ζζζ (xxxk )+www
T (t)ξξξ (xxxk )+ g(t)uk ,

(6)

which is actually the system model considered in litera-
ture [27]. Hence, this work studies the ILC design under lower
uncertainty assumption condition than [27].

III. CONTROL SYSTEM DESIGN
By letting

υυυ j,k = [ϑj,k−mj+1, ϑj,k−mj , · · · , ϑj,k−1, ϑj,k ]
T (7)

and

Wj =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

wj,mj wj,mj−1 wj,mj−2 · · · wj,1

 ,
we can rewrite (4) as

υυυ j,k = W 1
j υυυ j,k−1 = · · · = W k

j υυυ j,0. (8)

Let ϕϕϕTj,k denote the last row of matrix W k
j . From (7) and (8),

we have

ϑj,k = υυυ
T
j,0ϕϕϕj,k . (9)

To overcome the initial position problem of ILC, the initial
state in the kth iteration is taken as

xxxk (0) = xxxk−1(T ) (10)

for k = 1, 2, 3, · · · . This strategy is called alignment condi-
tion in the field of ILC [32].
Remark 2: In [27], the technique of time-varying bound-

ary layer is used to deal with the initial position problem of
ILC. In the cases that the reference trajectories are smoothly
closed in space, both time-varying boundary layer technique
and alignment condition are reasonable solution to initial
position problem of ILC. Between them, the latter is easier
to implement since the construction and use of time-varying
boundary layer is a bit troublesome job.

Define eeek = [e1,k , e2,k , · · · , en,k ]T = xxxk − xxxd . On the
basis of (2), (10) and (1), we can respectively get

eeek (0) = eeek−1(T ) (11)

and

ėeek = Aceeek + bbb[cccTeeek +
∑p

j=1(υυυ
T
j,0ϕϕϕj,kζj,k )+ f (xxxk , t)

+guk − ẋn,d ], (12)

where ccc = [c0, c1, · · · , cn−1]T , bbb = [0, 0, · · · , 0, 1]T ,

Ac =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...

−c0 −c1 −c2 · · · −cn−1

 .
The parameter vector ccc is chosen properly to make p(s) =
sn+cn−1sn−1+· · ·+c2s2+c1s+c0 be a Hurwitz polynomial.
For such a matrix Ac, there must exist symmetric positive
definite matrices P and Q satisfying PAc + ATc P = −Q and

λQ − 1 > 0, (13)

where λQ is the minimum eigenvalue of Q.
Define a candidate barrier Lyappunov function

Vk (t) =
eeeTk Peeek

2(be − eeeTk Peeek )
, (14)

where the constraint parameter be satisfies be > eeeT0 (0)Peee0(0).
Taking the time derivative of Vk , we obtain the following
expression:

V̇k =
σk

2
(ėeeTk Peeek + eee

T
k Pėeek )

= −
σk

2
eeeTk Qeeek + σkeee

T
k Pbbbg[g

−1cccTeeek + g−1
p∑
j=1

(υυυTj,0ϕϕϕj,k

·ζj,k )+ g−1f (xxxk , t)+ uk − g−1ẋn,d ], (15)

where σk =
be

(be−eeeTk Peeek )
2 . On the basis of (3), we have

σkeeeTk Pbbbf (xxxk , t)− σkeee
T
k Pbbbf (xxxd )

≤ σk |eeeTk Pbbb|α(xxxk ,xxxd )‖eeek‖

≤
σk

2
‖eeek‖2 +

σk

2
α2(xxx,xxxd )(eeeTk Pbbb)

2. (16)
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From (15) and (16), we get

V̇k ≤ −
σk

2
eeeTk Qeeek + σkeee

T
k Pbbbg[g

−1cccTeeek + uk − g−1ẋn,d

+g−1
p∑
j=1

(υυυTj,0ϕϕϕj,kζj,k )+ g
−1f (xxxd )]

+
σk

2
‖eeek‖2 +

σk

2
α2(xxx,xxxd )(eeeTk Pbbb)

2. (17)

Define $$$ = [g−1, g−1f (xxxd ) − g−1ẋn,d , (2g)−1]T , ψψψk =

[cccTeeek , 1, α2(xxx,xxxd )eeeTk Pbbb]
T and zzzj = g−1υυυ j,0. Then, (17) can

be rewritten as

V̇k (t) ≤ σkeeeTk Pbbbg
[
$$$ Tψψψk +

p∑
j=1

(zzzTj ϕϕϕj,kζj,k )+ uk
]
−
σk

2
(λQ

−1)‖eeek‖2. (18)

where λQ is the minimum eigenvalue of matrix Q.
On the basis of (18), we design the control law and learning

laws as follows:

uk = −µ1eeeTk Pbbb−$$$
T
kψψψk −

p∑
j=1

(zzzTj,kϕϕϕj,kζj,k ), (19)

$k$k$k = sat$,$̄ ($$$ k−1)+ µ2σkeeeTk Pbbbψψψk ,$$$−1 = 0, (20)

zzzj,k = satzj,z̄j (zzzj,k−1)+ µ3σkeeeTk Pbbbϕϕϕj,kζj,k , zzzj,−1 = 0, (21)

where µ1 > 0, µ2 > 0 and µ3 > 0. The saturation function
sat·,·(·) is defined as follows: For χ̂ ∈ R used to estimate a
scalar χ ,

satχ,χ̄ (χ̂ ) :=


χ̄ , if â > χ̄

χ̂, if χ ≤ χ̂ ≤ χ̄

χ, if χ̂ < χ

,

where χ and χ̄ are the lower bound and upper bound
of the scalar a, respectively; for a vector χ̂χχ =

[χ̂1, χ̂2, · · · , χ̂m] ∈ Rm, satχ,χ̄ (χ̂χχ ) :=
[
satχ,χ̄ (χ̂1),

satχ,χ̄ (χ̂2), · · · , satχ,χ̄ (χ̂m)
]T . Fig. 1 is the block diagram of

the proposed robust adaptive ILC system.
Remark 3: In (14), the error quadratic form is constrained

during each iteration. In literature [27], the filtering error
is constrained during each iteration. Thereby, the constraint
strategy is different from each other.

IV. CONVERGENCE ANALYSIS
Theorem 1: Consider the nonlinear system (1) satis-

fying Assumption 1, Assumption 2, (2) and (10). The
proposed robust iterative learning controller (19)-(21)
guarantees the tracking performance and system stability as
follows:

t1) eeeTk (t)Peeek (t) < be holds during each iteration;
t2) All adjustable control parameters and internal signals

are bounded;
t3) eeek (t) = 0 may be achieved as the iteration number

increases.

FIGURE 1. Block diagram of the robust adaptive ILC system.

Proof: t1) Let `Q = λQ− 1. From (13), we can see that
`Q is a positive number. Substituting (19) into (18) leads to

V̇k ≤ −
σk

2
`Q‖eeek‖2 + σkeeeTk Pbbbg

[
$̃$$ T

kψψψk

+

p∑
j=1

(z̃zzTj,kϕϕϕj,kζj,k )
]
, (22)

where $̃$$ k = $$$ −$$$ k and z̃zzj,k = zzzj − zzzj,k . Define a barrier
Lyapunov functional as follows:

Lk = Vk +
1

2µ2

∫ t

0
g$̃$$ T

k $̃$$ kdτ

+

p∑
j=1

1
2µ3

∫ t

0
gz̃zzTj,k z̃zzj,kdτ, (23)

From (22) and (23), we have

L̇k = V̇k +
g

2µ2
$̃$$ T

k $̃$$ k +
g

2µ3

p∑
j=1

z̃zzTj,k z̃zzj,k

≤ −
σk

2
`Q‖eeek‖2 + σkeeeTk Pbbbg

[
$̃$$ T

kψψψk +

p∑
j=1

(z̃zzTj,kϕϕϕj,kζj,k )
]
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+
g

2µ2
$̃$$ T

k $̃$$ k +
g

2µ3

p∑
j=1

z̃zzTj,k z̃zzj,k . (24)

By using (20), we have

σkeeeTk Pbbbg$̃$$
T
kψψψk +

g
2µ2

$̃$$ T
k $̃$$ k

=
g

2µ2
[−$$$ T

k$$$ k +$$$
T$$$ − 2$$$ T sat$,$̄ ($$$ k−1)

+2$$$ T
k sat$,$̄ ($$$ k−1)]

= −
g

2µ2
[$$$ k − sat$,$̄ ($$$ k−1)]T [$$$ k − sat$,$̄ ($$$ k−1)]

+
g

2µ2
[sat$,$̄ ($$$ T

k−1)sat$,$̄ ($$$ k−1)+$$$ T$$$

−2$$$ T sat$,$̄ ($$$ k−1)]

≤
g

2µ2
sat$,$̄ ($$$ T

k−1)sat$,$̄ ($$$ k−1)+
g

2µ2
$$$ T$$$

−
g
µ2
$$$ T sat$,$̄ ($$$ k−1)]. (25)

Obviously, each term in the right side of inequality (25) is
bounded. Therefore, there exits a positive number c$ , which
satisfies

σkeeeTk Pbbbg$̃$$
T
kψψψk +

g
2µ3

$̃$$ T
k $̃$$ k ≤ c$ . (26)

Similarly, by using (21), there exist a positive number cz,j,
which meets

σkeeeTk Pbbbgz̃zz
T
j,kϕϕϕj,kζj,k +

g
2µ3

z̃zzTj,k z̃zzj,k

=
g

2µ3
[−zzzTj,kzzzj,k + zzz

T
j zzzj − 2zzzTj satzj,z̄j (zzzj,k−1)

+2zzzTj,ksatzj,z̄j (zzzj,k−1)]

= −
g

2µ3
[zzzj,k − satzj,z̄j (zzzj,k−1)]

T [zzzj,k − satzj,z̄j (zzzj,k−1)]

+
g

2µ3
[satzj,z̄j (zzz

T
j,k−1)satzj,z̄j (zzzj,k−1)+ zzz

T
j zzzj

−2zzzTj satzj,z̄j (zzzj,k−1)]

≤
g

2µ3
[satzj,z̄j (zzz

T
j,k−1)satzj,z̄j (zzzj,k−1)+ zzz

T
j zzzj

−2zzzTj satzj,z̄j (zzzj,k−1)]

≤ cz,j (27)

From (26) and (27)

L̇k ≤ −
σk
2 `Q‖eeek‖

2
+ c$ +

∑p
j=1 cz,j (28)

Due to L̇k ≥ V̇k , from (28), we have

V̇k ≤ −
`Qbe

2(be−eeeTk Peeek )
2 ‖eeek‖

2
+ c$ +

∑p
j=1 cz,j (29)

Note that eeeT0 (0)Peee0(0) < be holds. As shown in (29),
if eeeT0 (t)Peee0(t) increases to be− for any t ∈ (0,T ), then

V̇0(t) < 0 (30)

must happen. This means V0(t) must decrease before
eeeT0 (t)Peee0(t) increases to be− for t ∈ (0,T ). Due to

eeeT0 (0)Peee0(0) < be, according to the definition of Vk (t),
we have

V0(t) =
1

2( be
eeeT0 (t)Peee0(t)

− 1)
. (31)

As shown in (31), the decease of V0(t) is equivalent to the
decrease ofeeeT0 (t)Peee0(t). Thus,eee

T
0 (t)Peee0(t) < be is guaranteed

for t ∈ [0,T ].
It follows from eee1(0) = eee0(T ) and eeeT0 (t)Peee0(t) < be that

eeeT1 (0)Peee1(0) < be holds. Applying the similar deduction as
above, we can conclude that eeeT1 (t)Peee1(t) < be is guaranteed
for t ∈ [0,T ]. Further, we can prove that eeeTj (t)Peeej(t) < bs is
guaranteed for t ∈ [0,T ] when j = 2, 3, · · · . This proves t1)
of Theorem 1.

t2) According to eeeTk Peeek < be, we can deduce that eeek ,
xxxk , ψψψk and ζj,k are bounded. By the property of saturation
function, we can obtain the boundedness of $k$k$k and zzzj,k
from (20) and (21), respectively. Since each term on the
right-hand side of (19) is bounded, uk may be verified to be
bounded. By using these above conclusions, we can see that
ẋxxk and ėeek are from (1) and (12), respectively. This proves t2)
of Theorem 1.

t3)
From (22), we have

Vk ≤ Vk (0)−
∫ t

0

σk

2
`Q‖eeek‖2dτ +

∫ t

0
σkeeeTk Pbbbg

[
$̃$$ T

kψψψk

+

p∑
j=1

(z̃zzTj,kϕϕϕj,kζj,k )
]
dτ. (32)

While k > 0, it is obvious that

Lk − Lk−1

= Vk − Vk−1 +
1

2µ2

∫ t

0
g($̃$$ T

k $̃$$ k − $̃$$
T
k−1$̃$$ k−1)dτ

+

p∑
j=1

1
2µ3

∫ t

0
g(z̃zzTj,k z̃zzj,k − z̃zz

T
j,k−1z̃zzj,k−1)dτ

≤ −

∫ t

0

σk

2
`Q‖eeek‖2dτ +

∫ t

0
σkeeeTk Pbbbg

[
$̃$$ T

kψψψk

+

p∑
j=1

(z̃zzTj,kϕϕϕj,kζj,k )
]
dτ + Vk (0)− Vk−1

+
1

2µ2

∫ t

0
g($̃$$ T

k $̃$$ k − $̃$$
T
k−1$̃$$ k−1)dτ

+

p∑
j=1

1
2µ3

∫ t

0
g(z̃zzTj,k z̃zzj,k − z̃zz

T
j,k−1z̃zzj,k−1)dτ (33)

Due to ($$$ − $$$ k−1)T ($$$ − $$$ k−1) ≥ ($$$ −

sat$,$̄ ($$$ k−1))T ($$$ − sat$,$̄ ($$$ k−1)), from (20), we have
g

2µ2
($̃$$ T

k $̃$$ k − $̃$$
T
k−1$̃$$ k−1)+ σkeeeTk Pbbbg$̃$$

T
kψψψk

≤
g

2µ2
[($$$ −$$$ k )T ($$$ −$$$ k )− ($$$ − sat$,$̄ ($$$ k−1))T

($$$ − sat$,$̄ ($$$ k−1))]+ σkeeeTk Pbbbg$̃$$
T
kψψψk
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≤
g

2µ2
(2$$$−$$$ k−sat$,$̄ ($$$ k−1))T (sat$,$̄ ($$$ k−1)−$$$ k )

+σkeeeTk Pbbbg$̃$$
T
kψψψk

≤
g
µ2

($$$ −$$$ k )T
[
sat$,$̄ ($$$ k−1)−$$$ k + µ2σkeeeTk Pbbbψψψk

]
= 0. (34)

Applying (zzzj−zzzj,k−1)T (zzzj−zzzj,k−1) ≥ (zzzj−satz,z̄(zzzj,k−1))T (zzzj−
satz,z̄(zzzj,k−1)), from (21), we have

g
2µ3

(z̃zzTj,k z̃zzj,k − z̃zz
T
j,k−1z̃zzj,k−1)+ σkeee

T
k Pbbbgz̃zz

T
j,kζζζ j,k

≤
g

2µ3
[(zzzj − zzzj,k )T (zzzj − zzzj,k )− (zzzj − satz,z̄(zzzj,k−1))T (zzzj −

satz,z̄(zzzj,k−1))]+ σkeeeTk Pbbbgz̃zz
T
k ζζζ j,k

≤
g

2µ3
(2zzzj − zzzj,k − satz,z̄(zzzj,k−1))T (satz,z̄(zzzj,k−1)− zzzj,k )

+σkeeeTk Pbbbgz̃zz
T
k ζζζ k

≤
g
µ3

(zzzj − zzzj,k )T
[
satz,z̄(zzzj,k−1)− zzzj,k + µ3σkeeeTk Pbbbζζζ j,k

]
= 0. (35)

Substituting (34) and (35) into (33) yields

Lk − Lk−1 ≤ −
∫ t

0

σk

2g
`Q‖eeek‖2dτ + Vk (0)− Vk−1

and

Lk (T )− Lk−1(T ) ≤ −
∫ T

0

σk

2
`Q‖eeek (τ )‖2dτ

+Vk (0)− Vk−1(T ). (36)

From (11), we have

Vk (0) = Vk−1(T ). (37)

Combining (36) with (37) yields

Lk (T )− Lk−1(T ) ≤ −
∫ T

0

σk

2
`Q‖eeek (τ )‖2dτ

≤ −
`Q

2be

∫ T

0
‖eeek (τ )‖2dτ. (38)

Further, we have

Lk (T ) ≤ L0(T )−
`Q

2be

k∑
i=1

∫ T

0
‖eeek (τ )‖2dτ. (39)

By using the boundedness of L0(T ) and the nonnegativity of
Lk (T ), we have

lim
k→+∞

∫ T

0
‖eeek (τ )‖dτ = 0. (40)

Taking advantage of the conclusion in t2), we can see that
ėeek is bounded and eeek is equicontinuous. Hence, it follows
from (40) that

lim
k→+∞

eeek (t) = 0. (41)

This proves t3) of Theorem 1.

In this work, difference learning method is used to design
adaptive learning laws. Through achieving eeeTk (t)Peeek (t) < be
during each iteration, the maximum of ‖eeek‖ is constrained in
a preseted range.

V. BARRIER ROBUST ILC EXTENSION TO PLANTS WITH
STATE-DEPENDENT INPUT GAINS
The input gain g(t) in system (1) is time-varying but iteration-
independent. In the section, we consider a class of more
general uncertain systems as follows:{

ẋi,k = xi+1,k , i = 1, 2, · · · , n− 1

ẋn,k = ϑϑϑTk (t)ζζζ (xxxk )+ f (xxxk , t)+ g(xxxk , t)uk ,
(42)

where g(xxxk , t) is a state-dependent function.
Assumption 3: There exist known functions gm(xxxk , t) >

0 and β(xxxk ,xxxd , t) ≥ 0 [32], satisfying g(xxxk , t) ≥ gm(xxxk , t)
and

|g(xxxk , t)− g(xxxd , t)| ≤ β(xxxk ,xxxd , t)‖xxxk − xxxd‖. (43)

For brevity, let gk and gd denote g(xxxk , t) and g(xxxd , t), respec-
tively. Similar to (15), by taking the time derivative ofVk (t) =

eeeTk Peeek
2(be−eeeTk Peeek )

, we have

V̇k ≤ −
σk

2
eeeTk Qeeek + σkeee

T
k Pbbb[ccc

Teeek + gkuk − ẋn,d

+

p∑
j=1

(υυυTj,0ϕϕϕj,kζj,k )+ f (xxxk , t)]. (44)

According to (3), we get

eeeTk Pbbb[f (xxxk , t)− f (xxxd , t)]

≤ |eeeTk Pbbb|α(xxx,xxxd , t)‖eeek‖

≤
1
4
‖eeek‖2 + α2(xxx,xxxd , t)(eeeTk Pbbb)

2. (45)

By using (43), we obtain

eeeTk Pbbbgkuk
= eeeTk Pbbb(gkuk − gkudk + gkudk − gdudk + gdudk )

≤ eeeTk Pbbb(gkuk − gkudk + gdudk )+ |eee
T
k Pbbb||udk |αgk‖eeek‖

≤ eeeTk Pbbb(gkuk − gkudk + gdudk )+
1
4
‖eeek‖2

+β2(xxx,xxxd , t)u2dk (eee
T
k Pbbb)

2. (46)

Then, substituting (45) and (46) into (44), we have

V̇k ≤ −
σk

2
eeeTk Qeeek + σkeee

T
k Pbbb(gkuk − gkudk )

+σkeeeTk Pbbbgd [udk + g
−1
d cccTeeek − g

−1
d ẋn,d

+g−1d

p∑
j=1

(υυυTj,0ϕϕϕj,kζj,k )+ g
−1
d f (xxxd , t)]

+
σk

2
‖eeek‖2 + σkα2(xxx,xxxd , k)(eeeTk Pbbb)

2

+σkβ
2(xxxk ,xxxd , t)u2dk (eee

T
k Pbbb)

2. (47)
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Define ηηη = [g−1d , g−1d f (xxxd , t)− g
−1
d ẋn,d ]T , χχχk = [cccTeeek , 1]T

and ωωωj = g−1d υυυ j,0. Then, (48) can be rewritten as

V̇k ≤ −
σk

2
(λQ − 1)‖eeek‖2 + σkeeeTk Pbbb(gkuk − gkudk )

+σkeeeTk Pbbbgd [udk + ηηη
Tχχχk +

p∑
j=1

(zzzTj ϕϕϕj,kζj,k )]

+
σk

2
‖eeek‖2 + σkα2(xxx,xxxd , k)(eeeTk Pbbb)

2

+σkβ
2(xxxk ,xxxd , t)u2dk (eee

T
k Pbbb)

2, (48)

where the representation of λQ is the same as that in Section 3.
On the basis of (48), we design the controller as

uk = udk −
eeeTk Pbbb

gm

(
α2(xxxk ,xxxd , t)+ β2(xxxk ,xxxd , t)u2dk

)
, (49)

udk = −ηηηTk χχχk −
p∑
j=1

(ωωωTj,kϕϕϕj,kζj,k ), (50)

ηkηkηk = satη,η̄(ηηηk−1)+ µ2σkeeeTk Pbbbψψψk ,ηηη−1 = 0, (51)

ωωωj,k = satωj,ω̄j (ωωωj,k−1)+ µ3σkeeeTk Pbbbϕϕϕj,kζj,k ,ωωωj,−1 = 0, (52)

where the learning gains and control parameters may be set
similar to the ones in Section III.

Similar to (22), substituting (49) into (48) leads to

V̇k ≤ −
σk

2
`Q‖eeek‖2 + σkeeeTk Pbbbg

[
η̃ηηTkψψψk

+

p∑
j=1

(ω̃ωωTj,kϕϕϕj,kζj,k )
]

(53)

where η̃ηηk = ηηη − ηηηk and ω̃ωωj,k = ωωωj −ωωωj,k .
The property of the closed-loop system composed of (42),

(49)-(52) may be summarized as follows:
Theorem 2: Consider the nonlinear system (42) satisfying

Assumption 1-3 and xxxk (0) = xxxk (T ). The proposed robust
iterative learning controller (19)-(21) guarantees the tracking
performance and system stability as follows:

t4) eeeTk (t)Peeek (t) < be holds during each iteration;
t5) All adjustable control parameters and internal signals

are bounded;
t6) eeek (t) = 0 may be achieved as the iteration number

increases.
The proof of Theorem 2 is similar to that of Theorem 1,

which is omitted due to space limitation.

VI. NUMERICAL SIMULATION
Consider a nonlinear uncertain system as follows:

ẋ1,k = x2,k ,

ẋ2,k = ϑk sin(x1,k )+
10− 4.5 sin(t)+ 3x1,k + x2,k

1+ 0.1 sin2(x1,kx2,k )

+
1

1+ 0.1 cos(0.1π t)
uk ,

(54)

FIGURE 2. The trajectory of x1(Case A).

FIGURE 3. The trajectory of x2(Case A).

where 10−4.5 sin(t)+3x1,k+x2,k
1+0.1 sin2(x1,kx2,k )

is the nonparametric uncertainty,

and 1
1+0.1 cos(0.1π t) is an unknown iteration-independent but

time-varying variable, ϑk is an uncertainty generated by
HOIM as ϑk = h1ϑk−1 + h2ϑk−2 with h1 = −0.2, h2 =
−0.3, ϑ−2(t) = 0.08 cos(π t/12), ϑ−1(t) = 0.8 sin(0.2π t).
The system initial state and reference signal are xxx0(0) =
[−2, 0]T and xxxd (t) = [−2 cos(0.25π t), 0.5π sin(0.25π t)]T ,
respectively.

Case A. The control law(19) and learning laws (20)-(21)
are applied in the simulation with p = 1, µ1 = 10, µ2 = 3,
µ3 = 3,T = 5, be = 0.5,

P =
(
7.5 2.5
2.5 2.5

)
,Q =

(
5 0
0 5

)
. (55)

After the ILC system run 100 cycles, the simulation results
are shown in Figs. 2-8. Figs. 2-3 show the tracking process
during 100th iteration. The profiles of tracking error e1 and
e2 during 100th iteration are presented in Figs. 4-5. From
Figs. 2-5, we can see that satisfactory tracking performance is
achieved even in the presence of time-iteration-varying para-
metric uncertainties and nonparametric uncertainties. The
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FIGURE 4. The tracking error e1(Case A).

FIGURE 5. The tracking error e2(Case A).

convergence history of closed-loop ILC system is provided
in Fig. 6, where Jk := maxt∈[0,T ](eeeTk Peeek ). From Fig. 6, it can
be seen that the excellent system convergence is obtained
and the constraint requirement Jk < be is met during each
iteration. The control signal is plotted in Fig. 7, which shows
the continuity and boundedness of the control action.

Case B. A constraint-free adaptive ILC is adopted for
comparison as follows:

uk = −µ1eeeTk Pbbb−$$$
T
kψψψk −

p∑
j=1

(zzzTj,kϕϕϕj,kζj,k ), (56)

$k$k$k = $$$ k−1 + µ2eeeTk Pbbbψψψk ,$$$−1 = 0, (57)

zzzj,k = zzzj,k−1 + µ3eeeTk Pbbbϕϕϕj,kζj,k , zzzj,−1 = 0, (58)

in which the control parameters, learning gains and initial
states are set as exactly the same as that in Case A, respec-
tively. Figs. 8-9 show the state tracking trajectories during
the 100th iteration. The profiles of corresponding tracking
error are given in Figs. 10-11. From Figs. 8-11, it can be
seen that accurate trajectory tracking may be obtained as the

FIGURE 6. Maximum of |eeeT
k Peeek | in iteration domain(Case A).

FIGURE 7. Control input(Case A).

FIGURE 8. The trajectory of x1(Case B).

iteration number increases. The convergence history of the
constraint-free adaptive ILC is illustrated in Fig. 12. The def-
inition of Jk in Fig. 12 is the same as that in Fig. 6. Compared
with Fig. 6, Jk < be does not hold in the constraint-free
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FIGURE 9. The trajectory of x2(Case B).

FIGURE 10. The tracking error e1(Case B).

FIGURE 11. The tracking error e2(Case B).

ILC system, and the system-constraint ILC system converges
faster than the constraint-free ILC system.
Case C. To evaluate the robustness of the ILC algorithm
against random parametric uncertainties and random external
disturbances, we implement the ILC law (19) and adaptive

FIGURE 12. Maximum of |eeeT
k Peeek | in iteration domain(Case B).

FIGURE 13. The trajectory of x1(Case C).

FIGURE 14. The trajectory of x2(Case C).

learning laws (20)-(21) to the system as follows:

ẋ1,k = x2,k ,

ẋ2,k = (ϑk + 0.5rand1(t)) sin(x1,k )+ 2rand2(t)

+
10− 4.5 sin(t)+ 3x1,k + x2,k

1+ 0.1 sin2(x1,kx2,k )

+
1

1+ 0.1 cos(0.1π t)
uk ,

(59)
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FIGURE 15. The tracking error e1(Case C).

FIGURE 16. The tracking error e2(Case C).

FIGURE 17. Maximum of |eeeT
k Peeek | in iteration domain(Case C).

where rand1(·) and rand2(·) represent two random numbers
between 0 and 1, acting as additional random parametric
uncertainties and additional random external disturbances.
Except for rand1(·) and rand2(·), all other symbols in (59)
have the same definitions as the ones in (54). The state
tracking trajectories in this case during 100 iteration are
shown in Figs. 13-14. The profiles of tracking error are shown
in Figs. 15-16. From Figs. 13-16, we can see that better

tracking performance has been obtained even if there exist
additional random parametric uncertainties and additional
random external disturbances in the system.

The above simulation results verify the effectiveness of
theoretical analysis in this work.

VII. CONCLUSION
In this paper, a barrier adaptive ILC scheme is developed to
solve the tracking problem for a class of nonlinear systems
with both nonparametric uncertainties and time-iteration-
varying parametric uncertainties. Robust learning method is
used to compensate for the nonparametric uncertainties. The
time-iteration-varying parametric uncertainties generated by
HOIM are estimated by using difference learning method.
A barrier Lyapunov function is adopted for controller design
to constrain the error quadratic form during each iteration,
with alignment condition used to overcome the initial posi-
tion problem of ILC. Excellent tracking performance may
be obtained as the iteration number increases. In the future,
the developed barrier adaptive ILC scheme can be extended
to the multi-input and multi-output nonlinear system with
both nonparametric uncertainties and time-iteration-varying
parametric uncertainties generated by HOIM.
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