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ABSTRACT Climate change is making heat waves more frequent, long-lasting, and severe. While multiple
satellite types provide data to monitor surface temperature, geostationary (GEO) sensors provide near-
continuous, continental-scale observations which can better capture the diurnal variability of land surface
temperature (LST) than intermittent observations from low-earth orbit (LEO) sensors. However, standard
products from GEO satellites are available at coarsened spatial and temporal resolutions compared to
the native sensor resolution. Using datasets from the NASA Earth Exchange, we leveraged co-located,
co-temporal observations from LEO and GEO satellites to learn a data-driven mapping using a convolutional
neural network. The resulting NASA Earth eXchange Artificial Intelligence LST (NEXAI-LST) achieved a
mean absolute error of 1.73 K relative to the target LEO product and improves on both spatial and temporal
resolution [2 km, 10 minute] compared to the GEO full disk standard product [10 km, hourly]. In validation
against measurements from a ground-based sensor network, NEXAI-LST achieves similar or better fit than
both LEO and GEO standard products, while depending none of the prior knowledge of land surface and
atmospheric states required by physical-statistical models. Further, application of the model to unseen LEO
and GEO satellites demonstrates robust generalization of the model across spatial region, time of day, and
sensor. In support of NASA’s open-source science initiative, we make our NEXAI-LST product, model, and
codes available to facilitate data exploration and further studies.

INDEX TERMS Datasets, deep learning, emulation, remote sensing, land surface temperature.

I. INTRODUCTION
As the world warms, patterns of extreme heat events are
intensifying around the globe. In addition to raising aver-
age temperatures, greenhouse gases have been associated
with strengthening the patterns of atmospheric circulation
associated with heat waves [1], [2]. These patterns suggest
potential for increasingly common, severe, and long-lasting
heat events. In the United States, extreme heat is a lead-
ing cause of weather-related deaths [3], with economically
disadvantaged census tracts and people of color bearing
disproportionate exposure to heat in cities [4]. Heat events
exacerbate cardiovascular and respiratory illnesses [5], [6],
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impact birth outcomes [7], and burden health and emergency
services. Surface urban heat islands (SUHI) describe the
effect of elevated land surface temperature (LST) in urban
areas compared to surrounding rural areas [8], [9]. While
monitoring capabilities on the ground are limited, satellite
data can be used to identify SUHI with coverage all over the
world. SUHI mapping enables assessment of trends over time
as well as near real-time monitoring of conditions that are
relevant to human health and comfort. Recent heat events in
the Pacific Northwest (2021), Western United States (2020),
and Australia (2019) have drawn attention to the deadly lack
of resilience and the need for data to increase preparedness
for climate extremes.

From a climate perspective, LST is critical for the study
of land surface processes and to constrain the surface energy
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FIGURE 1. a, Geostationary (GEO) satellites like GOES-16 and Himawari-8 provide observations with unprecedented spatial and temporal consistency
over their full disk views. Low earth orbiting (LEO) satellites produce a multitude of higher-level products that coincide with GEO data several times per
day at each location. b, Our proposed framework leverages co-located, co-temporal observations from LEO and GEO satellites to build models for
data-driven algorithm emulation. c, We trained a convolutional neural network to predict NEXAI-LST and classify clear sky pixels based on GEO infrared
bands and elevation.

budget and model parameters. LST provides information
about energy partitioning into sensible and latent heat fluxes
that makes it a key parameter to study land-atmosphere inter-
actions. LST helps us to understand the effects of climate on
vegetation [10], hydrology [11], [12], and ecosystems [13]
due to its close association with evapotranspiration. As sur-
face temperatures can change over the course of minutes,
land surfaces exhibit diurnal temperature fluctuations which
are far more information-rich than individual observations.
Diurnal cycles are primarily a lagged response to incoming
and outgoing radiation, but there is significant spatial and
seasonal heterogeneity in the timing of peak temperature and
the range between daily minimum and maximum [9], [14].
The diurnal range of LST is a key, though relatively poorly
observed, indicator of climate change [15], [16].

Various approaches have been used to observe land sur-
face temperature, which remains a challenging task due
to its ill-posed nature and the heterogeneity of land sur-
face types [17]. Ground based observations of LST are
sparse and not generally adequate to study spatial vari-
ation. Observations from low earth orbit (LEO) satellites
such as NASA’s Moderate Resolution Imaging Spectrora-
diometer (MODIS) have accurate and comprehensively vali-
dated products. MODIS data products boast global coverage,
relatively long record lengths, and high spatial resolution.
However, LEO sensors like MODIS have limited temporal
resolution, reflecting the intermittent revists permitted by
LEO orbit patterns. MODIS flies onboard Terra and Aqua,
two companion satellites with offset 12-hour revisit times.

The infrequency of observations makes it challenging for
LEO satellites to capture information about diurnal variation.

Traditionally deployed for weather observations, geosta-
tionary (GEO) satellites have emerging applications for sci-
ence due to their spatial and spectral similarities to LEO
sensors, including the requisite thermal bands to retrieve
land surface temperature. By orbiting at a high altitude of
35,785 km, GEO sensors have an identical orbital period to
the Earth and remain in fixed positions as viewed from the
Earth’s surface. As a result, GEO sensors like the Geosta-
tionary Operational Environmental Satellites (GOES)-16 and
-17 can provide full disk observations every 10 minutes or
more. GEO observations resolve diel surface changes and
have increased robustness to cloud cover [18].

Motivated by the complementary attributes of separate
satellite datasets, we introduce a framework for cross-sensor
emulation, in which a model is trained on overlapping LEO-
GEO observations. We propose NEXAI-LST (NASA Earth
eXchnageArtificial IntelligenceLand SurfaceTemperature),
a convolutional neural network that learns amapping between
GOES-16’s infrared bands and MODIS Terra LST to accu-
rately predict geostationary LST with a built-in clear sky
classifier (Figure 1). Key contributions of this work include:

1) Prediction of a high quality, spatially and temporally
consistent LST at a higher resolution (10 minute/2 km)
than the GOES-16 standard full disk product
(1 hour/10 km) (Figure 2).

2) Elimination of the need for ancillary datasets in our
machine learning-based approach.
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TABLE 1. Comparison of NEXAI-LST and MODIS LST using metrics of absolute error. NEXAI-LST derived from GOES-16 and Himawari-8 are spatially and
temporally coincident with MODIS Terra and Aqua, resulting in four sensor combinations. While GOES-16/Terra pairs were used for training, all data from
Himawari-8 and Aqua were reserved for validation. Metrics of error on LST prediction include root mean square error (RMSE), mean absolute error (MAE)
and bias. These statistics and clear sky classification accuracy are presented with 95% confidence intervals.

3) Demonstration of the generalizability of the model
across unseen times of day and spatial regions using
holdout LEO and GEO sensors.

4) Greater absolute and relative fit to in-situ measure-
ments from the SURFRAD (SURface RADiation Bud-
get) Network, compared to two standard LST products.

Our experimental results suggest that the learned rep-
resentation is robust in generalization to unseen satellite
sensors. Further, multiple metrics of fit to ground obser-
vations suggest superior performance in comparison to the
National Oceanic and Atmospheric Administration (NOAA)
GOES-16 standard product and the MODIS Daily LST
product. This performance is achieved without prior knowl-
edge of current land and atmosphere states, in contrast with
traditional physical-statistical models. To the best of our
knowledge, there is no other framework to learn data-driven
land surface temperature models that leverages overlap-
ping observations from multiple sensors. To promote future
research and development, we have made the NEXAI-LST
product, model, and codes publicly available for download at
https://data.nas.nasa.gov /geonex/geonexdata/ML/nexai - lst /
and on GitHub at https://github.com/KateDuffy/LEO-GEO-
landsurfacetemp.

II. RELATED WORK
Traditional remote sensing methods for LST retrieval use
thermal infrared measurements supplemented by data from
weather models and other satellite sensors. The thermal
infrared channels of satellite sensors receive a signal that
is determined by the Earth’s surface temperature, surface
emissivity/reflectivity, atmospheric effects, and solar radia-
tion. Land surface temperature is extracted from this sig-
nal using methods from two main families: single infrared
channel and split infrared channel. The single channel equa-
tion uses modeling of radiation scattering and absorption
through the atmosphere and requires extensive ancillary
information about current atmospheric profiles. Split channel
approaches use differential absorption in two channels to
partially account for atmospheric and surface effects. The
MODIS LST retrieval algorithm is based on the split channel
approach using MODIS bands 31 and 32 (central wave-
lengths = 11 and 12 µm) [19]. Coefficients of the generalized
split window algorithm depend on viewing zenith angle,
atmospheric surface temperature and water vapor, and are

estimated from regression analysis of a radiative transfer
model. The MODIS LST algorithm is reduced to a lookup
table in the operational implementation. The lookup table
is organized as a database by water vapor saturation, air
temperature, and surface emissivity.

There are several challenges that make LST retrieval a
difficult problem. Atmospheric water vapor is the main atmo-
spheric contribution to the thermal infrared signal that reaches
satellites. As a result of water vapor, the actual surface
temperature is generally higher than the brightness temper-
ature measured at the satellite. The relationship between
radiance and temperature is nonlinear, making linear mod-
els, like the single and split channel methods, imprecise,
especially for hot and wet atmospheric conditions [20]. This
systematic error increases as a function of column water
vapor, such that including water vapor information improves
LST accuracy [21]. However, the need for prior knowledge
of land and atmospheric states leads to the propagation
of error into LST products. LST products are also subject
to strong directional effects due to structure of surfaces,
including trees, topography, and buildings. Thus, differences
in view angle can introduce significant difference between
products.

Deep learning has begun to demonstrate promise in tradi-
tionally challenging problems in the Earth sciences, from pre-
cipitation nowcasting [22] to climate downscaling [23], [24].
Convolutional neural networks (CNN) can automatically
extract spatial features, and it has been suggested that the
ability to apply nonlinear reasoning using spatial context is
behind CNN’s power in the geosciences [25]. The general
function approximation ability of neural networks, including
CNNs, has been applied to the emulation of physical mod-
els in scientific domains ranging from turbulent flow [26]
to atmospheric radiative transfer modeling [27], [28], astro-
physics, climate modeling, biogeochemistry, high energy
density physics, and more [29]. In the context of remote
sensing,machine learning has been applied to generate spatial
datasets like tree cover maps [30], synthetic sensor spec-
tra [31], and poverty maps [32].

In land surface temperature retrieval, machine learning
has been used to address several longstanding challenges.
A method using knowledge-driven deep learning has been
developed to deduce LST retrieval mechanisms and reduce
the need for acquiring prior knowledge [33]. This paper
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FIGURE 2. Summer 2021 brought a persistent, unprecedented heatwave to the Pacific Northwest. Land surface temperature across the region was
produced by MODIS Terra (MOD11A1) (a) and predicted from GOES-16 by the ML model (b) at 22:30 PST on June 28, 2021. c, MODIS Terra and Aqua
products, plotted with hollow green and blue markers, exhibit agreement with the model inferences but capture less detail about the temporal profile of
LST. d, 10-minute LST on June 28, 2021 exceeds the June/July average for 2021.

demonstrated that in most cases the thermal infrared bands
and water vapor data available from geostationary sensors
are sufficient for retrieval requirements. Machine learning
has also been used to fuse high-resolution optical imagery
with thermal infrared data to estimate sub-pixel LST [34],
to reconstruct missing data in LST [35], [36] and to retrieve
emissivity and LST with better accuracy than the standard
model [37].

III. MATERIALS AND METHODS
A. STUDY AREA AND DATASETS
A group of geostationary satellites including (GOES)-16
and -17 (NASA/NOAA) and Himawari-8 and -9 (Japanese
Meteorological Agency) provides near-global coverage
at a high temporal resolution. The Advanced Baseline
Imager (ABI) on board GOES-16 and the Advanced
Himawari Imager (AHI) on board Himawari-8 are sim-
ilar sensors positioned on nearly opposite sides of the
earth. At 75.2◦W, GOES-16 observes the Americas, while
Himawari-8, positioned at 140.7◦E, covers east Asia and
the western Pacific Ocean. ABI and AHI each scan the full
disk, an area approximately 120◦ by 120◦, every 10 min-
utes. The sensors have similar spectral range and 2 km
spatial resolution in the infrared bands [38]. The Level 1 -
Geostationary (L1-G) data were generated on a common
grid by the Geostationary-NASA Earth eXchange (GeoNEX)

project [39]. The common geographic projection spans from
60◦S to 60◦N and from 180◦W to 180◦E.
MODIS is a flagship sensor on board NASA’s Terra and

Aqua satellites. Together, Terra and Aqua observe every loca-
tion on Earth each 1-2 days, making observations in 36 dis-
crete bands at 1 km or better resolution. We obtained MODIS
Land Surface Temperature Daily L3 Global 1km (Terra:
MOD11A and Aqua: MYD11A1) for the years 2019 and
2020.

The SURFRAD network was established in 1993 with
the objective of providing accurate, continuous, long-
term measurements of the surface radiation budget in the
United States [40]. Seven stations covering diverse climates
provide 1-minute measurements, including upwelling and
downwelling infrared radiation. While measurements from
networks like SURFRAD are too sparse to systematically
validate remote sensing products, they provide high-quality,
independent measurements that complement scientific efforts
at comparing and benchmarking various LST products.
We accessed SURFRAD measurements of upwelling and
downwelling longwave flux corresponding to satellite
observation times for the year 2020 at http://gml.noaa.
gov/grad/surfrad/. SURFRAD LST was retrieved from the
upwelling longwave flux measurement F↑LW , downwelling
longwave fluxmeasurement F↓LW , the Stefan-Boltzmann con-
stant σ and the broadband longwave surface emissivity εsfc.
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TABLE 2. Summary statistics of the NEXAI-LST distributions and the coincident MODIS LST distributions. Distribution mean, variance, skew, and kurtosis
are provided with 95% confidence intervals.

We assumed a value of 0.97 for the broadband longwave
surface emissivity following the recommendation of previous
studies [41], [42].

LST =
(
F↑LW − (1− εsfc)F

↓

LW

εsfcσ

) 1
4

(1)

1) RATIONALE FOR THE CHOICE OF INPUT FEATURES
The predictors, which consist of 10 GOES-16 ABI infrared
bands and 1 layer of elevation information, were selected
based on prior indications of relevance to the task. Atmo-
spheric water vapor (bands 7-10) is the main contributor to
the attenuated thermal infrared signal that reaches satellite
sensors [20], [21]. The cloud properties wavelength (band 11)
is used in the MODIS LST algorithm, while the accuracy of
retrievals also depends on ozone (band 12) [43]. Band 13 pro-
vides longwave infrared information that aids in identifica-
tion of clouds and other atmospheric features. Bands 14 and
15 convey information about surface longwave radiation and
are used with the split window technique in the GOES-R
ABI LST standard product. In the case of GOES-16 data,
the 10 infrared bands were also chosen for their availability
at all times of day. The remaining 6 GOES-16 bands are
visible or near-infrared and are available only during daytime.
Elevation was also included as a covariate. Elevation influ-
ences the thermal environment by a negative correlation with
LST [44].

2) CONSTRUCTION OF TRAINING DATABASE
We used geolocation information and observation times to
match MODIS Terra/Aqua Daily LST with L1-G products
generated by GeoNEX. MODIS LST was projected to the
2 km L1-G grid in Python. MODIS observation times were
converted from local solar time to the Universal Coordinated
Time system used by L1-G. Then, the nearest 10-minute
geostationary observations were selected from the NEX
database to obtain quasi-simultaneous pairs observed nomore
than 5 minutes apart. Both daytime and nighttime observa-
tions were used as infrared observations are available day
and night. Tile matching resulted in over 30,000 MODIS
Terra tiles paired with GOES-16 L1-G data from 2019. For
validation and generalization experiments, pairs were also

constructed for the year 2020 with Terra/GOES-16, Aqua/
GOES-16, Terra/Himawari-8, and Aqua/Himawari-8. Eleva-
tion data was prepared as an ancillary data source from the
Shuttle Radar Topography Mission global digital elevation
model (SRTM30) by projecting elevation to the 2 km L1-G
grid.

B. MODEL ARCHITECTURE AND TRAINING
We present NEXAI-LST, a deep learning model for retrieval
of land surface temperature using remotely sensed infrared
bands and elevation data. We adopt a convolutional neural
network architecture that is suitable to various image pro-
cessing tasks and has been used extensively in modeling land
surface temperature due to its capacity for leveraging spatial
features [35], [36], [45]. The detailed architecture is shown in
Figure 1c.

The convolutional neural network, F(x), maps geostation-
ary data, x, to land surface temperature, y, and cloud mask m.
The 11 input channels are composed of 10 geostationary
infrared bands and 1 layer of elevation information. The
model consists of four convolutional layers, each with 128 fil-
ters of size 3 by 3, enclosed by one skip connection, the
presence of the which reformulates the task of the network as
learning a residual function [46], or the difference between
the output mapping F(x) and input x. The first three convo-
lutional layers are followed by Rectified Linear Unit (ReLU)
activations, and the last by an identity mapping. The model
excludes pooling layers, which is consistent with the task’s
dependence on relatively local information and helps tomain-
tain temporal consistency in local features in the presence of
global changes in the images. The relatively wide, shallow
network was selected as a result of superior performance
in a grid search evaluating various hyperparameters. While
deeper model designs have become common in recent years,
studies have found deep networks that cannot be realized
by shallow networks [47], as well as wide networks which
cannot be realized by any narrow network [48].

Following a previously published approach to handle
discrete-continuous distributions in geoscience data, the
model was conditioned to predict LST as one channel and
clear sky probability, p̂, as a second channel [23]. The corre-
sponding terms of the loss function used least square errors
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(L2) and binary cross entropy loss to compute the distance
between the model output and the targets. For the network
F(x) with weightsW , the loss function was written as follow-
ing for {mi}Ni=1 the classification label, {pi}Ni=1 the predicted
clear sky probability, {yi}Ni=1 land surface temperature label,
{ŷi}Ni=1 the predicted land surface temperature, N the number
of pixels in the patch, and D the number of clear sky pixels in
the patch:

L(W ) =
1
N

N∑
i=1

[
milog(p̂i + (1− mi) log(1− p̂i)

]
+

1
D

D∑
i,mi>0

||yi = ŷi||2 (2)

Data was divided into training (Terra/GOES-16 pairs from
2019) and validation (all pairs from 2020) sets. As training
examples, 64 by 64 pixel patches were extracted from images
with no overlap. Patches with no valid LST pixels (i.e. all
cloud/water) were discarded with 66.67% probability. LST
and geostationary bands were normalized to mean 0 standard
deviation 1. During training, patches were rotated, flipped
horizontally, and flipped vertically with 50% probability
to expand the dataset. Gradient descent was handled using
Adam optimization with β1 = 0.9, β2 = 0.999, ε =
1e − 7 and a learning rate 1e − 4 for 300k iterations on
one NVIDIA V100 GPU on Pleiades, NASA Ames’s high
performance computing system.

IV. EXPERIMENTS
A. LST PREDICTION FROM GOES-16
After training the model on coincident GOES-16 data and
MODIS Terra LST for the year 2019, we found that the
model predicted LST for the year 2020 with a mean absolute
error (MAE) of 1.733 K, 95% CI [1.483, 1.983] and root
mean squared error (RMSE) of 2.409 K, 95% CI [2.112,
2.705] using equal spatial representation sampling (Table 1).
A small positive bias of 0.176 K, 95% CI [−0.126, 0.478],
relative to Terra LST contributed to the overall error. These
metrics are relative to MODIS LST, which has been validated
within +/−1 K in clear sky conditions over various temper-
ature ranges [49], [50], [51]. LST should only be retrieved
under clear sky conditions to avoid conflating surface tem-
perature with cloud top temperature. On the task of discrim-
inating between clear sky pixels and cloudy/water pixels, the
model achieved 94.6% accuracy, 95% CI [93.2, 95.9].

The model was trained on one full year of data, comprised
of both night and day observations and a full cycle of seasons.
Different seasons of the year are associated with dry and wet
atmospheres that can affect retrieval errors. We evaluated the
performance of LST retrieval and clear sky prediction over
different seasons and found that MAE varied by 0.5 K over
the course of the year, with higher error in spring and summer
than in winter and fall.

A quantile-quantile (Q-Q) plot with a 45◦ reference line
provides a direct pixel-wise comparison of the distributions

FIGURE 3. Quantile-quantile plots are presented for the two sensors used
to train the model (GOES-16 and Terra; a), a holdout LEO satellite
(GOES-16 and Aqua; b), a holdout GEO satellite (Himawari-8 and Terra;
c), and two holdout satellites (Himawari-8 and Aqua; d).

with quantiles of the reference distribution (Terra LST) on
the x-axis and quantiles of the NEXAI-LST distribution
(from GOES-16) on the y-axis. (Figure 3). Points on the
Q-Q plots formed a relatively straight line but show a some-
what lighter tail in the NEXAI-LST distribution than the
reference distribution. This indicates that compared to the
Terra LST distribution, the NEXAI-LST predictions had
less data in the distribution extremes. However, NEXAI-
LST closely reproduced the complex, multimodal, overall
shape of the LST distribution. The distributions of Terra LST
(µ = 292.996 K, σ 2

= 99.698 K 2) and NEXAI-LST from
GOES-16 (µ = 292.801 K, σ 2

= 93.161 K 2) were statisti-
cally similar for corresponding times and locations (Table 2).
The ML model also approximated the higher order statistics
of the LST distribution. The ability of a model to capture
observed skewness and kurtosis is scientifically important
as these are potentially nonstationary aspects of climatology
that are of interest for climate adaptation. Previous studies
have indicated that the negative skewness of temperature
is decreasing under climate change, resulting in fewer cold
extremes and more hot extremes [52], [53], [54].

Patterns of bias in 10 quantiles of the distribution
(Figure 4) indicate modest (<1K) biases between NEXAI-
LST (GOES-16) and Terra LST when excluding the top
decile. The ML model tends to overestimate temperature in
the lowest (coolest) quantiles of the distribution while under-
estimating temperature in the uppermost (warmest) quantiles.
This pattern is consistent with a thinner-tailed predicted dis-
tribution than the reference distributions from MODIS Terra.
However, a strong linear relation (R2 = 0.977) indicated
that the regression model, which was trained on datasets from
2019, is well-fitted to the new observations.
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FIGURE 4. Biases are presented in ten quantiles that span mean and extreme land surface temperatures. For GOES-16 NEXAI-LST and MODIS Terra (a),
Himawari-8 NEXAI-LST and MODIS Terra (b), GOES-16 NEXAI-LST and MODIS Aqua (c), and Himawari-8 NEXAI-LST and MODIS Aqua (d). Across the
training and holdout sensors, biases are less than 1.5K in magnitude in all quantiles except for the top and bottom deciles. In all four applications of the
model, the pattern of biases is consistent with thinner-tailed predicted than actual distributions.

TABLE 3. Summary of the ABI infrared bands, which each have a best
spatial resolution of 2 km.

B. GENERALIZATION TO HOLDOUT SENSORS
We used LST observations from Terra’s companion satellite,
Aqua, to test generalization of the model to times of day
outside of the training dataset. Terra crosses the equator in
a descending orbit (north to south) at 10:30am local time
and an ascending orbit (south to north) at 10:30pm local
time. Aqua crosses the equator in an ascending orbit at
1:30pm local time and a descending orbit at 1:30am local
time. Thus, Aqua provides LST retrievals at times of day
unseen in the training set. We also applied the trained model
to predict land surface temperature from the infrared bands
of the Advanced Himawari Imager on board the geostation-
ary satellite Himawari-8. Himawari-8 observes Asia-Pacific
every 10 minutes with similar bands to GOES-16’s Advanced
Baseline Imager.

Statistical performance was slightly poorer on the holdout
sensors than the training sensors, with MAE in the range of
1.908 to 2.144 K and RMSE in the range of 2.612 to 3.077 K.
NEXAI-LST values from both GOES-16 and Himawari-8
had a positive bias when compared to coincident MODIS
Aqua LST, while NEXAI-LST values from Himawari-8 had
a negative bias in reference to Terra LST. Accuracy of
clear sky discrimination held constant on the holdout sensors
at 93 to 94%.

Q-Q plots involving the two holdout sensors indicated
similar distributions between MODIS LST and NEXAI-LST
in terms of mean, variance, skew, and kurtosis. As seen for

the training sensor set, the NEXAI-LST distributions were
slightly lighter-tailed than the MODIS distributions. R2 val-
ues in the range of 0.940 to 0.979 indicated a strong linear
association held between the labels and predictions regardless
of distributional shifts in the holdout data with respect to the
training data.

Patterns of bias in 10 quantiles of the distribution reflected
qualitatively similar patterns of error across the combinations
of holdout sensors. In general, bias became monotonically
less positive between the lowest quantile and some middle
quantile with near-zero bias, then monotonically more nega-
tive up to the highest quantile. The location of the transition
point from positive to negative bias varies across combi-
nations of sensors, which may be attributed in part to the
difference in the Aqua and Terra distributions. As a rule, the
biases were most pronounced in the tails of the distribution.

C. SPATIAL PATTERNS OF ERROR
The spatial patterns of error suggest that the sign as well
as magnitude of NEXAI-LST errors exhibited clustering in
space which may be related to spatial variation in land surface
cover, atmospheric conditions, or other factors (Figure 5).
In the region observed by GOES-16, higher magnitude errors
clustered on the west coasts of North and South America.
In the Himawari-8 region, the greatest magnitude of errors
appeared in Central Asia, where a large (5 to 6 K) nega-
tive bias predominates. Elsewhere in the Himawari-8 region,
biases were small and nearly uniformly positive.

The relatively few observations per geographic location
in the tropics reflected the rarity of clear sky observations
from MODIS in these regions. The robustness of geostation-
ary sensors to cloud cover provides a motivation to utilize
GEO sensors in the tropics in particular [18]. However, their
underrepresentation in the training dataset does not appear
to have resulted in poorer performance in terms of absolute
error or bias. Rather, high errors and negative bias clus-
tered in arid, high elevation regions including the Tibetan
Plateau and Andes mountains, and the Rockies region in the
western United States. Poorer generalization to the Tibetan
Plateau region may be attributable to very low atmospheric
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FIGURE 5. NEXAI-LST predicted from GOES-16 (a-c) and Himawari-8
(d-f) are evaluated by comparison to the MODIS Terra and Aqua LST
products (predicted - MODIS). a,d, The number of matching LEO/GEO
pixels shows significant spatial variation in the number of clear sky
observations. For GOES-16 predictions, mean absolute error (b) is greatest
in the arid, high elevation western regions, where bias is largely
negative (c). For Himawari-8 predictions, a large negative bias also
appears in the Tibetan plateau (e-f).

water vapor content over this arid, high elevation region [55].
As the main determinant of atmospheric transmittance,
column water vapor has strong effects on retrieval error [56].
This error demonstrates the limited generalization of the ML
model to physical conditions not represented in the training
dataset, or could be attributable to exaggerated differences in
pixel size and viewing angle caused by topography.

D. VALIDATION WITH GROUND MEASUREMENTS
We compared GOES-16 NEXAI-LST inferences and
LST products from traditional physical-statistical models
with ground-based measurements of LST from the seven
SURFRAD stations. For benchmarking, NEXAI-LST was
extracted at times corresponding to MODIS Terra/Aqua LST
(Table 4 Panel a) and NOAA GOES-16 standard full-disk
LST (Table 4 Panel b). The NEXAI-LST product exhib-
ited greater agreement with SURFRAD measurements than
either product in terms of both absolute and relative fit.
Relatively poor performance at station DRA in Desert Rock,
Nevada appeared across methods. Higher error at DRA likely
occurred due to heterogeneous surroundings or a negative
dewpoint bias associated with lowmoisture over the site [42].

In comparison to the MODIS LST products, NEXAI-LST
has a lower MAE at 5 out of 7 stations, a lower RMSE at
6 out of 7 stations, and a higher R2 value with SURFRAD
for all 7 stations. The ML model achieves a reduction of
the RMSE by nearly 0.5 K compared to the MODIS LST
product used for training. Where viewing angle differences
and atmospheric path length differences may have affected

the training pairs, these validation results suggest that the
model has learned to overcome these biases and noise.

In comparison to the NOAA standard product, NEXAI-
LST has a higher R2 value with SURFRAD for 5 out
of the 7 stations. In a mean across measurement stations,
NEXAI-LST also has lower MAE and RMSE with respect
to SURFRAD. The NOAA LST product is derived using a
split window technique from the same Level 1 data used
to predict NEXAI-LST. However, the split window algo-
rithm additionally uses ancillary information including atmo-
spheric total precipitable water, land surface emissivity, and
snow/ice mask, and a cloud mask. While results based on
ground measurements with limited spatial representativeness
should not be over interpreted, they suggest that our model
may perform as well as or better than the standard model
while requiring no ancillary data as inputs.

V. OBSERVING HEAT EVENTS USING NEXAI-LST
Over the summer of 2021, heat waves in the United States
Pacific Northwest produced multiple record-setting tempera-
tures affecting ill-adapted population hubs. We applied our
model, which can generate full disk NEXAI-LST with a
frequency up to every 10 minutes, to predict LST for the
region over the period spanning from June 15 to July 15,
2021. In Figure 2a-b, MODIS Terra LST and NEXAI-LST
are presented side by side for observations taking place at
20:30 PST on July 28, 2021. A time series of NEXAI-LST
at a 10-minute time step demonstrates the temporal profile
of diurnal temperature variation over the course of days
(Figure 2c). MODIS Terra and Aqua overpasses, plotted in
green and blue, exhibit agreement with the model inferences.
At the same time, their temporal sampling is insufficient to
describe key characteristics of LST such as the intensity and
timing of peak temperature, the minimum temperature, and
the time-integrated exceedance of temperature thresholds.
Terra and Aqua products are not guaranteed to capture the
daily minima andmaxima that are necessary to establish diur-
nal temperature range, including on the hotter-than-average
June 28, 2021 2d.

Temporal consistency, or the uniformity of predictions for
similar conditions close together in time, is a key indica-
tor of model reliability. Achieving temporal consistency can
be a challenge in ML approaches, such as this one, which
process images frame by frame. However, the correlation
of the NEXAI-LST predictions over time demonstrates the
temporal stability of this model.

VI. DISCUSSION
The GOES-R standard land surface temperature product aims
to meet an accuracy goal of 2.5 K conditional with 1) known
emissivity, 2) known atmospheric correction and 3) 80%
channel correction, and 5 K otherwise [57]. NEXAI-LST,
which did not take direct advantage of any of these condi-
tions, meets the 2.5 K goal for the set of training sensors
and exceeds the 5 K goal for all combinations of sensors,
while improving on both spatial and temporal resolution at
the full disk scale. However, our model does depend on the
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TABLE 4. Comparison of GOES-16 NEXAI-LST and coincident LST from
physical-statistical models (MODIS Terra/Aqua, panel a; GOES-16
standard product, panel b) against ground station observations from the
SURFRAD network from the year 2020.

availability of training data taking advantage of these ancil-
lary datasets.

Variance between MODIS LST and NEXAI-LST can be
attributed to sources including: imperfect approximation of
model physics by the network, spatial and temporal shifts
between LEO and GEO data, differences in viewing and
illumination geometry, error in the GEO radiance values,
and error in the LEO data product. It should be noted that
MODIS LST products are commonly validated for inter-
mediate values in the distribution: Coll et al. found a bias
of +0.1 K and standard deviation of 0.6 K for a range of
surface temperatures between 298.15 and 305.15 K [49],
while Wan et al. found better than 1 K accuracy in the
range from 263 to 300 K [50]. According to our assessment,
these ranges of intermediate temperature represent only lim-
ited portions (approximately 30% and approximately 80%,
respectively) of the observed LST distribution. Neither study
evaluated performance on the warmest 10% of observations.
Evaluating the bias of our predictions relative to MODIS
LST acrossmultiple quantiles of theMODISLST distribution
indicated that NEXAI-LST is less biased for the middle
of the distribution but has higher error in the warm and
cool tails of the distribution, which have less well-defined
accuracy characteristics. The proposed model was trained
with the objective of minimizing global error between out-
puts and labels, so understanding the model’s performance
in rare or complex conditions is challenging. Training with
importance weighting might improve performance for rare
cold and hot values in the future. Other ML-based studies of
LST prediction have attained MAE of 2.85 K on day ahead

prediction [58] and MAE of 0.16-0.26 K using other weather
variables as predictors [59] over limited geographic regions.

This modeling approach, which was demonstrated for two
geostationary sensors, has potential application to further
geostationary sensors, which could result in nearly full global
coverage. In contrast to hand-tuned physics-based models,
which result in spatially and temporally coarsened data,
our ML model can produce LST at spatiotemporal reso-
lutions constrained only by the attributes of Level 1 data
(2 km/10 minutes). Sub-hourly geostationary observations
result in more cloud-free observations [18], which, together
with their unprecedented spatial and temporal consistency,
can help reconstruct cloudy images and answer questions
about temperature variation over fine timescales. Remote
sensing of surface urban heat islands [9], [60] has an increas-
ingly important role in providing data to inform climate
adaptation policy and extreme heat response.

VII. CONCLUSION
In this study we used deep learning to train a data-driven
model for MODIS-like land surface temperature for applica-
tion to geostationary sensors. We found that the ML model
could predict spatially and temporally consistent LST at a
finer resolution than the standard GOES-R product. Fur-
ther, we explored the generalizability of the approach across
unseen times of day, spatial regions, and satellite sensors.
In the generalization studies, we found that a model trained
on one LEO-GEO pair (Terra and GOES-16) can credibly
transfer to holdout LEO and GEO satellites based on statis-
tical performance, but with some limitations in application
to out-of-sample conditions. In validation against indepen-
dent, ground-based measurements, we found that our model
performs as well or better than the standard GOES-16 and
MODIS LST product, while not depending on prior infor-
mation about land surface and atmosphere states. These
experiments demonstrate the capability of deep learning
models to approximate complex physics-based functions by
learning from huge, real-world datasets. Our LEO-GEO
approach is complementary to physics-based modeling, as it
draws obliquely upon the MODIS LST algorithm to generate
NEXAI-LST, a product of improved spatial and temporal
resolution.
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