IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 11 July 2022, accepted 30 July 2022, date of publication 16 August 2022, date of current version 22 August 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3198707

== RESEARCH ARTICLE

Efficient Parallel Implementations of PIPO Block
Cipher on CPU and GPU

HOIJIN CHOI", (Student Member, IEEE), AND SEOG CHUNG SEO ", (Member, IEEE)

Department of Financial Information Security, Kookmin University, Seoul 02707, South Korea

Corresponding author: Seog Chung Seo (scseo @kookmin.ac.kr)

This work was supported in part by the Institute of Information and Communications Technology Planning and Evaluation (II'TP) by the
Korea Government through the Ministry of Science and ICT (MSIT) (6G Autonomous Security Internalization-Based Technology

Research to Ensure Security Quality at all Times, 50%) under Grant A2021-0270, and in part by the National Research Foundation of
Korea (NRF) by the Korea Government through MSIT (50%) under Grant 2022R1C1C1013368.

ABSTRACT Data encryption is essential for securely managing clients’ data in servers in data-centric ICT
environment. Clients must encrypt the data before transmitting it to severs or other clients. Encrypting a large
volumne of data requires a lot of time. Therefore, in order for servers and clients to not only secure but also
smoothly communicate each other, the optimization of data encryption is necessary on both the server-side
and the client-side. Especially, the server environment is responsible for managing/processing lots of data
from clients. In this paper, we present two kinds of highly optimized PIPO cipher software in CPU and GPU
environment, respectively. PIPO was proposed in ICISC’19 as a lightweight block cipher. For optimization,
we take full advantage of two parallel processing technologies: AVX-related instructions in CPU and
NVIDIA CUDA platform in GPU. Regarding the optimization in CPU environment, we process several
plaintext blocks such as 32 and 64 blocks with the proper use of AVX2 and AVX-512 instruction sets and the
proposed arithmetic techniques, respectively. Regarding the optimization on GPU environment, we propose
a data alignment/data combining methods, and PTX inline assembly utilization method considering the
characteristics of GPU architecture. In Intel Core 19-11900K (3.50GHz) architecture, our PIPO software
utilizing AVX-2 has a performance improvement on 839.64% (resp. 985.46% [AVX-512]) compared to the
existing reference code (Regarding AVX-512, this is the first PIPO software using AVX-512 instructions as
far as we know). Finally, in RTX 2080Ti, our PIPO GPO software shows throughput of up to 1110.08 Gbps.

INDEX TERMS AVX-2, AVX-512, block cipher, CUDA, GPU, parallel processing, PIPO, SIMD.

I. INTRODUCTION

With the advent of the 4th industrial revolution, many data
is transmitted through network communication. In particular,
various services are provided as low-end devices and high-
end devices communicate. Low-end devices mainly use IoT
(Internet of Things), edge computing, and embedded devices,
while high-performance devices use CPU (Central Process-
ing Unit) and GPU (Graphics Processing Unit) architectures.
If data are not encrypted in network communication, the
data be exposed to network packets, leading to security inci-
dents such as exposure to personal information and confiden-
tial information. Therefore, data encryption is essential for

The associate editor coordinating the review of this manuscript and

approving it for publication was Easter Selvan Suviseshamuthu

VOLUME 10, 2022

network communication. On low-end devices, cryptographic
operations may be overloaded with the limited specifications
of low-end devices. Thus, lightweight encryption algorithms
are recommended for low-end devices. Mainly, the server
communicates with many embedded devices and provides
services. Therefore, the server must operate and manage data
efficiently and quickly. Additionally, if the size of the data is
large, the server should apply data encryption optimization to
avoid the problem of communication delayed with the client.

PIPO (Plug-In and Plug Out) encryption algorithm is a
lightweight block encryption algorithm that operates effi-
ciently and quickly in an 8-bit AVR embedded device
environment [1], [2]. Research on PIPO optimization in
embedded devices (RISC-V, ARM, etc.) is ongoing [3], [4],
[5]. However, research on PIPO optimization is insufficient

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 85995

https://orcid.org/0000-0002-7298-3689
https://orcid.org/0000-0001-8016-2808
https://orcid.org/0000-0002-8584-5947

IEEE Access

H. Choi, S. C. Seo: Efficient Parallel Implementations of PIPO Block Cipher on CPU and GPU

for high-end devices such as CPU/GPU. CPU/GPU architec-
ture is mainly used in the server environment. And in net-
work communication using PIPO cryptographic algorithm,
since the server communicates with many clients, the server
must efficiently operate the PIPO algorithm encryption and
decryption. Therefore, in this paper, we proposed a parallel
implementation method of PIPO using AVX (Advanced Vec-
tor eXtensions)-2 and AVX-512 of SIMD (Signle Instruction
Multiple Data) instruction sets applicable in CPU environ-
ment. Additionally, we proposed a parallel implementation
of PIPO using NVIDIA GPU CUDA C and Inline Assembly
Parallel Thread Execution (PTX). The proposed PIPO opti-
mization method enables efficient computational processing
in an environment using CPU/GPU (eg, server, database
encryption/decryption). Our implementation of PIPO using
AVX-2 has a performance improvement of 876.72% com-
pared with the naive ported GPU version of the CPU ref-
erence code. Finally, our PIPO implementation using GPU
CUDA shows a throughput of up to 1,110.08 Gbps. To the
best of our knowledge, our implementation of PIPO using
GPU CUDA C and PTX is the first proposed approach.
Additionally, the implementation of PIPO using our AVX
instruction is the first proposed techniques.

A. CONTRIBUTIONS
The contribution of this paper is as follows:

1) PIPO implementation methods using AVX-2 &
AVX-512 instruction sets
AVX-2 and AVX-512 instruction registers support 256-
bit and 512-bit, respectively. We considered the fact
that the operation of the PIPO algorithm is a bitwise
operation in 8-bit units and AVX-2/AVX-512 instruc-
tions that do not provide bitwise operation in 8-bit
units. As a result, we proposed a 16-bit data combina-
tion and a PIPO algorithm bitwise operation processing
method. Finally, we proposed a method that can effec-
tively apply AVX-2/AVX-512 operation to the S-Layer
and R-Layer processes of the PIPO cryptographic algo-
rithm. As a result, in Intel Core 19-11900K (3.50GHz,
8 core and 16 processors) architecture, our implemen-
tation of PIPO using AVX-2 (AVX-512) has a per-
formance improvement of 876.72% (resp. 985.46%)
compared to the reference code.

2) PIPO implementation methods using CUDA C lan-
guage in GPU Architecture
GPU architecture uses many threads to enable mas-
sive computational parallelism. CUDA is a technology
that allows the effective use of GPU architectures
in computing languages. In this paper, we propose
a PIPO implementation scheme and an optimiza-
tion strategy using CUDA C and the inline assem-
bly language PTX. In particular, we propose a 16-bit
PIPO bit operation method that can effectively use
PTX instructions.Finally, our PIPO implementation
using our CUDA C achieved 275.60Gpbs (GTX

85996

1650 architecture), 1,110.08Gbps (RTX 2080Ti archi-
tecture). Our PIPO implementation provides perfor-
mance gains of 175.82% (GTX 1650 architecture) and
167.50% (RTX 2080Ti architecture) compared with the
naive ported GPU version of the CPU reference code.
In other words, our proposed implementation of PIPO
on GPU architecture is effective regardless of the type
of GPU architecture.

The remainder of this paper is organized as follows.
In Section 2, we briefly review PIPO Block Cipher.
In Section 3, we briefly provide an overview of AVX-2 &
AVX-512 and GPU environment. In Section 4, we propose
implementation and optimization methods for PIPO algo-
rithm for each environment. In Section 5, we compare the
performance. In Section 6, we conclude the paper.

Il. OVERVIEW OF PIPO

At the ICISC (International Conference on Information Secu-
rity and Cryptology) conference in 2021, Kim et al. pre-
sented PIPO, a 64-bit lightweight block cipher using a key
of 128/256-bit [1]. PIPO offers efficient performance in
8-bit AVR software. Additionally, PIPO algorithm consists
of 8-bit unit operations, and can be effectively implemented
by applying bit-slicing method. Finally, PIPO cryptographic
algorithm can apply an efficient higher-order masking imple-
mentation by providing minimal non-linear operations [1],
[2]. Table 1 shows the definition of the block size and the
number of key length rounds of each parameter of PIPO.
When using a 128-bit key, 13 rounds is performed, and when
using a 256-bit key, 15 rounds is performed. Each round
consists of a non-linear operation stage expressed in S-Layer,
a linear operation stage expressed in R-Layer, and a stage in
which Round Key and eXclusive-OR (XOR) operation are
processed.

TABLE 1. PIPO algorithm parameter [1], [2].

Block Size(bit) Key Size(bit) Round
PIPO-64/128 64 128 13
PIPO-64/256 64 256 15

The internal structure of PIPO consists of S-Layer,
R-Layer, and Addroundkey. The S-Layer consists of an 8-bit
input and an 8-bit output process. The internal process of
S-Layer consists of one 3-bit input/output S-box and two
5-bit input/output S-boxes. For a 3-bit S-box, the number of
non-linear (linear) operations is limited to 3 (4). For a 5-bit
S-box, the number of non-linear (linear) operations is limited
to 4 (7). The PIPO S-Layer can be implemented by bit-slice
method and Look Up table method [1], [2]. Algorithm 1 is a
bit-slice implementation method for PIPO S-Layer [2]. In the
PIPO S-Layer bit-slice implementation method, 22 XOR ()
operations, 7 AND (&) operations, and 4 OR (I) operations
are performed. R-Layer consists of bit rotations of bytes. The
internal state of the PIPO algorithm consists of 64-bit, and
8 bit rotations are processed in R-Layer process. Figure 1 is
a summary of the PIPO algorithm.

VOLUME 10, 2022

H. Choi, S. C. Seo: Efficient Parallel Implementations of PIPO Block Cipher on CPU and GPU

IEEE Access

S-Layer
W
Roundkey, *a — 5 pir
........................... ' 1 >
[} U
! S-Layer |: —
L} ' " —
K H H 2 — bit
H R-Layer |: — i N
' : I
L -
1 Roundkey, 4 s
b eeeneanes i L-round ="
: ;
[}
:
' R-Layer
H aa— dooooooooneees :
:I S-Layer |:
H L ' <<<7
"
EI R-Layer |: cc<a
L} [}
H] <<<3
1 Roundkey, '
oo X oo <<<o
\ 4 <<<5
I Ciphertext | <<<1
<<<2

FIGURE 1. PIPO Algorithm Summary [2].

Algorithm 1 PIPO S-Layer Bit-Slice Implementation Method [2]

Require: 64-bit input(xy, x¢, X5, X4, X3, X2, X1, X0)
Ensure: 64-bit output(x’, xg, x5, x4, x5, X5, X}, X;)
Sg) operation
X5 < x5 @D (x7 & x¢)
X4 < x4 D (x3 & x5)
X7 <—Xx7 P xg
X6 < X6 D x3
x3 < x3 D (x4 | x5)
X5 < x5 P x7
X4 < X4 @ (x5 & x6)
S3 operation
DXy < x2 @ (x] &xp)
9: xg < x0 D (x2 1 x1)
10: x1 < x1 @ (xp & xq)
11: xp < ~x2
Extend XOR
12: x7 < X7 D X1
13: X3 <—Xx3 B x2

N A

[~

14: x4 < x5 D X0
351 operation

15: tmpy < Xx7; tmp| <— X3; tmpy <— X4;

16: x6 < x¢ @ (tmpg & x5)

17: tmpgy <— tmpy D xg

18: xg < x6 @ (tmpy | tmpy)

19: tmp| < tmp1 @ x5

20: x5 < x5 @ (tmpg | tmp2)

21: tmpy < tmpy @ (tmp & tmpg)
Truncate XOR and bit change

22: Xp <— X2 @ tmpg

23: tmpg < x1 D tmpy

24: x1 < x0 @ tmp,

25: X0 < X7; X7 < tmpg
26: tmp1 <— X3, X3 < X

27 Xe <— tmp1; ImMpy <— X4
28: X4 < X5, X5 < tmp)

29: return (x7, X6, X5, X4, X3, X2, X1, X0)

1) RELATED WORKS

Since the publication of the PIPO block cipher algorithm,
various studies on the PIPO cipher algorithm have been con-
ducted. The results of implementation of PIPO encryption
algorithm in various embedded devices such as 32/64-bit
ARM processors, and RISC-V processors were published
in [3], [4], and [5]. Song et al. proposed a method to
use the NEON engine in the ARM-cortex-A environment
and optimize the PIPO implementation register scheduling.
As a result, Song et al.’s implementation of PIPO shows

VOLUME 10, 2022

15.1 Cycle Per Byte (CPB) (PIPO-64/128) and 19.6 CPB
(PIPO-64/256) [3]. Kwak et al. proposed a register schedul-
ing and logic scheme for the parallel implementation of
PIPO in a RISC-V environment. As a result, the implemen-
tation by Kwak et al. shows a performance of 113.7 CPB
(PIPO-64/128) [4]. Eum et al. proposed an internal oper-
ation optimization method and register scheduling method
to implement PIPO optimization in a 64-bit ARM envi-
ronment. As a result, the implementation of Eum et al.
shows performance of 3.9 CPB (PIPO-64/128) and 4.8

85997

IEEE Access

H. Choi, S. C. Seo: Efficient Parallel Implementations of PIPO Block Cipher on CPU and GPU

(PIPO-64/256) [5]. In addition, many side-channel attack
countermeasures research on PIPO block cipher had been
published such as differential fault attack, masking methods
etc [6], [7].

Recently, the results of the implementation of crypto-
graphic algorithms in GPU architecture equipment have
attracted attention. Research results on the implemen-
tation and optimization of block cipher algorithms in
GPU architectures have been published in [8], [9], [10],
[11], [12], [13] and [14]. Additionally, implementation
results in cryptographic algorithms in GPU architectures
such as PQC and public key algorithms have been
published [15], [16], [17], [18].

Research on PIPO optimization in embedded devices
(RISC-V, ARM, etc.) is ongoing. However, research on PIPO
optimization is insufficient for high-end devices such as
CPU/GPU. For servers that communicate with many clients,
data processing speed needs to be accelerated to provide an
efficient service. Therefore, research on optimization of the
PIPO encryption algorithm in high-end devices for servers
should be conducted for data processing speed in the PIPO
algorithm-based communication environment.

Ill. TARGET PLATFORMS

A. SIMD: AVX-2 & AVX-512 IN CPU

SIMD is a parallel computing technology that processes mul-
tiple blocks of data as one instruction. SIMD provides higher
computational performance than the existing SISD (Single
Instruction Single Data) structure. SIMD technologies pro-
vided by Intel CPUs include MMX (MultiMedia eXtension),
SSE (Streaming SIMD Extension), and AVX. Intel SIMD
technology intrinsic function allows the use those instructions
in a non-assembly C/C++ environment [19].

AVX-2 is a SIMD technology installed in Intel CPU Cores
made in 2011, starting with Intel Sandy Bridge. Conven-
tional SIMD SSE-2 technology uses a 128-bit register size
and AVX-2 is configured with a 256-bit register size. The
AVX-2 register allows one instruction to process 256-bit
data. Recently, high-performance Intel CPUs are equipped
with AVX-512 registers along with AVX-2 registers. AVX-
512 SIMD technology was first installed in Intel Core X
series (Skylake-X) CPU equipment released in 2017 (for
server PCs, AVX-512 was first supported by Skylake-SP).
The size of AVX-512 register consists of 512-bit. AVX-512
provides up with 7x performance improvement to traditional
SSE technology [20].

B. GPU AND CUDA

A GPU architecture is a device created to process the graphics
elements of a computer, and in its early development was
primarily used for graphics processing for design purposes.
The purpose of GPUs is to enhance parallelism and to quickly
compute simple or specific operations through parallelism.
Compared to CPUs with about 10 high-performance cores
and auxiliary equipment, GPUs are designed with a simple

85998

combination of hundreds of cores. In other words, the GPU is
a device that maximizes the operation speed through parallel
operation of graphics processing and special operations.

With the development of GPU architecture technology,
GPUs have begun to be useful for common tasks that CPUs
are responsible for. Based on this, General Purpose Com-
puting on GPU (GPGPU) technology was developed to pro-
cess general-purpose computing operations through the GPU
architecture. Consequently, in 2006, NVIDIA developed and
launched CUDA, a GPGPU technology that can run on GPU
architectures. CUDA is a technology that allows developers
to easily write algorithms that can run on GPUs in various
programming languages.

CUDA provides access to the GPU’s instruction set and
memory, and was developed to make effective use of the
GPU. GPU architectures handle the same tasks in parallel
with a single core, called a thread. Threads are configured in
block/grid units and grouped into one configuration, and data
can be shared through shared memory inside a block. GPUs
also have global memory and constant memory.

IV. PROPOSED PIPO IMPLEMENTATIONS

In this section, we proposed PIPO implementation meth-
ods for each environment. We proposed implementation
methodologies and optimization methods in AVX-2 &
AVX-512 SIMD, and GPU environments that enable parallel
environments.

A. OVERALL DESIGN PRINCIPLE FOR EFFICIENT
PARALLEL COMPUTATION

Typically, when representing input messages in computing,
data is organized into 8-bit data types (either unsigned char
type or char type). Additionally, both S-Layer and R-Layer
operations in the PIPO cryptographic algorithm consist of
8-bit unit datatype operations. Algorithms with these 8-bit
arithmetic units have no problems in environments that
provide 8-bit operators (AVR, C language, etc.). However,
an environment that does not provide an 8-bit operator causes
a problem. Environments that do not provide 8-bit operators
should use 16/32/64-bit operators to handle data operations.
In other words, if computing environment does not provide
8-bit data type operation, 8-bit data should be stored in other
data type and data operation is processed. This process is
very inefficient in a limited environment and in terms of
computation.

The main operations used by S-Layer and R-Layer of
the PIPO cryptographic algorithm are bitwise operators.
AVX-2 & AVX-512 and GPU PTX instructions provide oper-
ators to handle bitwise operations. However, the minimum
unit of bitwise operators of GPU PTX instruction consists
of a 16-bit format. Additionally, the minimum data type of
AVX-2 & AVX-512 register bit shift instruction is a 16-bit
data format. Therefore, in GPU architecture, we proposed a
method of processing bit-wise operators by storing two 8-bit
plaintexts in a 16-bit data type. When handling PIPO internal

VOLUME 10, 2022

H. Choi, S. C. Seo: Efficient Parallel Implementations of PIPO Block Cipher on CPU and GPU

IEEE Access

Algorithm 2 PIPO Implementation Using AVX-512

Require: 64 Plaintext Block
Require: Round key(RK)
Operation Define
XOR(A, B) <« _mm512_xor_si512(A,B)
AND(A, B) < _mm512_and_si512(A,B)
OR(A, B) < _mm512_or_si512(A,B)
Plaintext & Roundkey Register Setting
1: forj=0to7do
2: __mm512i Reg[j] < _mmSlZ_setr_epiS(PTi[j])
3: __mm512i rk[j] < _mm512_setl_epi8(RK[j])
4: Reg[j] < XOR(Reg[jl, rk[j]) //Initial Round
5: end for
S-Layer operation
6: fori =1to 14 do
Sg operation
Reg[5] < XOR(Reg[5], AND(Reg[7], Reg[6]))
Reg[4] <— XOR(Reg[4], AND(Reg[3], Reg[5]))
. Reg[7] <~ XOR(Reg[7], Reg[4])
10: Reg[6] <~ XOR(Reg[6], Reg[3])
11: Reg[3] <~ XOR(Reg[3], OR(Reg[4], Reg[5]))
12: Reg[5] < XOR(Reg[5], Reg[7])
13: Reg[4] < XOR(Reg[4], AND(Reg[5], Reg[6]))
S3 operation
14: Reg[2] < XOR(Reg[2], AND(Reg[1], Reg[0]))
15: Reg[0] <~ XOR(Reg[0], AND(Reg[2], Reg[1]))
16: Reg[l] <~ XOR(Reg[1], AND(Reg[2], Reg[0]))
Not(~) operation
17: tmp < _mm512_setl_epi8(0xff)
18: Reg[2] <~ _mm512_andnot_si5S12(Reg[2], tmp)

Extend XOR
19: Reg[7] <~ XOR(Reg[7], Reg[1])
20: Reg[3] < XOR(Reg[3], Reg[2])
21: Reg[4] < XOR(Reg[4], Reg[0])
55l operation
22: tmpg < Reg[7]; tmp; < Reg[3]; tmp, < Reg[4]
23: Reg[6] <~ XOR(Reg[6], AND(tmpo, Reg[5]))
24: tmpo < XOR(tmpy, Reg[6])
25: Reg[6] <— XOR(Reg[6], OR(tmp3, tmp1))
26: tmp; < XOR(tmp1, Reg[5])
27: Reg[5] <— XOR(Reg[5], OR(tmp>, Reg[6]))
28: tmpy < XOR(tmp,, OR(tmp1, tmpo))
Truncate XOR and bit change
29: Reg[2] < XOR(Reg[2], tmpg
30: tmpy < XOR(Reg[1], tmp,
31: Reg[l] < XOR(Reg[0], tmp;
32: Reg[0] <— Reg[7]; Reg[7] < tmpy
33: tmp; < Reg[3]; Reg[3] < Reg[6]
34: Reg[6] < tmp1; tmpy < Reg[4]
35: Reg[4] < Reg[5]; Reg[5] < tmp>
36: R-Layer Operation processing[Algorithm 3]

Addroundkey operation
37 forj=0to7do
38: rk[j] < _mm512_setl_epi8(RK[8 * i + j])

39: Reg[j] < XOR(Reg[jl, rk[j])
40: end for

41: end for

42: return Reg

operations through this method, there are considerations for
S-Layer and R-Layer, respectively.

Our implementation applies a bit-slicing method to han-
dle the S-Layer of the PIPO cryptographic algorithm. The
bit-slicing method is a method for processing the S-box
through bitwise operations. The bit operation has an indepen-
dent operation in a 1-bit unit. Thus, the bit slicing processing
for the two plaintexts (16-bit data format) does not affect
each other (bitwise operators operate independently on each
bit). However, you should consider the following: A 16-bit
datatype must contain plaintext with the same index. That
is, the upper 8-bits of the first plaintext and the second
plaintext must be contained in the same 16-bit datatype. The
main operation of R-Layer is bit rotation. If two 8-bit data
types are stored in a 16-bit data type and then moved as
much as fixed offset, the correct value is not obtained. This
means that if moved by offset, 2 plaintexts that should exist
in different regions can be mixed. We handled the R-Layer
bit rotation of bit-masking. Our PIPO implementation tar-
gets data parallelism. Task parallelism handles computational
tasks by splitting them. The process of PIPO operation does
not consist of many operations. Task parallelism is effective
for computation-heavy and granular operations. Therefore,
we implemented PIPO as a data parallelization method that
effectively handles large amounts of data.

VOLUME 10, 2022

B. PROPOSED PIPO IMPLEMENTATION USING AVX-2 &
AVX-512 INSTRUCTIONS

AVX-2 uses 256-bit registers to process data in parallel.
Our implementation using AVX-2 computes PIPO encryp-
tion/decryption through parallel processing of 32 blocks of
64-bit plaintext. AVX-512 uses 512-bit registers to process
data onto parallel. Our implementations using AVX-512 com-
pute PIPO encryption/decryption by processing 64 blocks of
64-bit plaintext in parallel. Algorithm 2 is a pseudocode for
our PIPO implementation using AVX-512.

1) AVX REGISTER SCHEDULING

Our implementation uses eight 256/512-bit registers. Each
register contains plaintext data with the same index in each
plaintext. That is, when plaintext is expressed as an 8-bit data
type, each plaintext has plaintext data with 8 indexes. AVX-2
0-th (regp) 256-bit register stores plaintext data with the 0-th
index of each plaintext. In the case of parallel processing of
32 plaintexts, data are allocated to all areas in the AVX-2
register. In this way, each of the AVX-2 256-bit 8 registers
allocates plaintext data, and each register has data informa-
tion from a different index. For AVX-512 registers, 8 registers
are used. AVX-512 has a 512-bit register, thus 64 blocks of
plaintext can be processed in parallel.

85999

IEEE Access

H. Choi, S. C. Seo: Efficient Parallel Implementations of PIPO Block Cipher on CPU and GPU

Algorithm 3 PIPO R-Layer Implementation Using AVX-512

Require: AVX-512 Registers(Reg[1], ..., Reg[7])
Operation Define
AND(A, B) <« _mm512_and_si512(A,B)
OR(A, B) < _mm512_or_si512(A,B)
SHIFT_L < _mm512_slli_epil6_(A, count)
SHIFT_R <« _mm512_srli_epil6_(A, count)
SET_16 < _mm512_setl_epil6(count)
R-Layer operation
1: _mm512i tmpg, tmp1, tmpa, tmp3, bity, bit; < 0
7-bit Left-rotation part
: bitg <~ SET_16(0 x 0101) bit-masking value
: bit; < SET_16(0xFEFE) bit-masking value
: tmpo < AND(bity, Reg[1])
: tmpy < AND(bit, Reg[1])
tmpy < SHIFT_L(tmpy, 7)
: tmp3 < SHIFT_R(tmp1, 1)
: Reg[1] «<— OR(tmp>, tmp3)
4-bit Left-rotation part
9: bitg < SET_16(0 x OFOF) bit-masking value
10: bit; <— SET_16(0xFOF0) bit-masking value
11: tmpog <— AND(bity, Reg[2])
12: tmpy <— AND(bit1, Reg[2])
13: tmpy < SHIFT_L(tmpg, 4)
14: tmpz < SHIFT_R(tmp1, 4)
15: Reg[2] <— OR(tmpy, tmp3)
3-bit Left-rotation part
16: bitg <— SET_16(0 x 1F1F) bit-masking value
17: bit; < SET_16(0xEQOEQ) bit-masking value
18: tmpo < AND(bity, Reg[3])
19: tmp1 <— AND(bit1, Reg[3])
20: tmp, < SHIFT_L(tmpg, 3)
21: tmpz < SHIFT_R(tmp1, 5)
22: Reg[3] <— OR(tmpy, tmp3)

6-bit Left-rotation part
23: bity <— SET_16(0 x 0303) bit-masking value
24: bit; <— SET_16(0xFCFC) bit-masking value
25: tmpg < AND(bity, Reg[4])
26: tmp1 < AND(bit1, Reg[4])
27: tmpy < SHIFT_L(tmpy, 6)
28: tmps < SHIFT_R(tmp1, 2)
29: Reg[4] < OR(tmpy, tmp3)
5-bit Left-rotation part
30: bity <— SET_16(0 x 0707) bit-masking value
31: bit; < SET_16(0xF8F8) bit-masking value
32: tmpy <— AND(bity, Reg[5])
33: tmp; < AND(bit;, Reg[5])
34: tmpy < SHIFT_L(tmpy, 5)
35: tmp3 <— SHIFT_R(tmp1, 3)
36: Reg[5] <— OR(tmps, tmp3)
1-bit Left-rotation part
37: bity < SET_16(0 x 7F7F)
38: bit; < SET_16(0 x 8080)
39: tmpo <— AND(bity, Reg[6])
40: tmp| < AND(bit1, Reg[6])
41: tmpy < SHIFT_L(tmpg, 1)
42: tmpz < SHIFT_R(tmp1, 7)
43: Reg[6] <— OR(tmpy, tmp3)
2-bit Left-rotation part
44: bity <— SET_16(0 x 3F3F) bit-masking value
45: bit; <— SET_16(0xCOCO) bit-masking value
46: tmpo < AND(bity, Reg[7])
47: tmpy < AND(bit1, Reg[7])
48: tmpy < SHIFT_L(tmpy, 2)
49: tmps < SHIFT_R(tmp1, 6)
50: Reg[7] <— OR(tmpy, tmp3)
51: return Reg

bit-masking value
bit-masking value

TABLE 2. AVX register scheduling of plaintext (|P[i]| = 8-bit).

AVX Register Data Information
Rego PT0] of each plaintext (LSB 8-bit)
Reg; PT1] of each plaintext
Regs PT|2] of each plaintext
Regs PT|3] of each plaintext
Regy PT[4] of each plaintext
Regs PT[5] of each plaintext
Regs PT|6] of each plaintext
Regr PT|7] of each plaintext (MSB 8-bit)

Our implementation of PIPO using AVX-2 allocates
32 plaintexts in 8 256-bit registers. In our implementation,
Reg allocates an LSB 8-bit for each plaintext. The Reg7 reg-
ister allocates MSB 8-bit. Table 2 summarizes the allocation
data for each register. When 64-bit plaintext is divided into
8-bit units, each plaintext is divided into 8 pieces of data.
We specified the partitioned plaintext blocks as PTy, PTq,
PT,...... , PT7. We specified the i-th plaintext out of 32/64
plaintexts as PT". That is, the j-th 8-bit unit block of the i-th
plaintext can be expressed as PTJ.i or PT'[j]. In Algorithm 2,

86000

Reg[j] stores the plaintext message. Reg[0] contains an 8-bit
LSB of each plaintext. That is, Reg[0] contains the LSB 8-bits
of 64 plaintext messages.

2) S-LAYER PROCESS IN CPU

There are look-up table reference method and bit-slicing
methods for calculating PIPO S-Layer. When using look-up
table method in the PIPO S-Layer using AVX, plaintext
information in AVX registers needs to be converted into 8-bit
data format. The converted 8-bit data format is processed by
the S-Layer through the look-up table method. After S-Layer
operation processing, data are allocated to AVX registers.
In this process, 2 data conversions and 1 memory access
occur. Since the data conversion method incurs a lot of
computational load, our implementation chose the bit-slicing
method as the method for handling the S-Layer.

When processing S-Layer as a bit-slicing implementa-
tion method, the main operation of S-Layer consists of bit-
operation operation. Bit operations (XOR (b), AND (&), OR
(1), NOT (~)) are performed in 1-bit units, and operations
independent of other bits are possible. Therefore, parallel

VOLUME 10, 2022

H. Choi, S. C. Seo: Efficient Parallel Implementations of PIPO Block Cipher on CPU and GPU

IEEE Access

processing was performed through the bit-wise operator
instruction provided by AVX-2 & AVX-512.

Algorithm 2 (line 7 to 35) is a PIPO S-Layer bit-
slice implementation method using AVX-512 instruction.
In a general S-Layer bit-slice implementation, 1,408 XOR
operations, 448 AND operations, and 256 OR opera-
tions are used to compute 64 message blocks. In the
AVX-512-based S-Layer bit-slice implementation method
that parallel operates on 64 message blocks, XOR instruction
operator is used 22 times, AND instruction operator is used
7 times, and the OR instruction operation is used 4 times.
Our PIPO S-Layer implementation based on AVX-512
minimizes operation calls through data parallel operation
processing.

3) R-LAYER PROCESS IN CPU

R-Layer process updates the internal state through the
left rotation operation as much as an offset. The
main operation of PIPO is executed 8-bit units. There-
fore, the offset of the left rotation was also set in
8-bit units.

We considered the following in our PIPO R-Layer imple-
mentation: First, in AVX-2 instruction, rotation operation
does not exist. Therefore, we used AVX-2 shift operation and
OR operation to handle the rotation operation of R-Layer.
However, the minimum data unit of the AVX-2 shift oper-
ation instruction is a 16-bit data unit. Therefore, our PIPO
implementation using AVX-2 uses 16-bit data combined to
handle the R-Layer process. In the case of AVX-512, there is
a rotation instruction (__mm512_ror(rol)_epi32(64)). How-
ever, the minimum operation unit of the AVX-512 rotation
instruction is 32-bit. Therefore, in our R-Layer implemen-
tation using AVX-512, we applied R-Layer implementation
method to AVX-2.

Second, each register contains plaintext data with the same
index. Therefore, each register operates to perform a rotation
operation as much as the offset. a general rotation operation in
the 16-bit data format that combines two 8-bit data can invade
each 8-bit data range. Therefore, to handle the R-Layer, our
implementation added bit-masking operation. Algorithm 3 is
R-Layer computation pseudocode using AVX-512. SHIFT_L
instruction is a bitwise left-shift operator for data stored in
AVX-512 registers in 16-bit units. For Reg[0] = (R[0] ||
R[1] || || R[31]) (R[i] is 16-bit data), the result for
SHIFT_L(Reg[0], 3) is (R[0] < 3 || R[1] < 3 |...... I
R[31] « 3). The SET_16 instruction configures the AVX-512
registers in 16-bit data format. The result for SET_16(0 x
IF1F) is R = (0 x IF1F||0 x 1F1F]|...... 0 x 1F1F).
The bit masking method is a method of processing rota-
tion operation while preventing data invasion by a bit shift
operation. In our PIPO implementation, two 8-bit data are
composed of one 16-bit data to use 16-bit unit bitwise opera-
tors. A shift operation may result in a violation of each data.
Therefore, the bit masking value preserves the data encroach-
ment range for shifts and allows rotation operations to
be handled.

VOLUME 10, 2022

C. PROPOSED PIPO IMPLEMENTATION IN GPU
ENVIRONMENT

A GPU uses many threads, and the threads perform the same
operation in parallel. All threads are divided into Grid/Block
units. The performance of the GPU architecture operation dif-
fers depending on the division unit of Grid/Block. Addition-
ally, GPU architecture has several memory areas. Commonly
used areas of GPU memory consist of global memory, shared
memory, and constant memory. GPU affects performance
depending on the number/method of memory access. There-
fore, to improve performance on the GPU, the memory area
access method and number of times should be minimized.

PTX is an inline assembly language available in CUDA C.
The assembly language is a low-level computer programming
language that maps to machine language, and assembly lan-
guage was developed for specific types of processors. Assem-
bly language has the advantage of being able to directly
correspond to the machine language through instructions
and communicate directly with the machine (architecture).
In other words, an assembly language has the fastest instruc-
tion execution speed among the programing languages.

In this section, we proposed a PIPO implementation
method using the coalesced memory access method, which
is an optimization method for GPU equipment, and CUDA
PTX inline assembly. In our implementation of PIPO using
GPU architecture, one thread computes encryption on plain-
text. In other words, our PIPO implementation consisted of
data parallelism. One thread consists of two-block parallel
encryption considering the PTX bitwise operator. In other
words, our PIPO implementation can encrypt the number of
threads * 2 blocks of plaintext simultaneously.

TABLE 3. PTX bit-operation syntax.

Syntax Operation type
xor.type d, a, b d=a@®b .pred, .b16, .b32, .b64
and.type d, a, b d=a&b .pred, .bl6, .b32, .b64
ortype d, a, b d=alb .pred, .b16, .b32, .b64
not.type d, a d=r~a .pred, .bl6, .b32, .b64
shl.type d, a, b d=a<<b .b16, .b32, .b64
shr.type d, a, b d=a>>b .bl16, .b32, .b64

1) S-LAYER PROCESS ON GPU

Memory access on the GPU architectures causes perfor-
mance degradation. Among the computational processing
methods of S-Layer, look-up table frequently accesses mem-
ory. Therefore, our PIPO implementation on GPU has chosen
the bit-slicing method. S-Layer operations with bit-slicing
methods consist of bitwise operators. Table 3 is the bit-wise
operator instruction used in the PTX implementation. The
minimum data type for bit-wise operators of the PTX assem-
bly is 16 bits. Therefore, as with AVX, two 8-bit plaintexts
are combined into a 16-bit data type. Since bitwise operators
are 1-bit operations, they have a bit-independent operation
structure. Therefore, combining plaintexts does not affect
each other. The combined plaintext is processed through PTX
bit-wise operator instruction.

86001

IEEE Access

H. Choi, S. C. Seo: Efficient Parallel Implementations of PIPO Block Cipher on CPU and GPU

Algorithm 4 PIPO S-Layer Bit-Slicing Implementation Method Using PTX Inline Assembly

Require: 16-bit type 128-bit state (2 Plaintext)(state[0], ...,
state[7])
1: asm("{\n\t"\\PTX inline assembly instruction
Register setting

2: ".reg.bl6 t0;"

3: ".reg.bl6 tl;"

4: "reg.bl6 t2;"

5: ".reg.bl6 t3;"

6: ".reg.bl6 t4;"

7: "reg.bl6 t5;"

8: ".reg.bl6 t6;"

9: ".reg.bl6 t7;"

10: ".reg.b16 bufp;"

11: ".reg.bl6 bufy;"

12: ".reg.bl6 buf>;"

13: ".reg.b16 temp;"
Sgoperation

14: "and.b16 t5, %15, %14;"

15: "xor.bl6 t5, t5, %13;"

16: "and.b16 t4, %11, t5;"

17: "xor.bl6 t4, t4, %12;"

18: "xor.bl6 t7, %15, t4;"

19: "xor.bl6 t6, %14, %11;"

20: "or.bl6 t3, t4, t5;"

21: "xor.bl6 t3, 3, %11;"

22: "xor.bl6 t5, t5, t7;"

23: "and.b16 t0, t5, t6;"

24: "xor.b16 t4, t4, t0;"
S3 operation

25: "and.b16 t2, %8, %9;"

26: "xor.bl6 t2, 2, %10;"

27: "or.b16 t0, t2, %9;"

28: "xor.bl6 t0, t2, %8;"

29: "not.b16 2, t2;"

Extend XOR
30: "xor.b16 t7, t7, t1;"
31: "xor.b16 3, t3, t2;"
32: "xor.b16 t4, t4, t0;"

SS] operation
33: "mov.bl6 bufy, t7;"
34: "mov.bl6 bufi, t3;"
35: "mov.b16 buf>, t4;"

36: "and.b16 temp, bufy, t5;"
37: "xor.bl6 t6, t6, temp;"
38: "xor.b16 bufy, bufy, 16;"
39: "or.bl6 temp, buf>, bufi;
40: "xor.bl6 t6, t6, temp;"
41: "xor.bl6 bufi, bufi, t5;"
42: "or.b16 temp, t6, bufs;"
43: "xor.b16 t5, t5, temp;"
44: "and.bl6 temp, bufy, bufi;"
45: "xor.b16 buf,, buf>, temp;"
Truncate XOR and bit change
46: "xor.b16 t2, €2, bufy;"
47: "xor.b16 bufy, t1, buf>;"
48: "xor.b16 tl, t1, bufy;}"
Data Copy
49: "mov.b16 %0, t0;" "mov.bl16 %1, t1;"
50: "mov.bl6 %2, t2;" "mov.b16 %3, t3;"
51: "mov.b16 %4, t4;" "mov.bl6 %S5, t5;"
52: "mov.bl6 %6, t6;" "mov.bl16 %7, t7;"
Input Parameter setting
53: :"=h(state[0])", "=h(state[1])", "=h(state[2])",

"=h(state[3])""=h(state[4])","=h(state[5])","=h(state[6])",
"=h(state[7])"
54: :"h(state[0])", "h(state[1])", "h(state[2])", "h(state[3])",
"h(state[4])", "h(state[5])", "h(state[6])", "h(state[7])");
55: return state (state[0], state[1], ..., state[7])

Algorithm 4 is a PIPO S-Layer bit-slicing implementation
method using CUDA PTX. We handle the PIPO S-Layer
using 12 registers. Eight registers are registers that store input
information. For GPU architectures, the latency of accessing
memory areas is large. Therefore, we use 8 registers to store
input plaintext information, and store intermediate operation
values in registers. In our implementation, 3 registers are used
to store 7 values used by the PIPO S-Layer standard code
(Algorithm 1). One register is used to store the intermediate
value. We encrypt two plaintexts in parallel, considering into
account the fact that the bitwise operator of CUDA PTX is
at least 16 bits. Compared to 8-bit plaintext encryption, the
number of PTX instruction calls to process S-Layer is the
same, but our implementation is efficient because it encrypts
2 blocks at the same time.

2) R-LAYER PROCESS ON GPU
R-Layer calculation method of the GPU is similar to the
R-Layer processing method of AVX. The minimum data type

86002

of PTX bit-wise operator instruction is 16-bit. Therefore,
in order to process the R-Layer through the PTX instruction,
our implementation combines two 8-bit plaintext data onto
a 16-bit data type just to the S-Layer. After that, the rotation
operation of the R-Layer was processed through bit-masking.
The bit-masking value was processed using the same value
used in AVX.

Algorithm 5 is a PIPO R-Layer implementation method
using PTX. We include Addroundkey process before storing
the values while processing the R-Layer. Our R-Layer imple-
mentation uses AND (&) bitwise operator 2, shift bitwise
operator 2, OR (l) bitwise operator 1. That is, the total number
of operations used in R-Layer in one round is 14 bitwise
operators AND, 14 bitwise shift operators, and OR 7 bitwise
operators.

PIPO reference implementation does not consider bit
masking to encrypt a single plaintext. PIPO reference
implementation removed two AND operators compare
to our implementation. However, when porting the PIPO
reference implementation to PTX on GPU architectures, the

VOLUME 10, 2022

H. Choi, S. C. Seo: Efficient Parallel Implementations of PIPO Block Cipher on CPU and GPU

IEEE Access

Non — Coalesced Memory Access

Coalesced Memory Access

| Thread, | Thread, | Thread, | Thread; |

Warp Memory Access

Cache Line

Warp -| Thread, | Thread, | Thread, | Threads | ... Threads,

Memory Access

Thread,| - PTS | PTY | ... PTS | - | PT, 1 ! 1 ! 1
Thread, | - pri | P | .. et | - [o, [ey | e | e | prg | . [Pt |
Thread, | — pr2 | prZ | ... pr2 | - | pPT, PT} PT} PT? PT | .. p1i!
Threads; | — pr3 | P13 | ... PT3 - PT; PTY PT} PT3 PT3 | .. PT3!
Thread, | - prt | PTS | ... PTS | > | PT, PTY PT} PT} PT] | pr3!
Threads | — PT; | PTS | ... PT3 - PTs |l | o | e L e e e e
Threadg | — PTS | PTS | ... PTS - PT, PTY PT} PT? PT3 | ... PT3!

-~ 1 l l L l
Threads,| — [[PIge) PT3' | PT3! | ... [pr, PT, PT, | PT3s | ..

Cache Line

Warp ->| Thread, | Thread, | Thread, | Thread; | |Thread31|

FIGURE 2. Coalesced Memory Access & Non-Coalesced Memory Access.

Algorithm 5 PIPO R-Layer & Key Addition Operation Using
PTX Inline Assembly

Require: 16-bit plaintext(state)

Require: 16-bit Roundkey(rk)

Require: bit-masking values(bkg, bk)

Require: rotation value(rv)

1: asm("{\n\t"
Register setting
2: ".reg.bl6 t0;"
3: ".reg.bl6 tl;"
4: "reg.bl6 t2;"
5: "mov.b16 t2, %1; %1 = copy state
6: "and.b16 t0, %3, t2;" %3 = bk
7: "and.bl6 tl, %4, 12;" %4 = bk,
8: "shl.b16 t0, t0, %5;" %5 = rv
9: "shl.b16 tl, t1, %6;" %6 =8 — rv
10: "or.bl6 2, t1, t0;"
11: xor.bl6 %0, t2, %2
%0 = store state
%2 =rk

12: "=h(state)
13: "h(state)", "h(rk)", "h(bko)", "h(bky)", "h(rv)", "h(8 —
m");

14: return state

minimum unit for bitwise operators in PTX is 16 bits. There-
fore, it is very inefficient to change the data type unit and
process the operation to encrypt one plaintext. Additionally,
in the PIPO reference implementation, the number of bitwise
operations used by the R-Layer for 2 blocks is shift bitwise
operator 28 times, OR bitwise operator 14 times. Therefore,
we consider the smallest unit of the PTX bitwise operator.
In other words, our PIPO R-Layer implementation reduces

VOLUME 10, 2022

the number of bitwise operator calls while processing two
plaintexts in parallel.

3) MEMORY ACCESS OPTIMIZATION WITH COALESCED
MEMORY ACCESS

The implementation of GPGPU using CUDA is as follows:
First, the Host (CPU) transmits the data to be processed to
the Device (GPU). Second, the device stores the data received
from the host. When data are used in the device operation,
the device accesses the memory area where data is stored.
The device handles assigned operations. Finally, the device
transmits the calculated result value of the Host.

Before calculating cryptographic algorithms on a GPU
architecture, CPU transmits plaintext data onto the GPU.
Each thread accesses the memory area where plaintext data
is stored When calculating the encryption algorithm in the
GPU architecture. Unlike other architectures, the GPU archi-
tecture has a lot of performance delay when GPU architec-
ture access to memory area. Therefore, an efficient memory
access approach is required in GPU architectures.

When the GPU architecture accesses a memory area, mem-
ory access in warp units is performed. The warp consists
of 32 threads. Before a thread performs encryption, thread
accesses the memory area where the plaintext handled by
the thread is stored. Memory access occurs inside the warp,
rather than being accessed by each thread. If the memory area
accessed by all threads belonging to the warp is contiguously
configured, the warp can read data onto minimal cache line
access. If the memory area accessed by each thread is config-
ured non-contiguously, the Warp will access the cache line of
to 32 times.

86003

IEEE Access

H. Choi, S. C. Seo: Efficient Parallel Implementations of PIPO Block Cipher on CPU and GPU

TABLE 4. AVX-2 & AVX-512 PIPO performance result [21].

AVX-2 PIPO Performance Result
Version Clock Clock Per Byte(CPB) Ratio
(C Imﬁiﬁiﬁfzﬁgf g(ZB]l?fT(l)I:ljd]én[czrly]ption) 6,671 26.05)
(€ Implementation, 6 Block Eneryption 12917 222 :
(AVX-2 Implemerg:tli.og(ggki?»lock Encryption) 083 267 +876.72%
(AVX-512 Impleme(::lltla:‘ti:)}:’:,)%l;s Block Encryption) 1,190 2.32 +O85.46%

Algorithm 6 Plaintext Copy Using Coalesced Memory
Access Method

Require: plaintext(pz)

Require: Roundkey(rk)

Ensure: Ciphertext(ct)

GPU Phase Function
1: uintl6_t indexy <« (blockDim.x * blockldx.x) +
threadldx .x

2: uintl6_t index| < (gridldx.x * blockDim.x)
uint16_t state[8]

GPU plaintext copy

state[0] <« pt[indexg]

state[1] < pt[indexog + 1 * index]
state[2] <« pt[indexg + 2 * index]
state[3] <« pt[indexg + 3 * index]
state[4] < pt[indexo + 4 * index |
state[S] < ptlindexg + 5 * index]
state[6] < pt[indexg + 6 * index]
state[7] < ptlindexo + 7 * index |
Thread operation

: PIPO(pt, rk, ct) Algorithm 4 & 5

: return ct

(98]

—_
TeY XN

—_

—_
[SSI]

Therefore, for effective memory access of the GPU archi-
tecture, the data storage method accessed by each thread must
be changed. Coalesced memory access means that memory
areas are contiguously configured so that effective memory
area access is possible. To use the coalesced memory access
method, we changed the data storage method the row-wise
storage method to the column-wise storage. Each thread
accesses the 0-th index of the plaintext data. If the data are
stored in column-wise storage methods, each plaintext 0-th
index data is constructed consecutively. Therefore, coalesced
memory access methods can be applied. Figure 2 shows
coalesced memory access and non-coalesced memory access.

Algorithm 6 is our PIPO implementation with coalesced
memory access. In our PIPO GPU internal function using
CUDA C, we used the number of called threads and the
number of blocks. threadldx .x is the thread’s unique number,
which is the number of the threads belonging to the block.
blockldx.x is a unique number of the block, which is the
number of the blocks belonging to the grid. blockDim.x is
the total number of threads a block has. gridldx.x is the
total number of blocks called. We use the block/thread’s
unique number to sequentially configure the position of the

86004

plaintext read by each thread. Our memory approach allows
for efficient handling of warp-wise message access.

V. PERFORMANCE ANALYSIS

In this section, we present the performance measurement
results for our implementation. For our performance mea-
surement, we performed performance measurement on PIPO-
64/128. Information on the environments used is included in
each section.

A. PERFORMANCE ANALYSIS ON CPU ENVIRONMENT
Table 4 shows the performance measurement results. Our
PIPO implementation performance measurements were per-
formed in an Intel Core i9-11900K (3.50GHz, 8 core and
16 processor) environment. Our experiment did not consider
CPU multi-threading, and performed a performance measure-
ment experiment on CPU single-thread. We used the open
source code of the PIPO authors for performance measure-
ments [21]. Our implementation utilizing AVX-2 encrypts
32 blocks of plaintext in parallel. In the case of AVX-2, a total
of 10,000 parallel encryptions (320,000 plaintext blocks)
were performed, and the average value was presented as the
result. As a result of PIPO reference code performance mea-
surement, the average value of the performance of 320,000
cryptographic operations was presented. Our implementation
performance result using AVX-2 is 683 clocks (2.67 CPB),
and there is a performance improvement of 876.72% com-
pared to the reference code.

Our implementation utilizing AVX-512 encrypts 64 blocks
of plaintext in parallel. For AVX-512, a total of 10,000 paral-
lel encryptions (640,000 plaintext blocks) were performed.
The resulting value is the average value. As a result of
PIPO reference code performance measurement, the average
value of the performance of 640,000 cryptographic opera-
tions was presented. Our implementation performance result
using AVX-5121is 1,190 clocks (2.32 CPB), which is a perfor-
mance improvement of 985.46% compared to the reference
code.

B. PERFORMANCE ANALYSIS ON GPU ENVIRONMENT
In this section, we present the performance of the PIPO

implementation on the GPU architecture. We measured
PIPO performance on two GPU architectures (GTX 1650,

VOLUME 10, 2022

H. Choi, S. C. Seo: Efficient Parallel Implementations of PIPO Block Cipher on CPU and GPU

IEEE Access

Performance per block/thread configuration in RTX 2080Ti

@ 1,155 ——

’8 —=— 32MB speed

= 1115 —8— 64MB speed

;E:') sl —5— 128MB speed | |
= 256MB speed

7z 1,075 .
! i

/o

8

5 1,035 -
g

=

= ‘

& Myes 198 256 512 1,024

Number of threads
(a) GTX 1650 Block/Thread Performance Result

Performance per block/thread configuration in GTX 1650

B 280 | ‘
5 —5— 32MB speed
g 270[3’2/13\:' —5— 64MB speed
S e —5— 128MB speed
2 o B/E\E\ 256MB speed | |
e
8
250 |
g
o=
g 240

2 | ‘
£ 230561 128 256 512 1,024

Number of threads
(b) RTX 2080Ti Block/Thread Performance Result

FIGURE 3. Measurement of encryption performance by block/thread configuration in GPU architecture (unit: Gbps(Gigabit per

second)).

RTX 2080 Ti), using the Visual Studio CUDA Runtime ver-
sion 10.2 compiler.

Algorithmic performance experiments on GPU architec-
tures have several considerations. The first consideration is
the compute share of the GPU architecture. That is, the
algorithm can reach the highest performance for the perfor-
mance that uses the maximum resources among the available
resources of the GPU. In our PIPO experimental implemen-
tation, we set the GPU operation occupancy rate of all test
cases to reach 100%, and then measured the performance.
The second consideration is thread divergence. All the threads
belonging to one warp do the same thing. In this case, if condi-
tional and branch statements exist, threads can be configured

VOLUME 10, 2022

in the sequential order of processing operations. Thus, if there
is thread divergence, there can be a performance penalty.
In this experiment, the PIPO call function is configured with
Algorithm 6. Thread divergence situations have been elim-
inated by removing conditional and branching statements.
When the GPU CUDA operation is called with Algorithm 6,
all threads will proceed with PIPO encryption in parallel.
The third consideration is that all threads must be guaranteed
access to an area of memory. If a thread on the GPU accesses
an undeclared memory area, an error occurs and the operation
of the GPU ends immediately. In these cases, GPU perfor-
mance is not measured correctly because the GPU does not
perform any operation and terminates immediately (the GPU

86005

IEEE Access

H. Choi, S. C. Seo: Efficient Parallel Implementations of PIPO Block Cipher on CPU and GPU

Our Works(256MB)

Our Works(128MB)

Our Works(32MB)
Reference Code(256MB) [21]
Reference Code(128MB) [21]

Reference Code(32MB) [21]
\

271.2

265.04

275.6
100.24

100.18

99.9? | |

0 30 60

120 150 180 210 240 270 300

(a) GTX 1650 Performance Result

Our Works(256MB)

Our Works(128MB)

Our Works(32MB)
Reference Code(256MB) [21]
Reference Code(128MB) [21]
Reference Code(32MB) [21]

1,092.56
1,110.08
1,097.2

420.96
416.96
410.16

| |

0 112 224 336

448 560 672 784 896 1,008 1,120

(b) RTX 2080Ti Performance Result

FIGURE 4. PIPO performance results on GPU architecture(Unit: Gbps).

performance is measured faster than it actually is because
the GPU is immediately shut down without performing any
actual operations). In a PIPO operation, the memory area
accessed by a thread is the memory for storing input messages
and ciphertext. In our PIPO experiment, we set the input mes-
sage memory area and ciphertext storage memory area to be
(number of threads * number of blocks * 8). Additionally, the
memory index has been changed to apply coalesced memory
access. Our implementation of PIPO performs index control
to access only the allocated memory area (see Algorithm 6).

Figure 3 shows the performance results of our PIPO imple-
mentation by block/thread on GPU architecture. We mea-
sured performance by varying the block/thread configuration
of CUDA C for file size. The code used in this experiment
is the proposed CUDA C PIPO implementation methods.
As a result of our performance experiment measurements,
our PIPO implementation shows the highest throughput at
128 threads for both the GTX 1650 and RTX 2080 Ti archi-
tectures. In addition, for all test cases regardless of file size,
the case using 128 threads shows the highest throughput.
Therefore, our PIPO implementation and the PIPO reference
implementation were experimentally measured with a config-
uration using 128 threads.

Figure 4 shows our PIPO implementation performance
results and PIPO reference code implementation performance
results. The reference code is written in C language. There-
fore, we ported the reference code to GPU CUDA C for exper-
imental comparison. We measured PIPO performance in two
architecture environments: GTX 1650 and RTX 2080 Ti. The
PIPO performance implementation results measured in GTX

86006

1650 are provided in Figure 4(a), and Figure 4(b) shows
the PIPO performance results measured in the RTX 2080 Ti
environment.

As a result of testing on the GTX 1650 architecture, the
PIPO implementation performance of our proposed scheme
is 275.6 Gbps (32 MB encryption performance), 265.04 Gbps
(128 MB encryption performance), and 271.20 Gbps (256
MB encryption performance). Our proposed PIPO implemen-
tation performance provides performance improvements of
175.82%(32MB encryption performance), 164.56% (128MB
encryption performance), and 170.55%(256MB encryption
performance) compared with the PIPO reference code.

As a result of experiments on the RTX 2080Ti
architecture, the PIPO implementation performance of our
proposed scheme is 1,097.2Gbps (32MB encryption perfor-
mance), 1,110.08Gbps (128MB encryption performance),
and 1,092.56 Gbps (256MB encryption performance). Our
proposed PIPO implementation performance provides per-
formance gains of 167.50% (32MB encryption performance),
166.23% (128MB encryption performance), and 159.54%
(256MB encryption performance) compared with the PIPO
reference code.

VI. CONCLUDING REMARKS

In this paper, we proposed a method to speed up the PIPO
encryption algorithm in a parallel processing architecture
that can be used in a server environment. We proposed a
16-bit unit PIPO operation method considering the mini-
mum unit of bitwise operator in AVX/PTX environment.
In the CPU environment, we proposed a method to process

VOLUME 10, 2022

H. Choi, S. C. Seo: Efficient Parallel Implementations of PIPO Block Cipher on CPU and GPU

IEEE Access

32/64 input messages in parallel through AVX instructions.
In the GPU environment, we proposed a method for imple-
menting PIPO operation and minimizing memory access by
using PTX instructions. Our implementation of the PIPO
cryptographic algorithm using AVX-2 (AVX-512) has a per-
formance improvement of 876.72% (985.46%) compared
to the reference code, and the maximum throughput of
the PIPO cryptographic algorithm on GPU architecture is
1,110.08 Gbps (in RTX 2080Ti). In future works, we will
to study PIPO cryptographic algorithm-based server com-
munication environment establishment, PIPO cryptographic
algorithm-based message authentication code in parallel pro-
cessing environment, random number generator, etc.

REFERENCES

[1] H.Kim, Y. Jeon, G. Kim, J. Kim, B. Sim, D. Han, H. Seo, S. Kim, S. Hong,
J. Sung, and D. Hong, “PIPO: A lightweight block cipher with efficient
higher-order masking software implementations,” in Proc. 23rd Int. Conf.
Inf. Secur. Cryptol. (ICISC), in Lecture Notes in Computer Science, Seoul,
South Korea, vol. 12593, D. Hong, Ed. Cham, Switzerland: Springer, 2020,
pp- 99-122, doi: 10.1007/978-3-030-68890-5_6.

[2] H.Kim, Y. Jeon, G. Kim, J. Kim, B. Sim, D. Han, H. Seo, S. Kim, S. Hong,
J. Sung, and D. Hong, “A new method for designing lightweight S-boxes
with high differential and linear branch numbers, and its application,”
IACR Cryptol. ePrint Arch., vol. 2020, p. 1582, Nov. 2020. [Online].
Available: https://eprint.iacr.org/2020/1582

[3] J. Song, Y. Kim, and S. C. Seo, “High-speed fault attack resistant imple-
mentation of PIPO block cipher on ARM Cortex—A,” IEEE Access, vol. 9,
pp. 162893-162908, 2021.

[4] Y. Kwak, Y. Kim, and S. C. Seo, ‘““Parallel implementation of PIPO block
cipher on 32-bit RISC-V processor,” in Proc. Int. Conf. Inf. Secur. Appl.
Cham, Switzerland: Springer, 2021, pp. 183-193.

[5] S.Eum, H. Kwon, H. Kim, K. Jang, H. Kim, J. Park, G. Song, M. Sim, and
H. Seo, “Optimized implementation of block cipher PIPO in parallel-way
on 64-bit ARM processors,” KIPS Trans. Comput. Commun. Syst., vol. 10,
no. 8, pp. 223-230, 2021.

[6] S.Lim,J.Han, T.Lee, and D. Han, “Differential fault attack on lightweight
block cipher PIPO,” IACR Cryptol. ePrint Arch., vol. 2021, p. 1190,
Feb. 2021. [Online]. Available: https://eprint.iacr.org/2021/1190

[7]1 H.Kim, M. Sim, S. Eum, K. Jang, G. Song, H. Kim, H. Kwon, W.-K. Lee,
and H. Seo, “Masked implementation of pipo block cipher on 8-bit avr
microcontrollers,” in Proc. Int. Conf. Inf. Secur. Appl. Cham, Switzerland:
Springer, 2021, pp. 171-182.

[8] W.-K. Lee, B.-M. Goi, R. C.-W. Phan, and G.-S. Poh, “High speed imple-
mentation of symmetric block cipher on GPU,” in Proc. Int. Symp. Intell.
Signal Process. Commun. Syst. (ISPACS), Sarawak, Malaysia, Dec. 2014,
pp. 102-107, doi: 10.1109/ISPACS.2014.7024434.

[9] S. An and S. C. Seo, “Highly efficient implementation of block ciphers
on graphic processing units for massively large data,” Appl. Sci., vol. 10,
no. 11, p. 3711, May 2020, doi: 10.3390/app10113711.

[10] S. An and S. C. Seo, “Efficient parallel implementations of LWE-based
post-quantum cryptosystems on graphics processing units,” Mathematics,
vol. 8, no. 10, p. 1781, Oct. 2020, doi: 10.3390/math8101781.

[11] S. An and S. C. Seo, “Designing a new XTS-AES parallel optimization
implementation technique for fast file encryption,” IEEE Access, vol. 10,
pp. 25349-25357, 2022.

[12] A.Fanfakh, H. Noura, and R. Couturier, “ORSCA-GPU: One round stream
cipher algorithm for GPU implementation,” J. Supercomput., vol. 78, no. 9,
pp. 11744-11767, 2022.

[13] G. Kim, Y. Jeon, and J. Kim, “Speeding up LAT: Generating a linear
approximation table using a bitsliced implementation,” IEEE Access,
vol. 10, pp. 4919-4923, 2022.

VOLUME 10, 2022

[14] W.-K. Lee, H. J. Seo, S. C. Seo, and S. O. Hwang, “Efficient implementa-
tion of AES-CTR and AES-ECB on GPUs with applications for high-speed
FrodoKEM and exhaustive key search,” IEEE Trans. Circuits Syst. II, Exp.
Briefs, vol. 69, no. 6, pp. 2962-2966, Jun. 2022.

[15] W.-K. Lee, H. Seo, Z. Zhang, and S. O. Hwang, “TensorCrypto: High
throughput acceleration of lattice-based cryptography using tensor core on
GPU,” IEEE Access, vol. 10, pp. 20616-20632, 2022.

[16] K.Han, W.-K. Lee, and S. O. Hwang, “CuGimli: Optimized implementa-
tion of the gimli authenticated encryption and hash function on GPU for
IoT applications,” Cluster Comput., vol. 25, no. 1, pp. 433-450, Feb. 2022.

[17] M. Ceria, A. De Piccoli, M. Tiziani, and A. Visconti, “‘Optimizing the key-
pair generation phase of McEliece cryptosystem,” in Proc. 4th Int. Conf.
Wireless, Intell. Distrib. Environ. Commun. Cham, Switzerland: Springer,
2022, pp. 111-122.

[18] O. Ozerk, C. Elgezen, A. C. Mert, E. Oztiirk, and E. Savas, “Efficient
number theoretic transform implementation on GPU for homomorphic
encryption,” J. Supercomput., vol. 78, no. 2, pp. 2840-2872, Feb. 2022.

[19] W. Muta, N. Kurz, and D. Lemire, ‘‘Faster population counts using AVX2
instructions,” Comput. J., vol. 61, no. 1, pp. 111-120, Jan. 2018, doi:
10.1093/comjnl/bxx046.

[20] Intel. (2017). Intel Advanced Vector Extensions 512 Instructions.
[Online]. Available: https://www.intel.com/content/www/us/en/
developer/articles/technical/intel-avx-512-
instructions.html?wapkw=AVX-512

[21] (2020). PIPO Blockcipher Github Open Source Code. [Online]. Available:
https://github.com/PIPO-Blockcipher/PIPO-Blockcipher

HOJIN CHOI (Student Member, IEEE) received
the B.S. degree from the Department of Infor-
mation Security, Cryptology, and Mathematics,
Kookmin University. He is currently pursu-
ing the master’s degree in financial informa-
tion security with Kookmin University. His
research interest includes efficient implementa-
tion of cryptographic hash function in high-end-
processes.

SEOG CHUNG SEO (Member, IEEE) received
the B.S. degree in information and com-
puter engineering from Ajou University, Suwon,
South Korea, in 2005, and the M.S. degree in infor-
mation and communications from the Gwangju
Institute of Science and Technology (GIST),
Gwangju, South Korea, in 2007, and the Ph.D.
degree from Korea University, Seoul, South Korea,
in 2011. He worked as a Research Staff Member
at the Samsung Advanced Institute of Technol-
ogy (SAIT) and the Samsung DMC Research and Development Center,
from September 2011 to April 2014. He was a Senior Research Member
at the Affiliated Institute of ETRI, South Korea, from 2014 to 2018. He is
currently working as an Associate Professor with Kookmin University, South
Korea. His research interests include public-key cryptography, its efficient
implementations on various IT devices, cryptographic module validation
program, network security, and data authentication algorithms.

86007

http://dx.doi.org/10.1007/978-3-030-68890-5_6
http://dx.doi.org/10.1109/ISPACS.2014.7024434
http://dx.doi.org/10.3390/app10113711
http://dx.doi.org/10.3390/math8101781
http://dx.doi.org/10.1093/comjnl/bxx046

