
Received 15 June 2022, accepted 19 July 2022, date of publication 16 August 2022, date of current version 14 October 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3198662

Auto-Prep: Efficient and Automated Data
Preprocessing Pipeline
MEHWISH BILAL 1, GHULAM ALI 1, MUHAMMAD WASEEM IQBAL 2,
MUHAMMAD ANWAR 3, MUHAMMAD SHERAZ ARSHAD MALIK 4,
AND RABIAH ABDUL KADIR 5
1Department of Computer Science, University of Okara, Okara 56300, Pakistan
2Department of Software Engineering, Superior University, Lahore 54000, Pakistan
3Division of Science and Technology, Department of Information Sciences, University of Education, Lahore 54000, Pakistan
4Department of Information Technology, Government College University Faisalabad, Faisalabad 38000, Pakistan
5Institute of IR4.0, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor 43600, Malaysia

Corresponding author: Rabiah Abdul Kadir (rabiahivi@ukm.edu.my)

This work was supported by Universiti Kebangsaan Malaysia with Research Grant Scheme under Project GPK-4IR-2020-020.

ABSTRACT Data preprocessing is crucial in the Machine Learning pipeline because the models’ learn-
ing ability directly affects the quality of data and the underlying information acquired from this stage.
Nevertheless, surprisingly, there are many alternatives for each transformation task, which makes an
inexperienced user overwhelmed. A simple Python-based Auto-preprocessing architecture for Automated
Machine Learning is developed to offer automated, interactive, and data-driven support to help the users
perform data preprocessing tasks efficiently. The suggested method provides valuable insights into a dataset
and can handle standard data preprocessing tasks adeptly. Initially, it detects the data problem and presents
it to the end-user using compelling visualizations. Then, it recommends the most effective data cleaning and
preparation method to the user after evaluating the state-of-the-art candidate techniques. For evaluation, the
proposed architecture is employed on ten different and diverse datasets for automatic data preprocessing
before passing it to an ML algorithm. The results are then compared with the results generated by the same
ML algorithm but implemented on manually preprocessed data. The results have shown that not only did this
approach make the whole process uncomplicated and facile, but it was also able to improve the performance
of the model significantly.

INDEX TERMS Automated machine learning, data preprocessing, feature engineering.

I. INTRODUCTION
Machine learning models have been applied in different
areas in recent years and managed to solve many compli-
cated tasks [1]. Remarkably, all the models were designed
manually by specialists by the trial-and-error method, which
implies that even a specialist needs considerable time and
resources to develop a well-performingmodel [2]. As a result,
the demand for machine learning experts in the market has
increased. Nevertheless, to lower these exorbitant develop-
ment costs, an innovative concept of automating the complete
ML pipeline has emerged, i.e., automated machine learning
(AutoML). So, the purpose of AutoML is to decrease the data

The associate editor coordinating the review of this manuscript and

approving it for publication was N. Ramesh Babu .

scientists’ demand and enable the various domain specialists
to develop ML applications automatically without any prior
ML knowledge [3]. The core processes of AutoML include
data-preprocessing, feature-engineering, Model-generation,
and Models-evaluation [4].

Indeed, the crucial stage of the ML pipeline is the data
preprocessing phase. Data preprocessing is imperative to such
an extent that mostly 50-80 percent of analysis time is spent
on it [5]. The explanation behind this is that an aptly pre-
processed dataset may generate better results [6]. One can
employ the best learning model, but the model might perform
imprecisely if the dataset is not correctly prepared (e.g., attain
low accuracy).

Now, if the data preprocessing is so significant and should
be performed by unskilled users, then, in that case, a method

107764 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-6766-6240
https://orcid.org/0000-0002-0726-2738
https://orcid.org/0000-0001-6284-5904
https://orcid.org/0000-0002-0615-3038
https://orcid.org/0000-0002-0944-6362
https://orcid.org/0000-0003-3897-0873
https://orcid.org/0000-0001-7123-0688

M. Bilal et al.: Auto-Prep: Efficient and Automated Data Preprocessing Pipeline

must be found that makes the preprocessing effortless, i.e.,
assisting the user in efficiently implementing this task.
At present, no automated technique is mature enough to
handle this task accurately and requests significant human
intervention. Although present techniques permit users to
implement different preprocessing algorithms, they do not
consider which one will be more suitable for the given dataset
to retrieve the maximum information, and consequently to
achieve better accuracy. Hence, the preprocessing stage in
current automated techniques usually is a simple transforma-
tion that does not aim to improve the models’ performance,
but their primary purpose is to convert the dataset into the
algorithm’s acceptable format [7].

Currently, for a Structured dataset, the detection of
attributes data types is very challenging and relies on humans
to manually specify them [3]. After identifying data types, the
most common data-preprocessing phases comprise missing
values, Categorial attributes encoding, features scaling, and
features reduction. Against all the required preprocessing
stages, many alternative methods are available.

In this research, we are concerned with the automation of
all the above-mentioned tasks of data preprocessing. A simple
Python-based approach—Auto-Prep— is developed to offer
automated, interactive, and data-driven support to help the
user perform data preprocessing tasks efficiently. With the
file path of the dataset and target column name as the inputs,
the approach can show valuable information about the given
dataset, for example, the presence of duplicates, kinds of
features present, and the data types of each present feature.
The approach is also competent at dealing with common data
problems. It first detects the data problems and presents them
to the end-user using effective visualization techniques. Next,
it selects the most suitable technique and recommend it to
user to clean data efficiently. To make it clearer, we summa-
rize the functionalities of the approach as follows:

1. Automatic detection of duplicate rows
2. Automatic detection of Features data types
3. Automatic Missing Data Imputation
4. Automatic Categorical Features Encoding
5. Automatic Feature Reduction
6. Automatic Feature Scaling

To evaluate this approach, we first apply it to ten differ-
ent and diverse datasets and implement a machine learning
algorithm on each. The results are then compared with the
results generated by the same ML algorithm implemented on
manually preprocessed data. The results have shown that not
only this approach made the whole process uncomplicated
and facile but was also able to improve the performance of
the model.

II. LITERATURE WORK
A. DATA PREPROCESSING
Every day huge amount of data is created. Machine learning
(ML) can learn and predict from these datasets to make them
more valuable. However, a significant issue is that real life

data is hardly ever clean [8], and poor quality of data can
have a significant impact on the performance of learning
algorithms [9]. As necessary and unavoidable as data prepro-
cessing is, it is a monotonous and inconvenient process. Data
scientists normally spend over half of their analytical time on
preprocessing, nonetheless non-experts [10]. Therefore, data
scientists are keen to develop a technique to automate this
procedure.

Data preprocessing includes a variety of tasks such
as cleaning, encoding, scaling and dimensionality reduc-
tion [11]. The task of resolving data issues is referred to as
data cleaning. Typical data issues include missing values,
inaccurate datatypes, and repeated rows. Data cleaning is
intended to clean the data with missing values, inconsisten-
cies, and noisy data [12]. Data preprocessing is also intended
to perform feature encoding, scaling, and Dimensionality
reduction.

1) DETECTION OF DATA TYPES
Detection of data types beforehand, can help to analyze
and evaluate preprocessing and encoding options for each
respective feature. Despite the diversity of data types, all
the datatypes are not equally significant in the field of ML.
The statistical data types within a data contain a wealth of
information that is particularly valuable in the context of ML.
Several feasible techniques are present to detect data types
from a data. Some methods are straightforward and might
only need few heuristics or statistics. But some complex
and advanced techniques are also available which employ
machine learning models for datatypes detection.

Messytables [13], is a python package uses brute force
to predict data types. Brute force guessing extract a random
sample from an attribute and then attempt to convert each
value in the sample to every possible data type. The successful
transformations rate is calculated for each data type, and the
most likely data type for that column is determined by a
majority vote. Messytables consider the following data types:
Integer, String, Decimal, Data, and Bool. This method is
adaptable and simple to implement.

2) MISSING DATA IMPUTATION
In practice, missing data is a frequent occurrence because of
manual data entry systems, incorrect measurements, equip-
ment malfunctions, intentional omissions et cetera. A few
missing instances in some features can significantly reduce
the sample size. Subsequently, the efficiency and precision
of data analysis can be compromised, weaken the statistical
power, and the parameter estimation could be biased because
of the differences between complete and missing data [14].
In the field of ML, the missing values can increase the classi-
fier error rate [15]. Therefore, missing data must be addressed
before employing learning models.

Whether data comes from experiments, surveys, or sec-
ondary sources, missing data is abundant. But what effect
does this have on statistical analysis results? That is contin-
gent upon two factors: the mechanism that caused the data to

VOLUME 10, 2022 107765

M. Bilal et al.: Auto-Prep: Efficient and Automated Data Preprocessing Pipeline

be missing and how the data analyst handles it [16]. In any
type of study, data may be missing because of an accident or
a data entry error. Ameticulous understanding of data enables
us to ascertain the mechanism of missing data. Missing data
Mechanisms can be divided into three categories which are,
MCAR [17], MAR and MNAR [18].

Collectively there are numerous viable techniques to deal
missing data. Different methods are appropriate for different
conditions. Deletion is effective only in MCAR without pro-
ducing a significant bias [19]. Statistical information-based
imputation is essentially effective to MCAR only because
they estimate data without contemplating the relationship
between attributes, MICE, matrix factorization, and KNN are
mostly effective in MAR [20].

Some other alternative missing imputation strategies are
also available, including missing indicator and maximum
likelihood. Those approaches are not explained here because
either they are too complex to automate or can only be useful
to MCAR.

3) QUALITATIVE DATA ENCODING
ML algorithms expect all inputs and output attributes to be
numerical [21]. This means if a dataset has categorical data,
first encode that into numerical format before employing
a ML algorithm. Encoding is a mandatory preprocessing
stage when working with qualitative data for ML models
and there exists a spectrum of methods for categorical data
encoding [22]. The appropriate method can have a substantial
effect on the performance of a model. We have determined
encoding methods at one side, and conversely, there also exist
some advanced algorithmic techniques. One way to identify
a determined technique is it will generate the same encoded
values every time we employ it, contrary to algorithmic
methods [23]. Additionally, these methods have a minimal
complexity in terms of run time.

Label encoding is essentially the process of allocating
a numeral value to each potential value of a categorical
attribute. Duan [24] compares the ability of several classifiers
discover that to encode qualitative features, one-hot encoding
provides satisfactory outcomes in the implementation of a
neural network, which surpass the other ML algos. One-hot
encoding approach needs very little effort to implement but
drawback of this technique is, if we store encoded values
directly, it uses a lot of storage resources. For large cardinal-
ity, the feature space can soon explode, and you are forced to
combat with the curse of dimensionality, but the advantage
of One-hot encoding is that it is easy to employ and has an
effective running time [25].

From Saleem and Naseer’s [26], we find out about the
Leave-one-out encoding method for qualitative data. Leave
One Out encoding determines the mean of the target variables
for all records that contain the same value for the categorical
feature variable in concern. An immature strategy of comput-
ing the mean value of labels for each row by traversing the
full dataset is an O(n2) process that is prohibitive for large
datasets. Similarly, The Hash encoder encodes categorical

variables with the new dimensions just as one hot encod-
ing. The user can here limit the number of dimensions after
processing, by passing the component number as parameter.
Chollet mentions hashing and exclaims that you can use
hashing instead of one-hot encoding in case the number of
potential values that you want to encode is so big that it is not
practicable to create mappings of values to one-hot vectors.

4) FEATURE SCALING
It is common for real-world datasets to contain features that
vary in units, magnitude, and range. As a result, feature
scaling is required in order for ML models to comprehend
these variables on the same scale [27]. Some machine learn-
ing algorithms are sensitive to feature scaling while others
are completely insensitive to it. Scaling data is required for
machine learning methods such as logistic regression, linear
regression, and neural networks that use gradient descent
as an optimization technique. Because scaled features can
benefit the gradient descent to converge more swiftly towards
the minima. Similarly, the range of features has the greatest
effect on distance-based algorithms such as K-means, KNN,
and SVM [28]. This is because they are determining the
similarity of data points using distances between them. As a
result, before utilizing a distance-based method, scaling the
data is essential to ensure that all attributes contribute equally
to the final outcome. On the other hand, tree-based algorithms
are rather invariant to feature scaling.

Ambarwari et al. [29] discovered that feature scaling meth-
ods like standardization and Min-Max normalization have
a considerable effect on final outcomes. The experiments
were performed by using different ML algorithms including
Naïve Bayesian, KNN, SVM, and ANN. Another study [30]
undertaken by Balabaeva et al., analyzed the impact of sev-
eral scaling strategies on cardiac disease prediction dataset.
Ahsan et al. [27] study concluded that the experimental out-
comes for various scaling techniques may not always be satis-
factory. For instance, where the majority of prior researchers
found that scaling algorithms such as Normalization, Min-
max, and StandardScaler improved SVM performance, this
study discovered that SVM performance was dramatically
reduced.

5) DIMENSIONALITY REDUCTION
Dimensionality reduction is the process of converting a
high-dimensional data representation into a low-dimensional
representation [31]. With the tremendous increase in
high-dimensional data, the usage of several dimensional-
ity reduction methods has prevalent in a wide range of
applications. Furthermore, new modern ways are constantly
appearing. Dimensionality reduction strategies take a high-
dimensional dataset and convert it into a low-dimensional
dataset while retaining as much of the original meaning of
the data as possible. The representation of the original data
in a low-dimensional format contributes to resolving the
dimensionality-curse problem. Low-dimensional data is also
easy to analyze, process, and visualize [32].

107766 VOLUME 10, 2022

M. Bilal et al.: Auto-Prep: Efficient and Automated Data Preprocessing Pipeline

Numerous advantages can be achieved by employing
dimensionality-reduction techniques on a dataset. (i) Data
storage space can be lowered when the number of dimen-
sions decreases. (ii) It requires significantly less computation
time. (iii) Irrelevant, noisy, and redundant data can be elim-
inated. (iv) The quality of data can be enhanced. (v) High-
dimensional data can cause the decline in the performance
of many algorithms. Thus, dimensions reduction enables an
algorithm to perform more efficiently and accurately. (vi)
The visualization of high-dimension data is challenging and
reduction in dimensions can help us to analyze or dissect
patterns easily. (vii) It also simplifies the prediction process
and increase efficiency [33].

In general, dimensionality-reduction methods can be
divided into two categories, or in other words, dimensionality-
reduction can be accomplished by two distinct techniques:
feature selection and feature extraction [34]. Feature selection
is used to reduce the data dimensionality by finding the
features subset that best defines the data. From the original
data it selects the features that are crucial and relevant to the
ML task, and it removes the features that are irrelevant and
redundant [94]. It is helpful for identifying a good subset of
features that are relevant to the task at hand [35]. In feature
selection, the primary goal is to generate a subset of features
that is as small as feasible while yet accurately representing
the key properties of the entire input [36]. Feature selection
reduces the data size, decrease the storage requirements,
improves prediction accuracy, avoids overfitting, and reduces
execution and training time. The feature selection algorithm
has two phases— Subset Generation and Evaluating Subsets.
Subset Generation requires us to construct a subset from
the input dataset, Subset Evaluations examine whether the
resulting subset is optimal [37].

B. AUTOMATED MACHINE LEARNING (AutoML)
Several notable Machine learning libraries and tools have
been developed from 1990 to 2020, comprising Weka in
the 1990s, RapidMiner in 2001, Scikit-learn in 2007, H2O
in 2011, MLlib in 2013, and many others [4]. Addition-
ally, DNN platforms have also acquired fame over recent
years. The TensorFlow, MXNet, Keras, and PyTorch have
contributed significantly to the adoption of DL models [3].
And after this period, it became evident to Researchers and
ML professionals that human expertise plays a substantial
role in accomplishing the best results from ML models.

The initial attempt of AutoML was ‘‘Auto-Weka’’ in
2013 from the University of British Colombia [38]. Next
came the ‘‘Auto-Sklearn’’ from the University of Freiburg in
2014 [39]. Similarly, In 2015, the University of Pennsylvania
developed the ‘‘TPOT’’ [40]; Next came the ‘‘Auto-ml’’ in
2016. Texas A&M University released the ‘‘Auto-Keras’’ in
2017 [41], which utilizes the Keras, Scikit-learn, and Tensor-
Flow. ‘‘MLjar’’ was released in 2018, based on TensorFlow
and Scikit-learn. All the previously mentioned platforms and
libraries draw attention to the various parts of the AutoML
space. For instance, DataRobot, H2O-DriverlessAI, and In

Auto-Keras, the preprocessing and feature generation tasks
are not available; this technique only accepts data in model
acceptable form, so the users must clean or preprocess data
manually first. Nevertheless, upon receiving the manually
prepared dataset, AutoKeras do recommend the best learning
model. Darwin offers services about time-series data. Cate-
gorical Ensemble offered by auto-ml. Auto-Keras andGoogle
AutoML perform Neural Network search. In short, each of
them has its different strengths and shortcomings.

C. DATA PREPROCESSING IN AUTOML
In the previous section, we perceived the background of
AutoML and some of the notable work achievements so
far in this area. This section acknowledges how the various
AutoML pipelines address the data preprocessing.

Data preprocessing is a fundamental stage in the Machine
Learning pipeline. At Present, no AutoML technique is
mature enough to handle this task accurately and demands
significant human intervention. The schema or data types
of detection is essential in this task, which in most cases
are not supported by AutoML. Nevertheless, on identifying
data types, AutoML can handle the feature engineering task
for the next stage in the pipeline. TransmogrifAI is one step
ahead in identifying the basic (numeric or categorical) and
advanced data types (phone, address, currency). Even though
TransmogrifAI has this functionality, but it is not stable
on many datasets. Data preprocessing is handled by default
methods, but the users can customize the parameters with
other available options.

H2ODriverlessAI, and H2O-Automl [42] also have the
functionality to detect the datatypes, but this is limited to
only basic categorical, time-series, and numeric data. Many
transformation methods are up to users to select according to
requirements. For instance, H2O-AutoML has many options
(none, normalize, descale, or standardize) to transform the
numeric columns. However, there is no assistance provided
to choose the best fitting one. Similarly, DataRobot, Darwin,
and MLjar can only identify the basic data types and convert
the dataset automatically according to user-specified tech-
niques without providing any assistance for this task [3].

In Autosklearn [39], users have to manually specify the
data types of the columns to perform feature engineering.
Moreover, Autosklearn only accepts the numeric data, so all
the categorical fields must be converted manually into num-
bers before any further transformation. Hence, this service
cannot perform data cleaning but can implement Feature
engineering on the numeric dataset. Auto-ml and AzureML
are also just supporting the feature engineering, and data
cleaning is up to users to perform manually.

In AutoWeka, user-assistance is available only in model
selection like all other techniques. The system recommends
the best learning-algorithm to implement with its suitable
parametrization without considering the preprocessing step.

In TPOT [40], users need to handle preprocessing tasks
manually because this system also does not support the data
preprocessing stage in its AutoML pipeline. The only purpose

VOLUME 10, 2022 107767

M. Bilal et al.: Auto-Prep: Efficient and Automated Data Preprocessing Pipeline

TABLE 1. Data preprocessing in AutoML.

of this system is to find and recommend the best model, and
for pipeline optimization, genetic programming is used. The
detailed comparison is illustrated in (Table 1).

III. METHODOLOGY
In this research, we develop a Python- based method to
provide automatic, interactive, and data-driven service for
users to perform data preprocessing efficiently. The devel-
oped method’s primary responsibility is to preprocess data
by deciding and applying the most suitable transformer
methods based on the dataset’s features. The method aims
to improve the quality of data in order to get better per-
formance from machine learning models. We employ pre-
existing approaches to address a wide range of data cleaning
problems and feature engineering tasks. Notably, our main
focus is placed on automatic detection of data type, automatic
imputation of missing value, and automatic features encod-
ing, dimensionality reduction and feature scaling.

The most difficult challenge in designing this method
was integrating all of the data preprocessing steps and their
respective transformer methods in such a way that we could
achieve our goal. The first and most evident approach one can
think of is to permutate all of the techniques on the datasets
and then evaluate all of the combinations to select the best
performing one. However, this approach is not only exhaus-
tive (which makes it time-consuming and computationally

complex), but we also lack a set of norms or standards for
evaluating these combinations.

Therefore, our proposed method must handle each task
independently and be competent in making rational decisions
along the way based on the given dataset. In subsequent
sections, we discuss each subtask individually in detail and
present how we deal with each particular problem.

A. AUTOMATIC DATA TYPES DETECTION
In order to do effective data-driven science and computa-
tion, it is necessary to understand how data is stored and
manipulated. We already know from the literature review
that statistical datatype (category, discrete, and continuous) of
features are more significant in the field of machine learning,
as mentioned in Section 2.2. Therefore, the ultimate goal of
this function is not only to identify basic datatypes, but also
to distinguish statistical datatypes. To do this, we suggest a
strategy that blends the forthright logic approach with the
Pandas library. Pandas can be used to detect the general data
types for each feature automatically. The datatype inference
of Pandas only considers int, float and object which is unfor-
tunate. In practice, we can see that Pandas classifies a large
number of features as ‘objects.’ For instance, it won’t convert
the datetime columns automatically unless you explicitly give
it a list of the datetime columns.

107768 VOLUME 10, 2022

M. Bilal et al.: Auto-Prep: Efficient and Automated Data Preprocessing Pipeline

Consequently, our proposed solution is to divide the task
into two steps. In the first step, we discover the basic data
types (integer, float, object) by using the simple inference
approach of Pandas. Then in step 2, We recheck the type of
each element in the object type feature, as inspired by Brute
Force Guessing and Anjelo’s work [46]. Date, time, bool,
category, and string are the data types that will be inferred in
this stage. We identify the additional datatype of the features
using the following simple logical rules:

1. Bool: a feature with precisely two distinct values.
2. Date: up to ten characters, including the ‘−’ or ‘/’

symbol
3. Time: Contains ‘:’ symbol and is limited to 8 characters

(e.g., hh:mm:ss)
4. Category: A finite collection of text values
5. String/object: anything that’s left after above rules.

Following that, we will go over how to detect each of these
categories. Starting with the most fundamental datatype,
bool, we compute the number of unique values in the sample
before confirming the type of each element. If there are
precisely two distinct values, the feature will be directly
assigned the bool type. As we can observe, the datatypes
are prioritized. If a feature is determined to be bool, we do
not further investigate whether it is a category, datetime or a
string. The second datatype to be determined is date. Dates
can be encoded in a variety of ways. To be considered a date,
the elements should adhere to the two conditions outlined
below.

1. An entry can only be up to ten characters long.
2. An entry must contain ‘−’ or ‘/’ symbol

To infer dates, we must first handle the fact that dates come
in a variety of formats, such as mm/dd/yyyy, dd/mm/yyyy,
yyyy/mm/dd, mm-dd-yyyy, dd-mm-yyyy, yyyy-mm-dd, and
so on. It is now difficult to consider all of the forms while per-
forming brute force guessing. So, to detect and extract infor-
mation from dates, we use pandas’ datetime64[ns] datatype.
We begin by attempting to convert each column to datetime,
and then we process the successful conversions to extract
the given information in separate columns (i.e., day, month,
year). As a result, in this scenario, we are handling two jobs
at the same time: datatype discovery and feature engineering.
In next step, the features with a limited number of distinct
values are classified as category type, wewill discuss this type
more in categorical encoding section.

Finally, on the basis of given rules, we evaluate if a numer-
ical feature is discrete or continuous by counting the number
of unique values:

1. Discrete: Finite number of unique values
2. Continuous: Infinite number of unique values

B. AUTOMATIC MISSING VALUE IMPUTATION
To deal with missing values, we must first discover them and
then choose a suitable method for cleaning them. As dis-
cussed in literature review, no algorithm is infallibly supe-
rior to others. And the performance of an algorithm is

FIGURE 1. Workflow of automatic datatypes detection.

highly dependent on the missing mechanism [17]. There-
fore, we have divided this task into several subtasks, which
are: discover missing values, visualize missing data, drop
features with high missing-data percentage, missing values
imputation with several techniques, and the selection of most
suitable technique.

The workflow is depicted in Figure 2 to provide a high-
level overview. We begin by identifying the missing values.
Then, to help the user comprehend the missing ratio and
missing mechanism we present them in effective graphs.
Following that, we employ all the candidate techniques and
recommend the best performing one.

FIGURE 2. Workflow of automatic missing values handling.

1) DISCOVER MISSING VALUES
The first challenge to handle the missing data automatically
is to detect the presence of missing Values. Missing values
may be represented in the dataset using a variety of alternative
formats, including ‘?’ and ‘nan’. We have categorized the
formats into three types for better understanding. (I) The
representations which can be treated by default as null val-
ues, such as: ‘NAN’, ‘n/a’, and Empty cells are Standard
Missing Values. (II) Some datasets tend to have non-standard
representation of missing values as well, such as: ‘—’, ‘-’,
‘na’, or ‘?’, etc. (III) Depending on the context of the dataset,
certain datasets represented missing values in an unexpected

VOLUME 10, 2022 107769

M. Bilal et al.: Auto-Prep: Efficient and Automated Data Preprocessing Pipeline

manner. For example, if a feature’s range is 0 to 100, then
9999 may indicate the missing value.

We’ve constructed our unique missing values list as default
for the first two scenarios, but for the third scenario, let’s say,
we cannot take 9999 as missing/null for every dataset. As a
result, it would be preferable to identify missing values in an
interactive manner. To be more particular, in addition to the
most common missing characters, such as ‘nan,’ we ask the
user every time before the detection whether they want to add
any additional specific value to be identified as missing.

2) MISSING MECHANISM
We have already established from literature that there exist
three kinds of missing mechanisms: MAR, MCAR, and
MNAR. Unfortunately, the hypothesis in case of MNAR
cannot be tested because the necessary information is unavail-
able. We may have good cause to believe that the prospect of
missingness is influenced by the values that are missing from
the data set. For instance, some people may be less prone to
record their incomes if they have a high salary, but there’s no
way to know from the dataset if this is true or not [47]. In case
of MAR and MCAR, we can identify if any association
exist among the missing values of one variable or feature
with some other features. We may not detect any association
between the two features, yet a MAR may nonetheless exist
because a value might perhaps be absent as a function of
several other features.

The Pearson correlation coefficient (PCC) is a measure of
the linear-correlation between two features. The presence of
missing values is denoted by the number 1 and the absence
by the number 0, and then using the coordinates (1, 1), (1, 0),
(0, 1), (0, 0), we may represent each pair of features as
illustrated in Figure 3. The coordinates (1, 1) and (0, 0) should
show frequently if there is a missing dependence among
the respective two features, and a linear-correlation will be
discovered.

FIGURE 3. Pearson correlation coefficient (PCC).

This is a symmetrical correlation and correlation is
inversely proportional to the strength of the missing depen-
dency. If the PCC is higher than 0.8 between two features,
the missing mechanism will presumably be MAR.

3) VISUALIZE MISSING VALUES
The primary objective of this step is to help the user under-
stand the missing data and mechanism in dataset more
precisely.

FIGURE 4. Seaborn heatmap.

I. seaborn heatmap: This heatmap not only depicts the
features and their proportion of missing values, but also
indicates instantly whether the occurrence of missing
values is sparsely distributed or concentrated in a large
chunk.

I. missingno matrix: Matrix charts are largely identical to
the previous chart. It makes use of a density display
to highlight a dataset’s completeness. In comparison
to the preceding illustration, a matrix is more effec-
tive at identifying missing patterns. For instance, it is
evident that some missing relation exists in features
26–27, or 31–34. When one of them is absent, the
others are also absent. The matrix pattern can aid users
in comprehending the data and provide insight into
the missing process. For instance, the first situation is
more likely to be MCAR, but the second case is more
likely to be MAR. missingno heatmap: A heatmap is
used to show how deeply the absence or presence of
one feature affects the absence or presence of another
feature. The missing correlation is estimated using the
Pearson Correlation Coefficient (PCC) — which we
have discussed previously. Because PCC is symmetric,
so is the heatmap. The range of Correlation is −1 to 1.
When correlation is −1, one variable is present while
the other is absent. A 0 correlation means that one
variable does not affect the other. If the correlation
is 1, then both variables must be present. This heatmap
ignores features that have no missing data. Hence, the
visualizations are intended to aid users in comprehend-
ing data so that they can infer the missing mechanism
on their own.

4) ACCEPTABLE PERCENTAGE OF MISSING DATA
Wemay notice that the values of particular records or features
are substantially absent after detecting missing values in the
dataset. In this circumstance, these features or data provide

107770 VOLUME 10, 2022

M. Bilal et al.: Auto-Prep: Efficient and Automated Data Preprocessing Pipeline

FIGURE 5. Missingno matric.

VOLUME 10, 2022 107771

M. Bilal et al.: Auto-Prep: Efficient and Automated Data Preprocessing Pipeline

FIGURE 6. Missingno heatmap.

no information on the machine learning model while training.
The percentage of missing data relates directly to the validity
of statistical inferences. However, there is no agreed literature
criterion for an acceptable proportion of missing data in the
dataset for meaningful statistical inferences. Schafer et al.
[48], for example, stated that amissing rate of 5 percent or less
is insignificant. Bennett et al.[49] claimed that when more
than 10% of data is missing, statistical analysis is likely to be
skewed or biased. Furthermore, a researcher’s assessment of
the missing data problem is not solely based on the amount of
missing data. Missing data methods and patterns, according
to Tabachnick et al. [50], have a higher impact on research
results than the quantity of missing data. Recently [51], estab-
lished that even with a huge percentage of missing data (up
to 90% in their simulated study), unbiased findings can be
obtained if the imputation model is reasonably specified, and
data are MAR.

As a result, in our proposed strategy, we allow variables
with less than 90% missing values percentage and drop fea-
tures with a greater missing rate than the default threshold.
However, the default limit can be changed by the user.

5) IMPUTE MISSING VALUES
The several approaches to clean missing values may be per-
plexing to a novice user. As a result, this proposed method
must use themost efficient strategy to cleaningmissing values
from each feature. Diverse techniques are appropriate for
various missing mechanisms. The most frequently used tech-
niques are addressed in this proposed method: mean, median,
mode, most frequent, and k neighbor (KNN), or interpret
missing values as a separate category and multiple imputa-
tion. These approaches are implemented using scikit learn.

Our candidate techniques for each mechanism are summa-
rized as follows:

1. MCAR: mean, median mode, most frequent, k-nearest
neighbors (KNN)

2. MAR: k-nearest neighbors (KNN)
3. MNAR: Treat as a separate category, Multiple

Imputation

MCAR is not generally the case, but if it is a valid assumption,
then there is a plethora of convenient solutions for dealing
with missing data. All of the strategies presented above is
considered.

The majority of research papers make the assumption of
MAR. In this instance, there are significant relationships
between variables/features. As a result, the statistical pro-
cedures mean, and mode should not be employed because
they are just generating data without taking into account the
feature dependency.

MNAR is by far the most difficult situation to deal with.
Theoretically, data must be cleansed manually in this sce-
nario, and deductive procedures should be used to accom-
plish this. Example: A person with two children in 2014,
no children in 2015, and two children in 2016 may have two
children in 2015 as well. This type of deductive assertion
usually requires some context to be applied to it. But, sincewe
are attempting to automate the whole process, we choose the
multiple-imputation method as the sole viable option because
it can still obtain acceptable results even in the MNAR sit-
uation [18], or we just can construe the missing values as
containing information (i.e., missing for a reason).

In the preceding part, we classified the techniques accord-
ing to the presence or absence of a missing mechanisms.
However, as we have found with the home prices dataset,
a dataset can contain numerous mechanisms at the same time.
And we cannot just presume which technique will yield the
most information or will be the most advantageous for a
particular dataset to use. As a result, to select an approach,
we must first anticipate the performance of each of the alter-
native approaches. A more formal evaluation of the perfor-
mance of a computing approach must be made by comparing
the missing values ground truth with imputed values. In real-
ity, however, finding the ground truth for missing data is
impractical in reality. Furthermore, it is challenging to evalu-
ate in case of datasets that contain a variety of different sorts
of missing mechanisms. In Literature, mostly the imputation
approaches are evaluated by employing a classifier after com-
putingmissing values in order to determine whether or not the
performance of a classifier is improved [12]. In this type of
assessment, list deletion frequently outperforms imputation
approaches. Suppose a dataset only have one complete record
and after applying list deletion only that record will remain.
Furthermore, there is no requirement for classification at this
time. Evidently, this is not a reasonable position. As a result,
list deletion is not considered in our method.

In order to impute or anticipate the performance of dif-
ferent imputation techniques, our approach first iterates over
each column/feature and determines whether or not the data
has any missing data. If there are no null values, it passes
over this step; if there are any null values, we apply candidate
techniques for imputation. After imputation, we employ some
basic classifiers or regressors (according to the task type),
and compute mean accuracy as the imputation score for each
method. The classifiers and regressors used for evaluation are
detailed below.

107772 VOLUME 10, 2022

M. Bilal et al.: Auto-Prep: Efficient and Automated Data Preprocessing Pipeline

I. Naïve-Bayes Learner
Naive Bayes is a probabilistic machine learning algorithm

based on the Bayes Theorem.

p(X |Y) =
p(Y |X).p(X)

p(Y)

Here, p(X|Y) represents the posterior-probability and p(X)
represents the prior-probability. The assumption that all
attributes of a dataset under consideration are independent of
each other is what makes a naïve Bayes classifier naive.
II. Decision Tree Learner
This classifier is intent to build a model that predicts the

value of a target variable using basic decision rules derived
from data attributes. The classifier utilizes the information
gain metric, which reveals the degree to which an attribute is
informative in relation to the classification job by calculating
its entropy. Higher the variance in features, the greater the
information gain from the attribute. This learner prefers the
feature that provides the greatest amount of information.
Then, it constructs a single-node decision tree that has the
selected feature as a split node.
III. Linear Discriminant Analysis
A classifier with a linear decision boundary that was cre-

ated by fitting class conditional densities to data and applying
Bayes’ rule. Themodel assumes that all classes have the same
covariance matrix and hence fits a Gaussian density to each
class.

The Regressors employed are as follows:
I. Linear Regression
By fitting a linear equation to observed data, linear regres-

sion seeks to model the relationship between two variables.
One variable is regarded as an explanatory variable, while the
other is regarded as a dependent variable. Linear regression
is depicted in the following way.

y = b∗x+ c.

In the preceding equation, the independent variable is denoted
by ‘y’, while the dependent variable is denoted by ‘x’.
When plotting linear regression, the slope of the line that
produces the output variables is denoted by ‘b’, while the
intercept is denoted by ‘c’. The linear regression techniques
make the assumption that the input and output have a linear
relationship.
II. Support Vector Machine
Support Vector Machines can also be utilized as a regres-

sion technique, retaining all of the algorithm’s primary char-
acteristics (maximal margin). Support Vector Regression
(SVR) is a regression model that is similar to the Support
Vector Machine (SVM), with a few small modifications.
To begin, because output is a continuous number, it becomes
extremely difficult to forecast the data at hand, which contains
an unlimited number of options. In the case of regression,
a tolerance margin (epsilon) is specified in order to approx-
imate the SVM. However, the fundamental concept remains
constant: to minimize error by personalizing the hyperplane

that maximizes the margin, while keeping in mind that some
error is acceptable.
III. Random Forest Regressor
A Random Forest is an ensemble technique that combines

several decision trees plus an approach called Bootstrap and
Aggregation, more generally referred to as bagging, to solve
both regression and classification problems. The underlying
concept is to combine several decision trees in order to deter-
mine the final output, which in the case of regression is the
mean prediction of the individual trees, rather than depending
on individual decision trees.

Rather of cleaning data with the highest-scoring strategy,
we display the scores of each possible technique and rec-
ommend the highest-scoring approach to the user. The user
has the option of following the advice or pursuing alternative
strategies. The interactive method of clearing missing values
is depicted in following Figure.

FIGURE 7. Automatic missing values imputation.

C. AUTOMATIC QUALITATIVE DATA ENCODING
After Cleaning the missing values, the next stage comes the
proper encoding to Qualitative features present in the dataset.
We have used the word qualitative here instead of categor-
ical because in statistics, a categorical variable is one that
has a finite, and typically fixed number of potential values,
allocating each individual or other unit of observation to a
specific group or nominal category based on some qualitative
attribute.

When working with qualitative data for machine learning
algorithms, encoding is a necessary pre-processing step. All
input and output variables in machine learning models must
be numeric. This means that if your data contains qualitative
data, you must first convert it to numeric data before training
and evaluating a model.

We divided the qualitative data into bool (features have
exactly two distinct values), categorical data (i.e., features
with a category datatype) and object data (features that take
on from infinite options of strings e.g., email and address).
Additionally, categorical data can also be divided into nomi-
nal and ordinal categories.

1. Nominal attributes (Categorical): Features that derive
their value from a finite set of discrete values that carry
no relation to one another in terms of order.

VOLUME 10, 2022 107773

M. Bilal et al.: Auto-Prep: Efficient and Automated Data Preprocessing Pipeline

2. Ordinal attributes: Features taking values from a finite
set of discrete values that have a ranked ordering.

It is extremely difficult to tell the difference between nominal
and ordinal data because the presence of an order in the data
makes sense only in context. While colors in confectionery
normally do not convey an order, but traffic light colors def-
initely do. And, as a result of our literature review, we deter-
mined that the label or ordinal encoding is more appropriate
for ordinal attributes. While label encodings for nominal
attributes assume a natural ordering between categories and
may result in poor performance or unexpected results, which
makes the one-hot encoding more advantageous in this case.

FIGURE 8. Workflow of automatic qualitative features encoding.

Additionally, we must bear in mind that for our previous
task (i.e., evaluating missing value imputation techniques),
we were required to convert categorical values prior to pass-
ing them through classifiers or regressors. And for the sake
of simplicity, we used a label encoder at that stage. Now all
that remains is to implement one-hot encoding on features
with category datatype only and determine whether or not
it improves the model’s accuracy. We intentionally left the
bool and object datatype features in place because no changes
will happen to bool datatype features and features with object
datatypes may cause the curse of dimensionality. In summary,
our method evaluates label and one-hot encoding techniques
and selects the one that provides the highest level of accuracy.
Figure 8 depicts the entire workflow.

D. AUTOMATIC FEATURE SELECTION
When developing a machine learning model, it is critical
to pick only those predictors that are required. Assume our
dataset has 100 features but that doesn’t mean we have to

include all 100 features in our model. This is due to the fact
that not all 100 attributes will have a substantial impact on the
model. However, this does not imply that it will be true in all
circumstances. It is entirely dependent on the information or
dataset we have at our disposal.

There are several methods for determining which features
have significant impact on the model and which can be
removed from the dataset. For feature selection in this work,
we used the Backward Elimination procedure. Fig 9. presents
the visual representation of all the stages of this process.

FIGURE 9. Backward elimination steps.

Step 1: The initial stage in backward elimination is rather
straightforward; you simply choose a significance level or
P-value. Typically, and in the majority of circumstances, a
5% significance level is chosen. This results in a P-value of
0.05.
Step 2: In this step simply fit your machine learning model

with all of the features you’ve chosen. So, if there are 100
predictors, you incorporate them all in your model and test it
on your test dataset.
Step 3: Determine predictor or column with the highest

P-value.
Step 4: This is a substantial step as wemake decisions here.

We identified the columns with the highest P-value in the
preceding phase. If the P-value for this column exceeds the
significance level we specified in the first stage, we delete it
from our dataset. If the P-value for this feature, which is the
most significant in the collection, is less than the significance
level, we can skip to Step 6, indicating that we are finished.
Remember, if the greatest P-value exceeds the significance
level, that characteristic should be removed.
Step 5: This stage will identify the feature that needs to be

deleted from the dataset. As a result, we delete the feature
from the data and re-fit the model with the new data. We’ll
return to step 3 after fitting the model to the new dataset. This
method is repeated until the greatest P-value obtained from all
remaining columns in the dataset is less than the significance
determined in step 1. This indicates that we iterate from

107774 VOLUME 10, 2022

M. Bilal et al.: Auto-Prep: Efficient and Automated Data Preprocessing Pipeline

step 3 - 5 and repeat until the dataset’s greatest P-value is less
than 0.05.
Step 6: Once we reach step 6, the feature selection proce-

dure is complete. We were successful in filtering out features
that were not significant enough for our model using back-
ward elimination.

E. AUTOMATIC FEATURE SCALING
It is common for real-world datasets to contain features that
vary in units, magnitude, and range. As a result, feature scal-
ing is required in order for ML models to comprehend these
variables on the same scale. The importance of comparing
apples to apples has long been recognized in the scientific
community. Despite this fact, many users (especially begin-
ners) have a proclivity to exclude feature scaling as a part of
data preprocessing for machine learning, which can result in
models making inaccurate predictions.

But as we have discussed in literature review, that not all
machine learning models require feature scaling for generat-
ing better results. Where certain machine learning algorithms
are sensitive to feature scaling while others are completely
insensitive to it.

Scaling data is required for machine learning methods
such as logistic regression, linear regression, and neural net-
works that use gradient descent as an optimization technique.
Because scaled features can benefit the gradient descent to
converge more swiftly towards the minima. Similarly, the
range of features has the greatest effect on distance-based
algorithms such asK-means, KNN, and SVM. This is because
they are determining the similarity of data points using dis-
tances between them. As a result, before utilizing a distance-
based method, scaling the data is essential to ensure that all
attributes contribute equally to the final outcome.

On the other hand, tree-based algorithms are rather invari-
ant to feature scaling. Consider that a decision tree is simply
a method for node splitting based on a single feature. The
decision tree split a node based on a property that increases
the node’s homogeneity. This feature-specific divide is unaf-
fected by other features. Thus, the remaining features have
little effect on the split. This is why they are invariant with
respect to the scale of the features.

In our method, we have considered the two mostly used
methods for feature scaling (i.e., normalization and stan-
dardization). Based on the literature review, the models that
perform best under normalization and standardization are
detailed below.

I. Normalization: Better performs for Distance-based
algorithms such as K-means, KNN, and SVM.

II. Standardization: Performs best in case of logistic
regression, linear regression, and neural networks that
use gradient descent as an optimization technique

As we have explained, the choice of feature scaling approach
is entirely dependent on the type of machine learning model,
and we cannot determine which strategy produces the best
results merely on the basis of data. Given that we want our

automatic method to be interactive as well, for this task,
we have allowed the user to select the technique he or she
want to utilize on datasets while keeping in mind the model
he or she is going to implement. The user can choose Fea-
ture Scaling parameter to be ‘‘Normalize’’, ‘‘Standardize’’,
or ‘‘False’’ option.

F. AUTOMATIC FEATURE EXTRACTION
Feature extraction is a method that generates new features
that are dependent on the original input feature set in order
to reduce the feature vector’s high dimensionality. The trans-
formation is carried out algebraically and in accordance with
specified optimization criteria. On the other hand, the data
description is sometimes lost after the feature extraction, and
in several datasets the cost of this transformation has been
found to be prohibitively high. For feature extraction our
approach uses PCA, but its solely depends on the users if
they want to implement PCA for dimensionality reduction.
But by default, our approach does not apply PCA because
firstly it cannot be necessary for every situation, secondly as
literature revealed it can be proved costly. More significantly,
after running PCA on the dataset, your original features will
be transformed into Principal Components— the linear com-
bination of your original features. Original features are more
legible and interpretable than Principal Components. Fur-
thermore, while Principal Components attempt to cover the
greatest amount of variance among the features in a dataset, if
the number of Principal Components is not carefully chosen,
it may lose some information when compared to the original
list of features. As a result of these considerations, feature
extraction is an optional element of our method that the user
can implement if desired.

Following the completion of all processes, our data is now
efficiently prepared to be retrieved by any machine learning
model.

IV. EVALUATION AND RESULTS
A. DATASETS
Due to the fact that our approach is capable of performing a
wide variety of data preparation tasks, we select datasets with
the goal of covering as many scenarios as feasible. We choose
the most frequently used datasets from different repositories
such as UCI3, OpenML, and Kaggle. The aim was to select
datasets based on the variety of feature, data size and data
challenges in order to validate Auto-preprocessing method in
different situation. Table 2 summarizes the essential charac-
teristics of selected datasets.

B. MACHINE LEARNING MODELS
Our primary objective for evaluation is to compare the accu-
racy of the model trained on auto preprocessed data to the
accuracy of the samemodel trained onmanually preprocessed
data. Given that we are not concernedwith the complexity and
intricacy of the models, we employ simple and well-known
machine learning algorithms for classification and regression.

VOLUME 10, 2022 107775

M. Bilal et al.: Auto-Prep: Efficient and Automated Data Preprocessing Pipeline

TABLE 2. Dataset details.

I. Linear Regression
For regression tasks, we yet again select linear regression

(LR) because of its straightforwardness and wide use in
machine learning specially for regression tasks. By fitting
a linear equation to observed data, linear regression seeks
to model the relationship between two variables. One vari-
able is regarded as an explanatory variable, while the other
is regarded as a dependent variable. Linear regression is
depicted as y = b∗x + c.

In the preceding equation, the independent variable is
denoted by ‘y’, while the dependent variable is denoted by
‘x’. When plotting linear regression, the slope of the line that
produces the output variables is denoted by ‘b’, while the
intercept is denoted by ‘c’. The linear regression techniques
make the assumption that the input and output have a linear
relationship.
II. Support Vector Machine
The ‘‘Support Vector Machine’’ (SVM) is a supervised

machine learning algorithm that is frequently used for Clas-
sification and Regression problems. Here it is, however,
employed for classification tasks.

The SVM algorithm’s objective is to find the optimal line
or decision boundary that partitions n-dimensional space into
classes, allowing us to easily classify new data points in the
future. This optimal decision boundary is referred to as a
hyperplane. SVM selects the extreme points/vectors that aid
in the formation of the hyperplane. These extreme points are
known as support vectors, and so the method is named as
Support Vector Machine.
III. Decision Tree
A Decision Tree is another straightforward way of clas-

sification. It is a form of Supervised Machine Learning in
which data is continually partitioned according to a particular
parameter. This classifier is intent to build a model that
predicts the value of a target variable using basic decision

rules derived from data attributes. The classifier utilizes the
information gain metric, which reveals the degree to which
an attribute is informative in relation to the classification job
by calculating its entropy. Higher the variance in features, the
greater the information gain from the attribute. This learner
prefers the feature that provides the greatest amount of infor-
mation. Then, it constructs a single-node decision tree that
has the selected feature as a split node

C. PERFORMANCE METRICS FOR CLASSIFICATION
Numerous measures can be used to evaluate the performance
of an ML algorithm. First, we will explore various perfor-
mance measures that are used to evaluate predictions for clas-
sification problems and how they can be applied in practice

1) CONFUSION MATRIX
In a classification problem where the output may be divided
into two or more types of classes, confusion matrix is the
most straightforward method of evaluating the problem’s
performance. A confusion matrix is just a table with two
dimensions, ‘‘Actual’’ and ‘‘Predicted’’, and each dimension
contains ‘‘True Positives (TP)’’, ‘‘True Negatives (TN)’’,
‘‘False Positives (FP)’’, and ‘‘False Negatives (FN)’’, as illus-
trated below:

The following terms are defined in relation to the confusion
matrix:

1. True Positives (TP): This is the case when both the
actual and expected class of a data point are 1.

2. True Negatives (TN): This is the case when both the
actual and expected class of a data point are 0.

3. False Positives (FP): This is the case when both the
actual class is 0 and expected class is 1.

4. False Negatives (FN): This is the case when both the
actual class is 1 and expected class is 0.

2) CLASSIFICATION ACCURACY
For classification algorithms, it is the mostly used perfor-
mance metric. It can be defined as the ratio of correct predic-
tions to total predictions—How frequently does the classifier
make an accurate classification. With the help of the follow-
ing formula, we can simply compute it using the confusion
matrix.

Accuracy =
TP+ TN

TP+ FP+ FN + TN

3) RECALL
The recall score of a classifier is the ratio of the number of
accurately predicted positive observations divided by the total
number of observations in the positive class.

Recall =
TP

TP+ FN

4) F1 SCORE
The F1 Score is calculated as the weighted average of the
Recall and Precision. As a result, this score accounts for both

107776 VOLUME 10, 2022

M. Bilal et al.: Auto-Prep: Efficient and Automated Data Preprocessing Pipeline

TABLE 3. Auto preprocessing on classification dataset.

FIGURE 10. Confusion matrix.

false negative and false positives. While F1 is not as intuitive
as accuracy, it is frequently more useful, especially when the
class distribution is unequal.

F1 = 2 ∗
precision ∗ recall
precision+ recall

D. CLASSIFICATION RESULTS
The Auto-Prep method is used to preprocess the six different
classification datasets stated in Table 2. The first four datasets
are binary classification datasets; however, they differ in
terms of feature size and data quality. The final two datasets
are associated with multiclass classification problems. The
operations performed by Auto-preprocessing algorithms on
each dataset are summarized in Table 3.

Support vector classifiers are used to evaluate the find-
ings on cancer diagnosis, insurance claims, and tic-tac-toe
datasets. On the Musk dataset, a decision tress classifier
is used. The final two datasets, wheat-seed and steel-plates

are predicted using support vector machine and random
forest classifiers, respectively. All of these classifiers are
applied once to auto-preprocessed data and once to manually-
preprocessed data. Finally, the models’ performance in both
scenarios is compared. The confusion matrices for each
dataset are shown in figure 11 to figure 16. The ones on the
left side are the result in case of auto preprocessing, while
the ones on the right side are the result in case of manually
preprocessing of the datasets.

FIGURE 11. Confusion matrices of cancer detection datasets (a) in case of
auto preprocessing, and (b) in case of manually preprocessing.

Following confusion matrix, accuracy is the next perfor-
mancemetric. Table 4 summarizes the classification accuracy
of classifiers for each dataset. As can be seen from the table,
the accuracy of models used on auto-preprocessed datasets is
either enhanced or remains close to the accuracy of models
used on manually preprocessed datasets. The results validate
the main objective of this research.

Presented in Table 5 is the precision score of each clas-
sifier in both cases. In simple words this score represents

VOLUME 10, 2022 107777

M. Bilal et al.: Auto-Prep: Efficient and Automated Data Preprocessing Pipeline

FIGURE 12. Confusion matrices of auto insurance claims dataset (a) in
case of auto preprocessing, and (b) in case of manually preprocessing.

FIGURE 13. Confusion matrices of Tic-Tac-Toe dataset (a) in case of auto
preprocessing, and (b) in case of manually preprocessing.

FIGURE 14. Confusion matrices of musk dataset (a) in case of auto
preprocessing, and (b) in case of manually preprocessing.

FIGURE 15. Confusion matrices of wheat seed dataset (a) in case of auto
preprocessing, and (b) in case of manually preprocessing.

the classification model’s ability to detect only relevant
data points. In both situations, the precision scores for
Auto-insurance claims are low as compared to other datasets,
indicating that this dataset may require more preprocessing
to improve the data’s quality.

FIGURE 16. Confusion matrices of steel plate faults dataset (a) in case of
auto preprocessing, and (b) in case of manually preprocessing.

TABLE 4. Accuracy of classifiers.

Tables 6 and 7 show the recall score, and F1 score for each
dataset in both cases.

E. PERFORMANCE METRICS FOR REGRESSION
The performance measurements used to evaluate the regres-
sion model are as follows:
I. R Squared
Additionally, it is referred to as the coefficient of deter-

mination. This metric indicates the degree to which a model
fits a given dataset, or it represents the degree to which the
regression line is congruent with the original data values.
II. Mean Absolute Error
MAE calculates the average of the errors from each sample

in a dataset.

MAE =

∑n
i=1 |yi − xi|

n
In the following formula:
n = total no. of data points
Y i = observed values
Ŷ i = predicted values

107778 VOLUME 10, 2022

M. Bilal et al.: Auto-Prep: Efficient and Automated Data Preprocessing Pipeline

TABLE 5. Precision score of classifiers.

TABLE 6. Recall ccore of classifiers.

yi = predicted value
xi = actual value
n = total no. of data point
III. Mean Squared Error
The MSE is calculated by averaging the square of the

difference between the data’s original and predicted values.

MSE =
1
n

n∑
i=1

(Yi − Ŷi)
2

TABLE 7. F1 score of classifiers.

FIGURE 17. Scatter plot of air quality datasets (a) after auto
preprocessing of dataset, and (b) after manually preprocessing of dataset.

In the following formula of MSE:

RMSD =

√∑N
i=1 (xi − x̂i)2

N

IV. Root Mean Squared Error
The root mean square error (RMSE) represents the stan-

dard deviation of the errors that occur when a prediction is
made on a dataset. This is identical to MSE, except that the
root of the number is consideredwhen calculating themodel’s
accuracy.

F. REGRESSION RESULTS
Similarly, the Auto Preprocessing method is applied to pre-
process the five different regression datasets listed in Table 2.
Each dataset has a distinct domain, feature size, preprocess-
ing required, and data quality. Table 8 summarizes the opera-
tions performed on each dataset by automatic preprocessing
method.

VOLUME 10, 2022 107779

M. Bilal et al.: Auto-Prep: Efficient and Automated Data Preprocessing Pipeline

TABLE 8. Auto preprocessing on regression datasets.

FIGURE 18. Scatter plot of automobile dataset (a) after auto
preprocessing of dataset, and (b) after manually preprocessing of dataset.

FIGURE 19. Scatter plot of ecommerce customers dataset (a) after auto
preprocessing of dataset, and (b) after manually preprocessing of dataset.

Each regression dataset is evaluated using a linear regres-
sion model. The model is applied to both automatically
preprocessed and manually preprocessed data. Finally, the
models’ performance is compared in both cases. Scatter plots
of each dataset are depicted in figures 17 to 21. The ones on

FIGURE 20. Scatter plot of house prices dataset (a) after auto
preprocessing of dataset, and (b) after manually preprocessing of dataset.

FIGURE 21. Scatter plot of weather in Szeged 2006-2016 dataset (a) after
auto preprocessing of dataset, and (b) after manually preprocessing of
dataset.

the left represent the outcomes of automatic preprocessing,
while the ones on the right represent the outcomes of manual
preprocessing.

Following Scatter Plots, Table 9 to Table 12 summarizes
the other performance metrics results of linear regression
model for each dataset. MAE is less susceptible to outliers

107780 VOLUME 10, 2022

M. Bilal et al.: Auto-Prep: Efficient and Automated Data Preprocessing Pipeline

TABLE 9. Regression models test score.

TABLE 10. MAE score.

than MSE because it does not penalize large errors. It is typ-
ically utilized while measuring performance on continuous

TABLE 11. MSE score.

TABLE 12. RMSE score.

variable data. Larger errors are given a higher weight in
RMSE. This suggests that RMSE is significantly more

VOLUME 10, 2022 107781

M. Bilal et al.: Auto-Prep: Efficient and Automated Data Preprocessing Pipeline

beneficial when substantial errors are present and have a
significant impact on the model’s performance. The lower
the values, the more efficient the model. In case of house
prices prediction, the left side metrics are calculated as the
difference between the logarithm of the predicted price and
the logarithm of the actual price (Using logs ensures that
errors in estimating expensive and inexpensive houses have
an equal impact on the final results). The results indicate
that the proposed technique performed admirably and is quite
effective.

The findings indicated that the proposed strategy was cer-
tainly capable of simplifying and automating the complete
preprocessing stages, as well as improving the performance
of the machine learning model. In some circumstances, the
model’s performance is not entirely adequate, owing to the
fact that data is a complicated entity that occasionally requires
more cleaning than the offered method provides. As of now,
this approach is incapable of dealing with outliers and unbal-
anced data. This observation points us in the right direction
for future enhancements.

V. CONCLUSION
In this work, we automate the data preprocessing tasks.
We explored typical data challenges as well as existing
approaches for resolving them. To aid the research, an auto-
mated, data-driven, and interactive system is being developed
to identify potential flaws in the data and report results and
recommendations to the user. The tool is intended for use in
the field of machine learning, and the following components
are meaningfully automated: data type detection, missing
values imputation, qualitative data encoding features scaling,
feature selection and extraction. We use six regression and
5 classification datasets with diverse features to evaluate our
method. For evaluation we compare the accuracy ratings of
the model trained on automated preprocessed data to the
model trained on manually preprocessed data. We see a con-
siderable improvement in the model’s accuracy when trained
on datasets prepared using the Auto-Preprocessing approach.
As a result, our devised approach not only aided the user in
doing the tedious preprocessing operation, but also improved
the model’s accuracy. Additionally, Auto-Prep method offers
a great deal of room potential for future expansion.

VI. FUTURE WORK
Data preparation is a broad task with many different compo-
nents to consider, such as the algorithm, visualization, or a
particular subtask. Each subtask or data challenge can be
studied independently as a separate project. Our data prepro-
cessing method attempts to address as many data issues as
possible, leaving much space for improvement in a variety of
areas. Following that, we’ll get more specific.

1) At the moment, Auto-Preprocessing is capable of dis-
covering several statistical data kinds. But some more
kinds remain undefined: real-valued, interval, and ordi-
nal. The Bayesian model presented in the literatures
might be implemented for real-valued variables and can

be expanded by including ordinal and interval likeli-
hood functions for detecting respective datatypes.

2) We forecast the performance of a strategy for missing
value detection and features encoding by assessing it
against several fundamental machine learning classi-
fiers and regressors. This does not imply, however, that
the recommended strategy is also the ideal one for the
user’s classifier. We can allow the user to specify their
classifier interactively and then immediately evaluate
the approaches based on this user-specified classifier.

3) While our method does not yet deal with outliers,
appropriate detection and management strategies for
evaluation and recommendation can also be introduced.

4) We provide multiple options for users to visualize data,
yet this may still be insufficient given the complexity
and high-dimensionality of the data. An interactive
visualization is preferable; the user can manipulate the
visualization directly to view what they want to see.

5) Auto-Prep is restricted to supervised classification and
regression, although it is extensible to other problems
such as clustering. In this situation, the evaluation
of null values imputation procedures must be altered
to take into account clustering algorithms such as
DBSCAN and k-means. Likewise, for other subtasks.

REFERENCES
[1] R. Budjač, M. Nikmon, P. Schreiber, B. Zahradníková, and D. Janácová,

‘‘Automatedmachine learning overview,’’Vedecké PráceMateriálovotech-
nologickej Fakulty Slovenskej Technickej Univerzity v Bratislave so Sídlom
v Trnave, vol. 27, no. 45, pp. 107–112, 2019.

[2] H. J. Escalante, ‘‘Automated machine learning—A brief review at the end
of the early years,’’ 2020, arXiv:2008.08516.

[3] A. Truong, A. Walters, J. Goodsitt, K. Hines, C. B. Bruss, and R. Farivar,
‘‘Towards automated machine learning: Evaluation and comparison of
AutoML approaches and tools,’’ in Proc. IEEE 31st Int. Conf. Tools Artif.
Intell. (ICTAI), Oct. 2019, pp. 1471–1479.

[4] R. Elshawi, M. Maher, and S. Sakr, ‘‘Automated machine learning: State-
of-the-art and open challenges,’’ 2019, arXiv:1906.02287.

[5] Q. Yao, M. Wang, Y. Chen, W. Dai, Y.-F. Li, W.-W. Tu, Q. Yang, and
Y. Yu, ‘‘Taking human out of learning applications: A survey on automated
machine learning,’’ 2018, arXiv:1810.13306.

[6] B. Bilalli, A. Abelló, T. Aluja-Banet, and R. Wrembel, ‘‘Automated data
pre-processing via meta-learning,’’ in Automated Data Pre-Processing Via
Meta-Learning. New York, NY, USA: Springer, 2016, pp. 194–208.

[7] D.Wang, J. D.Weisz, M.Müller, P. Ram,W. Geyer, C. Dugan, Y. Tausczik,
H. Samulowitz, and A. Gray, ‘‘Human-AI collaboration in data science:
Exploring data scientists’ perceptions of automated AI,’’Proc. ACMHum.-
Comput. Interact., vol. 3, pp. 1–24, Nov. 2019.

[8] M. A. Hernández and S. J. Stolfo, ‘‘Real-world data is dirty: Data cleansing
and the merge/purge problem,’’ Data Mining Knowl. Discovery, vol. 2,
no. 1, pp. 9–37, Jan. 1998.

[9] S. F. Crone, S. Lessmann, and R. Stahlbock, ‘‘The impact of preprocessing
on data mining: An evaluation of classifier sensitivity in direct marketing,’’
Eur. J. Oper. Res., vol. 173, no. 3, pp. 781–800, Sep. 2006.

[10] M. A. Munson, ‘‘A study on the importance of and time spent on dif-
ferent modeling steps,’’ ACM SIGKDD Explor. Newslett., vol. 13, no. 2,
pp. 65–71, Dec. 2011.

[11] S. A. Alasadi and W. S. Bhaya, ‘‘Review of data preprocessing tech-
niques in data mining,’’ J. Eng. Appl. Sci., vol. 12, no. 16, pp. 4102–4107,
2017.

[12] J. Brownlee,Data Preparation forMachine Learning: Data Cleaning, Fea-
ture Selection, and Data Transforms in Python. Melbourn, VIC, Australia:
Jason Brownlee, 2020.

[13] Y. Xian, H. Zhao, T. Y. Lee, S. Kim, R. Rossi, Z. Fu, M. G. De,
and S. Muthukrishnan, ‘‘EXACTA: Explainable column annotation,’’ in
Proc. 27th ACM SIGKDD Conf. Knowl. Discovery Data Mining, 2021,
pp. 3775–3785.

107782 VOLUME 10, 2022

M. Bilal et al.: Auto-Prep: Efficient and Automated Data Preprocessing Pipeline

[14] R. J. Little and D. B. Rubin, Statistical Analysis With Missing Data.
Hoboken, NJ, USA: Wiley, 2019.

[15] L. A. Hunt, ‘‘Missing data imputation and its effect on the accuracy of
classification,’’ in Data Science. New York, NY, USA: Springer, 2017,
pp. 3–14.

[16] J. Kaiser, ‘‘Dealing with missing values in data,’’ J. Syst. Integr., vol. 5,
no. 1, pp. 1–10, 2014.

[17] A. P. Barata, F. W. Takes, H. J. van den Herik, and C. J. Veenman,
‘‘Imputation methods outperform missing-indicator for data missing com-
pletely at random,’’ in Proc. Int. Conf. Data Mining Workshops (ICDMW),
Nov. 2019, pp. 407–414.

[18] K. M. Lee, R. Mitra, and S. Biedermann, ‘‘Optimal design when out-
come values are not missing at random,’’ Statistica Sinica, vol. 28, no. 4,
pp. 1821–1838, 2018.

[19] T. B. Pepinsky, ‘‘A note on listwise deletion versus multiple imputation,’’
Political Anal., vol. 26, no. 4, pp. 480–488, Oct. 2018.

[20] C. Curley, R. M. Krause, R. Feiock, and C. V. Hawkins, ‘‘Dealing with
missing data: A comparative exploration of approaches using the inte-
grated city sustainability database,’’ Urban Affairs Rev., vol. 55, no. 2,
pp. 591–615, Mar. 2019.

[21] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
pp. 436–444, May 2020.

[22] W. D. McGinnis, C. Siu, and H. Huang, ‘‘Category encoders: A scikit-
learn-contrib package of transformers for encoding categorical data,’’
J. Open Source Softw., vol. 3, no. 21, p. 501, Jan. 2018.

[23] J. T. Hancock and T. M. Khoshgoftaar, ‘‘Survey on categorical data for
neural networks,’’ J. Big Data, vol. 7, no. 1, pp. 1–41, Dec. 2020.

[24] J. Duan, ‘‘Financial system modeling using deep neural networks (DNNs)
for effective risk assessment and prediction,’’ J. Franklin Inst.-Eng. Appl.
Math., vol. 356, no. 8, pp. 4716–4731, May 2019.

[25] R. Garreta, G. Moncecchi, T. Hauck, and G. Hackeling, Scikit-Learn:
Machine Learning Simplified: Implement Scikit-Learn Into Every Step of
the Data Science Pipeline. Birmingham, U.K.: Packt, 2017.

[26] S. Naseer and Y. Saleem, ‘‘Enhanced network intrusion detection using
deep convolutional neural networks,’’ KSII Trans. Internet Inf. Syst.,
vol. 12, no. 10, pp. 5159–5178, 2018.

[27] M. Ahsan,M.Mahmud, P. Saha, K. Gupta, and Z. Siddique, ‘‘Effect of data
scaling methods on machine learning algorithms and model performance,’’
Technologies, vol. 9, no. 3, p. 52, Jul. 2021.

[28] S. Basak and M. Huber, ‘‘Evolutionary feature scaling in K-nearest neigh-
bors based on label dispersion minimization,’’ in Proc. IEEE Int. Conf.
Syst., Man, Cybern. (SMC), Oct. 2020, pp. 928–935.

[29] A. Ambarwari, Q. Jafar Adrian, andY. Herdiyeni, ‘‘Analysis of the effect of
data scaling on the performance of themachine learning algorithm for plant
identification,’’ Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi),
vol. 4, no. 1, pp. 117–122, Feb. 2020.

[30] K. Balabaeva and S. Kovalchuk, ‘‘Comparison of temporal and non-
temporal features effect on machine learning models quality and inter-
pretability for chronic heart failure patients,’’ Proc. Comput. Sci., vol. 156,
pp. 87–96, Jan. 2019.

[31] R. Zebari, A. Abdulazeez, D. Zeebaree, D. Zebari, and J. Saeed,
‘‘A comprehensive review of dimensionality reduction techniques for fea-
ture selection and feature extraction,’’ J. Appl. Sci. Technol. Trends, vol. 1,
no. 2, pp. 56–70, May 2020.

[32] M. Verleysen and D. François, ‘‘The curse of dimensionality in data
mining and time series prediction,’’ in The Curse of Dimensionality in Data
Mining and Time Series Prediction. New York, NY, USA: Springer, 2005,
pp. 758–770.

[33] L. Liu and M. T. Özsu, Encyclopedia of Database Systems. New York, NY,
USA: Springer, 2019.

[34] M. Espadoto, R. M. Martins, A. Kerren, N. S. T. Hirata, and A. C. Telea,
‘‘Toward a quantitative survey of dimension reduction techniques,’’ IEEE
Trans. Vis. Comput. Graphics, vol. 27, no. 3, pp. 2153–2173, Mar. 2021.

[35] X. Huang, L. Wu, and Y. Ye, ‘‘A review on dimensionality reduction
techniques,’’ Int. J. Pattern Recognit. Artif. Intell., vol. 33, no. 10, 2019,
Art. no. 1950017.

[36] S. Velliangiri, S. Alagumuthukrishnan, and S. I. Thankumar Joseph,
‘‘A review of dimensionality reduction techniques for efficient computa-
tion,’’ Proc. Comput. Sci., vol. 165, pp. 104–111, Jan. 2019.

[37] S. Visalakshi and V. Radha, ‘‘A literature review of feature selection
techniques and applications: Review of feature selection in data mining,’’
in Proc. IEEE Int. Conf. Comput. Intell. Comput. Res., Dec. 2014, pp. 1–6.

[38] L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter, and K. Leyton-Brown,
‘‘Auto-WEKA: Automatic model selection and hyperparameter optimiza-
tion in WEKA,’’ in Automated Machine Learning. Cham, Switzerland:
Springer, 2019, pp. 81–95.

[39] M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, and F. Hutter, ‘‘Auto-
Sklearn 2.0: The next generation,’’ 2020, arXiv:2007.04074.

[40] R. S. Olson and J. H. Moore, ‘‘TPOT: A tree-based pipeline optimization
tool for automating machine learning,’’ in Proc. Workshop Autom. Mach.
Learn., 2016, pp. 66–74.

[41] H. Jin, Q. Song, and X. Hu, ‘‘Auto-Keras: Efficient neural architecture
search with network morphism,’’ 2018, arXiv:1806.10282.

[42] E. LeDell and S. Poirier, H2O AutoML: Scalable Automatic Machine
Learning. 2020, pp. 1–16.

[43] F. Hutter, L. Kotthoff, and J. Vanschoren, Automated Machine Learning:
Methods, Systems, Challenges. New York, NY, USA: Springer, 2019.

[44] E. Bisong, ‘‘Google AutoML: Cloud vision,’’ in Building Machine Learn-
ing and Deep Learning Models on Google Cloud Platform. New York, NY,
USA: Springer, 2019, pp. 581–598.

[45] J. Barnes, Azure Machine Learning. Washington, DC, USA: Microsoft,
2015.

[46] S. Krishnan and E. Wu, ‘‘Alphaclean: Automatic generation of data clean-
ing pipelines,’’ 2019, arXiv:1904.11827.

[47] G. Chhabra, V. Vashisht, and J. Ranjan, ‘‘A comparison of multiple imputa-
tion methods for data with missing values,’’ Indian J. Sci. Technol., vol. 10,
no. 19, pp. 1–7, 2017.

[48] J. L. Schafer, ‘‘Multiple imputation: A primer,’’ Stat. Methods Med. Res.,
vol. 8, no. 1, pp. 3–15, 1999.

[49] D. A. Bennett, ‘‘How can i deal with missing data in my study?’’ Austral.
New Zealand J. Public Health, vol. 25, no. 5, pp. 464–469, Oct. 2001.

[50] B. G. Tabachnick, L. S. Fidell, and J. B. Ullman, Using Multivariate
Statistics. Boston, MA, USA: Pearson, 2007.

[51] Y. Dong and C.-Y.-J. Peng, ‘‘Principled missing data methods for
researchers,’’ SpringerPlus, vol. 2, no. 1, pp. 1–17, Dec. 2013.

MEHWISH BILAL received the B.S. degree
in software engineering from Bahria University,
Islamabad, and the master’s degree in computer
science from the University of Okara. Currently,
she is working with the Federal Investigation
Agency (FIA) of Pakistan as a Software Engineer.
She is also an Active Member of the Pakistan
Engineering Council.

GHULAM ALI received the bachelor’s degree in
computer science from the University of Agri-
culture, Faisalabad, Pakistan, and the M.S. and
Ph.D. degrees in computer science from the Uni-
versity of Central Punjab, Lahore, Pakistan. From
September 2012 to May 2013, he has worked as a
Lecturer at the Department of Computer Science,
The University of Lahore, Lahore. He also worked
as a Lecturer at the Department of Computer sci-
ence, Government College University, from June

2013 to August 2019. He has joined the University of Okara as an Assis-
tant Professor, in August 2019. He is the in-charge of the Department of
Software Engineering, University of Okara. He has supervised 24 M.S.
research students. He is currently supervising 12 M.S. research students and
also co-supervising two Ph.D. student. His research interests include image
processing, human emotions analysis, machine learning, video surveillance,
medical image analysis, stochastic processes, intelligent agents, and formal
methods.

VOLUME 10, 2022 107783

M. Bilal et al.: Auto-Prep: Efficient and Automated Data Preprocessing Pipeline

MUHAMMAD WASEEM IQBAL received the
Ph.D. degree in computer science from The Supe-
rior University, Lahore, Pakistan. He is currently
working as an Associate Professor with the Soft-
ware Engineering Department. He is also an
Active Researcher. He has more than 75 research
publications in well-reputed journals and confer-
ences. Furthermore, he has more than 16 years of
teaching and research experience in well-reputed
institutions. He specializes in human–computer

interaction (HCI), with special interests in adaptive interfaces (AI), user’s
context, UX/UI for normal, visual impaired people and user centered design
(UCD), the Internet of Things (IoT), the Internet of Medical Things (IoMT),
human centric artificial intelligence (HCAI), semantic relations, and onto-
logical modeling.

MUHAMMAD ANWAR received the Ph.D.
degree in computer science from the Univer-
sity of Technology Malaysia (UTM), in 2019.
He is currently working as an Assistant Profes-
sor in information technology with the Univer-
sity of Education, Lahore, Pakistan. He has over
15 years of professional experience in different
public and private sector ICT projects. He has
various research publications in reputed journals
and conferences. He is also a reviewer of various

journals. His research interests include sensor networks, green computing,
the Internet of Things, machine learning, and blockchain.

MUHAMMAD SHERAZ ARSHAD MALIK
received the Ph.D. degree in information technol-
ogy. He has more than seven years of research
and industrial experience. He is currently an
Assistant Professor with the Department of
Information Technology, Government College
University Faisalabad, Pakistan. His research
interests include information visualization, tempo-
ral data, data analytics, and the Internet of Things.

RABIAH ABDUL KADIR received the Diploma
and bachelor’s degrees in computer science from
University Putra Malaysia, in 1990 and 1993,
respectively, and the master’s and Ph.D. degrees
in computer science from University Kebangsaan
Malaysia, in 1997 and 2007, respectively. She is
currently a Senior Research Fellow with the Insti-
tute of IR4.0, Universiti Kebangsaan Malaysia.
She worked as a Tutor with University Putra
Malaysia, from 1993 to 1997, and became a Lec-

turer, in 1997. After completed her master’s degree, she was appointed as a
Lecturer, from January 1997 to July 2008. From August 2008 to May 2014,
she was appointed as a Senior Lecturer. During this period, she was seconded
as anAssistant Professor at NajranUniversity, Saudi Arabia, fromSeptember
2012 to August 2013. Since June 2014, she has been joining Universiti
Kebangsaan Malaysia, as a Research Fellow. Her research interests include
computational linguistics, intelligent computing, and data analytics. Cur-
rently, she is actives on big data analytics, semantic knowledge representation
and extraction, medical intelligent system, and sentiment analysis. She has
published more than 100 articles of academic journals, book of chapter, and
proceeding on her areas. She is actives in several international conferences
organized by local and international association or universities.

107784 VOLUME 10, 2022

