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ABSTRACT Autonomous underwater vehicles (AUV) are commonly used in many underwater applications.
Recently, the usage ofmulti-rotor unmanned autonomous vehicles (UAV) formarine applications is receiving
more attention in the literature. Usually, both platforms employ an inertial navigation system (INS), and
aiding sensors for an accurate navigation solution. In AUV navigation, Doppler velocity log (DVL) is mainly
used to aid the INS,while for UAVs, it is common to use global navigation satellite systems (GNSS) receivers.
The fusion between the aiding sensor and the INS requires a definition of step size parameter in the estimation
process. It is responsible for the solution frequency update and, eventually, its accuracy. The choice of the
step size poses a tradeoff between computational load and navigation performance. Generally, the aiding
sensors update frequency is considered much slower compared to the INS operating frequency (hundreds
Hertz). Such high rate is unnecessary for most platforms, specifically for low dynamics AUVs. In this work,
a supervised learning based adaptive tuning scheme to select the proper INS step size is proposed. To that
end, a velocity error bound is defined, allowing the INS/DVL or the INS/GNSS fusion filter to act in a
sub-optimal working conditions, and yet minimize the computational load. Results from simulations and
field experiment show the benefits of using the proposed approach. In addition, the proposed framework can
be applied to any other fusion scenarios between any type of sensors or platforms.

INDEX TERMS Autonomous underwater vehicles, inertial navigation, Kalman filtering, machine learning,
step size, supervised learning, unmanned aerial vehicles.

I. INTRODUCTION
Autonomous vehicles, such as autonomous underwater vehi-
cles (AUVs) or multi-rotor unmanned aerial vehicles (UAV)
are commonly equipped with an inertial navigation sys-
tem (INS) and other sensors [1] to provide real-time infor-
mation about their position, velocity, and orientation [2], [3],
[4], [5]. The INS has two types of inertial sensors, namely,
the gyroscopes and accelerometers. The former measures the
angular velocity vector, and the latter measures the specific
force vector. Since the inertial sensors measurements con-
tain noises, and error terms, the navigation solution drifts
with time. In the underwater environment, usually, a Doppler
velocity log (DVL) is used to reduce the solution drift with
time [6], [7], [8], [9], while above the sea surface global
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navigation satellite systems (GNSS) measurements are used
instead [10], [11].

The inertial sensors, DVL, and GNSS provide discrete
information regarding a vehicle’s continuous motion. Hence,
tracking a vehicle involves a discrete realization of contin-
uous motion. Such realization requires a step size selection,
usually made by the designer according to the scenario and
computational constraints [12], [13], [14]. Moreover, to save
power and extend the sensor/system life, the number of sam-
ples received from each source should be determined such as
the information quality is maintained and the computational
load is minimized [15]. Most of the time, AUV navigate slow
underwater for a long time. Thus, there is no need to obtain a
navigation solution in a high frequency, except in situation of
maneuvers where the drift might grow and there is a need for
a momentary high computational load [3]. To cope with this
trade-off, an adaptive step size may be used.
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In [16], an adaptive scheme for the step size, based only
on the vehicle speed, was suggested for dealing with sensor
scheduling in target tracking scenarios. An adaptive scheme
was also suggested in [17], where the step size is based
only on the vehicle’s distance to the target. It improves the
energy efficiency during target tracking scenarios. However,
the step size does not necessarily depend on the vehicle
speed and/or the distance to target. In [12], a simple crite-
rion was suggested to define the step size for sensor mea-
surements to minimize computational load and still provide
moderate navigation performance. This approach is based
on the predictor and corrector of the linear discrete Kalman
filter (KF) [18], [19], where the main idea is to keep the
discretized implementation of the continuous process with a
lower numerical error. Later, an adaptive scheme to update the
step size in real-time scenarios, with varying discrete noisy
measurements was presented for constant velocity (CV) and
constant acceleration (CA) models [20]. Yet, this approach
deals with linear dynamic models and not aimed to nonlinear
models.

Focusing on inertial measurements step size, in a sensor
fusion scenario like INS/DVL or INS/GNSS, the fusion is
carried out using a nonlinear filter such as the Extended KF
(EKF). There, inertial measurements are used in the system
model while the aiding measurements are used in the fil-
ter measurement model to update the navigation state. The
inertial sensors operate in a much faster frequency (tens or
hundreds of Hertz) than the aiding sensors (several Hertz).
As a consequence, approaches like in [15], [16], and [17],
are not suitable for such setups, as they assume constant step
sizes.

Recently, deep learning (DL) and machine learning (ML)
approaches were integrated in model based pedestrian dead-
reckoning (PDR) algorithms. In [21], the device orientation,
in addition to the accelerometers and gyroscopes readings,
was used as input to a DL architecture to regress the user
velocity in 2D. The velocity is then integrated to obtain the
user position. More pedestrian inertial navigation examples
are described in [22] and [23] where recent databases, meth-
ods and real-time inferences can be found. In [24], DL based
multi models (triggered by traffic conditions classification)
together with an EKF was proposed to cope with GNSS
outages. In [25], a convolutional neural network model was
used for noise-free gyro measurements in open loop attitude
estimation. They obtained state-of-the-art navigation perfor-
mance in terms of attitude estimation where they compen-
sated for gyro measurement errors as part of a strapdown
integration approach. Recently, a data-driven denoising of
accelerometer signals was proposed in [26].

In AUV navigation, an end-to-end deep learning approach
was proposed to regress missing DVL beam measurements
to provide the AUV velocity vector, only when a single beam
is missing. [27]. Later, [28], a deep learning approach was
used to address with a DVL failure scenarios to predict the
DVL output. In [29], recurrent neural networks are employed
to learn the vehicle’s geometrical and kinematic features to

regress the process noise covariance value in a linear KF
framework.

A recent work by Dias et al. [15], discusses an adaptive
step size of sensor networks, where online reinforcement
learning technique is adopted to minimize the number of
transmissions of the reported data. They showed a high reduc-
tion of energy while keeping the average information quality.
However, that approach is limited to large step sizes and
focused on a slow dynamics system, which is less relevant
for navigation applications.

This trend of integrating ML and DL approaches with
classical model-based INS applications raises the motivation
to adapt such approaches also in the described problem of
finding an adaptive step size for the INS during fusion with
other sensors.

In this paper, a typical scenario of an adaptive step size
determination for high rate inertial measurement unit (IMU)
aided by a low-rate sensor such as DVL or GNSS is con-
sidered. There, the quality/amount-of-measurements trade-
off to minimize velocity error as a function of the IMU step
size is addressed in the EKF framework. In the proposed
approach, ML models are used to predict the sub-optimal
IMU step size, and handle the non-linearity of the INSmodel.
Establishing a relationship between navigation features and
their sub-optimal IMU step sizes can be applied in a real-time
setting to solve the IMU step size conflict (accuracy vs.
computational load).

The main contributions of this paper are:

1) A numerical study of the effect of the inertial sen-
sor step size on the velocity error in INS/DVL and
INS/GNSS typical fusion scenarios.

2) Derivation of a learning-based scheme to determine an
adaptive IMU step size as a function of the velocity
error.

3) Online integration of the proposed learning scheme
with error state EKF implementation for the navigation
filter.

To validate the proposed approach two numerical exam-
ples of an AUV and a quadrotor are addressed, as well as
quadcopter field experiments. Both simulations and experi-
ments results show the benefits of implementing the proposed
learning-based approach.

The rest of the paper is organized as follows: Section II
deals with the problem formulation for INS/DVL and
INS/GNSS models. Sections III presents the importance of
step size selection, followed by novel learning-based step
size tuning approach, where the feature engineering, database
generation process, and adaptive tuning scheme with the INS
are discussed. Section IV presents the simulations and field
experiment results, and Section V gives the conclusions.

II. ADAPTIVE NAVIGATION FILTER
The nonlinear nature of the INS equations requires a non-
linear filter. The most common filter for fusing INS with
external aiding sensors is the es-EKF [1]. There, the errors
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are estimated and subtracted from the state vector. When
considering velocity aided INS, the position vector is not
observable [30]. Hence, it is not included in the error-state
vector, defined as:

δx =
[
δvn δεn ba bg

]T
∈ R12×1, (1)

where δvn ∈ R3×1 is the velocity vector error states expressed
in the navigation frame, δεn ∈ R3×1 is the misalignment
vector expressed in the navigation frame, ba ∈ R3×1 is the
accelerometer bias residuals vector expressed in the body
frame, and bg ∈ R3×1 is the gyro bias residuals vector
expressed in the body frame. The linearized, error-state,
continuous-time model is

δẋ = Fδx+ Gδw, (2)

where F ∈ R12×12 is the system matrix, G ∈ R12×12 is the
shaping matrix, and δw =

[
wa wg wab wgb

]T
∈ R12×1 is

the system noise vector consisting of the accelerometer, gyro,
and their biases random walk noises, respectively [31]. The
system matrix, F and the shaping matrix G are provided in
the appendix. We define Tnb as the transformation matrix
between body frame and navigation frame. The correspond-
ing discrete version of the navigation model (for small step
sizes), as given in (3), is

δxk+1 = 8kδxk + Gkδwk . (3)

The transition matrix, 8k , is defined by a first order approx-
imation as

8k
1
= I + F1t, (4)

k is a time index, δwk is a zero mean white Gaussian noise,
and I is an identity matrix. The step size for the INS calcula-
tions is defined by

1tk
1
= tk − tk−1, (5)

where each step size is related to the IMU frequency, νIMU ,
by

1tk =
1

νIMU
. (6)

The discretized process noise is given by

Qdk = GQcGT1tk , (7)

whereQc is the continuous process noise matrix. The discrete
error state EKF is used to fuse the INS with external mea-
surements. The initial error state and error state covariance
are defined as [1], [32]

δx̂0 = 012×1

P0 = Qd , (8)

where δx̂0 is the initial estimate error-state vector, P0 is the
initial covariance error, and the superscript ·̂ represents an
estimate vector. The error-state vector is initialized every
iteration:

δx̂−k = 0, (9)

where the superscript − represents the estimate from the
previous state, k − 1. The error covariance propagation (pre-
diction) is given by

P−k = 8k−1Pk−18k−1
T
+ Qdk−1, (10)

where Pk−1 is the estimate from previous state, k − 1. The
measurement arrives at time j, and then filter update is made.

The Kalman gain is given by

K j = P−j H j
T
[
H jP−j H j

T
+ Rdj

]−1
, (11)

where Rd is the discrete measurement noise covariance,
assumed to be constant.

The error-state estimate update is given by

δx̂j = K jδzj, (12)

where

δzj = ẑj − zj (13)

is the measurement residual vector, defined as the difference
between the estimated (ẑj) and the actual (zj) measurements.

Finally, the error covariance update (correction) is given by

P j =
[
I − K jH j

]
P−j . (14)

A. VELOCITY MEASUREMENT MODELS
Two types of velocity measurement models are considered: 1)
DVL and 2) GNSS. Regardless of the measurement model,
the velocity measurements are available in a constant fre-
quency, with a different step size from the IMU. The step size
of the aiding velocity sensor is given by

1τ j = τ j − τ j−1, j = 1, 2, . . . (15)

and related to the aiding sensor sampling frequency, νAiding,
by

1τ j =
1

νAiding
. (16)

Without the loss of generality, it is assumed a constant step
size for the aiding sensor measurements. Hence, the sub-
script j is omitted for 1τ . Commonly, the IMU has a higher
frequency rate than the aiding sensor, thus, the following
assumption is made:

1τ � 1tk , ∀k. (17)

1) DVL MEASUREMENT MODEL
After processing, DVL outputs the AUVvelocity vector in the
DVL frame, vdDVL . Then, it is transformed to the body frame,
vbDVL , and eventually to the navigation frame, vnDVL , where it
is used in the navigation filter. Thus,

vnDVL = TnbT
b
dv

d
DVL , (18)

where Tbd is the transformation matrix from the DVL frame
to the body frame. For simplicity, it is assumed that Tbd is
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accurately known, and therefore, removed in further analysis.
Linearizing (18) yields [33]

δvbDVL = Tbnδv
n
− Tbn

(
vn×

)
δεn. (19)

The corresponding measurement residual is given by

δzbDVL,j = HDVL,jδxj + ςDVL,j, (20)

where ςDVL,j ∼ N
(
0,RdDVL

)
∈ R3×1 is an additive dis-

cretized zero mean white Gaussian noise. It is assumed that
ς j and δwj are uncorrelated. The corresponding time-variant
DVL measurement matrix is given by

HDVL,j =

[
Tbnj −T

b
nj (v

n
×)

j
03×6

]
∈ R3×12. (21)

2) GNSS VELOCITY MEASUREMENT MODEL
The GNSS receiver outputs the velocity vector in the naviga-
tion frame. Hence, the corresponding time-invariant GNSS
measurement matrix is given by

HGNSS =
[
I3×3 03×9

]
∈ R3×12. (22)

The corresponding measurement residual is given by

δzb
GNSS ,j = HGNSSδxj + ςGNSS ,j, (23)

where ς
GNSS ,j ∼ N

(
0,RdGNSS

)
∈ R3×1 is an additive

discretized zeromeanwhite Gaussian noise. It is assumed that
ς j and δwj are uncorrelated.

III. ADAPTIVE STEP SIZE LEARNING
A. MOTIVATION: THE IMPORTANCE OF STEP SIZE
SELECTION
To demonstrate the influence of the step size on vehi-
cle’s velocity error, a simplified simulated vehicle trajectory,
shown in Figure 1, was used. The simulation parameters are
summarized in Table 1. As the example was conducted for
a short period (T = 240[s]), the IMU error model was
simplified to include only zero mean white Gaussian noise:

f̄ b = f imub + wa, (24)

and

ω̄ib = ω
imu
ib + wg, (25)

where f imub and ωimuib are true simulated outputs of the
accelerometer and gyroscope, respectively.

In order to evaluate the navigation performance, Monte
Carlo (MC) simulation with 100 iterations was made. The
averaged velocity root mean squared error (RMSE) for the
entire scenario is 0.06[m/s] which was obtained by setting
1t = 0.01[s].

As the velocity accuracy is affected by the predetermined
step size of the IMU, a sub-optimal step size satisfies the
following condition:

1t∗ = argmin
1t∈T

[E (1t)− B] , B > 0, (26)

where

E (1t) 1= E
∥∥δvnTrue (1t)∥∥2. (27)

TABLE 1. INS/GNSS simulation parameters.

FIGURE 1. Estimated and ground truth simulated trajectories. Blue line
shows ground truth and the black doted line shows the estimated
trajectory. The plots are presented in a local Cartesian coordinate system.

The argument 1t ∈ T ⊂ [1tmin,1tmax] minimizes the
difference between the 2nd Euclidean norm of the mean
averaged velocity (speed) error vector (E) and a design value,
B. Thus, the criterion allows velocity (speed) error up to B
for the sub-optimal step size. As B is a design parameter, one
can choose it according to the platform and scenario at hand.
In this work, we allow an averaged velocity error of 0.1[m/s].

Obviously, when B goes to zero, 1t → 0, and as a
consequence the computational load increases. Hence, to find
a trade off between accuracy and computational load, the con-
dition, B > 0, must be satisfied. In due course, we performed
100 MC simulations each with 10 different IMU step sizes
for three cases (different GNSS step size, 1τ ):

1t ∈ T̃ =
{
0.002, 0.004, 0.008, 0.01, 0.016
0.02, 0.032, 0.04, 0.05, 0.1

}
. (28)

The results are summarized in Figure 2, where each point rep-
resents the averaged velocity (speed) RMSE. For all scenar-
ios, as the step size increases, the averaged velocity (speed)
RMSE also increases. As seen in the figure, the change
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FIGURE 2. Velocity sensitivity to step size for five different scenarios with
various GNSS step size (1τ ). Complete trajectory and variances values are
provided in Table 1.

of the averaged velocity (speed) RMSE slowly converge to
steady-state values for all step sizes per scenario. Hence, there
is a1t , which is too large to carry the navigation information,
and it is associated with a high error. On the other hand,
given a bound for the averaged velocity RMSE, B, a mod-
erate value of 1t can be defined where the computational
load will be minimized. For example, if 1t = 0.05[s] or
1t = 0.1[s] for case [2] (Figure 2), are chosen, the same
averaged velocity (speed) RMSE of 0.01[m/s] is achieved.
For this example, 50% of the computational load can be
reduced without affecting the velocity error accuracy. Other
cases consider the GNSS step size (1τ ) as very small value
(not necessarily available in the market, yet) - to demonstrate
the impact of high-rate update.

B. SUPERVISED LEARNING FORMULATION
The power of ML rises the ability to solve many difficult and
non-conventional tasks. To determine the step size, the prob-
lem is formulated in a supervised learning (SL) approach; A
feature set is defined where kinematic and statistics measures
are considered. Formally, we search for a model to relate an
instance space,X , and a label space, Y . We assume that there
exists a target function, F , such that Y = F (X ).

Generally, the SL task is to find F , given a finite set of
labeled instances: {

Xk ,1t∗k
}N
k=1 . (29)

The SL aims to find a function F̃ that best estimates F .
A loss function, l, is defined to quantify the quality of F̃
with respect to F . The overall loss is given by

L
(
Y, Ŷ (X )

)
1
=

1
M

M∑
m=1

l
(
y, ŷ
)
m, (30)

where M is the number of examples, and m in the example
index. Minimizing L in a training/test procedure leads to
the target function. The step size tuning problem is formu-
lated as a classification problem, where only two classes are
considered:

Y = {0.04, 0.002} ∈ R1×2. (31)

Ideally we would like to minimize the computational cost
without influencing the accuracy. Yet, due to the inherit
tradeoff this is not possible. Therefore, we would like to
minimize the computational cost with resulting minimum
accuracy degradation. As a consequence, only the step-size
is considered in the loss function, l, given by

lm
1
=
(
1t∗m − 1̂tm

)2
, (32)

where 1̂tm is the estimated step size value obtained by the
learning model during the training process. The main reasons
for considering this problem as a classification task and not
regression task are:

1) Filter robustness: Minimizing the amount of step size
switching along the navigation process.

2) ML model robustness: As there are only two classes
in the label space. By doing so, the deterministic label
space avoids invalid values and improves real-time per-
formance.

Notice, that in (30) two different step sizes are considered.
Yet, if needed, the proposed framework can be applied for
more different values pending on the scenario at hand. The
major benefit of defining the problem as a bi-classification
predictor is that we minimize the number of ‘‘chattering’’
between many step size values (might lead to unstable filter).
Also, using two values, one big 0.04[s] and the other small
0.002[s], presents clearly the computational effort reduction.
Later, an example supporting the bi-classification choice is
provided.

C. FEATURE ENGINEERING
Sixteen high-level and low-level features, are considered:

X =
{
X high ,X low

}
∈ R1×16, (33)

where
1) High-level features: A group of features that contains

physical values of various filter and vehicle parameters
in the scenario. Mean and square root are commonly
used in many types of classification/regression prob-
lems and thus used:

X high
=


√
Qg11 ,

√
Qa11 ,

√
Rd11 ,

1τ,E
(
v̂n
)2
,Eϕ̂2,Eθ̂2,Eψ̂2

 ∈ R1×10,

(34)

where the subscript 11 stands for the first element of
a matrix, and E is the expected value operator, calcu-
lated based on a moving average of the last 50 values.
E
(
v̂n
)2 contains three features for north, east, and down

velocity components. φ, θ, and ψ are the body angles
(briefly explained in the appendix).

2) Low-level features: The low-level features are scalar
values, created based on combination and modification
of the high-level features, as summarized in Table 2.
Low-level features were chosen due to the dynamic
body behavior and noise characteristics.
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TABLE 2. Low-level features.

TABLE 3. Value ranges for Database generation.

Generally, the designer can chose additional/different fea-
tures for the classification task.

D. DATABASE GENERATION PROCESS
As a preliminary stage of training, a dataset should be gener-
ated. Then, it could be processed into theMLmodel. A veloc-
ity error, B, was defined using different trajectories. There,
the vehicle traveled along them several times with various
step sizes to find and store those that minimized vehicle
velocity vector (speed) error. The various trajectories were
created by modifying the radius of a circular motion, straight
lines, and general curves.

The process of generating such trajectories is divided into
two parts: INS simulation with perfect IMUmeasurements to
produce theGT trajectories and store them, and noisy velocity
aided INS simulation in order to create noisy examples with
their corresponding 1t∗ satisfying a desired bound of veloc-
ity error, B. The IMU noise variance values as also velocity
aiding sensor noise values are summarized in Table 3.

The database generation process is described in Figure 3.
IMU noise variances were firstly set, similarly to the simpli-
fied IMU error model provided in (24) − (25) with different
noise variances values. Then, IMU readings and aiding sensor
measurements (constant step size) are processed into the
velocity aided INS scheme and provide the vehicle navigation
solution and their state errors as well. As the focus is to
determine a sub-optimal 1t to minimize velocity error, the

FIGURE 3. Database generation process. IMU and accurate velocity
measurements enter the velocity aided INS, then the velocity error is
calculated. Given the GT velocity, the system decides if step-size should
be reduced or not.

FIGURE 4. Step size adaptive tuning by applying the ML classifier. The
features (high level and low level) are calculated based on temporal data.
Then, they are processed into a classifier that outputs the sub-optimal
step size.

error upper bound, B, was chosen to be 0.1[m/s] (other
values can be examined instead). If the condition (26) is
satisfied, the example is stored. Else, the step size of the IMU,
1t , is reduced. Repeating this process for many scenarios
yields a large dataset, enabling model training. Therefore, the
examples in the dataset have the smallest step size, within
the defined error bound, achieving the objective of trade-off
balance between computation and accuracy

E. ADAPTIVE TUNING SCHEME
Applying the suggested tuning approach in online setting
involves integration of the velocity aided INS with the classi-
fier, as presented in Figure 4. Algorithm 1 gives the velocity
aided INS with adaptive step size tuning algorithm.
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Algorithm 1 Velocity Aided INS With Adaptive Step Size
Tuning
Input: ωib, f b, vAiding,1t0,1τ,T , tuningRate
Output: vn, εn

Initialization: vn0, ε
n
0

LOOP Process
1: for t = 0 to T do
2: obtain ωib,f b
3: solve navigation equations (3)
4: if (mod(t,1τ ) = 0) then
5: obtain vAiding (20),(23)
6: update navigation state using the es-EKF (8)-(14)
7: end if
8: Calculate features and predict 1t∗k+1.
9: if mod(t, tuningRate) = 0 then

10: calculate X (33)-(34)
11: 1t∗k+1 = F̃trained (X )
12: end if
13: end for

IV. RESULTS
A. CLASSIFICATION METHODS COMPARISON
In order to find the most suitable SL prediction model,
various classification models have been explored: fine tree
(decision tree with many leaves), Naive Bayes, K-Nearest
Neighborhood (KNN), Support Vector Machine (SVM),
Logistic regression, and Ensemble (boosted trees) [34],
[35]. The comparison process was made for 5 cases, with
different IMU variance values, using a database (created
as described in Section III.D) consisting of 18,000 exam-
ples. Those includes motion along straight lines with var-
ious velocities, and circles with different radiuses and
velocities.

All classifiers were bi-classifiers, with small and large step
sizes for better model robustness (briefly explained in the
appendix). The IMU and aiding sensors noise covariances
were tuned with different values to enrich the dataset. Note,
that this dataset was created to handle with both INS/DVL
and INS/GNSS fusion scenarios.

Two training paradigms were considered: train/test with
80/20 ratio, and cross validation with five folds. The vehicle’s
dynamics was set by tuning the IMU and selecting the initial
kinematic conditions.

To evaluate the proposed models performance, the area
under curve (AuC) measure was employed (see appendix for
further explanations). For that, the positive value was defined
as P1t = 0.002[s], and the negative value as N1t = 0.04[s].
The second criterion used in order to evaluate the proposed
models is the accuracy measure. Both criterions were calcu-
lated for each of the candidate models.

Classification results comparing machine learning (ML)
approaches are provided in Figure 5. Each approach achieves
AuC score and accuracy score for their classification perfor-
mance, where once it was made by train/test paradigm and
once by cross-validation paradigm. All models obtainedmore

FIGURE 5. Learning model comparison with AuC and accuracy
performance measures.

than 0.88 accuracy and AuC rates for both paradigms. The
SVM obtained high accuracy rate (0.95) using the train/test
paradigm, and high rate in the cross validation paradigm
(also, a good performance according to the AuC rate). The
Ensemble method slightly outperforms the SVM approach
according to the AuC (both train/test and cross validation)
as well as according to accuracy (cross validation). As the
accuracy of both methods is similar, the SVM was chosen as,
in general, it is known to be a robust classifier, as it maximizes
the hyperplane margins [36].

Another justification to consider the SVM classifier is the
trained model computational time. To that end, the excitation
time was measured in the algorithm working environment
(Intel i7-6700HQ CPU@2.6GHz 16GB RAM with MAT-
LAB). The Ensemble model averaged iteration calculation
time was 0.015[s] while the SVM was 0.001[s]. Hence, the
SVM is 15 times faster than the Ensemble, which is a very
important property in real time applications. These reasons
lead us to choose the SVM as the optimal classifier for this
task, as we deal with real-time scenarios and aim to keep the
navigation filter robustness and efficient. The resulted ROC
curve with a chosen classifier, (FPR = 0.03,TPR = 0.87),
received AuC of 0.98, with accuracy of 0.95 (obtained by a
train/test paradigm). Hence, the SVM classifier was chosen
for further analysis.

B. MRMR BASED FEATURE RANK
The learning-based models were trained using 16 features.
In many real-time application the computational time of these
features is critical and might take long time and eventually
result in system latency or memory constraints. In order
to avoid that, feature dimensionality reduction methods are
applied. There, the features rank approach is used to select
the most contributing features.

One of the classical and common feature ranking
approaches is the minimum redundancy maximum rele-
vance (MRMR) method [37]. It was used to rank the fea-
ture set (32). Figure 6 summarizes the results showing that

Eψ̂2,
√
Qa11 , and

√
Rd11are the three most important features.

Although all features were used in the current research, the
MRMR showed that the high level features contribute more
to the classification process. Thus, if some computational
constraint is required they could be removed from the analy-
sis/model.
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FIGURE 6. Feature importance ranking as obtained by the MRMR method.

C. SIMULATIONS
Two different simulation scenarios to validate the velocity
aided INS with adaptive step size tuning were made. First,
an INS/GNSS with scenario parameters given in Table 4,
and secondly, an INS/DVL with scenario parameters given
in Table 5. The main different between the simulation tra-
jectories is the common dynamic profiles for each platform
and the platform sensors type and error modeling. For the
quadrotor the INS/GNSS fusion was applied with a fast-
dynamics profile. As the GNSS is not available underwater,
for the AUV scenario the INS/DVL fusion was implemented
with a slow-dynamics profile. Both simulated trajectories are
constructed by lines and curves, that the ML classifier was
not trained on. However, it is expected themodel will success-
fully capture the dynamics and statistics along the trajectories
to predicting the sub-optimal 1t∗, as it was trained over
18, 000 examples (Section III.D) with various scenarios. For
better comparison, we add one classical approach for step size
tuning as a function of the velocity, given by [16]:

1t∗k+1
(∥∥vn∥∥2) = {1tmin (‖vn‖2)k > vTresh

1tmax (‖vn‖2)k ≤ v
Tresh , (35)

where the velocity threshold, vTresh is determined by the
designer, upon the real-time scenario. In the adaptive setting,
once the ML classifier predicts a different step size from the
one it used in the last 20 steps, the algorithm tunes the updated
step size for the next iteration.

For the trajectory shown in Figure 1, graphs of the
predicted 1t as a function of time according to the ML
classifier and the classical approach (35) are plotted in Fig-
ure 7, for INS/GNSS simulation. There, the ML classifier
predicted mostly 1t∗ = 0.04[s], except for short time
interval ([50, 58][s]), where it predicted 1t∗ = 0.002[s].
The velocity error results are shown in Table 6, where,
in addition to the adaptive tuning, two constant step sizes
were used for comparison. Applying the small step size

(1t = 0.002[s]) results in mean velocity error of 0.145[m/s],
which is the lowest error associated with high computational
load of 120, 000 iterations, and maximum velocity error of
0.41[m/s]. From the other side, applying the larger step size
(1t = 0.04[s]), used only 6, 000 iterations (only 5% of the
smaller step size) results in mean velocity error of 0.187[m/s]
(less than 0.05[m/s] increase) and maximum velocity error
of 0.655[m/s]. By applying the adaptive step size tuning
approach, a mean velocity error of 0.181[m/s] was obtained,
with only 9, 381 iterations. This is less than 10% of the
conservative approach with IMU step size of 0.002[s], and
also yields a lower velocity error than the large step size.
The maximum velocity error with the adaptive step size is
0.37[m/s], lower than both constant cases.
In Figure 8, the INS/DVL simulated trajectory is shown.

The changes of 1t∗ during time according to the ML clas-
sifier and the classical approach (35) are plotted in Figure 9.
There, the ML classifier predicted 1t∗ = 0.002[s] for the
first 17[s] of the trajectory, and then predicted1t∗ = 0.04[s]
until the end of the trajectory. The velocity error results
are shown in Table 7, where, similarly to the INS/GNSS
simulation, two constant step sizes were used to compare
the adaptive tuning step size. Applying the smaller step size
(1t = 0.002[s]) results in 0.015[m/s] mean velocity error
and maximum velocity error of 0.019[m/s], which is the
error associated with high computational load of 20, 000 iter-
ations. From the other side, applying the larger step size
(1t = 0.04[s]), used only 1, 000 iterations, (only 5% of
the smaller step size) results in 0.0216[m/s] mean velocity
error (less than 0.07[m/s] increase) and maximum velocity
error of 0.046[m/s]. By applying the adaptive step size tuning
approach, a mean velocity error of 0.012[m/s] was obtained
with only 9, 360 iterations. This is less than a half from the
conservative approach with IMU step size of 0.002[s], and
also yields a lower mean velocity error. A maximum velocity
error of 0.028[m/s] were obtained.
For both INS/GNSS and INS/DVL simulations, the clas-

sical method for determining 1tk based on the vehicle
speed, (35), obtained insufficient computational load with
higher mean velocity error, where for the INS/GNSS a mean
velocity error of 0.203[m/s] was obtained with over than
70, 000 iterations. and for the INS/DVL amean velocity error
of 0.280[m/s] was obtained with nearly 10, 000 iterations.
The threshold was determined as the initial vehicles speed
in both scenarios. To summarize, while using our proposed
adaptive approach, the average velocity error has increased
by only 0.077[m/s] While using only about 1/7 of the com-
putational load.

D. FIELD EXPERIMENT
A field experiment using a quadrotor was performed (Fig-
ure 10). The altitude of the quadrotor was kept constant and
the horizontal trajectory is shown in Figure 11. The 12 error
state model, described in Section II.A, was used to obtain the
navigation solution. The filter was updated by velocity mea-
surements from a GNSS receiver and the resulting navigation
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TABLE 4. INS/GNSS with adaptive step size simulation parameters.

TABLE 5. INS/DVL with adaptive step size simulation parameters.

TABLE 6. INS/GNSS simulation results.

FIGURE 7. INS/GNSS simulation with sub-optimal step size, 1t∗, based
on the ML classifier and classical 1t

(∥∥vn∥∥
2
)

as a function of time for a
duration of 4 minutes.

solution was compared with a GT measurements, obtained
using an RTK device. To examine different (from the ones
used in our simulations) and challenging scenarios (for the

TABLE 7. INS/DVL simulation results.

FIGURE 8. INS/DVL simulation trajectory for an AUV. The vehicle moves at
the same sea level (−5[m]) and performs a rectangular motion. The blue
line is for the GT trajectory and the dotted black line is for the estimated
trajectory.

FIGURE 9. INS/DVL simulation with sub-optimal step size, 1t∗, based on
the ML classifier and classical 1t

(∥∥vn∥∥
2
)

as a function of time for a
duration of 40 seconds.

proposed ML algorithm), an ‘‘8-figure’’ shape trajectory was
applied, to include accelerations/ declarations, as also turns
for part of the time, and almost ‘‘straight’’ lines for the rest.
Also, different parameters values were examined in the field
experiment resulting in more cases that were examined and
covered for better conclusion and generalization of the ML
approach, keeping the ML strategy the same. Experiment
parameters are provided in Table 8. In Algorithm 1, line 11,
for the experiment, the optimal step size is 0.02[s]. There is no
need for additional training as the experimental dataset was
addressed as a new test dataset, that is the ML was trained on
the simulation training dataset.
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FIGURE 10. DJI matrice 300 in a field experiment.

FIGURE 11. Field experiment Quadrotor GT trajectory and its estimated
one.

TABLE 8. Experiment parameters.

The experiment error results using the classical approach,
1tk = 0.002[s], 1tk = 0.02[s], and 1t∗ from the sug-
gested adaptive tuning approach are summarized in Table 9.

TABLE 9. Errors as a function of step size and the resulting number of
Iterations.

FIGURE 12. INS/GNSS experiment with sub-optimal step size, 1t∗, based
on the ML classifier and classical 1t

(∥∥vn∥∥
2
)

as a function of time for a
duration of 35 seconds.

It appears that 1800 iterations results in 0.128[m/s] mean
velocity error, and increasing the number of iterations to
18, 000 yields a meaningful reduction where only 0.01[m/s]
mean velocity error is obtained. Amaximum velocity error of
6.25[m/s] was obtained for a fractional initializationmoment,
both for the adaptive step size and the constant step size of
1tk = 0.002[s]. Our suggested adaptive tuning algorithm
founds a sub-optimal solution, where only 9,900 iterations
yields a 0.02[m/s] mean velocity error (as defined by setting
B). The designer controls the amount of iterations according
to velocity RMSE criterion.

In this experiment, the number of iterations using 1tk =
0.02[s] increases adaptive by a factor of almost 6 (from
1800 to 9900) to meet designer’s criterion. From the other
side, applying the adaptive tuning scheme results in 45%
reduction of number of iterations obtained while setting
1tk = 0.002[s] with only 0.01[m/s] increase of mean veloc-
ity error. The maximum velocity error is 5.82[m/s] for a frac-
tional initialization moment. In this experiment we obtained a
nearly linear relationship between the velocitymean error and
the step size. This result confirms our numerical simulation
from III.A. The classical method for determining 1tk based
on the vehicle speed, (35), obtained insufficient computa-
tional load with higher mean velocity error: a mean velocity
error of 0.037[m/s] was obtained with 4, 500 iterations. The
changes of 1t∗ during time according to the ML classifier
and the classical approach (35) are plotted in Figure 12.

V. CONCLUSION
A proper choice of the step size is important for implement-
ing velocity aided INS. The step size depends on various
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navigation parameters. In real life, these parameters and
their behavior in the dynamic environment are partly known.
A novel ML-based scheme to adaptively tune an appropri-
ate step size, together with the es-EKF implementation was
proposed. According to this scheme, the designer should set
an averaged velocity error bound, where the ML classifier
predicts the sub-optimal step size to provide the navigation
solution without exceeding this bound, in real-time scenarios.
Extensive simulations and a field experiment demonstrated
the efficiency of this methodology in commonly used vehicle
tracking problems. The proposed schememinimized the com-
putational load with minimum influence on velocity estimate
error. The scheme was validated using two simulations and
field experiment. There, the relationship between the velocity
RMSE and the IMU step size was presented. In the INS/DVL,
INS/GNSS and field experiment, we measured the velocity
only and found that we can use lower number of iterations,
and by that minimize computational load, with a sufficient
velocity RMSE by applying the suggested scheme. In this
work, for demonstrative proposes, only two different step
size were examined, yet the proposed approach can be easily
elaborated to more different sizes. In addition, the goal of
this work was focused on velocity aided INS, however the
proposed approach can be used with any other aiding sensors
and to any other platform.

A. INS EQUATIONS OF MOTION
The INS equations of motion include the rate of change of
the position, velocity, and the transformation between the
navigation and body frame, as shown in Fig.12.

The position vector is given by

pn =
[
φ λ h

]T
∈ R3×1, (36)

where φ is the latitude, λ is the longitude, and h is the altitude.
The velocity vector is Earth referenced and expressed in the
North-East-Down (NED) coordinate system:

vn =
[
vN vE vD

]T
∈ R3×1, (37)

where vN , vE , vD denote the velocity vector components in
north, east, and down directions, respectively. The rate of
change of the position is given by [1]

ṗn =

 φ̇λ̇
ḣ

 =


vN
RM + h
vE

cos (φ) (RN + h)
−vD

 , (38)

where RM and RN are the meridian radius and the normal
radius of curvature, respectively. The rate of change of the
velocity vector is given by [1]

v̇n = Tnbf
b
+ gn −

([
ωnen×

]
+ 2

[
ωnie×

])
vn, (39)

where Tnb ∈ R3×3 is the transformation matrix from body
frame to the navigation frame. f b ∈ R3×1 is the accelerom-
eters vector expressed in the body frame, gn ∈ R3×1 is
the gravity vector expressed in the navigation frame. ωnen is

the angular velocity vector between the earth centered earth
fixed (ECEF) frame and the navigation frame. The angular
velocity vector between ECEF and the inertial frame is given
by ωnie and the rate of change of the transformation matrix is
given by [1]

Ṫ
n
b = Tnb

([
ωbib×

]
−

[
ωbin×

])
, (40)

where ωbib =
[
p q r

]T
∈ R3×1 is the angular velocity vector

as obtained by the gyroscope and ωbin is the angular velocity
vector between the navigation frame and the inertial frame
expressed in the body frame. The angular velocity between
the navigation frame and the inertial frame expressed in the
navigation frame is given by ωnin. The alignment between
body frame and navigation frame can be obtained from Tnb,
as follows

ε =

 ϕθ
ψ

 =


atan2
(
Tbn31,T

b
n32

)
arccos

(
Tbn33

)
−atan2

(
Tbn13,T

b
n23

)
 ∈ R3×1, (41)

where ϕ is the roll angle, θ is the pitch angle, andψ is the yaw
angle. These three angles are called Euler angles. The system
matrix, F, is given by

F =


Fvv Fvε Tnb 03×3
Fεv Fεε 03×3 Tnb
03×3 03×3 03×3 03×3
03×3 03×3 03×3 03×3

 (42)

where Tnb is calculated by (18), and Fij ∈ R3×3 can be found
explicitly in the classical literature (see [1], [20], [32]).

The dynamic matrix terms Fij are provided:

Fεv =



0
−1

RN + ĥ
0

1

RM + ĥ
0 0

0
tan

(
φ̂
)

RN + ĥ
0


(43)

Fvε =

 0 f D −f E
−f D 0 f N
f E −f N 0

 (44)

where matrix terms are the specific forces in navigation
frame.

Fεε =

 0 ωD −ωE
−ωD 0 ωN
ωE −ωN 0

 (45)

where,

ωNωE
ωD

 =

(
˙̂
λ+ ωie

)
cos

(
φ̂
)

−
˙̂
φ

−

(
˙̂
λ+ ωie

)
sin
(
φ̂
)
 (46)
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The Fvv matrix columns are given as follows

F(1)vv =


v̂D
Re

−

(
ωD − ωie sin

(
φ̂
))

2 v̂NRe



F(2)vv =


2ωD

v̂D
Re
+
v̂N
Re

tan
(
φ̂
)

−2ωN



F(3)vv =


−
v̂N
Re

ωN + ωie cos
(
φ̂
)

0

 (47)

The shaping matrix is given explicitly by

G =


Tnb 03×3 03×3 03×3
03×3 Tnb 03×3 03×3
03×3 03×3 I3×3 03×3
03×3 03×3 03×3 I3×3

 (48)

B. EVALUATION CRITERIONS
1) AuC
Binary decision problems are commonly evaluated using the
receiver operating characteristic (ROC) curve. One of the
large advantages of the ROC is its representation capability
of accuracy of the test data. The ROC is a plot of sensitivity
vs. specificity. These two parameters are also known as:

TPR =
TP

TP+ FN
(49)

and,

FPR =
FP

FP+ TN
(50)

where TPR is the true positive rate (sensitivity), FPR is the
false positive rate (specificity). P is the amount of positive
values, N is the amount of negative values, TP is the number
of true positive, TN is the number of true negative, FP is the
number of false positive (type one error), and FN is the num-
ber of false negative (type two error). The AuC, Area under
the Curve, is a measure of the two-dimensional area under-
neath the entire ROC curve. This measure is scale-invariant
and classification threshold invariant. Hence, it is a very
useful criterion for classification performance evaluation.

2) ACCURACY
The second criterion used in order to evaluate the proposed
models is the accuracy measure, given by:

ACC =
TP+ TN

TP+ TN + FP+ FN
(51)

The accuracy is used as a measure of ‘‘howwell a binary clas-
sification test correctly identifies a condition’’. It compares
estimates of pre and post test probability. This is the ratio of
the number of true classified examples over the total number
of examples.

FIGURE 13. Quadratic SVM classifier for 10 classes of 1t .

C. BI VS. MULTI CLASSIFICATION AND REGRESSION
FORMALIZATION
The major benefit of defining the problem as a bi-
classification predictor, is that we minimize the number of
‘‘chattering’’ between many step size values (might lead to
unstable filter). Also, using two values, one big 0.04[s] and
the other small 0.002[s], presents clearly the computational
effort reduction. A confusion matrix of 10 step size classes
is presented here, to demonstrate the lower robustness of
considering too much classes for this task. This is part of our
initial analysis and is not included in the paper.

Also, we formulated this problem as a regression task,
where, unfortunately, the obtained trained models result in
high RMSE respectively to the step size (linear regression
RMSE: 0.025, Tree RMSE: 0.016).
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